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Abstract

In dynamic environments, moving objects pose a great challenge to the accuracy and robustness of visual simulta-
neous localization and mapping (VSLAM) systems. Traditional dynamic VSLAM methods rely on hand-designed
feature frames, and these methods usually make it difficult to fully utilize feature information in dynamic regions. To
this end, this paper proposes a SLAM system (GAF-SLAM) that combines gray area feature points, weighted static
probabilities, and spatio-temporal constraints. This method realizes the efficient fusion of key point detection and
target detection by introducing YOLO-Point to extract gray area feature points from dynamic regions. These feature
points are located within the detection frame and have potentially static feature point properties. By combining the
reprojection error and polar geometry constraints, potential static feature points are effectively screened out and
the identification of these gray area feature points is further optimized. Subsequently, a novel static probabilistic
computational framework is designed to assign weights to these gray area feature points and dynamically adjust
their influence on the optimization results during the attitude estimation process. By combining static probability
with temporal continuity and spatial smoothness constraints, the system achieves significantly improved localization
accuracy and robustness in dynamic environments. Finally, the proposed method was evaluated on the TUM RGB-
D dataset. The experimental results demonstrate that GAF-SLAM significantly improves pose estimation accuracy
and exhibits strong robustness and stability in dynamic indoor environments.

1. Introduction

Simultaneous localization and mapping (SLAM) technology is capable of real-time self-localization
and map construction in unknown environments, and it is a key technology in the fields of robotics,
autonomous driving, and augmented reality [1-5]. Compared with traditional laser SLAM, visual
SLAM (VSLAM) has lower cost and richer environment sensing capability, which makes it show great
potential in applications such as robot navigation, augmented reality (AR), virtual reality (VR), and
intelligent surveillance. In recent years, with the rapid development of computer vision and machine
learning, the performance and robustness of VSLAM have been significantly improved. However, most
of the existing VSLAM algorithms are based on static environment assumptions, leading them to exhibit
limitations in complex dynamic environments.

Current mainstream VSLAM methods, such as ORB-SLAM2 [6], ORB-SLAM3 [7], LSD-
SLAM [8], and DSO [9], demonstrate good accuracy and stability in static scenes. However, in dynamic
environments, moving objects (such as pedestrians and vehicles) can introduce mismatched feature
points, disrupting the system’s state estimation. This interference may lead to a significant decrease in
the robustness of the visual SLAM system or even a crash. Therefore, effective detection and rejection
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of dynamic objects are crucial for the accuracy and robustness of vision SLAM systems in dynamic
scenes.

Recently, methods such as DS-SLAM [10], Dyna-SLAM [11], and DE-SLAM [12] have attempted
to improve the system performance by using semantic segmentation and target detection networks to
obtain semantic information about dynamic elements, and combining geometric constraints to remove
these dynamic feature points. However, the high dependence of these methods on semantic information
leads to a significant increase in computational overhead, posing a greater challenge to real-time perfor-
mance. In addition, these methods rely on traditional indirect VSLAM system using the hand-crafted
features, limiting the overall robustness of the system, and its ability to handle complex dynamic scenes.
Meanwhile, the complete elimination of feature points in the dynamic region may lead to insufficient
constraints in the position estimation and affect the localization accuracy. Therefore, how to balance the
detection of dynamic objects and the preservation of static features in dynamic environments becomes
a key issue for research.

To cope with the above challenges, this paper proposes the GAF-SLAM algorithm, which introduces
the YOLO-Point [13] deep learning network into the visual SLAM system to replace the traditional
ORB feature extraction method. Combining gray area feature points screening and static probability
calculation in dynamic environment, the system’s localization accuracy and stability are improved by
analyzing the feature points in the dynamic region, effectively identifying and removing the dynamic
feature points, while retaining more static feature points. After calculating the static probability from
all the static feature points, the weighted static probability and spatio-temporal constraints are fused to
perform the dynamic pose estimation, and a more accurate position is solved. The specific contributions
of this paper are as follows:

1. This paper introduces the concept of “gray area feature points” and designs a dynamic fea-
ture point screening and static probability calculation framework that integrates deep learning
with geometric optimization. By incorporating the YOLO-Point network, the system achieves
dynamic object detection and feature point extraction, and accurately identifies gray area feature
points in dynamic regions using reprojection error and epipolar geometry constraints. In addi-
tion, a static probability calculation method is proposed, which assigns static weights to gray area
feature points based on reprojection distance, epipolar distance, and observation state, thereby
enhancing the robustness and accuracy of pose estimation in dynamic environments.

2. A dynamic pose estimation algorithm fusing weighted static probability and spatio-temporal
constraints is proposed, which calculates the static probability of feature points and dynamically
adjusts their weights in the optimization process. In addition, the algorithm further combines
temporal continuity and spatial smoothness constraints to effectively optimize the weight alloca-
tion strategy of static feature points, thus enhancing the stability and robustness of feature point
matching. Ultimately, the weighted sum of the reprojection error and the temporal consistency
constraint is minimized by nonlinear least squares optimization, which achieves high-precision
pose estimation in dynamic environments.

3. We integrated the method into the front-end of ORB-SLAM?2 and evaluated the method on the
TUM RGB-D datasets and Bonn RGB-D datasets, as well as tested it in real-world scenarios.
The results show that GAF-SLAM achieves high localization accuracy and robust performance
in various dynamic environments.

The paper is organized as follows. Section 2 is an introduction to the related work. Section 3 describes
the main theoretical model and algorithm design of the method in this paper. Section 4 details the
comparative analysis of the experimental results. The conclusions are presented in section 5.

2. Related work
2.1. Static SLAM

VSLAM algorithms can be categorized into two main types: direct methods and indirect methods. Direct
methods rely on the assumption of pixel intensity invariance, utilizing photometric information directly
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to minimize errors in pose estimation. Representative techniques such as LSD-SLAM and DSO are
favored for their fast computational speed and adaptability to texture-scarce environments. However,
these methods lack loop closure detection modules, which can lead to the accumulation of errors, and
they exhibit insufficient robustness under varying lighting conditions.

In contrast, indirect methods estimate the camera pose by extracting and matching features. Mono-
SLAM [14] and ORB-SLAM?2 are typical examples of this approach. Although they are somewhat
slower in processing speed, they demonstrate greater robustness in scenarios with lighting changes and
rapid camera motion. In ref. [15], the authors significantly improved the system’s matching accuracy by
introducing line features and utilizing IMU-assisted optical flow tracking to predict these line features.
Liu [16] proposed a lightweight SLAM method based on pyramid IMU-predicted optical flow tracking,
aiming to reduce the computational cost of feature tracking while enhancing the system’s processing
speed.

