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AssTrACT. Several aspects of space glaciology are considered in the
paper. Estimates of the water content of the Earth, Mars, and the Galilean
moons of Jupiter are corrected. A considerable proportion of the total
amount of water in the solar system is localized near Jupiter; part of this
water is contained as ice in glaciations, glacial caps, and ice crust on the
planets. Ice is one of the main components of the surface of some planets.
The major amount of ice on Mars is contained in a permafrost layer of mean
thickness about 3 km. The model of an ice crust floating on a water mantle
is considered for Jupiter’s moon Europa: It is shown that for definite values
of certain parameters this crust may be subject to destruction due to the
instability of its proper oscillations, which explains the numerous systems of
fractures and cracks observed on Europa’s surface. The stress—strain state of
such an icecrust is calculated within the framework of a non-linear thermo-
elasticity model. The role of short-period temperature variations at
Europa'’s surface is estimated and the peculiarities of relief observed on this
planet are analysed.

Résume. La glace sur les planétes du sysiéme solaire. Les aspects de la gla-
ciologie de I'espace sont évoqués dans cet article. Les estimations de la
quantité d'eau sur la Terre, Mars et les lunes Galliléennes de Jupiter sont
corrigées. Une considérable. partie de la quantité d’eau dans le systeme
solaire est localisée prés de Jupiter. Une partie de cette eau est contenue en
eau glacée, calottes de glace et croites de glace des planétes. La glace est
I'un des principaux composants de la surface de certaines planétes. La plus
grande quantité de glace sur Mars est contenue dans la couche de per-
mafrost d’une épaisseur moyenne de 3 km. Le modéle d’une croite de glace
flottant sur un manteau d’eau est envisagé pour la lune de Jupiter, Europe.

INTRODUCTION

Studies of the solar system by means of automatic
interplanetary spacecraft have allowed us to extend
our knowledge of the other planets. It has been found
that ice is one of the most prevalent states of water.
Large masses of water ice are contained on the sur-
face of Mars and Pluto as well as (according to the
comparison between reflection spectra and the H20 ice
spectrum) on three of Jupiter's moons and on six of
Saturn's moons. On the Earth about 90% of the total
amount of fresh water is accumulated in giant glacial
covers: almost all the water on Mars is contained,
apparently, in its polar caps and in the thick layer
of permafrost.

The enormous role of ice in forming the appear-
ance of some planets offers a cosmological perspective
in glaciology and opens a new direction for it - space
glaciology, which is aimed at studying ice on other
planets. It is these planets which will in the near
future become objects of great attention as the bases
for studying the solar system and space,

In this paper an attempt is made to summarize the
available data on ice covers and ice on other planets

on a scientific basis by using a mathematical approach,

so that the phenomena observed may be explained and
our ideas on the structure of these planets corrected.

THE AMOUNT OF WATER ON PLANETS

Table I summarizes the data on planets on whose
surfaces ice has been discovered; this information has
been taken from Marov (1981), Gehrels (1976), and
Moroz (1978). Brief descriptions of the characterist-
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1l est montré que pour certains paramétres précis cette crotite peut étre
sujette a destruction a cause de l‘ins‘labililé de ses propres oscillations, ce qui
explique les nombreux systemes de fractures et crevasses observées sur la
surface d’Europe. L'état de contrainte-déformation d’une crofite de glace
est calculé dans le cadre d’'un modéle thermoélastique non linéaire. Le role
des variatons de température a courte période est estimé pour la surface
d'Europe et les particularités observées du relief de cette planéte sont
analysées.

ZUSAMMENFASSUNG. Eis auf den Planeten des Sonnensystems. In diesem Beitrag
werden die Aspekte der Raum-Glaziologie betrachtet. Die Abschatzungen
des Wassergehaltes der Erde, des Mars und der galilaischen Jupitermonde
werden berichtigt. Ein erheblicher Teil der Gesamtwassermenge des Son-
nensystems befindet sich in der Niihe von Jupiter. Dieser Wasseranteil ist als
Eis in Vergletscherungen, glazialen Kappen und Eiskrusten von Planeten
gespeichert. Eis ist eine der Hauptkomponenten auf der Oberflache einiger
Planeten. Der grosste Anteil des Eises auf dem Mars ist in der Per-
mafrostschicht mit einer Dicke von etwa 3 km enthalten. Fur den
Jupitermond Europa wird das Modell einer Eiskruste, die auf einem Was-
sermantel schwimmt, betrachtet. Es wird gezeigt, dass bei bestimmten
Parametern diese Kruste infolge der Instabilitat ihrer eigenen Oszillationen
zerstort werden kann, was die zahlreichen Systeme von Briichen und Spal-
ten, die auf Europas Oberfliche zu beobachten sind, zu erkldren scheint.
Der Spannungszustand einer Eiskruste wird im Rahmen eines nichtlinearen
thermoelastischen Modells berechnet. Die Bedeutung kurzperiodischer
Temperaturschwankungen fir Europas Oberfliche wird abgeschiitzt; die
beobachteten Besonderheiten des Reliefs dieses Planeten werden analysiert.

ics of the ice cover of these planets are presented
below,

On Mars, as on the Earth, there exist giant polar
caps. The atmosphere of this planet is very rarefied
(the pressure at the surface is as low as five to six
millibars); due to this fact, the surface temperature
is far less than the freezing point of water, i.e, it
is about 213 K on average. Typical temperatures of
the polar caps are close to 150 K; the Viking-1 or-
biter registered extremely low temperatures in winter
- about 135 K in the region of the polar caps. In
summer the following temperatures were registered:
about 180 K in the region of the southern polar cap
(Mariner-9 orbiter) and about 200 K for the northern
one (Viking-2 orbiter). The condensation temperature
of CO, at pressure p = 5 mbar is close to 148 K.
This allows us to suppose that the correct model for
the Martian polar caps must be a two-component one
(Moroz, 197821: H O ice in the permanent part and
CO2 ice in the variable periphery. In summer the
polar caps are intensively contracted (COz ice is
sublimated), and in winter time the caps are en-
larged (gaseous CO, is condensed from the atmosphere).
The mean thickness of this seasonal COp precipitation
amounts to some fractions of a metre in the winter
period; in this case the maximum mass of condensate
in the seasonal caps is about one third of the mass
of atmospheric carbon dioxide. The mass of the vari-
able part of the southern polar cap at maximum is
almost twice as much as that of the northern cap.
This is consistent with the hypothesis of a two-
component ice structure, since temperatures in the
southern polar region are lower than those in the
northern region, and the periods of formation of the
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TABLE I. PLANETS OF THE SOLAR SYSTEM THE SURFACE OF WHICH CONTAIN ICE

Mean Dengity, Ice - Absolute tempera- Ice
Planet radius ) eomposition twe of swface in continuity g Albedo
the freezing regions
km Mg /m? m/s?
Earth 6378 5.52 Ho0 215 covers, 9.8 0.30
glacial systems
Mars 3394 3.95 H20, Cop. 6H,0- 150 domes (polar 373 Qi
clatharate caps)
Pluto 1400 L te 1.5 Ho0, CHg, NH3 90 ? 0.3 to 059 060
Europa 1565 3.03 Hy 0 93 solid ice Lo 32 0.68
Ganymede 2640 195 Hp0, NHy 93 solid ice 1.42 0.44
Callisto 2420 1579 H20, NHy 93 solid ice 1.21 0.19

polar caps are 382 and 305 d, respectively., At a min-
imum, when the variable peripheral part disappears,
the southern cap is about 300 km across and the
northern one about 900 km across.

According to Voyager IAS (Interplanetary Auto-
matic Station) data, all the moons inside Titan's
orbit - Janus, Mimas, Enceladus, Tethys, Dione, Rhea
- are covered with water ice. Their mean radii are
100, 195, 250, 525, 560, and 765 km, respectively.
Judging by the fact that their mean density is close
to that of water, one cannot exclude the possibility
that some of these moons consist entirely of ice, and
Hp0 ice is the major component in the remaining ones.

It was noticed long ago that Europa has the Tar-

gest reflectance amongst the Galilean moons of Jupiter.

The information obtained from Voyager-2 IAS allowed
us to conclude that this celestial body has the
smoothest surface among all the planets of the solar
system: this planet, being comparable with the Moon
in size, has maximum relief variations of the order
of tens of metres only. At the same time, a great num-
ber of linear structures intersecting at different
angles has been recorded on its surface, as well as
bands having a thickness of some tens of kilometres
on average, and a depth of some hundreds of metres,
and also filament-1ike strips. These can be explained
within the framework of a model according to which
the effectively solid ice crust tens of kilometres
thick rests upon a far thicker layer consisting of a
mixture of friable "spongy" ice with water (sludge)
(Marov, 1981), These two layers — the sludge (water-
ice mantle) and the ice dome — form the upper en-
velope of Europa; its maximum thickness is estimated
to be hundreds of kilometres. It is supposed that
partial melting of the lower part of this envelope

is caused by internal heat generation. Possibly, the
water-glacial envelope of sludge hides, like an ocean,
large variations in elevation of rock surfaces. The
filament-like strips on Europa's surface represent
cracks in the solid upper ice dome, which arise under
the effect of internal stresses where the sludge is
expanded and contracted. The cracks are supposed to
be filled-in with a fresh, lighter ice arising from
up-welling sludge, which would explain the appearance
of 1light bands on a relatively muddy surface of ice.
Some dark substance is supposed to rise to the sur-
face from great depths together with the sludge, so
as to explain the presence of a system of dark strips
(Marov, 1981),

The presence of water ice was also established on
the other large Galilean moons of Jupiter, Ganymede
and Callisto. The relatively low mean density of
these planets testifies to a large Hy0 fraction in
their mass.

