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ABSTRACT. Several aspects of space glaciology a re considered in the 
paper. Estimates of the water content of the Earth, Mars, and the Galilean 
moons of Jupiter are corrected. A considerable proportion of the tota l 
amount of water in the solar system is localized near Ju piter; part of this 
water is contained as ice in g laciations, glacial caps, and ice crust on the 
planets. Ice is one of the main components of the surface of some planets. 
The major amount of ice on Mars is contained in a permafrost layer of mean 
thickness about 3 km. The model of an ice crust fl oa ting on a water mantle 
is considered for Jupiter's moon Europa. It is shown tha t for definite values 
of certa in parameters this crust may be subject to d es truction due to the 
instability of its proper oscillations, which explains the numerous systems of 
fractures and cracks observed on Europa's surface. The stress-strain state of 
such an ice·crust is calculated within the framework of a non-linear thermo­
elasticity model. The role of short-period tempera ture variations at 
Europa's surface is estima ted and the peculiarities of relief observed on this 
planet are analysed . 

RESUME. La glace SUT les planeles du sysllme solaire. Les aspects de la gla­
ciologie de I'espace sont evoques dans cet article. Les estimations de la 
quanti te d 'eau sur la T erre, Mars et les lunes Gallileennes de Jupiter sont 
corrigees. Une considerable . partie de la quantite d 'eau dans le systeme 
solaire est localisee pres de Jupiter. Une partie de cette ea u est contenue en 
eau glacee, calottes de glace et croutes de glace des planetes. La glace est 
I'un des principaux composants de la surface de certa ines planetes. La plus 
grande quantite de glace sur Mars est contenue dans la couche de per­
mafrost d 'une epaisseur moyenne de 3 km. Le modele d'une croute de glace 
flottant sur un manteau d 'eau est envisage pour la lune de Jupiter, Europe. 

I NTR ODU CT! ON 

Studies of the solar system by means of automatic 
interplanetary spacecraft have allowed us to extend 
our knowledge of the other planets. It has been found 
that ice is one of the most prevalent states of water. 
Large masses of water ice are contained on the sur­
face of Mars and Pluto as well as (according to the 
comparison between reflection spectra and the H20 ice 
spectrum) on three of Jupiter's moons and on si x of 
Saturn's moons. On the Earth about 90% of the total 
amount of ~resh water is accumulated in giant glacial 
covers: almost all the water on Mars is contained, 
apparently, in its polar caps and in the thick layer 
of permafrost. 

The enormous role of ice in forming the appear­
ance of some planets offers a cosmological perspective 
in glaciology and opens a new direction for it - space 
glaciology, which is aimed at studying ice on other 
planets. It is these planets whi ch will in the near 
future become objects of great attention as the bases 
for studying the solar system and space. 

In this paper an attempt is made to summarize the 
available data on ice covers and ice on other planets 
on a scientific basis by using a mathematical approach, 
so that the phenomena observed may be explained and 
our ideas on the structure of these planet s corrected. 

THE AMOUNT OF WATER ON PLANETS 

Table I summarizes the data on planets on whose 
surfaces ice has been discovered; this information has 
been taken from Marov (1981), Gehrels (1976), and 
Moroz (1978). Brief descriptions of the characterist-

11 est monlre que pour certains para m etres precis ce tte cro ute peut etre 
sujette cl destruc tio n cl cause de l'iI1stabilite de ses prop res oscilla tio ns, ce qui 
explique les no mbreux systemes ~ frac tures et crevasses o bservees sur la 
surface d'Europe . L'etat de contrainte -de fo rmation d'une crou te de glace 
est calcule da ns le cadre d'un modele thermoelastique non lineaire. Le role 
des va riatons d e temperature a coune pe riode est estime po ur la surface 
d'Europe et les pa rticularites observees du relief de cette planete sont 
analysees. 