However, most existing VSLAM techniques assume that the external environment is static. In real-
time applications, moving objects are prevalent, and this dynamic characteristic can significantly affect
the localization accuracy and tracking performance of traditional VSLAM systems, which in turn
seriously threatens the stability and accuracy of the system.

2.2. Dynamic SLAM

For the effect of dynamic scenes, the current VSLAM system mainly adopts two types of methods to
recognize and reject dynamic feature points: geometric information methods and semantic information
methods.

Geometric information methods utilize geometric constraints to detect and reject dynamic points.
Such methods usually recognize dynamic features by detecting the motion consistency or geometric
properties of the feature points. For example, Zou et al. [17] projected feature points from the previous
frame to the current frame and classified static and dynamic feature points according to the magnitude
of the 2D reprojection error. Wang et al. [18] combined polar constraints and RGB-D depth clustering
information to identify outliers in neighboring frames to detect moving targets. Dai et al. [19] suc-
ceeded in distinguishing dynamic targets from static backgrounds by analyzing the correlation of map
points, effectively reducing the influence of dynamic objects on position estimation. Song ez al. [20]
employ density-based spatial clustering of applications with noise (DBSCAN) [21] in conjunction with
geometric consistency and epipolar constraints to remove dynamic feature points. However, these geo-
metric methods rely on localized feature motion variations and are poorly adapted to large-scale dynamic
scenes, which may affect the reliability of position estimation and map construction accuracy.

The semantic information approach extracts semantic information from images with the help of deep
learning models to remove potential dynamic objects, which provides a new solution for the applica-
tion of SLAM in dynamic environments. In recent years, the combination of deep learning and SLAM
algorithms has made significant progress. For example, Dyna-SLAM combines Mask-R-CNN [22] and
a multi-view geometry approach in the ORB-SLAM?2 framework to effectively remove the dynamic
point. Yang et al. [23] used faster R-CNN [24] to detect dynamic objects and further confirmed dynamic
objects by geometric matching. DS-SLAM combined with Seg-Net [25] and motion consistency detec-
tion for accurate recognition of dynamic objects. Wen et al. [26] combined semantic information with
pixel spatial motion features to effectively improve localization accuracy. The OVD-SLAM [27] utilizes
pixel-level dynamic object segmentation to distinguish foreground from background, and recovers static
points on moving objects by minimizing reprojection errors, thereby mitigating the negative impact of
dynamic points on system performance. These methods perform superiorly in dynamic environments,
but the high dependence on semantic information significantly increases the computational overhead
and poses a serious challenge to real-time performance.

For this reason, other approaches have begun to try to optimize the use of semantic information. For
example, YOLO-SLAM [28] combines a YOLO target detection network with VSLAM to cull out fea-
ture points in dynamic regions using real-time dynamic object detection, thus improving robustness and
accuracy in dynamic environments. COEB-SLAM [29] proposed real-time dynamic SLAM algorithms
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based on deep learning, extracting semantic information from the scene using object detection networks,
and combining optical flow techniques to remove dynamic feature points, significantly reducing local-
ization errors in dynamic environments. SG-SLAM [30] further enhances the system’s robustness by
combining semantic information with geometric information, enabling more accurate identification, and
elimination of dynamic point interference. GGC-SLAM [31] calculates the fundamental matrix distance
and uses object detection results to eliminate dynamic feature points, effectively reducing the impact of
dynamic scenes on the SLAM system [32] improves traditional VSLAM by combining object detection
to filter dynamic objects and focusing on static points. Yang et al. [33] combined deep learning with
probabilistic filtering methods, significantly improving the robustness of VSLAM in dynamic environ-
ments. MPOC-SLAM [34] utilizes object category and motion probability modeling to significantly
improve localization and map-building capabilities in highly dynamic environments.

Although these semantic approaches have achieved good results in dynamic environments, the com-
plete elimination of semantic information from dynamic objects may lead to insufficient feature points
and affect the matching performance of the system. Moreover, these methods still mainly rely on the
traditional indirect SLAM framework, which uses hand-designed feature point detection and descrip-
tion methods and fails to fully exploit the potential of deep learning models for efficient joint feature
extraction. This limitation provides a research direction to further improve the performance of SLAM
in dynamic environments.

3. Improved VSLAM system

In most feature-based VSLAM methods, the camera rotation R and translation t are estimated by min-
imizing the reprojection error between the key points x; = (u;, v;)"and their corresponding 3D points
Xi=(xy,2)".
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In this context, 7 ( - ) denotes the camera transformation model that converts 3D coordinates to pixel
coordinates, R* and t* represent the optimized camera pose, f; and f, are the camera focal length, c, and
¢, are the camera center coordinate.

In general, in the case of static environments, all extracted feature points participate in the opti-
mization process. However, feature points from dynamic elements may interfere with this optimization
process. Specifically, due to the lack of observable motion information, dynamic feature points cannot
be matched to the original camera transform model without the support of other sensors. This mismatch
negatively affects the optimization process of Eq. (1), which leads to an increase in the camera position
error. Therefore, in order to significantly improve the adaptability of the system in dynamic scenes, it is
necessary to exclude the participation of dynamic feature points while introducing the weights of static
feature points in order to solve a more accurate bit pose.

GAF-SLAM is implemented on the basis of the ORB-SLAM?2 framework, which is a traditional
feature-point based SLAM method. As shown in Figure 1 the specific process is to input the image
frames into the YOLO-Point network, and the output includes depth feature points, descriptors, and
relevant information about the target detection frame. Next, the feature points in the detection box are
re-evaluated by reprojection error and limiting geometric constraints to filter out gray area feature points.
Subsequently, based on our proposed static probability algorithm for feature points, these gray area
feature points are discriminated, and low probability feature points are eliminated in order to retain as
many static feature points as possible. Ultimately, these preserved static feature points are utilized in
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Figure 1. To enhance the robustness and accuracy of ORB-SLAM?2 in dynamic environments, a gray
area feature point recognition module and a static probability calculation module are introduced.
Traditional ORB feature points are replaced with YOLO-Point deep learning features, and the result-
ing feature points and descriptors are formatted in ORB style for seamless integration. Gray area
screening and static probability calculation dynamically adjust feature point weights in pose estimation,
optimizing the final pose for accurate tracking and localization.

combination with their own static weights as well as in conjunction with spatio-temporal constraints for
pose estimation.