Next we shall estimate the amount of Hp0 contain-
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ed on the largest planets of the Earth group and on
the Galilean moons of Jupiter.

There is no solid glacial dome on Mars; according
to published scientific data (Cutts, 1973), the vol-
ume of water held as ice in its polar caps is estim-
ated to be

Vi = 1.5x10P kmd, (1)

which is approximately half that contained in the ice
sheets and glaciers on the Earth. One supposes that
much frozen water should also be contained in the
thick layer of permafrost (Kuz'min, 1981), the signs
of which have been recorded on the Martian surface as
characteristic erosion forms by Viking-1 and Viking-2
IAS,

We can estimate the amount of frozen water held
in this permafrost on Mars, The steady-state distri-
bution of temperature T with depth z in the presence
of a thermal flux q coming from the interior of the
planet, can be represented by the formula

T=Tg ¥ qz/A (2)

where x is the thermal conductivity of rock and Tg is
the mean temperature of the surface. The thickness of
the permafrost layer H, is estimated from the consid-
eration that the temperature at its bottom reaches
the melting point of ice

Ho iq g = Bl (3)

Assuming, as for Earth rocks, that x = 20 m™1K™ and
that the thermal flux from the Martian interior, like
that for the Earth (Moroz, 1978), is q = 4.18x10-2| m=2
(which corresponds to a temperature gradient in the
upper layers of a lithosphere of about 20 deg/km), we
obtain for a mean temperature of the Martian surface
Tg = =60°C (Kuz'min, 1981),

Hp = 3 km. (4)

This value exceeds by a factor of 8 to 10 the thick-
ness of a typical permafrost layer on the Earth.
Kuz'min (1977) gives figures of the same order of mag-
nitude, although admittedly differing appreciably.
The temperature in polar regions is, on average,
slightly below -100°C (Davies and others, 1977);
however, Martian ice caps consisting mainly of water
ice play the role of heat insulators. As an estima-
tion using Equation (2) shows, under an ice layer 2
km thick the temperature of the bedrock increases by
40 deg as compared with the surface temperature for
accepted values of A and g (the gradient in an ice
layer is e. 20 deg/km). The covering glaciations thus
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help soil conservation and protect soils against
permafrost generation (Krass, 1983); this fact is
well traced in the geological history of the Earth.
In Siberian regions, which did not undergo deep gla-
ciation, permafrost some 500 to 600 m thick developed.
At the same time, the parts of Europe whose history
includes more than one glacial epoch, have, appar-
ently, never been subjected to permafrost. Nne should
expect that under polar caps the permafrost layer is
considerably less thick than that indicated in Equa-
tion (4). Only at sub-polar latitudes which are
poorly screened against the cold by an ice sheet, can
the permafrost be thicker. For these reasons C0; ice
is hardly present in Martian underground ice in any
considerable amount., In the estimates which follow
we shall take the average thickness of the perma-
frost layer over Mars as in Equation (4).

The volume of water contained as ice in a spher-
ical layer of thickness Hy with an outer radius R
equal to that of the planet is calculated to be

4
Vi = gnwc[Pﬁ - R - Hp)3], (5)

where We is the relative content of H0. For We=0.2
to 0.3 (the mean water capacity of frozen soils on
the Earth) the volume of water contained as ice in
the Martian permafrost layer would be equal to
(0.9 to 1.3) x 1B km3, which exceeds by two orders
of magnitude the volume of Hp0 ice contained in the
polar caps. Kuz'min (1977) gives a value for the
total content of ice in the permafrost on Mars which
is an order of magnitude lower than the one indica-
ted. In this case the average thickness of the Mar-
tian permafrost would have to be only a tenth of
that estimated by Equation (4): it would be as Tow
as about 300 m. One might think that such an “Earth"
figure could correspond to the severe Martian con-
ditions, if one assumed that the deep thermal flux
from the planet's interior were considerably more
than that in the Earth. This fact, however, does not
agree with the ideas of modern planetology (Moroz,
1978).

0f definite interest is the estimation of the
water fraction in the Galilean moons of Jupiter. For
simplicity, we shall assume that these planets have
a two-component composition: a 1ight Ho0 component
with density p, being in an outer layer of thickness
h, and a heavy component which constitutes the in-
ternal part (the basic rocks) of the planet, with a
mean density py. Then, the total mass of the planet
will be

4 4 4
& s & 5 = 3 = - 3
3™ (R - h)3 + 31TD[R (R - h)3] 3 R3, (6)

from which the following expression for the thickness
of the outer light H20 envelope is obtained:

1/3

p -p
aR |1 - ) (7)
("1’")

We assume p, = 3.5 Mg/m?, the same mean density as is
attributed to the Galilean moon Io which, apparently,
does not contain a noticeable amount of water. Then,
using the parameters indicated in Table I, we obtain
the following estimates for thickness of an outer en-
velope consisting of Ho0 for Europa, Ganymede, and
Callisto:

hg = 100 km, hg = 700 km, he = 730 knm. (8)

The same value for hp is deduced by Cassen and others
(1979, 1980). If one assumes that the mean density of
the basic heavy componenent is the same as that on
the Moon, i.e.p. = 3.33 Mg/m®, then the estimates us-
ing equation (7) are reduced as compared with these
figures by approximately 25 to 30%. Table II shows
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TABLE II. ESTIMATES OF H20 CONTENT OF PLANETS

Planet Mass of Volume Mass of water rela-
the planet  of water tive to mass of
planet
1(B%kg 109 km3 %
Earth 6 1<3 0.02
Mars 0.66 0.10 0.015
Europa 0.05 v 3 5
Ganymede 0.15 46 al
Callisto 0.11 40 35

the results of estimates of water content for the pla-
nets indicated above,

The above values of total volume of water for the
Earth and Mars may be increased if underground water
is taken into account. First of all, it is interest-
ing to note that the water content on the Galilean
moons considerably exceeds the total amount of Hy0 on
our planet: on Europa it is more than twice, on Gany-
mede and Callisto thirty times. Whereas for the Earth
and Mars the fraction of free water in the total mass
of the planet is negligible, it is rather significant
for Jupiter's moons. Recent publications (Marov, 1981;
Soderblom, 1980) estimate the thickness of an outer
envelope of Europa, consisting of ice and water-ice
sludge, to be some hundreds of kilometres. This value,
however, seems to be overestimated since, according
to Equation (7), it requires the density of the heavy
component (for a given mean density of the planet) to
be By = 6 to 8 Mg/m, which is evidently unjustified
for a relatively small planet.

To evaluate the validity of figures characertiz-
ing the total water content of planets of the solar
system which are given here and below, one should
bear in mind that different forms of ice may exist.
Figure 1 shows the phase diagram of HoO ice; it is
eneralized from the fundamental works of Bridgman
?1937), Brown and Whalley (1966), Kamb ([CI%B?).

Only the usual ice I has a density lower than that
of water; the other structural forms of ice have high-
er density. As the pressure grows due to more dense

Temperature/K

Pressure/kbar

Fig. 1. Phase diagram for Hy0 ice.

packing of water molecules, not only does ice density
increase, but the phase transition temperature also
increases. Thus, at a pressure of 200 kbar the melt-
ing point for ice VII is about 440°C (713 K) (Fletcher,
1970). Each form of ice corresponds to its inherent
field of stability in the (p,T)-plane, i.e. to the
conditions of pressure and temperature.

Table III gives the densities for the different
forms of ice corresponding to Figure 1 given by
Fletcher (1970). It can be seen from this table that
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TABLE III. DENSITIES FOR THE DIFFERENT FORMS OF ICE

Form p il P
e bar °c Ma/m
fee. I1 1 -150 1.17
ice III and IX 1 -190 1.14
ice VI 1 -175 1,31
ice VII 25 3 303 =50 1.66

the densities of the various forms of ice other than
ice I exceed the density of water. However, the
pressure and temperature conditions for the existence
of these forms should be compared with specific
conditions in the planets containing Hy0 in this or
that form, Thus, according to Equation (8) for Europa
the pressure at the bottom of the Hp0 Tayer hg does
not exceed 1 kbar. Judging by the diagram in Figure
1, one would hardly expect that other forms of ice
than ice I could exist at such pressures and for
temperatures T3> 100K. For Mars, with a mean rock
density at the surface of about 1.5 Mg/m® (Kuz'min,
1981) the pressure would not exceed 0.3 kbar even at
the bottom of a 5 km layer, so that at temperatures
T > -60°C only ice I should exist in this permafrost
region. For Ganymede and Callisto the pressures in
the ice or water envelope may reach as much as 10
kbar, and in this case the form of ice VI at T >

e+ 300 K may exist.