ZUSAMMENFASSUNG. Eis auf den Planelen des Sonnensystems. In diesem Beitrag 
werden die Aspekte der Raum-Glaziologie betrachtet. Die Abscha tzungen 
des Wassergeha ltes der Erde, des Ma rs und der galil ii ischen Jupitermonde 
werden berichtig t. Ein erheblicher T eil der Gesamtwassermenge des Son­
nensystems befind et sich in der Nahe vo nJupiter. Dieser Wasseranteil ist als 
Eis in Vergletscherungen, glazialen K a ppen und Eiskrusten von Planeten 
gespeichert. Eis ist eine der Hau ptkomponenten auf der Oberflache einiger 
Planeten. Der grosste Anteil des Eises a uf dem Mars ist in der Per­
mafros tschicht mi t einer Dicke von etwa 3 km entha lten . Fur den 
Jupitermond Eu ropa wird das Modell einer Eiskruste, die auf einem Was­
sermantel schwimmt, betrachtet. Es w ird gezeigt, class bei bestimmten 
Parametern diese Kruste info lge der Instabilita t ihrer eigenen O szilla tionen 
zerstort werden kann , was die zahlreichen Systeme von Bruchen und Spal­
ten, die auf Europas OberAiiche zu beobachten sind, zu erkl ii ren scheint. 
Der Spannungsz ustand einer Eiskruste wird im Rahmen eines nichtlinearen 
thermoelastischen Modells berechne t. Die Bedeutung kurzperiodischer 
T empera turschwankungen fUr Europas Oberfl iiche wird abgeschiitzt; die 
beobachteten Besonderheitcn des Reliefs dieses Planeten werd en anal ysiert. 

ics of the ice cover of these pl anets are presented 
below. 

On Mars, as on the Earth, there exist giant polar 
caps. The atmosphere of this planet i s very rarefied 
(the pressure at the surface is as low as five to si x 
millibars); due to this fact, the surface temperature 
is far less than the freezing point of water, i.e. it 
is about 213 K on average. Typical temperatures of 
the polar caps are close to 150 K; the Vi ki ng-1 or­
biter registered extremely low temperatures in winter 
- about 135 K in the region of the pol ar caps. In 
summer the following temperatures were registered: 
about 180 K in the regi on of the southern po 1 a r ca p 
(Mariner-9 orbiter) and about 200 K for the northern 
one (Vi king-2 orbiter). The condensa tion temperature 
of COz at pressure p = 5 mbar is cl o s ~ to 148 K. 
This allows us to suppose that the correct model for 
the Martian polar caps must be a tw o-component one 
(Moroz, 1978): H 0 ice in the permanent part and 
CO2 ice in the variable periphery. In summer the 
polar caps are intensively contracted (C02 ice is 
sublimated), and in winter time the caps are en­
larged (gaseous COz is condensed from the atmosphere). 
The mean thickness of this seasonal C02 precipitation 
amounts to some fractions of a metre in the winter 
period; in this case the ma ximum mass of conden sate 
in the seasonal caps is about one third of the ma ss 
of atmospheric carbon dio xide. The mass of the vari­
able part of the southern polar cap at ma ximum is 
almost twice as much as that of the northern cap. 
This is consistent with the hypothesi s of a two­
component i ce structure, since tempe rat ures in the 
southern polar region are lower than those in the 
northern region, and the periods of formation of the 
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TABLE I. PLANETS OF THE SOLAR SYSTEM THE SUR FACE OF WHICH CONTAIN ICE 

Mean Denl!...ity J Ice . AbsoLute temper>a- Ice 
pLanet r>adius p eomp?Bition 

km M91m' 

Earth 6378 5.52 H2O 

Ma rs 3394 3.95 H20, C02 . 6H20-
clatharate 

Pl uto 1400 to 1.5 H2O, CH4, NH3 

E u ropa 1565 3.03 H2O 

Ganymede 2640 1.93 H20, NH3 

Callisto 2420 1.79 H2 0 , NH3 

polar caps are 382 and 305 d, respectively. At a mi n­
imum, when the variable peripheral part disappears, 
the southern cap is about 300 km across and the 
northern one about 900 km across. 