3.1. YOLO-Point

Super-Point [35] is a multi-task neural network that realizes the tight integration of key point detection
and descriptor generation by sharing the feature output of the backbone network. It is designed to be
able to accomplish both tasks in a single forward propagation, which dramatically improves the compu-
tational efficiency and is particularly suitable for real-time scenarios. In addition, in recent years, there
has been a trend to incorporate YOLO series of deep learning algorithms into SLAM systems. These
algorithms provide a better solution for SLAM in dynamic scenes by accurately detecting dynamic
objects and effectively reducing their interference with the localization and mapping system.

YOLO-Point proposes a unified framework that fuses key point detection with object detection.
Unlike traditional methods that rely on separate feature extraction and post-processing modules, YOLO-
Point is able to achieve multi-task learning in a single forward propagation, which significantly reduces
computational complexity and improves real-time performance. Meanwhile, the feature points extracted
by deep learning show stronger robustness in complex scenes such as lighting changes, view angle
changes, and motion blurring. With the object detection capability, YOLO-Point is able to radically
reduce the accumulation of localization errors in dynamic scenes, whereas traditional SLAM methods
usually lack effective dynamic feature point processing strategies in dynamic environments.

The core design concept of YOLO-Point is to share the backbone network for fast and efficient predic-
tive capability. In a single forward propagation, YOLO-Point not only synchronizes key point detection,
descriptor generation, and target bounding box prediction, but also improves adaptability and robustness
in dynamic environments through multi-task co-design. Compared to hand-designed feature points such
as traditional ORB, deep feature points provide significantly better perception in complex scenes, as well
as higher accuracy in bit-position estimation. Despite the high computational complexity of deep feature
points, YOLO-Point achieves a balance between high accuracy and real-time performance by sharing
feature extraction modules.
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Figure 2. Schematic diagram of reprojection error.

In model training, YOLO-Point is first pretrained on the synthetic shape dataset and COCO
dataset [36], and combined with single-response adaptive and mosaic data augmentation methods to
reduce the error caused by padding, thus improving the accuracy of key point detection. Subsequent
fine-tuning on the KITTI dataset [37] in stages further optimized the model’s performance on new data
and new object classes by freezing and unfreezing the weights of the different layers. In addition, to
further enhance the closed-loop detection capability, we use the OpenLORIS dataset [38] to generate a
vocabulary of in-depth features and achieve efficient loop detection through FBoW [39] search, which
effectively reduces the cumulative error in the bit-position estimation. This training strategy not only
ensures the accuracy of the model but also enhances its robustness in complex dynamic environments.
YOLO-Point is pretrained on synthetic shape dataset and COCO dataset, combining single-response
adaptive with mosaic data enhancement to reduce the filling error and improve the accuracy of key
point detection. Subsequently, the model is fine-tuned in stages on the KITTI dataset to ensure that
it performs well on new datasets and new object classes, ultimately achieving efficient and accurate
detection performance.

3.2. Reprojection error

Reprojection error is a metric used in vision SLAM to measure the positional error of a 3D point pro-
jected onto an image. Specifically, the reprojection error measures the deviation of a 3D point from the
actual detected 2D feature point after mapping it to the image coordinate system. A smaller reprojection
error indicates that the 3D point is more consistent with the detected point on the image, which can
usually be used as an indicator that the point belongs to a static environment, while a larger reprojection
error may mean that the point is affected by a dynamic object.

As shown in Figure 2, assume that a 3D point X; = (X, ¥;, Z)) in the local map is projected onto
the image plane through the camera’s projection matrix P, resulting in the projected 2D coordinates
p; = (u;, v;). Ideally, this point should coincide with the position of the feature point in the image frame.
If the actual detected position of the feature point is p;. , then the reprojection error can be expressed as:

oy = |9 = 2o = (1 — 1) + (v, — i)’ 3)

where u;, v; represents the coordinates of the 3D point after projection to the image and u;., v, are the
coordinates of the image where the point is actually detected.

In dynamic environments, static feature points usually originate from fixed scene elements, and thus,
the reprojection error between frames is small. Dynamic feature points, on the other hand, originate from
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Figure 3. the epipolar geometric constraints between the previous frame 11 and the current frame I2.
L represents the nuclear line.

moving objects, such as pedestrians or vehicles, and the reprojection error is usually large. The specific
process is as follows: First, feature point detection and matching are carried out between the current
frame and the previous frame. Then, using the estimated camera pose, 3D points from the local map are
projected onto the current frame to calculate the reprojection error e,,,.,; for each matched feature point.
By setting a threshold, if e, > €, the feature point is marked as a dynamic feature point; otherwise, it
is classified as a static feature point.

3.3. Epipolar geometry constraint

By epipolar geometry constraint, we can classify the current state of an object. The feature points of
dynamic objects do not satisfy the constraint of epipolar geometry because they are not accurately
located on the corresponding epipolar lines. Therefore, we measure the distance between feature points
and their corresponding epipolar lines, and consider distances exceeding a specific threshold as outliers.

The process of epipolar geometry constraints can be divided into three steps. First, the pyramid-based
Lucas-Kanade optical flow algorithm [40] is used to calculate matching feature points in two adjacent
images. Next, the fundamental matrix is employed to compute the epipolar lines for each matching fea-
ture point in the current frame. Finally, the distances between the feature points and their corresponding
epipolar lines are calculated. Based on the comparison of these distances with a predetermined thresh-
old, we can determine the state of the feature points: if the distance exceeds the threshold, the feature
point is considered to be in a moving state; otherwise, it is classified as static.