If one assumes, for example, that the ice density
is, on average, 1.2 Mg/m®, (as in Consolmagno and
Lewis, 1976) rather than 0.9 Mg/m*, as has been taken
in making estimates using Equation (8), then the
thicknesses of the ice layers for Ganymede and Cal-
listo hg and h: will increase by 15% as compared to
Equation (8). However, one should take into account
here that such an estimate is valid for the case
where an outer layer has a relatively low temperature
and is composed of ice only. On the other hand, if
one assumes that, as a result of internal heating,
these planets have been stratified up to the present
time with the formation of a silicate core and a
1iquid water mantle, then corrections to Equation
(8) will be considerably smaller, since ice II may
exist, according to (p,T)-conditions, up to depths
of 250 to 300 km only. A considerable increase of
water fraction in the total mass of Ganymede and
Callisto may take place only if ice VII with a den-
sity of 1.66 Mg/m® exists in the internal central
region of these planets where pressures reach 50
kbar and more, However, as follows from Figure 1,
the temperatures in a core consisting of a mixture
of silicates and ice should not exceed in this case
the value of 400 to 450 K, which is not in agreement
with calculations of the thermal evolution of the
Galilean moons of Jupiter (Gehrels, 1976) and cor-
responds to a cold state of their interior.

Hence, the estimates of water content on the
other planets, given in Table II, are apparently
close to the real values. It is a surprising fact
that the amount of water on three of Jupiter's moons
exceeds the total Hp0 mass on the Earth by a factor
of nearly 70. This fact becomes perhaps less mys-
terious if we take into account calculations of the
lifetimes of volatiles in the solar system published
some 20 years ago by Watson and others (1963). They
show that, at heliocentric distances comparable to
that of Jupiter's orbit, volatiles Tike H,0 are
stable for periods exceeding the 1ifetime of the sol-
ar system. However at heliocentric distances such as
those of the Earth and Mars, such volatiles can only
survive on very massive planets, i.e. the terrestrial
planets probably lost a great deal of their volatiles
during the accretion phase.

POLAR CAPS OF MARS
One may suppose, apparently, that during the per-

iod of summer sublimation of COp, which comprises the
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variable part of the Martian polar caps, the caps of
minimum size consist of water ice., From this view-
point, it is of interest to estimate the ice-sheet
thickness and the amount of ice on Mars, These estim-
ates will be done using two methods which assume that
ice domes composed of Hp0 are stationary.

The first method uses the idea that ice flows as
perfectly plastic body. Integral estimations of the
type which have been done for ice domes on the Earth,
correspond satisfactorily enough (with 20-30% uncer-
tainty) to the characteristics observed (Paterson,
1969), We shall consider an axially symmetrical ice
dome resting on a flat bed; one may show that the
profile of a perfectly plastic glacier should in this
case have a parabolic shape of the form

G o,

where H is the ice thickness at the centre where
r=0and R is the ice-dome radius. The shear stress
at the bottom is determined in the first approximation
as

ah

= -pgh — .
Th g = (10)

The mean value of a shear stress at the bed is
_ 2 fR
Th = - r del".
RZ o

Substituting Equations (9) and (10) into this equa-
tion, we obtain

T_b = pgH2 /2R.

For the equilibrium state of an ice dome the con-
dition

T = 1o
should be generally satisfied where 1, is the yield

point. The substitution of an expression for T} de-
termines H as a function of radius R:

2t R
H = (11)
P9

The ice volume is then determined as

H 2 & [Zo
Voen| (1 - —)dz=—4f — RS, (12)
0 H 15 pg

Assuming for icetg= 1 bar (Paterson, 1969), and
using the gravitational acceleration on Mars,

gy = 3.71 m/s* (Table [), the maximum thickness and
mass of ice in the northern polar cap for which

Ry = 450 km are equal to

Hy = 5200 m, My = 1.6x10'% kg, (13)

and for the southern polar cap for which Rg = 150 km,

Hg = 3000 m, Mg = 1017 kg. (14)

The total mass of ice in both caps is such that,
according to Equations (13) and (14) the amount of
water, recalculated per unit surface area of the
planet, is equal to

M
m=a2l  _1aam ke/m. (15)
G Ry
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This estimate shows the mean thickness of a water
layer which would cover the Martian surface if the
polar caps were melted provided that the relief of
the planet were uniform. A close value (about

10" kg/m? ) is indicated in the scientific literature
on Mars studies (Marov, 1981; Cutts, 1973).

The second method for estimating the Martian ice
domes is based on an ice model with a linear viscos-
ity. For the mean thermal flux from the interior of
Mars, estimated to have the same value, approximately,
as that for the Earth, q_= 4x1072 w/ml’ and for an
ice surface temperature of about 150 K, the mean
temperature of the ice domes is about 200 K. This
low temperature of the water ice in the domes can be
maintained by the seasonal sublimation of the COp
condensate from its surface with the consumption of
a latent heat of condensation Q = 585 J/g. The effect-
ive viscosity of ice at such a temperature, as follows
from the rheological law (Grigoryan and others, 1977)
with an exponential temperature dependence,
uoexp (E/RT) with w1012 P (Shumskiy, 1969) is

u= 1018 p,

At such viscosity it is advisable to consider the con-
dition for the existence of an axially symmetrical,
stationary glacial dome, which in the isothermal
approximation has the form (Krass, 1983)

2 pg d dh
- ——(rP—) = -2
3 fdr dr

(16)
where a is the accumulation function. From this re-
lation under the condition

r=R, h=.0

we obtain the equation for a stationary ice cap in
the form

fufl R1 n L.edl m it
[—(-I -/ & & - =] — [ & dEd')](”)

pg\R o n o romn o

h =

where £ andn are the variables over which the inte-
gration is performed. Assuming for simplicity that
a = const, we obtain the approximate formula

2 pa 1/4
h=[———(R2-r~?)] A (18)

3 pg

According to Viking orbiter measurements, during the
summer season over the northern polar cap of Mars the
content of Hp0 in the atmosphere was found to be equal
to about 80 um of precipitated water; the maximum
abundance of Hp0, measured outside the polar caps, was
equal to 30 ym of precipitated water. Probably, there
exists some water circulation on Mars, where evapora-
tion occurs according to the principle of freezing-
out of the soil layer containing permafrost. The
presence of water in the atmosphere is an essential
argument in favour of a water-ice containing perma-
frost. The presence of water in the atmosphere is an
essential argument in favour of a water-ice composition
of the "permanent" domes of Mars. Apparently, in the
autumn season, before COp condensation, precipitation
of this liquid on the water-ice domes' surface occurs.
Assuming, in accordance with the measured quantities,
the mean value of these precipitations to be

a = (2to3)x10-10 cm/s, we obtain corresponding
estimates of the maximum thickness for the polar caps
of Mars:

1400 to 1900 m, (19)
In this case the volume of ice in a cap is determined
according to Equation (18) by formula

Hy = 2500 to 3300 m, Hg =
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4r 2 na 1/4
ve—(-—) s,
51\3 pg

(20)
With due respect for accepted numerical values of
quantities composing this relation, the masses of
Martian polar caps are in this case equal, respect-
ively, to

My = 1021 to 1.8x101g, Mg = 7x10'? to 1.1x1020g,
(21)

Of course, the estimates (19) and (21) are rather
approximate like the estimates (13) and (14); never-
theless, the corresponding values of ice volumes,
found from these estimates, are nearly equal. The
"viscous" ice dome is more gentle and elongated as
compared to the "plastic" one.

Of interest is the estimate of temperature Tg on
a bed of Martian ice domes. The substitution of esti-
mated values for Hy and Hg into Equation (2) yields
the following results. In the case of the perfectly
plastic glacier, since its height is greater accord-
ing to Equation (13), the temperature of ice on the
bed of the northern polar cap in the central region
may reach the melting point. For the case of the
viscous dome model Tpe240 to 250K, and ice is frozen
to the bed. The southern polar cap does not have any
basal ice melting region in either of the above mod-
els. The fluctuations of the deep thermal flux in
the polar glaciation regions of Mars are, apparently,
not so intensive that bottom ice melting and stream
flow of ice as in the outlet glaciers on Earth can
be caused (Krass, 1983). The photographs of the polar
caps did not exhibit such formations (Moroz, 1978).

The polar caps of Mars are the so-called "indica-
tors of history": the "Viking" photographs (Davies
and others, 1977) clearly show the existence of
alternating dark and white layers of ice on the
sections of terraced ledges. Traces of volcanic
eruptions and seasonal dust storms, like the annual
rings of a tree, were imprinted upon the "ice memory"
of this planet.