According to Voyager IAS (Inte r planetary Auto­
matic Station) data, all the moons inside Titan 's 
orbit - Janus, Mimas, Enceladus, Tethys, Dione, Rhea 
- are covered with water ice. Their mean radii are 
100, 195,250,525, 560, and 765 km , respectively. 
Judging by the fact that their mean density is close 
to that of water, one cannot exclude the possibility 
that some of these moons consist entirely of i ce, and 
H20 ice is the major component in the remaining ones. 

It was noticed long ago that Europa has the lar­
gest reflectance amongst the Galilean moons of Jupiter. 
Th-e information obtained from Voyager-2 IAS allowed 
us to conclude that this celestial body has the 
smoothest surface among all the planets of the solar 
system: this planet, being comparable with the Moon 
in size, has maximum relief variations of the order 
of tens of metres only . At the same time, a great num­
ber of linear structures intersecting at different 
angles has been recorded on its surface, as well as 
bands having a thickness of some tens of kilometres 
on average, and a depth of some hundreds of metres, 
and also filament-l ike strips . These can be explained 
within the framework of a model according to which 
the effectively solid ice crust tens of kilometres 
thick rests upon a far thicker layer consisting of a 
mixtu r e of friable "spongy" ice with water (sludge) 
(Marov, 1981). These two layers - the sludge (water­
ice mantle) and the ice dome - form the upper en­
velope of Europa; its maximum thickness is estimated 
to be hundreds of kilometres . It is supposed that 
partial melting of the lower part of this envelope 
is caused by internal heat generation. Possibly, the 
water-glacial envelope of sludge hides, like an ocean, 
large variations in elevation of rock surfaces. The 
filament-like strips on Europa's surface represent 
c r acks in the ~olid upper ice dome, which arise under 
the effect of internal stresses where the sludge is 
expanded and contracted. The cracks are supposed to 
be filled-in with a fresh, lighter ice arising from 
up-welling sludge, which would explain the appearance 
of light bands on a relatively muddy surface of ice. 
Some dark substance is supposed to rise to the sur­
face from great depths together with the sludge, so 
as to explain the presence of a system of dark strips 
(r~a rov, 1981). 

The presence of water ice was also established on 
the other large Galilean moons of Jupiter, Ganymede 
and Callisto . The relatively low mean density of 
these planets testifies to a large H20 fraction in 
their mass. 

Next we shall estimate the amount of H20 contai n-
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t ur>e of s UY'faee in continuity g A/.bedo 
the freezing r>egions 

K m/s2 

215 cove rs , 9 .8 0 . 30 
glacial systems 

150 domes (polar 3.71 0 . 20 
caps) 

90 ? 0.3 to 0.59 0.60 

93 sol id ice 1.32 0.68 

93 sol i rJ ice 1.42 0 .44 

93 so l id ice 1.21 0 .1 9 

ed on the largest planets of the Earth group and on 
the Ga 1 i 1 ean moons of Jupi ter . 

There is no solid glacial dome on Mars; according 
to publ i shed scientific data (Cutts, 1973), the vol­
ume of water held as ice in its polar caps is estim­
ated to be 

V i ~ 1.5x1 a; krn3, (1) 

which is approximately half that contained in the ice 
sheets and glaciers on the Earth. One supposes that 
much frozen water should also be contained in the 
thick layer of permafrost (Kuz' min, 1981), the signs 
of which have been recorded on the Martian surface as 
characteristic erosion forms by Viking-1 and Viking-2 
IAS. 