Figure 3 illustrates the epipolar geometry constraints between the previous frame image 11 and the
current frame image 12. The camera observes the same spatial point P from different angles. In a dynamic
scene, the point P moves to P’ with the optical centers O1 and O2 defining the epipolar plane through
the spatial point P. P1 and P2 are the feature points projected from the spatial point P in the previous and
current frames, respectively. The intersection lines L1 and L2 of the epipolar plane with the two image
planes are referred to as the epipolar lines. We denote the matched feature points in the previous frame
and the current frame as:

pr=[u,vl, pr=I[uy,vs] 4

Among them, u and v are pixel coordinate values, while the homogeneous coordinates of p; and p,
can be expressed as:

Py =[u,v, 1], Py=[u,v,,1] &)

https://doi.org/10.1017/50263574725102701 Published online by Cambridge University Press


https://doi.org/10.1017/S0263574725102701

8 Huilin Liu et al.
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Figure 4. Schematic diagram of filtering gray area feature points.
The kernel line L2 in the current frame can be determined from the basic matrix F using Eq. (6):
L2=FP1=[M|,V1,1]T (6)

where P, represents the feature point in the previous frame. u; and v, represent the horizontal and vertical
coordinates of the point. The epipolar constraint is represented as follows:

PIFP,=PIL,=0 @)

where P, represents the feature point in the current frame. The kernel line corresponding to the feature
point P, of the previous frame in the current frame is 1:

U X
I=FP,=F| v |=|Y (8)
1 z

where X, Y, and Z represent the 3D coordinates of the feature point. Then, the distance D from the
feature point P, of the current frame to the kernel line 1 is:

D= |PLFP| [\ IXIP + 1Y )

3.4. Gray area feature points recognition strategy

As shown in Figure 4, dynamic feature points are extracted from image frames containing target detec-
tion frames by gray area feature point filtering technique. The core of the algorithm is to determine the
dynamic feature points for each point in order to generate the grey area feature point set M.

At the beginning of the algorithm, dynamic feature point labels are stored based on reprojection
error and epipolar geometry constraints. Reprojection error is a standard used to assess the dynamics
of a point by comparing the difference between the actual observed point and the predicted point calcu-
lated through the camera model. While traversing all feature points, if the reprojection error is below a
predetermined threshold, the point is labeled as a dynamic feature point and added to set S, otherwise,
it is labeled as a static feature point.

Next, a second round of assessment is conducted on the same feature points using epipolar geometry
constraints. This process also traverses all points, and if they satisfy the geometric constraint conditions,
they are labeled as dynamic feature points and added to set F. Through these two assessments, sets S and
F will each contain labels indicating the dynamics of the corresponding feature points. After completing
the dynamic feature point assessment, the algorithm proceeds to the filtering stage. By comparing the
labels in sets S and F, the algorithm determines which points are gray area feature points. Specifically, if
a point has inconsistent labels in sets S and F, or is labeled as a static feature point in set S, it is saved to
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Algorithm 1 Grey area feature point filtering

Input: frames with object detection boxes

Qutput: grey area feature point set M

1: Initialize sets S and F
2: for each point in points:
3:  Judging whether it is a dynamic feature point through reprojection error:
4 if True:

5: S.append(1)
6

7

8

else:
S.append(0)
: for each point in points:
9: Determine whether it is a dynamic feature point through extreme geometric constraints:
10:  if True:
11: F.append(1)
12:  else:
13: F.append(0)
14: Filter grey area feature points
15: for i from O to length(points) - 1:
16: if S[i] !=F[i] or S[i] == 0:
17:  Save this feature point
18: endif
19: end for

the final gray area feature point set M. Algorithm 1 summarizes the specific steps for gray area feature
point filtering.

3.5. Gray area feature point static probability calculation

Input the gray area feature point to be determined, calculate its static probability based on its motion
and geometric relationship, and determine whether to retain the feature point.

First, calculate the first probability value based on motion estimation distance, calculate the move-
ment distance Dis, between the back projection point P, and the corresponding mapping point x,:

Dis, = /[ = X2) + (12 = ¥2) + (22 - 22)] (10)

[X,,Y,,Z,]" is the 3D point coordinates of the map points x,.

Based on Eq. (10), calculate the distances between the corresponding points in the reference frame
and the key points on the map, obtain a series of distances, and then calculate the variance S, and

mean Ly
Na
ja =y _ Dis,/N, (11)
a=1
Na
Si= | Y (Dis, — j1a)* /N, (12)

a=1

where N, is the total number of points. Using the mean pu, and variance S, obtained from Egs. (11)
and (12), we can calculate the static observation weight W, based on motion estimation for each feature
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point in the current frame, as follows:

W.=1/ (1 + B [Dis, — ) /Sd]) (13)

where S is a constant used to adjust the sensitivity of the weight calculation formula.

Meanwhile, if the feature point is a static feature point, the number of times it is judged as a static
feature point will be very large. Therefore, we further compute the observation count V,,(p,) for each
feature point in the current frame using the reprojection error calculation method, with the initial value
set to 0. Specifically, from the first frame to the current frame, utilizing the discriminative method out-
lined in Eq. (3), if a feature point p, is observed in a frame and determined to be a static feature point
through the reprojection error method, its count value is updated as follows:

Vi (o) = Vi (pa) + 1 (14)

If the feature point p, is observed but is not classified as a static feature point, then the count value,
V.(p,) of the feature point p, is updated as follows:

Vi D) = Vi (Pa) — 1 as)

If the feature point p, is not observed, no update V,,(p,). Then, the mean and standard deviation of
the V,,(p,) for the current frame are calculated.

o= Vu(@a) /N, (16)
a=1
Ny
Se= | Y (Vu(pa) — )’ /N, a7

a=1
where N, is the number of feature points in the current frame.

By using the mean w, and standard deviation S, of static observations, we can calculate the static
observation weight of each feature point in the current frame, as follows:

Wr =1/ (1 B [(Va () — 1) /Sv]) (18)

where B, is a constant greater than 0.
The static weight of the static point p, based on the reprojection error is represented as follows:

Wbre = W{l + axtWVc,(pa) (] 9)

where «, is a real number greater than 0.

Second, the second probability value is calculated based on the epipolar geometry constraints.
According to Figure 3, if the feature point P is static, its projected point in the current frame should
lie on the epipolar line L2. Conversely, if the point is moving, it will not be located on the epipolar
line. A similar calculation is performed to determine the epipolar distance from the feature points in the
current frame to the corresponding epipolar line:

H= \/ (Au, + Bv, + C)* / (A2 + B?) (20)

where H represents the distance from the feature point to the epipolar line L2 in the current frame, and
A, B, C are the parameters of the epipolar line equation, u, and v, are the coordinates of the current
feature point.
Then, calculate the mean uy and variance Sy, and then calculate a static weight:
Na

pu =) H/N, @

a=1
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Su= | Y (H— ) /N, (22)
a=1
W,=1/ (1 B [ — ) /SH]) (23)

where N, is the total number of points, 8 is a constant greater than 0.
Similarly, based on the discrimination results of polar geometric constraints, update the observation
frequency V/,(p,), and then calculate a probability value. The formula steps are as follows:

V, (p) =V, (p) +1 (24)
Vi ) =V, (p) +1 (25)
o=V, () /N, (26)
a=1

il 2

So= | 2 (Vo) =)' /N, @7
a=1

WVA/:(IM) = 1/ <1 + \/_IB [(V;/z (pa) - /’Lv) /Sv]> (28)

where p, is the mean of the observation frequency for static points, S, is the standard deviation of the
observation frequency for static points, and N, is the number of samples, 8 is a constant greater than 0.