GLACIAL ENVELOPE OF EUROPA

The purpose of the Section is to study the ice-
cover dynamics for one of the most mysterious and
astonishing moons of Jupiter. Floating ice domes are
typical of the Earth's polar regions as well; a con-
siderable distinction from Europa consists in the
thickness of ice armour, as well as in their contin-
uity and temperature. The problem of their mechanics
has been considered for the floating shelf glaciers
of the Earth within the framework of ice creep
(Sanderson, 1979) and non-linear viscosity with due
respect for their temperature dependence (Shumskiy
and Krass, 1976),

Such an approach is hardly valid for Europa in
view of the continuity of its ice cover and the small
variations of its surface elevation: here the main
role should be played by oscillations of a floating
ice envelope and stresses caused by the vertical
temperature gradient within it.

Several recent papers show that there is some
doubt concerning the existence of a water mantle on
Europa under the ice shell (Cassen and others, 1979)
because tidal energy dissipation (1011 J/s) is in-
sufficient to heat ice to the melting point. But in
a later paper the same authors write: “The clean
appearance of Europa's surface, the very low topo-
graphic relief, the apparent scarcity of identifiable
impact craters, and the network of curvilinear tec-
tonic features all would be plausible consequences
of a thin crust over 1iquid water" (Cassen and others,
1980). More correct calculations show that even the
tidal dissipation in a thin shell can be sufficient
to support the existence of a water mantle (Cassen
and others, 1980).
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The main parameters of Europa, used below, are
taken from Table I. The densities of ice p and water
py are assumed to be 900 and 1000 kg/m®, respect-

ively. The schematic cross-section of the planet is
shown in Figure 2,

T
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Fig. 2. Schematic cross-section of Ewora.

1 - ice emvelope; 2 - water-ice mantle;
3 - basic rocks,

Thickness of the floating ice envelope

The temperature field of an ice crust when there
is no ice flow due to small surface gradients, may
be considered to be a steady one. Thus, one may use
the solution of a stationary one-dimensional tempera-
ture problem in the form of Equation (2) with the
given temperature Tg at the envelope surface and
thermal flux q at its bottom, generated in planetary
interiors, The melting temperature T, of ice I de-
pends on a hydrostatic pressure,

Tn = Tmo = Cop H, (22)

where C. = 7.28x1073 deg/bar is the coefficient of
the change of melting point with pressure (Shumskiy,
1982) and Tpo is the melting temperature of ice I
under normal pressure. With due account for a zerod
pressure at Europa's surface, we obtain from Equations
(3) and (22) the formula for estimating the thickness
H of the solid ice layer

A(pPoCop * Tmo - Ts)

(23)
q+ACpg

where p, is the normal pressure equal to 1 bar.
Assuming that the thermal flux of Europa is of the
same order as that on the Moon

q= (0.7 to 1,0)x1073J/ms

we obtain H= 20 to 25 km. The lower value of

g~ 0.25x10-3J/m results in increasing H up to 85 km,
according to Equation (23). In this case the ice melt-
ing temperature at the bottom of a solid crust is
equal, according to Equation (22), to -2 to -3°C in
the first case and about -8°C in the second. If we
consider tidal heating the total surface heat flux
can be as high as 5x102J m2s and in this case a
};gt{l}d water mantle can persist (Finnerty and others,
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The above estimates confirm the validity of the
supposition that Europa's ice crust floats on a water-
ice mantle whose state is close to a liquid one, and
also testifies to a considerable role of temperature
in the mechanics of this floating ice cover. This con-
sideration results in a number of interrelated prob-
lems:

The proper oscillations of a floating ice crust;

The stress state in such a crust caused by a

stationary temperature field;

The influence of temporary variations of tempera-

ture at the surface.

This cycle of problems should explain the principal
features of the dynamics of Europa's ice crust and
the peculiarities of its surface relief.

The following remarks can be made concerning
water-ice envelopes for Callisto and Ganymede. The
variations of relief elevations of these moons of
Jupiter are comparatively large (Gehrels, 1976);
wel1-conserved meteorite craters and large valleys
are observed on their surfaces, Apparently, these
planets are not subjected to active endogeneous
processes leading to the internal heat generation.
By virtue of this circumstance, one cannot exclude
the possibilities that nearly all the water on Gany-
mede and Callisto is effectively in a solid state,
as ice, or else the outer envelope of these planets
is an ice crust some hundreds of kilometres thick,
which is floating on a water mantle.

Temperature in the spherical ice envelope

In what follows we shall use spherical polar
coordinates (r, ©, ¢) for the case of radial sym-
metry. In other words, we shall assume that the ice
envelope, floating on a liquid substrate, is uniform
in thickness. Generally speaking, since the latitud-
inal variations of temperature at Europa's surface
reach some tens of degrees (Soderblom, 1980), then,
according to Equation (23), the corresponding varia-
tions of thickness of a solid ice armour may reach
10 to 15% of its mean thickness. We shall neglect
this non-uniformity in order to simplify the problem
and shall consider further the radially symmetrical
scheme only with variations limited to one coordinate
directed along radius r,

The stationary temperature field in the ice en-
velope (in the absence of heat sources) is described
by the equation

1 d dT
- —(r”R—) =0, (24)
” dr dr

The boundary conditions are: temperature Tg is
specified at the surface as

F=RS, T=Ts, (25)

and the melting temperature is specified at the bottom
of the solid envelope as

r=Rps T =Tn (26)

The solution to Equations (24) to (26) is given by
T = [TsRs-TpRpRpRs(Tm=Ts)/rl/ (Rg-Rp) . (27)

Equation (27), as well as Equation (23), were obtained
for the case where the thermophysical parameters are
constant. In actual fact, they are temperature depend-
ent. Thus, the heat capacity varies almost linearly
within the temperature range 50 to 270 K (Giauque and
Stout, 1936). The dependence of thermal conductivity
A on T has been studied by Klinger (1975), Anderson
and others (1980), and Kl inger and Rochas (1982). The
curve of the dependence of A on T has a maximum at a
temperature below 10 K and decreases as temperature
increases.


https://doi.org/10.3189/S0022143000006080

. In Equation (27) the ice melting temperature Ty
at the bottom of the solid crust (for ice I) is de-
termined by a formula similar to Equation (22) with a
correction for zero pressure at the surface,

Tm = Tme + PoCo - CopdH. (28)

Along with a stationary (in the accepted approxi-
mation the radially symmetrical) temperature field,
resulting from the long history of the planet's ex-
istence, there is also a temporal component caused

by at least two time variations of temperature at
Europa's surface: from the period of revolution
around Jupiter, tq = 3.55 Earth days, and from the
sidereal period with the duration ts = 11.86 Earth
years. The attenuation decrement of osciallations at
frequency wj, generated at the surface of a homo-
geneous medium with temperature diffusivity k, is
determined by the penetration depth h; estimated by
equation (Carslaw and Jaeger, 1959)

hi = Ykfwj. (29)
Table IV gives values of h; (in metres) for differ-
ent values of k (m /year) and ti = 2r/wj.

TABLE IV, PENETRATION DEPTHS OF THERMAL FLUCTUATIONS

ty k=30 k=40 k=50 k=100 k=1000m2 year"1
3.55 days 0.22 0.25 0,28 0.39 1.24
11.86 years 7.5 8.7 9.0 13.7 43,4

The table shows that in a wide range of possible
variations of thermophysical parameters of ice, the
temperature effects caused by variations with a per-
iod ty influence a thin near-surface layer having a
depth of up to one metre only; the depth of action of
sidereal variations does not exceed, apparently, some
tens of metres.

In connection with the existence of considerable
temperature gradients in the depth of ice, the prob-
lem of studying the temperature dependence of pro-
perties of this material arises, the temperature being
varied within wide 1imits - from very low absolute
temperatures up to the ice melting point under the
normal conditions. This problem is very complicated
and multi-facetted, particularly in its experimental
aspect. At present, the temperature dependence of
the coefficient of linear expansion for ice « is known
confidently enough (Forsythe, 1954; Vagaltik, 1956).

The last two columns in Table V represent values
calculated by approximation formulae for a of the
first (P;) and second (P2) orders respectively, ob-
tained by the least-squares method using the values
given in the first two columns of the Table:

(30)
(31)

P1(T)=o[0.26524(T-69.5)+2.718],
Po(T)=,[0.3035(T-69.5)-1.3323x10™ (T-69.5)27,

where a, = 107 deg™ , As Table V shows, the co-
efficient of linear expansion for ice is strongly
dependent on temperature. This fact, by itself, shows
how complicated experimental work with ice at low
temperatures is.