The static weight representation W,,. of static points based on extreme geometric constraints is as
follows:

Weg(' = Wb + ﬁstWV;,(pa) (29)

Among them, B, is a real number greater than 0.
Finally, by combining the results W,,, and W,,. obtained from Eqgs. (18) and (28), the final static
weights of the feature points are calculated and published as follows:

mr = (prre + wWegc (30)

where ¢ and w are real number greater than 0.

Finally, the resulting static weight values are used to determine whether they need to be elimi-
nated or not. By static probability, more static feature points are retained. The specific steps are as in
Algorithm 2:

3.6. Fusion of weighted static probabilities and spatio-temporal constraints for dynamic position
estimation

In VSLAM systems, pose estimation is one of the core aspects to achieve accurate localization and map
building. However, moving objects in dynamic environments can have an impact on the reliability of the
feature points, thus reducing the accuracy and robustness of the pose estimation. In order to improve the
adaptability of pose estimation, this paper proposes a dynamic pose estimation method that incorporates
weighted static probabilities and spatio-temporal constraints. The weighting weights are dynamically
adjusted by integrating the motion velocity variations and spatial consistency characteristics of the
feature points, which in turn optimizes the robustness of the pose estimation.
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Algorithm 2 Grey area feature point static probability calculation

Input: Grey area feature point set M, thresholds o

Output: Static feature point set Sgqric

1: Initialize sets P, =[], Ssratic = [ ]

2: for each pointm € M:

3 Calculate motion-based distance d,,

4: Compute motion variance [y, Sy

S: Compute motion-based probability W, according to Eq. (13);
6.

7

8

Statistically observe state parameters V. (p,) and conduct statistical analysis Wy, )
Compute probability W, according to Eq. (19)
Calculate geometric-based distance H,,
9: Compute geometric variance Uy, Sy
10:  Compute geometric-based probability W),
11:  Statistically observe state parameters V' (p,) and conduct statistical analysis Wy o
12:  Compute probability W, 4. according to Eq. (29)
13:  Combine static probability according to Eq. (30)
14: if Wy >0
15: Sstatic~append(m)
16: endif
17: end for

Specifically, the dynamic weight model based on static probability and velocity change is first estab-
lished, and the combined static probability W,, and dynamic velocity information || Av|| are weighted to
establish dynamic weights W, ; second, time continuity and spatial smoothness constraints are intro-
duced in the pose estimation. Finally, the improved objective function is constructed to minimize the
weighted sum of the reprojection error and the spatio-temporal consistency error, and the optimal
position matrix is solved iteratively using the Gauss-Newton method. Detailed steps are as follows:

Static probabilities are calculated for all feature points in the current frame, and the static proba-
bilities of the feature points are weighted as weights, while the motion information (velocity changes
of the feature points) is combined with the static probability weights to dynamically adjust the weight
allocation. The adaptive weighting formula for incorporating speed changes is:

W, =aW,+B[1— v/ 1AV ,.0)] 31)

where « and B denote the adaptive parameters that determine the relative weights of static probabilities
and dynamic information. To ensure the optimality of the parameter settings, Bayesian optimization is
used to automatically adjust « and §, which enables the dynamic weights to adaptively optimize the
weight assignment of feature points in different scenarios, || Av||,., is the maximum value of the velocity
change. Av represents the inter-frame velocity change at the feature point, calculated as:

IAvl = |p.—p"| /At (32)

where p! and p'~! denote the positions of feature points in neighboring frames and Az denotes the time
interval between neighboring frames.

In dynamic environments, motion interference can lead to inconsistencies in feature point matching,
which negatively impacts pose estimation accuracy. To address this issue, we introduce a spatio-temporal
consistency constraint that minimizes the spatial error between feature points in consecutive frames,
thereby enhancing the robustness of pose estimation. By computing the spatial consistency error between
feature points in consecutive frames, we incorporate a spatio-temporal smoothing constraint || Ap;|| into
the objective function, optimizing the pose estimation results and solving for the optimal pose matrix
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T.... The formula is as follows:

T, =argmin Y (W, - [KTPI;+y IAP) (33)
Rt i—1

AP = |

pi— 15 (34
where K is the internal parameter matrix of the camera, P; denotes the 3D map point corresponding
to p, of the feature point in the current frame,W;, is the static probability weight of the feature point, n
is the number of valid static map points in the current frame, p; refers to the projection position of the
feature point in the current frame, 7" is the bit-pose transformation matrix of the previous frame, y is
the spatio-temporal smoothing coefficient, which is used for adjusting the influence of the reprojection
error and the spatio-temporal consistency error, 7., is the to-be-solved bit-position transformation matrix
to be solved. And the optimal transformation, 7., can be expressed as:

R 1t
Ty = [O 1] (35)

where R is the rotation matrix of the current frame and t is the translation vector.
The pose matrix T, is optimized by Gauss-Newton method by taking the previous frame pose 77

as the initial value of the current frame pose and constructing the residual function r; to represent the
residual value at each point:

ri= W, - IKTP, = p,| + /7 - | AP, (36)

The Jacobi matrix A is constructed by taking the derivatives of the rotation R and translation t,
respectively, where the derivative of the rotation matrix R is shown in Eq. (37), and the derivative with
respect to the translation vector t is shown in Eq. (38), and ultimately, the Jacobi matrix A obtained by
combining the rotational and translational derivatives can be expressed as Eq. (40):

dar;/o0R=K - (0P .,/ 9OR) 37
ar;/0t =K - (0P, /0t) (38)
0 -z vy
Pom=| z 0 —x (39
-y x 0
_ ari,’c/aR ari,x/at _ Kl,\' : [Pcam]x le
Ji= [ar,-,y/aR ar,,y/at} - |:K1y Poaml, K]y] (40)

where Jacobian matrix J; for the i-th feature point represents, dr;,/dR and dr;,/9R as the derivatives
of the residuals in the x/y directions with respect to the rotation matrix; dr;,/dt and dr;,/dt are the
derivatives of the residuals in the x/y directions with respect to the translation vector. K, and K, rep-
resent the parameters of the corresponding rows in the camera intrinsic matrix. [P, ], represents the
skew-symmetric matrix of the vector P,,,.