The elastic characteristics of polycrystalline
ice slightly change with temperature: when the
temperature changes from 0 to -180°C, the Young's
modulus increases by 10% at constant load (Zarem-
bovitch and Kahane, 1964). In solving the problems
below we shall assume the main elastic characteristics
of ice, the shear modulus G and Poisson's ratio v,
to be constant. In particular this assumption is quite
Justified for v: it is well known that v is almost
independent of the ice structure and equals 0.33. As
far as the shear modulus G is concerned, it strongly
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TABLE V. DEPENDENCE OF LINEAR EXPANSION COEFFICIENT
OF ICE ON TEMPERATURE

I a x106 P1 Pa
K deg-!
23 -6.1 -9.6 -14.4
63 -1.3 0.99 - 1.98
73 0.8 3.65 1.06
83 3.3 6.3 4,07
123 16.8 16.9 15.9
173 33.9 30,17 30.0
193 39.2 35.47 35.45
223 45,6 43.43 43.45
253 50.50 51.4 51.21
273 52.7 56.7 56.24

depends on the structure and, hence, on the tempera-
ture of ice; however, there are no reliable data on
this dependence. Therefore, by assuming G = constant,
we mean that an average value of this parameter is
used.

Free oscillations of an ice envelope

We shall consider two types of oscillations of
a floating spherical ice envelope in the self-
gravitational field of a planet, radial (the simplest
type of spheroidal oscillations) and torsional.
Similar problems have been solved in theoretical geo-
physics as applied to the analysis of the proper
oscillations of the Earth (Magnitskiy, 1965, Jeffreys,
1970); for this reason, the detailed derivation of
the basic relations is omitted here. Temperature
effects are not considered in the analysis that fol-
Tows.

Radial oseillations

In the case of a radially-axial symmetry only one
elasticity equation (Love, 1927) is retained, namely,
the equation containing differentiation with respect
to coordinate r (without taking into consideration
the planet's rotation)

3 dopp 1 ( 3z (32)
p— + +*—20'rr-ae - 044) =p — . 32
ar ar 7 - o at?

Here u is the displacement along the radius rs W s
the gravitational potential, and ojj are stresses
determined by the equations

ap N v
G944 = =p +u—+ 26{e ;7 +=—— &),
ar 1-2v
(33)
au  2u u u
Bk B ] (o — E99=e¢¢ S, Epp T — .
air p r ar

In Equations (33) p is the pressure determined from a
hydrostatics law

dp
=== i (34)
dr

The boundary conditions of the problem are as follows.
On a free surface the normal stress is zero

F=Rg+u, opp=0. (35)

On the Tower surface the Archimedean floating con-
dition

r=Rp-u, opp = -glpyutp (Rs‘Rb}] (36)

is met. The condition of absence of tangential stres-
ses on both surfaces is automatically satisfied by
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virtue of the radially-axial symmetry of the problem.

We substitute Equations (33) and (34) into Equa-
tion (32). With due respect for the expansion of the
potential W

W= W+ 8W

where W, is the non-perturbed potential and §W is
the perturbation (Magnitskiy, 1965), as well as the
self-gravitating sphere conditions

4 d
g =—afpr = Br, — &W = &fpu,
3 dr

we obtain, similarly to Pekeris and Jarosch (1958),
an equation in terms of the displacement u,

32u 23u 2
- — 4

are rar r2 G

2Bou p 3%u
R — (37)
2G at?

_— -

In relations for 6W and g, f is the gravitational
constant. The solution to Equation (37) is sought in
the form

u = u(r)ei‘“t.

Substitution into Equation (37) yields the equa-
tion for the function u(r) (Magnitskiy, 1965)

du 2 du 2u

— 4+ === — +12u=0 (38)
dr? rdr r2
where in our case
p 16 _
1= — (W +—nfp). (39)
2G 3

After substituting Equations (33), (34), the boundary
conditions (35) and ?36) are as follows:

1-v du o
Elfi(Rg) iz | == == =—— = = i),
1-&% dr  1-& rlr=Rg

(40)

1-v du U
L[ R Y2 f=—
1-& dr

— o ——

Pw = P
L] ) 0.
1-2 r 26 r=Rp (41)

Equation (38) has two linear independent solutions in
the form of the Bessel functions of semi-integer or-
der (Magnitskiy, 1965; Pekeris and Jarosch, 1958),

1r)/ ¥ Tr.

‘Jts,fz(

1 sin 1r 1 cos 1r
fy =— - cos Ir], u2=_-(sin1r+ 2
P Y 1 r

(42)

The general solution to Equation (38) can be repre-
sented as

u=Clu1 +gu2, (43)

where (11 and C2 are constants to be determined. We

can do this by substituting Equations (43) and (42)
into conditions (40), (41). In order that the non-
trivial solution of a system of two linear homogeneous
algebraic equations in C, and C2 exist, its determin-
ant should be zero, i.e. the equality
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L[y, (Rg) ILplu, (Rp)] = Lslu, (Rg)1 Lplu) (Rp)] = 0

has to be satisfied, This equation may be written in
dimensionless form as

1 a2 + b
— tanlg (1-1/7)] + ——— =0, (44)
3 c¥ ~deae
where
1-v 8 B
a=— [2[1x) #=1, b = 2(l=x)(2 =— 1),
1-2v 2 2
=
C = == »
1-2v
(45)
1-v B B
d=- Ly (2y -=) + 2]*2(2y -—),
1-2 2 2
)
e= (& -—).
2

Equations (44) and (45) include the following dimen-
sionless parameters of the problem:

PwP

Y = Rs/Rp, B . aRp)Rss ¢ = IRg. (46)

In this notation the dimensionless thickness of an
envelope is equal toy - 1.

Let x; = 1R be the smallest root of Equation
(44). In order that instability of radial oscilla-
tions of a solid spherical envelope take place, the
condition

w?2 < 0

?hou1d be met, or, as follows from Equations (39) and
46),

16
w = —3nf;)_pR25/2G> 2 . (47)

Then one of the multiplier exponents in the u(r,t)
solution is positive, i.e. the radial displacement
grows indefinitely with time. Some estimates are given
below. As has already been mentioned above, the prob-
lem has been solved for the case G = const. At an ice
temperature of the order of -20°C the Young's modulus
E = 2G(14v )= 10tON/m (Bogorodskiy and Gavrilo, 1980),
i.e. for f = 6.672x10°1IN m /kg2, m= 1, For G values
which are an order of magnitude lower we have m = 3.

We shall now analyze the dependence of the least
root xy of Equation (44) on the parameters of the
problem, namely g8 (the rigidity parameter) and y (the
envelope thickness parameter). The plots of xj(8) are
shown in Figure 3. As the rigidity parameter g in-
creases, x| also grows. Within the possible range of
Young's modulus E (10° N/m2<E<9x109N/m) it follows
from Equation (46) that

002 < 8 < 0.2,

For the interval of values g < 0.05 the root x) at
g =~ 0.05 is less than unity for y < 1.03 and, hence,
instability of proper oscillations of an ice envelope
may take place. Figure 4 gives the dependence of xj
on the thickness parameter y of a floating solid en-
velope. When the ice cover thickness increases, the
stability of its oscillations grows; at y > 1.03 the
instability of osciallations forg < 0.05 is practic-
ally absent, In other words, very thin ice envelopes,
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Fig. 3. Dependence of the root xj of Equation (44)
on B. Cwrves numbered 1,2,3,4,5,6 correspond
to 'y = 1,02, 1.03, 1.04; 1.05, 1.08, and 1.07
respectively.

Lof 102 Lm 104 109 Lo§ Lov

Fig. 4. Deperdence of the root xp of Equation
on the ice emvelope thickness parameter, y.
Curves numbered 1,2,3,4,5,6,7 correspord to B =
0.02, 0.03, 0.05, 0.08, 0.1, 0.15, and 0.2, respect-
ively. The dashed lines show values of m calculated
from Equation (47).

(44)

floating on a liquid substrate, undergo unstable rad-
ial oscillations which lead to a breaking down of
continuity. On the contrary, covers which are thick
enough are less subject to destruction due to their
proper radial oscillations, even if the shear modu-
lus G is relatively low, i.e. very thick floating
envelopes are most secure.

The dashed lines in Figure 4 show the values of
m calculated by Equation (47) for g = 0,02, 0.033,
and 0,05. The sections of the correspondence curves
lying below these lines correspond to unstable
oscillations, and those lying above the lines to
stable ones, The points of intersection of one-
parameter curves and direct lines divide the region
of radial oscillations into stable and unstable parts.
At g = 0.08, m = 1.72, so that when g > 0.08 the sec-
tions of all curves for l<y<1,07 fall within the un-
stable region. In other words, a decrease of "rigid-
ity" of the floating envelope material (an increase
of "pliability") leads to an extension of the region
of instability of its oscillations.

According to estimates made above, the thickness
of Europa's envelope for the case of the same in-
terior thermal flux q as on the Moon is 20 to 25 km.
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When the value q is an order of magnitude Tower than
that on the Earth, this thickness increases up to

85 km, The mentioned values correspond to the follow-
ing values of y:

vi = 1.003%e 10065 2= 15087
For y1 at g = 0.032 which corresponds to the accept-
able value of E = 8.8x10°N/m® for ice EBD orodskiy and
Gavrilo, 1980), according to Equation 47?, m=1,1,
The unstable section in curve 2 is within 1<y<1,015,
i.e. an envelope of up to 25 km thick undergoes un-
stable aperiodic motions; a thicker spherical ice
cover oscillates in a stable mode.

As has already been noted, the whole surface of
Europa is covered with a dense grid of cracks and
fractures, many of which are quite long; this is
clearly seen on photographs which show surface frag-
ments transmitted from Voyager-2 IAS (Soderblom,
1980). Based on the above calculations and assuming
that the mechanism of destruction of an ice envelope
floating on a water-ice mantle is valid, due to the
instability of radial oscillations for some particular
combinations of basic parameters, at E = 9x10" bars
the value of 20 to 25 km seems to be more acceptable
for an ice-cover estimation.

It is also of interest to calculate the periods
of proper radial oscillations of an ice envelope
within the stable region. Table VI gives the values
of first periods of these oscillations calculated
according to Equations (39) and (46), by using the
equation

2G X 2 16
T = & = = =—ffp
p RS 3

(48)

For an envelope 25 km thick with a Young's modulus
E = 90 000 bars (26 = 6.6x109N/m* )}, the first period
of proper radial oscillations is
Ty = 2 h 41 min,
As G increases the first period decreases and vice
versa; for a relatively low values of G the period
can be as much as several hours; as the shear modulus
further decreases, the oscillations become aperiodic
(unstable). The values of the second roots, as follows
from the asymptotic form of Equation (44), are cal-
culated approximately by the equation
X, = 1Rs = n/(1-1/¥). (49)
It is seen that for y=1 the values of the second
roots are of the order of some tens and hundreds; in
this case the second periods of proper oscillations

are as low as a few seconds, which makes no physical
sense.,

TABLE VI. FUNDAMENTAL PERIODS OF THE PROPER RADIAL
OSCILLATIONS OF THE ICY CRUST OF EUROPA

B 0.02 0.035 0.05 el
Y 26x10-10 1 0.66 0.41 0.2 N/m?
101 56 min 00s - - -
1.015 50 min 20s 2h 41 min - -
1.03 45 min 30s 1h 50 min - -
1.05 43 min 50s 1h 28 min  7h 35 min -
1.07 42 min 40s 1h 26 min  4h 13 min -

As seen from Equations (46) and (47), when the
planet's radius Rg and mean density p increases, B

and m become larger. This means, according to Figure
3, that the region of instability of radial oscilla-
tions is considerably extended. For example, on a
planet like the Earth, a floating continuous ice cover
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some tens of kilometres thick would necessarily be
crushed as a result of its proper aperiodic radial
oscillations. Thus, the ice envelopes of relatively
small planets are more stable and secure in the sense
of their integrity.

Torsional oscillations

A similar problem was considered in theoretical
geophysics as applied to the proof of existence of a
liquid core in the Earth under the spherical layer of
the solid mantle (Shlanger, 1959).

Under torsional (toroidal) oscillations, volu-
metric strain is absent so

Only one equation of the system of elasticity equa-
tions remains since, by the definition of torsional
oscillations, we have

u=v =0,

The remaining component of displacement is represented

in the form

w=w(r) ¢(0)eiwT, (50)

The torsional oscillations are related to shear deform-

ations and affect the rigid floating envelope only,
i.e. the boundary conditions are of the form

F=Rg: T = Rgj 9 =0,

or
dw w

gs PRy —=—=0, (51)
dr

r =R

Substituting Equation (50) into a single elasticity
equation

dzw aom, 1 30¢¢. 3
| S e —

att  ar

we obtain, by using the method of separation of vari-
ables, the system of two equations with respect to
w(r) and ¢ (0):

Ew 2dw w2p  n(n+l)

pomia—i [ = w=0, (52)
drz  r dr 26G rz
&y d
— +cot@ — + n(n+tl) =0, (53)
o2 ®©

Equation (53) is the differential equation of spher-
ical functions, i.e.

$n*< Pn{a)- (54)
Equation (52) can be reduced to the Bessel equation;
its solution is of the form (Tikhonov and Samarskiy,
1966)

wn(r) = r"[Agn(kr) + By p(kr)], (55)

where K = pw?2/2G. The following recurrence equations
are valid fory, andy , functions:

1 1
%gix) =—sin gy Wigl) = —ecos %.
X X

1
xl(x) == (sin x - x cos x),
X
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1

v, (x) = {x sin x + €05 %),
' @

x' (x) = = xxpe () 0'(x) = -y (x). (56)
n n

The substitution of Equations (55) and (56) into the
boundary conditions (51), along with the requirement
of the existence of a non-trivial solution for A, and
B yields an equation which determines k and, hence,
the frequency w (Shlanger, 1959):

(n=1)xn(kRg) = (kRg)2 Xn+ (kRs)
(n“lh’n(kRs) = (kRs)z Yy (kRs)

(57)
(n-1)xn(kRp) - (kRp)?* xnp (kRp)
(n-1) n(kRp) - (kRp)? ¥4y (KRp)
For n = 1 we obtain from Equation (%7) the transcend-

ental equation with respect to x = kR; in dimension-
less form

tan[x(1-6)]
x(1-8)

3(6x2 + 3)
= (58)
82 - 3(1 + 82 - 32 + 9

where 8 =yt = Ry/Rg. For & close to unity, as well
as for small values of x(l-y), we have from Equation
(58) the approximate equation for determining some
first roots

tan[x(1-6)] = x(1-5). (59)
Table VII gives the values of three fundamental
periods of torsional oscillations fory = 1, corres-
pondingly to the roots of Equation (59):

%1 = 4.494, «xp = 7.725, =x3 = 10.996,

calculated from the equation

Rg [ Rg p(lto)
Ty =il == =— W} i (60)
Xj 2G X4 E

TABLE VII. FUNDAMENTAL PERIODS OF TORSIONAL OSCILLA-
TIONS OF THE FLOATING ICY CRUST OF EUROPA

26x10710 1 0.66 0.41 0.2 0.05 N/m?
1T1 1100 1330 1705 2430 49 min 00s
17 2 620 750 955 1420 28 min 30s
17 3 430 530 700 1000 20 min 00s

It is seen from Equation (60) and this Table, that a
decrease of shear modulus of the material results in
an increase of the period of torsional oscillations
of the floating solid envelope. For the values of
the basic parameters of Europa's ice cover assumed
above, the periods of the first harmonics apparently
do not exceed 15 to 20 min. In this case the planet's
radius is linearly dependent on the value of the
period.

Thermoelastic state of an envelope

To determine the deformations and stresses aris-
ing in a floating ice cover due to the inhomogeneity
of its vertical temperature profile, we shall con-
sider the boundary-value thermoelasticity problem for
a radially symmetrical case. The temperature variation
along the radius is described by Equation (27). At
the bottom of the envelope, for r =Ry, the ice tem-
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perature at the melting point Ty is determined by
Equation (28); the temperature Tg is specified at the
free surface.

A single equilibrium equation is of the form

Cb'r‘r 1
+“‘—(20rr'099 "0¢¢) =0, (61)
dr r

The stresses ojj are determined as follows (the
thermo-elasticity relations (Melan and Parkus, 1953):

v 1-v
ajj = 26(ej; + € - = qT) (62)
1% 12

where the components of the strain tensor and the
volumetric strain are determined by Equation (331
The substitution of Equations {62) and (33) into
Equation (61) leads to the equation for a radial dis-
placement

d du u 1 +v d
——+2-=]= — (aT) (63)
dr \dr I 1 -v dr

where a = a(T), Upon double integrating we obtain the
expression for u(r)

: {Mfr 2dr 4 ¢ (P - ) (64)
=i o Y i - +
’ L1 Ry FE g b Cz}

where Cy and Cp are constants determined from the
boundary conditions. The boundary conditions of the
problem are determined as follows. On the free upper
surface the normal pressure from a displacement u of
opposite sign is specified as

r=Rg +u, opr = pgu. (65)

On the lower surface, the hydrostatic equilibrium
condition (Archimedean floating)

r=Rp=-u, opp==- (py -p)ou (66)

should be met.
We introduce the dimensionless variables

u =URS: r=ﬁ5’ = Rs/Rbs
& (67)
B =p9Rg/2G, T = TThos @g =aglpg-

The problem of Equations (63), (65), and (66) is
solved in two versions: for constant coefficient of
linear expansion of ice a and for the case where this
value depends on temperature according to Table V,
For the second version the approximate dependence in
the form of the second order polynomial given in
Equation (31) was used; this dependence is written in
dimensionless form as

a(T) =a,la(T-T,) - b(T-T,)2], (68)

where a = 82.885, b = 9,9225, Ty = 0.2446; here T is
the dimensionless analogue of Fquation (2T}

by Tey - Tp
T = ayp'®—, AT W mm————
r y -1
(69)
Tm = Tg 17
by = = el
¥ =] Y

The use of boundary conditions (65) and (66) yields
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the formula for u (in the dimensionless expression
the rule over the dimensionless variables is omitted
for the sake of simplicity).