Combined with the spatio-temporal consistency constraints, we further update the Jacobi matrix so
as to construct a complete Jacobi matrix containing both the reprojection error and the spatio-temporal
consistency error, J. The derivative of the spatio-temporal consistency error term || AP;]| is:

d APl /0T, = AP,/ || AP (41)
Here, AP; represents the positional difference of the feature point between two consecutive frames,

and || AP;|| represents the magnitude of the change.
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The corresponding Jacobi matrix J,p is:
Jap=[AP/|AP| AP,/ |AP| AP./|IAP]] (42)

where AP represents the position change vector of a feature point between two consecutive frames, || AP||
represents the magnitude of the vector AP, and AP,,AP,,AP, are the components of AP along the X,y,z
directions, respectively.

The complete Jacobi matrix J combining the reprojection error and the spatio-temporal consistency
error is denoted as:

or../OR ar;,. /ot
J= 8ri’A‘,/aR ar;‘y/at (43)
d |AP;| /OR O |AP;] /ot

where 7, and r;, represent the reprojection errors of the i-th feature point in the x and y directions of
the image plane, respectively. The dr;,/0R and dr;,/9t,0r;,/9R, and 0r;,/dt represent the derivatives
of the residuals in the x and y directions with respect to the camera pose rotation R and translation t.
|AP;|| is the spatio-temporal position difference of the i-th feature point between consecutive frames.
d||AP;||/OR and d|| AP;|| /9t represent the derivatives of the corresponding error with respect to rotation
and translation, used to constrain the feature point’s smoothness and matching stability.

Then, iterations are performed by Gaussian Newton method to solve for the parameter
increments § :

§=— ()" JTr 44

The J is the Jacobian matrix, J” is the transpose of the Jacobian matrix J, and r is the residual vector,
representing the reprojection error and spatio-temporal consistency error under the current estimated
pose.

Update pose matrix:

Ty <= T, - exp (8) (45)

where T,,is the pose transformation matrix of the current frame, and exp(§) is the exponential map of
the increment §. By iterating to the maximum number of times, the optimal position matrix between
the current frame and the map points is finally found, thus realizing the accurate matching and pose
estimation of inter-frame features.

4. Experimental results

To evaluate the accuracy of our system, we conducted experiments using the publicly available TUM
RGB-D dataset [41]. The TUM dataset was created by the Technical University of Munich and captures
data using a Kinect sensor at a rate of 30 Hz, with an image resolution of 640 x 480. Simultaneously,
a high-precision motion capture system, VICON, equipped with an inertial measurement system, was
used to obtain camera position and orientation data, which can be approximated as the true position data
of the RGB-D camera.

This paper focuses on experiments using four high-dynamic scene sequences and one low-dynamic
sequence from the TUM RGB-D dataset. In the high-dynamic sequence, two people walk in front of or
around a table, while in the low-dynamic sequence, two people sit in chairs, engaging in conversation
and making slight gestures. For each type of dataset series, the camera motion was also categorized into
four states: static (where the camera remains stationary), xyz (where the camera moves along the spatial
X-Y-Z axes), rpy (where the camera rotates with roll, pitch, and yaw angles), and hemispherical (where
the camera moves along a trajectory of a hemisphere with a 1 m diameter). Figure 5 shows the effect of
the implementation of the algorithm and comparison.

Experiments were conducted on a computer system equipped with an Intel iS5 CPU, Nvidia GeForce
RTX 4060 Ti, 32 GB of RAM, and running the Ubuntu 18.04 operating system.
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Figure 5. Visual comparison display of algorithm effects. (a) Real scenes. (b) ORB-SLAM?2.
(c) ORB-SLAM?2 under YOLO. (d) GAF-SLAM.

4.1. Performance evaluation of TUM RGB-D dataset

Absolute trajectory error (ATE) and relative pose error (RPE) are commonly used metrics for evalu-
ating the localization accuracy of VSLAM systems. ATE measures the overall discrepancy between
the estimated trajectory and the ground-truth trajectory, while RPE focuses on assessing rotational and
translational drift between consecutive frames. To assess the performance improvement of our pro-
posed GAF-SLAM over ORB-SLAM?2 and ORB-SLAM3, we conducted comparative experiments on
the TUM RGB-D dataset. The results report the root mean square error (RMSE), mean error (Mean),
and standard deviation (Std) for both ATE and RPE.

As shown in Tables I, II, III, and Figure 6, GAF-SLAM achieves significantly better accuracy and
robustness than ORB-SLAM?2 and ORB-SLAM3, particularly under scenarios with substantial dynamic
interference. Even in low-dynamic settings — such as when a person remains nearly stationary in a chair
— our method demonstrates noticeable improvements. As illustrated in Figure 7, where the estimated
trajectory is shown in black, the ground-truth trajectory in blue, and the deviation in red, GAF-SLAM
consistently aligns well with the real trajectory, confirming its strong adaptability to highly dynamic
environments.

As shown in Table IV, to further evaluate the effectiveness of the proposed algorithm, GAF-SLAM
is compared with several state-of-the-art dynamic visual SLAM systems, including Dyna-SLAM,
YOLO-SLAM, SG-SLAM, and MPOC-SLAM. Since some of these methods are not open-sourced or
reproducible under a unified hardware platform, the reported results are obtained from the corresponding
original publications. Although differences in hardware settings may introduce certain deviations in per-
formance metrics, this comparison is intended to provide a general reference for accuracy trends across
different methods. As shown in the results, GAF-SLAM consistently demonstrates superior performance
among all evaluated approaches, achieving the lowest trajectory error in highly dynamic sequences such
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Table I. Results of the metric absolute trajectory error (ATE)[M].

Sequences ORB-SLAM2 ORB-SLAM3 Ours

RMSE Mean SD RMSE Mean SD RMSE Mean SD
Fr3_s_static ~ 0.0087 0.0078 0.0039 0.0157 0.0132 0.0045 0.0049 0.0041 0.0029
Fr3_w_half 05979 0.5864 0.2665 0.2351 0.2198 0.1705 0.0205 0.0186 0.0143
Fr3_w_xyz 0.6691 0.6332 0.2916 0.2881 0.2521 0.1910 0.0151 0.0135 0.0101
Fr3_w_static 0.5016 0.4112 0.1930 0.2812 0.2188 0.1130 0.0054 0.0042 0.0022
Fr3_w_rpy 0.8191 0.7245 0.4283 0.6041 0.5161 0.4003 0.0139 0.0135 0.0137

Table I1. Results of the metric relative translation error (RTE)[M/S].

Sequences ORB-SLAM2 ORB-SLAM3 Ours

RMSE Mean SD RMSE Mean SD RMSE Mean SD
Fr3_s_static  0.0093 0.0082 0.0044 0.0191 0.0184 0.0039 0.0045 0.0040 0.0032
Fr3_w_half 04136 0.2950 0.3483 0.0380 0.0246 0.0306 0.0272 0.0245 0.0144
Fr3_w_xyz 0.3729 0.2738 0.2393 0.0386 0.0284 0.0263 0.0152 0.0139 0.0105
Fr3_w_static 0.2259 0.1512 0.2151 0.0276 0.0196 0.0213 0.0083 0.0076 0.0035
Fr3_w_rpy 0.4439 0.2745 0.2923 0.2409 0.1894 0.2278 0.0298 0.0241 0.0155

Table II1. Results of the metric relative rotation error (RRE)[DEG/S].

Sequences ORB-SLAM2 ORB-SLAM3 Ours

RMSE Mean SD RMSE Mean SD RMSE Mean SD
Fr3_s_static  0.2899 0.2606 0.1271 0.4795 0.3845 0.1797 0.1541 0.1312 0.0821
Fr3_w_half  7.9219 4.4695 6.5406 6.7369 4.5141 5.5049 0.4211 0.3412 0.2341
Fr3_w_xyz 7.1415 5.6403 4.3804 6.7826 4.8465 5.5083 0.4127 0.2712 0.2751
Fr3_w_static 3.8068 1.6993 3.4065 3.5224 1.5224 3.3677 0.1662 0.1436 0.0844
Fr3_w_rpy 7.9249 44695 6.5406 8.8879 5.5125 4.5746 0.3935 0.3454 0.2141

as "rpy" and "static," and maintaining competitive accuracy in the other scenarios. Specifically, the
bolded data in the table represent the best performance achieved in each sequence.

4.2. Performance evaluation of Bonn RGB-D dataset

The Bonn RGB-D Dynamic dataset [42], released by Bonn University in 2019, aims to evaluate the
performance of RGB-D SLAM and contains 24 dynamic sequences. In order to test the generalization
ability of the dynamic feature rejection algorithm, we conducted further experiments on this dataset,
and selected seven representative sequences for analysis, including three datasets of the “crowd” series,
two datasets of the “person” series, and two datasets of the “synchronous” series and two datasets of
“synchronous” series. The dataset of the “crowd” sequence shows three people moving freely in a room;
the “person” sequence mainly shows the camera following the walker; and the “synchronous” sequence
shows several people repeatedly jumping in the same direction.

To systematically evaluate the localization accuracy and robustness of GAF-SLAM, we conducted
comparative experiments with two classical SLAM frameworks: ORB-SLAM?2 and ORB-SLAM3. For
SG-SLAM, the results were directly cited from the original publication. As summarized in Table V,
GAF-SLAM achieves the best performance across all seven test sequences, significantly outperforming
the compared methods. These results strongly demonstrate the robustness, localization accuracy, and
generalization capability of GAF-SLAM in complex dynamic environments.
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Figure 6. ATE results of ORB-SLAM?2, ORB-SLAM3, and our proposed system across five dynamic
scene sequences. (a—c) Fr3_s_static; (d—f) Fr3_w_half; (g—i) Fr3_w_xyz; (j-1) Fr3_w_static; (m—o)
Fr3_w_rpy.

4.3. Ablation experiment

To validate the effectiveness of each module, we performed ablation experiments. As shown in Table VI,
the experimental results of ATE for different modules show that each module plays an important role
in improving the system performance. In the experiments, we set up three different configurations to
gradually evaluate the effect of the module: First, Ours(Y) uses a YOLO-Point network instead of
the traditional ORB feature extraction method to perform deep learning feature extraction only at the
front-end. Second, based on YOLO-Point, the static probability calculation of gray area feature points
is further introduced, and the static weights are incorporated into the bit-pose estimation optimiza-
tion, but not combined with the optimized static weights and spatio-temporal constraints. Finally, ours
denotes our complete method, which combines YOLO-Point feature extraction with static probabil-
ity computation, screening static feature points in the detection frame by reprojection error and polar
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Figure 6. Continued

geometry constraints, while excluding dynamic feature points, and ultimately combining static weights
with spatio-temporal constraints for optimized bit-pose estimation.

The experimental results show that the addition of each module significantly reduces the ATE value,
indicating that feature screening and static probability computation effectively improve the localization
accuracy of the system in dynamic environments. In particular, the complete method (Ours) has the
most superior performance, which is able to maximize the rejection of dynamic feature interference
while preserving static features, thus achieving accurate bit-pose estimation in highly dynamic scenes.
Overall, the results of the ablation experiments validate the effectiveness of the individual modules and
confirm the advantages of our proposed method for processing dynamic features in dynamic SLAM

systems.

4.4. Time analysis

Real-time is also one of the important evaluation metrics for SLAM systems; therefore, we tested the
time consumption of the system and compared it with five other algorithms as shown in Table VII.
Dyna-SLAM uses Mask-R-CNN for pixel-level semantic segmentation, so its average time cost per
frame processed is very high, and YOLO-SLAM, SG-SLAM, and MPOC-SLAM meet the real-time
requirements while improving the accuracy. And GAF-SLAM consumes only 52.19 ms, so it can meet
the real-time requirements of mobile robots while improving the localization accuracy.

In addition, the run-time performance of individual modules within the GAF-SLAM framework
was evaluated, as summarized in Table VIII. Specifically, Module A represents the YOLO-Point
module, which simultaneously generates keypoints and object detection bounding boxes. Module B
denotes the gray area feature recognition module, while Module C is responsible for static probability
estimation. Module D performs dynamic point removal and pose estimation, and Module E man-
ages keyframe insertion and local mapping. The results confirm that GAF-SLAM satisfies real-time
processing requirements, even in dynamic environments characterized by dense motion interference.
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Figure 7. Visualization of the differences between the estimated and ground-truth trajectories for
ORB-SLAM?2, ORB-SLAM3, and our proposed system across five dynamic scene sequences. (a—c)
Fr3_s_static; (d—f) Fr3_w_half; (g—i) Fr3_w_xyz; (j—1) Fr3_w_static; (m—o) Fr3_w_rpy.
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Table IV. Comparison of the absolute trajectory error (ATE)[M]

Sequences Dyna-SLAM YOLO-SLAM SG-SLAM  MPOC-SLAM Ours
RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD
Fr3_s_static 0.0067 0.0028 0.0066 0.0033 0.0060 0.0029 0.0055 0.0031 0.0049 0.0029
Fr3_w_half 0.0296 0.0157 0.0283 0.0138 0.0268 0.0134 0.0222 0.0114 0.0205 0.0143
Fr3_w_xyz 0.0164 0.0086 0.0146 0.0070 0.0152 0.0075 0.0137 0.0068 0.0151 0.0101
Fr3_w_static 0.0068 0.0032 0.0073 0.0035 0.0073 0.0034 0.0055 0.0024 0.0054 0.0022
Fr3_w_rpy 0.0354 0.0190 0.2164 0.1001 0.0324 0.0187 0.0265 0.0145 0.0139 0.0137

Table V. Comparison of the absolute trajectory error (ATE) [M].