In the general case the solution of Equation (64)
is of the form

1
u=:2EfT(r) fa (P =y Yy e ], (70)
where
IS 4y, ()
xl L s ’ & = s
9. "l 3y - 3y,
3 1
‘311 = ] = T'3 + — & (71)
3 g=2 1-2v

1=
a3, =3 e Y28y, lo -1yt -2],

In the case of a constant coefficient of linear expan-
sion, a = const, the function fy(r) in Equation (71)
is expressed as

1+

fr(r) =& — [ap(P-y3)/3+0.5b0(R-y2)].  (72)
1-v

In the case where a depends on temperature accord-
ing to Equation (68), the solution to the problem of
Equations (63), (65), and (66) is also expressed by
Equations (70), (71), but here the function fT has
another form, namely,

1+
fr(r) =3, = (Tola + BTo)[a2 (P - y73)/3 +
-

tarbp(r® = y2) + ke~ Y -

(a + bTo)ap(r® - y3)/3 + 0.5 by(r - y2)] -

- b[a3T(r3 -y3)/3 +1,5 a%rbT(r?— -y2) +

+

3aTb2T(r' - L) # b§r T Bl & (73)

It was assumed in calculations: for « = const =
5x107 deg™l; fora =afT), a, = 10% deg”! (accord-
ing to Table V); T = 0,34 (93 K is the temperature in
the terminator region (Soderblom, 1980)). Tm was cal-
culated according to the dimensionless analogue of
Equation (28).

Figure 5 shows the dependence of the corresponding
dimensionless deformation

AU =ug = up =ufl) ~u(y1) (74)

ong and y. Curves (8, Au) grow with g more noticeably
as y increases. The growth of Au with increasing g
means that as the "rigidity" of an envelope material
decreases, the thermoelastic deformations in it in-
crease. The increase of thickness of a floating ice
cover should lead to the growth of its corresponding
deformations almost according to a linear law. The
dependence of the coefficient of linear expansion of
ice on temperature lowers Au by 30 to 40% as compared
to whena = const; the gradients also decrease, i.e.
all curves are more gentle for the case of o = a(T).

269


https://doi.org/10.3189/S0022143000006080

Journal of Glaciology

10 103

P

02 03 04 s
Fig. 5. Dependence of relative deformation Ug - Up on
g (cwrves nunbered 1,2,3 correspond to
Yy = 1.015, 1.04 and 1.06) and on y (cwrve
numbers 4,5,6 correspond to B = 0.02, 0.05 and
Deitkls
I: - o =const: IT: - o = ofT) according
to Equations (31), (68).

Apparently, the situation which allows for the a(T)
dependence is more realistic; the results of calcul-
ations for this version will be preferred in the
interpretation that follows. For the values of the
basic parameters of Europa, indicated above, g = 0.2
according to Equation (67) and, as follows from curve
1, the corresponding radial thermoelastic deforma-
tion of an ice envelope may reach 2x10™* of the planet
radius, or about 300 m.

The increase of thickness of a floating ice cover
leads to the increase of deformation and its gradients.
Figure 6 shows the dimensionless dependences of stress
9% and stress intensity t on radius. These dependences
are normalized with respect to the value £ = 2x10LLN/m?
and calculated from the Equations

.
o = — [v—+- - ) aT],
Yo dr o
(75)
2 2 du u
T = - |a -d - |—=-=1.
N L 3 lgr ¢

In the case of a = const, gyq varies with radius by a
law close to linear; fora =a(T) deviations from a
linear dependence are observed. The thermoelastic
stresses for @ =a (T) are negative at the bottom of a
floating envelope and positive at the free surface.
As the shear modulus decreases (B increases) the
stress lowers, i.e. as the "pliability" increases,
the thermal stresses in an ice crust decrease. The

o (T) dependence has a considerable effect on the
depth distribution and values of stresses: the gra-
dients are much larger as compared to the a = const
version. As B increases, the zero surface for o

and the minimum of © are noticeably shifted towards
the free surface: whereas forg = 0.01 the Thg = 0
surface occurs almost in the middle, forg = %.2 it
js situated at a distance from the free boundary,

r =1, equal to only one tenth of the thickness of
the rigid layer. For small values of 8 the stresses
are rather high; forg = 0.2 they are about 10 to

20 bars. As the envelope thickness,y - 1, increases,
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(Egp, T)- 10"

Fig. 6. Thermoelastic stresses in an ice crust.
¥ = 1.015. 8r & Ojky D = T
I: = o = const; ﬂa -a =alT). Curves
nunbered 1,2,3, correspond to B = 0.1, 0.2, and
0.5, respectively.

the stresses vary insignificantly provided g remains
the same. The values of stresses at the bottom of a
floating envelope are considerably higher than those
on the free surface; thus, fory = 1.015 (which cor-
responds, as has already been mentioned, to an ice
cover 25 km thick) these values differ by a factor
of 3 to 4. As follows from the curves of the series,
the lower portion of an ice crust undergoes com-
pression in the® and ¢ directions and the upper (in
particular the near-surface) region undergoes exten-
sion.

Figure 7 shows the dependence of o and T on B
for various internal spherical surfaces in an ice
crust. For the currently accepted value of Young's
modulus for ice (8 = 0.2) the thermoelastic stresses
do not exceed 10 to 20 bars, This value is close to
the spalling strength of ice; at the free surface,
as has been mentioned above, these stresses are three
to four times lower., The role of increasing g (de-
creasing Young's modulus) in Towering the influence
of a temperature inhomogeneity on the stress state of
an ice armour is clearly seen in this case.

Reasons for Ewopa's swrface relief peculiarities

As has been noted above, the main possible reason
for the numerous cracks and giant fractures occurring
in Europa's surface is the instability of natural
oscillations of an ice crust floating on a water-ice
mantle. The ice envelope is literally crushed into
separate blocks (Soderblom, 1980); an apparent ab-
sence of regularities and the chaotic character of
the location of these numerous traces of the break-
up of an ice armour on the planet's surface proves
the validity of the stated supposition. One cannot
also exclude the possibility that one of the reasons
for the break-up of the ice crust may consist in the
influence of periodic perturbations from Jupiter and
its other moons being in resonance with some of the
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frequencies of a spectrum of natural radial oscilla-
tions of Europa's solid ice envelope. To answer this
question finally, the problem of Equations (32), (33),
(34), (35), and (26) should be considered while
specifying the law for the variation of the shear
modulus G and ice density p with radius r; these data
could be obtained from the corresponding experiments.
0f course, the eigenvalue problem can be solved in
this case only by numerical methods. In a simplified
formulation (with G and p constant) the problem of
forced oscillations of an ice crust can be solved by
analytical methods which can allow the calculation of
the resonance frequencies and amplitudes.

Cassen and others (1980) advance thermal convec-
tion in the water mantle of Europa as the main reason
for the break-up of the ice crust. However it is well
known that thermal convection only takes place in the
case of a pure and extremely homogeneous medium.
Estimates show that density inhomogeneities of as
little as c¢.0.01% are sufficient for thermal convec-
tion not to occur. It is doubtful if the real natural
medium is that pure. Furthermore thermal convection
would inevitably produce rapid cooling of the plan-
etary interior.

Pieri (1981) has described two types of patterns
of fracture polygons on Europa's surface: (1) roughly
equal polygons and (2) complex trapezoidal patterns.
These classes form distinct groups, often localized;
but also some of global character.

Finnerty and others (1981) suggest a model for
the cracking of a thin, brittle crust floating on a
water mantle 270 km deep in which it is due to the
dehydration of enclosed serpentine which provides
stresses great enough to fracture the ice on Europa.
However there are two difficulties with their model:
the thickness of Europa's Hp0 layer is only e¢. 100 km
and so the high temperatures (e¢. 500°C) needed for
the dehydration of serpentine seem unrealistic.
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Apart from the fact of the existence of fractures
and crack systems in Europa's ice crust as such, the
analysis of their dynamics is of definite interest.

The thermoelastic stresses in a floating ice
crust due to the existence of a temperature gradient
in it, which may reach 7 to 8 deg/km, may be as high
as tens of bars. True, under the conditions of con-
siderable hydrostatic pressure, the gradient of which
in an ice layer is 12 bar/km in the conditions pre-
vailing on Europa, ice may change its structure and
its mechanical characteristics. The ice structure may
also be considerably reconstructed as a result of a
long period at low temperature.

One of the most effective factors influencing
the planetary surface is temporal variations of tem-
perature. The amplitude of the diurnal temperature
variations at the surface is about 100 deg (Gehrels,
1976), the minimum value of the temperature on the
night side of a planet being equal to only some tens
of Kelvins., As follows from Table IV, when the tem-
perature drops below 70 K, ice begins to expand; for
temperatures of the order of 10 to 30 K the total
relative expansion of ice when cooling may be about
2x10* , On the other hand the minimum temperature on
the night side could be close to 50-70 K if we take
into account the thermal inertia J = (apc)}, albedo,
and radiation. The larger J, the higher the night
temperature will be and the more the day maximum
temperature will be retained, In this case tempera-
tures well below 60 K may occur only in the sub-
polar regions of the planet.