Sequences ORB-SLAM2 ORB-SLAM3 SG-SLAM GAF-SLAM

RMSE SD RMSE SD RMSE SD RMSE SD
Crowd 0.8632 0.5918 0.5691 0.4216 0.0234 0.0143 0.0135 0.0139
Crowd2 1.3573 0.6207 1.2412 0.5445 0.0584 0.0406 0.0247 0.0318
Crowd3 1.0772 0.3823 0.9394 0.4012 0.0319 0.0219 0.0135 0.0219

Person_tracking 0.7959 0.3617 0.4012 0.2891 0.0400 0.0139 0.0385 0.0126
Person_tracking2 1.0679 0.8732 0.7071 0.5118 0.0376 0.0154 0.0365 0.0144
Synchronous 1.1411 0.5703 0.7761 0.4622 0.3229 0.1824 0.0165 0.0184
Synchronous2 1.4069 0.4864 1.0361 0.5193 0.0164 0.0126 0.0064 0.0115

Table VI. Results of metric ATE.

Sequences Ours(Y) Ours(Y + P) Ours

RMSE Mean S.D. RMSE Mean S.D. RMSE Mean S.D.
Fr3_s_static 0.0076 0.0062 0.0039 0.0073 0.0059 0.0035 0.0049 0.0041 0.0029
Fr3_w_half 0.0280 0.0219 0.0149 0.0279 0.0201 0.0144 0.0205 0.0186 0.0143
Fr3_w_xyz 0.0172 0.0124 0.0087 0.0160 0.0094 0.0081 0.0151 0.0135 0.0101
Fr3_w_static 0.0075 0.0058 0.0048 0.0071 0.0052 0.0030 0.0054 0.0042 0.0022
Fr3_w_rpy  0.0367 0.0315 0.0257 0.0209 0.0196 0.0138 0.0139 0.0135 0.0137

Table VII. Time evaluation.

Systems Tims (ms) Hardware platform

ORB-SLAM?2 25.58 i5 CPU, 32 GB RAM, Nvidia GeForce RTX 4060Ti
ORB-SLAM3 27.41 i5 CPU, 32 GB RAM, Nvidia GeForce RTX 4060Ti
GAF-SLAM(Ours) 52.19 i5 CPU, 32 GB RAM, Nvidia GeForce RTX 4060Ti
Dyna-SLAM 235.98(at least) Nvidia Tesla M40 GPU
YOLO-SLAM 696.09 15-4288U CPU

SG-SLAM 65.71 Nvidia Jetson AGX Xavier Developer Kit
MPOC-SLAM 99.03 i7-10870H CPU, RTX3060 Laptop GPU

4.5. Real environment experiment

To further evaluate the practicality of our system, we conducted experiments using a monocular camera
in a real-world environment. During the experiments, we performed camera panning and rotation while
asking the person in front of the camera to perform actions such as standing up, walking around the
chair, and leaving the camera’s field of view.
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Table VIII. The average run time of different modules.

Moudle A B C D E Total
Time (ms) 19.41 6.12 6.47 10.83 9.36 52.19

Figure 8. The effect of preserving static feature points in real scenes.

Figure 8 demonstrates the effectiveness of our algorithm in removing dynamic feature points while
retaining more static feature points in real-world scenarios. It is evident that we successfully preserved
the static feature points within the feature frame. The experimental results indicate that the presence of
dynamic objects leads to significant differences in the estimated trajectory lengths. As shown in Figure 9,
we compared the trajectory estimation results of the GAF-SLAM system with those of ORB-SLAM?2.
When the surrounding environment is static, both systems perform well. However, when dynamic objects
are present and moving in the environment (highlighted areas in Figure 9), ORB-SLAM?2 experiences
considerable jitter, while our system maintains consistency with the ground-truth trajectory and remains
unaffected by the dynamic objects.

5. Conclusion and future work

In this paper, we introduce GAF-SLAM, an optimization method for visual SLAM systems in dynamic
environments. Based on the ORB-SLAM?2 framework, we realize the effective fusion of dynamic object
detection, feature point screening and weighted pose estimation by integrating the YOLO-Point deep
learning network with the static probability computing framework. Specifically, we propose a method
for selecting gray area feature points based on reprojection errors and polar geometric constraints, which
enables the system to retain potential static points within the dynamic detection region. In addition,
we develop a new static probability calculation method for gray area feature points to further improve
the determination accuracy of static feature points through the static probability scoring mechanism
in order to enhance the retention of static information. Finally, the proposed weighted static probability
and spatio-temporal constraint pose estimation algorithm effectively reduces the interference of dynamic
points on pose estimation, thus significantly improving the posing accuracy and robustness of the system.
Experimental results based on the TUM RGB-D dataset and the Bonn RGB-D Dynamic dataset show
that our method is significantly more accurate in highly dynamic scenes.

Despite these encouraging results, one of the current limitations of our method lies in its reliance on
a static probability model that depends heavily on multi-frame visual consistency. In environments with
drastic illumination changes — such as sudden light switching, dynamic lighting conditions, or natural
light interference — the same spatial location may exhibit significant appearance variations across frames.
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Figure 9. The contrast of trajectories obtained from ORB-SLAM?2 and our system in real environment.

This can lead to the misclassification of dynamic regions as static, ultimately introducing noise into the
map and degrading SLAM performance. To address this issue, future work will explore illumination-
disentangled modeling techniques inspired by neural radiance fields (NeRF). By decoupling structural
and appearance information, especially under varying lighting conditions, we aim to achieve more robust
static-dynamic region separation and improve the reliability of feature selection in complex and uncon-
strained environments. In addition, we plan to extend the system to accommodate nonrigid motion
patterns and improve the generalization ability of GAF-SLAM in more realistic and diverse scenarios.
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