For a sufficiently large distance between the
crack systems (of some tens of kilometres) such an
expansion is large enough for filament-like cracks
some tens of metres wide, which were opened on the
day side, to be closed from the surface in the night-
time. For cracks some hundreds of metres wide and
larger, the closing process, if any, has to be caused,
apparently, in other ways. It is well known that
closed cracks in an ice layer are observed from
space as dark regions due to their decreasing albedo
against the surrounding surface background. This
factor is used for forecasting surges of glaciers
on Earth from satellite data: prior to surges glaciers
are usually covered with a grid of internal cracks,
and their albedo sharply decreases. Of course, the
process of closing cracks on the night side of a
planet at temperatures of some tens of kelvins, as
well as the process of their subsequent opening on
the day side and narrowing due to the reversal of
sign of the coefficient of linear expansion a, de-
pend considerably on the latitudinal position of the
crack system, because the angle of inclination of
Europa's rotation axis to the ecliptic plane is
close to zero. Unlike the Earth, there are, apparently,
no noticeable "winter" and "summer" temperature
variations on this plant; the sidereal change of
seasons plays a far greater role here. The set of
major temperature harmonics, in which the diurnal
and sidereal components play a considerable part,
defines a complicated history of crack dynamics in
the near-surface layer some tens of metres deep.

Consider the depth distribution of the thermo-
elastic stresses arising in the near-surface ice
layer due to short-period oscillations of tempera-
ture at the surface of an ice envelope. In the pre-
liminarily stressed state, caused by a stationary
temperature field, it is the short-period oscilla-
tions which cause the appearance of systems of
cracks in the uppermost layer of an ice cover. Since
the periodic oscillations of temperature rapidly de-
crease with depth, it is sufficient to consider a
one-dimensional problem with a variable z in the
vertical direction. Under an assumption of independ-
ence of thermophysical parameters with temperature,
the thermal-conductivity equation is of the form

30 aZe
L 76
at E. b6
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where k is the thermal diffusivity. On the free sur-
face the temperature perturbation © is specified as a
harmonic with frequency @ and amplitude A,:

a=0, 0 =A,cosut. (z7)

In addition, the condition that the perturbation de-
creases with depth is necessary, i.e.

z+=, 0+ 0, (78)

The solution of Equations (76), (77), and (78) (tem-
perature waves) is given by (Carslaw and Jaeger,
1959; Tikhonov and Samarskiy, 1966)

® [u:
@ = Agexp (- — ) cos (mt -4/— ) (79)
2k 2k

We shall now consider thermoelastic stresses arising
due to the propagation of temperature perturbations
from the surface to the depth. When the horizontal
gradients are neglected, the thermoelasticity problem
is also one-dimensional. A single equation of quasi-
static equilibrium yields, with a zero value for the
normal stress at the free surface taken into account,

arn = 0. (80)

Since

-2y -

v 1+v
gik = 26| eqg + — €84k - a®8 ik | » (81)
Pl
it follows from Equation (80) that
3w 1 +v

3z 1 =-v

0l ,

and then from Equation (81) we obtain

L

by = <08 a . (82)

1 -v

In Equation (82) we consider a = a(T) according to
Equation (31), which represents the data of Table V.
In our case this dependence is of the form

a(T) =agla(Tg - Tg +@) - b(Tg - Ty +0)2] (83)

where Ts is the time-averaged temperature of the sur-
face, and Ty, a, and b are the coefficients of Equa-
tion (31). The substitution of Equation (83) into
Equation (82) leads to the dependence of the horizon-
tal stress on the perturbation e, determined by Equa-
tion (79),

1 +w

oxx = =26 { agla - b(Tg = T) 1T - Tole +

1 -v
(84)
+ [a - 2b(Tg - To)Je2 - b3} .

The test for an extremum leads to two equations

t t - —_ =1, 85
an @ \/ZkZ) (85)

32 - 2[a - 2b(Tg - T)Jo -

(86)
w [ = s = TeliiTe ~ T4} =0,

Equation (85) is valid for the case a = const as
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well; here the absolute maximum of oy is reached

at the boundary, for z = 0. By virtue of the relation
between a and b, for T¢ > T, Equation (83) has two
roots of opposite sign, i.e. the absolute maximum of
oyx 15 reached for z > 0, This means that when the
coefficient of linear expansion of ice depends on tem-
perature, the maximum tensile stress from periodic
oscillations of surface temperature may be reached at
some depth. Thus, under some conditions the cracks may
arise inside the ice; this phenomenon is well known in
the freeze cracking of soils as "blind cracks". These
cracks do not reach the surface, but, by virtue of the
fact that a(T) increases with temperature, can develop
into the depth. As has already been mentioned, these
surface regions with internal cracks, when observed
visually from space, are viewed as dark stripes, and
the alternation of opened and closed cracks as in-
termittent 1ight and dark systems of stripes.

We shall now estimate possible uncompensated
variations of a floating ice envelope's relief. It
follows from the balance equations that the horizon-
tal (oyy) and vertical (o;;) stresses in a thin
layer are related by an approximate dependence

axx = (L/h)2 a3z (87)

where L is a characteristic linear dimension. In our
case

g7z 0%, {88)

where & is the amplitude of an uncompensated elevation,
If o}y is the compressive strength of ice, then
the extremal value of § is estimated as

h\2 o3
5 (—) = . (89)
I P9

The characteristic linear dimension L of blocks of
Europa's crust is of the order of some hundreds of
kilometres (Soderblom, 1980). Assuming L = 100 to
200 km, h= 25 km, we obtain that for 0%y <

¢ .10 bars (Shumskiy, 1969) the extremal value

of an uncompensated elevation may be some tens of
metres. This value is in good agreement with the
heterogeneities of the observed surface relief of
Europa (Soderblom, 1980).

As far as the global dynamics of the crack sys-
tems in the floating ice armour of Europa in which
the opening and closing of large cracks and fractures
are concerned, probably, in this case, one should con-
sider the problem of forced oscillations of an ice
envelope with periodic perturbations from Jupiter's
gravitational field and its other satellites taken
into account,

CONCLUSION

An exclusive role for ice in forming the appear-
ance of Jupiter's and Saturn's satellites has been
emphasized in the science literature of recent years.
Poirier (1982) considers the complex rheology of
ice to be the key to the tectonics of the ice moons
of the giant planets. One cannot disagree with this
statement; however, we should not restrict ourselves
to the study of ice rheology at low temperatures and
high pressures; in order for research on the surface
dynamics of these planets to be successful, an
approach based on ice thermomechanics is necessary.
Such a theory has been successfully developed and
applied to studying glaciers on the Earth (Shumskiy,
19693 1982; Grigoryan and others, 1977; Krass, 1981,
1983).

The necessity of broad experimental and theoret-
ical studies of the variations of the mechanical and
thermophysical parameters of ice, as well as of the
reconstruction of ice structure at very low tempera-
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tures and high pressures, is now of particular im-
portance. On this basis, one would be able to make
fundamental advances in the theory and refine our
ideas about the ice moons of Jupiter and Saturn as
well as about ice covers on other planets of the
Solar system,

The problems considered in this paper allow us
to draw a number of conclusions on the role of water
ice in the physics of the planets of the solar sys-
tem.

1. Definition of the water volume on the planets is
connected with the problem of their interior
structures (Consolmagno and Lewis, 1976). Approxi-
mate estimates are given in the paper; when a new
model has been constructed these values will be
capable of being defined more precisely. Europa
contains Hp0 as about 5 per cent of its volume,
More than one-third of the volume of both Ganymede
and Callisto consists of H50.

2. Mars is a typical terrestrial planet according to

the relative amount of water. Most of its volume

of Ho0 is contained as ice in permafrost, of which
the mean thickness is about 3 km, Liquid water may
occur under the permafrost layer. The Martian
polar caps contain only about one per cent of the
whole amount of water of the planet. The ice sheets
of the Earth, by comparison, contain about 90 per
cent of the volume of fresh water.

The thickness of the ice crust and liquid water

mantle of Europa are 25-30 km and 60-80 km re-

spectively. The relatively thin, floating, rigid
envelope is broken up by its unstable radial
oscillations. Probably this is the main reason for
the formation of the fracture system on the surface
of the planet,

4. The thermal stresses in the floating ice shell of

Europa can play an important role in the dynamics

of the ice shell and the pattern of the system of

fractures.

Probably all of the water on Ganymede and Callisto

consists of various forms of ice, i.e. tidal energy

dissipation provides insufficient heat to melt
their ice crust.

Some speculation can be made on the scientific

investigations now desirable. It is necessary:

(a) to develop new rheological models of ice tak-
ing into account the properties of ice at low
temperatures and their temperature dependence;

(b) to create models of ice thermomechanics which
are suitable for application to the surface dynam-
ics of planets containing ice;

(c) to study the properties of "ices" of other sub-
stances and their role in the complex interaction
with water ice,

The study of ice on other planets will allow us to

w
.

o
-

gain new insights into the glacial covers of the Earth,

and the conditions of their formation, as well as into
the past glacial epochs on our planet.
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