We can estimate the amount of frozen water held 
in this permafrost on Mars. The steady-state distri­
bution of temperature T with depth z in the presence 
of a thermal fl ux q comi ng from the i nteri or of the 
planet, can be represented by the formula 

T = T s + qZ/A (2 ) 

where A is the thermal conducti vity of rock and T s is 
the mean temperature of the surface. The thickness of 
the permafrost layer Hp is estimated from the consid­
eration that the temperature at it s bottom reaches 
the melting point of ice 

A 
Hp = - (T m - Ts). (3) 

q 

Assuming, as for Earth rocks, that A = 2W m-1K-l and 
that the thermal flu x from the Martian interior, like 
that for the Earth (Moroz, 1978), is q ~ 4.18xlO-2 W m-2 

(whi ch co rresponds to a temperature gradi ent in the 
upper 1 ayers of a 1 i thosphere of about 20 deg/km), we 
obtain for a mean temperature of the Martian su rface 
Ts ~ -60°C (Kuz'min, 1981), 

H P ~ 3 km. (4) 

This value exceeds by a factor of 8 to 10 the thick ­
ness of a typical permafrost layer on the Earth . 
Kuz'min (1977) gives figures of the same order of mag ­
nitude, although admitted l y differing appreciahly . 
The temperature in polar regions is, on average, 
slightly be l ow -1 00°C (Davies and others, 1977); 
however, Martian ice caps consisting mainly of water 
ice play the role of heat insulators. As an estima­
tion using Equation (2) shows, under an ice layer 2 
km thi ck the temperatu re of the bedrock increases by 
40 deg as compared with the surface temperature for 
accepted values of A and q (the gradient in an i ce 
layer is c. 20 deg/km). The covering glaciations thus 
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help soil conservation and protect soils against 
permafrost generation (Krass, 1983); this fact is 
well traced in the geological history of the Earth. 
In Siberian regions, which did not undergo deep gla­
ciation, permafrost some 500 to 600 m thick developed. 
At the same time, the parts of Europe whose history 
includes more than one glacial epoch, have, appar­
ently, never been subjected to permafrost. One should 
expect that under polar caps the permafrost layer is 
considerably less thick than that indicated in Equa­
tion (4). Only at sub-polar latitudes which are 
poorly screened against the cold by an i ce sheet, can 
the permafrost be thicker. For these reasons C02 ice 
is hardly present in Martian underground ice in any 
considerable amount. In the estimates which follow 
we shall take the average thickness of the perma­
frost layer over Mars as in Equation (4). 

The vol ume of water contained as ice in a spher­
ical ,layer of thickness Hp with an outer radius R 
equal to that of the planet is calculated to be 

4 
Vw = 3" lIWc[R3 - (R - Hp)3], (5) 

where Wc; is the relative content of H20. For Wc=0.2 
to 0.3 (the mean water capacity of frozen soils on 
the Earth) the volume of water contained as ice in 
the Martian permafrost layer would be equal to 
(0.9 to 1.3) x 103 km3 , which exceeds by two orders 
of magnitude the volume of H20 ice contained in the 
polar caps. Kuz'min (1977) gives a value for the, 
total content of ice in the permafrost on Mars WhlCh 
is an order of magnitude lower than the one indica­
ted. In thi s case the avera'ge thickness of the Mar­
tian permafrost would have to be only a tenth of 
that estimated by Equation (4): it would be as low 
as about 300 m. One might think that such an "Earth" 
figure could correspond to the severe Martian con­
ditions, if one assumed that the deep thermal flux 
from the planet's interior were considerably more 
than that in the Earth. This fact, however, does not 
agree with the ideas of mode rn planetology (Moroz, 
1978 ) • 

Of definite interest is the estimation of the 
water fraction in the Galilean moons of Jupiter. For 
simplicity, we shall assume that these planets have 
a tw o-component compos it ion: a 1 i ght H20 componen t 
with density p, being in an outer layer of thickness 
h, and a heavy component which constitutes the, in­
ternal part (the baslc rocks) of the planet, wlth a 
mean density PI. Then, the total mass of the planet 
wi 11 be 

4 4 4 -
- lip (R - h)3 + - IT P [R3 - (R - h)3] = - lip R3 (6) 
3 1 3 3 

from which the following expression for the thickness 
of the outer light H20 envelope is obtained: 

[ (

p _P)1I3] 
h=R 1 --

P 1 - P 

(7) 

We assume P = 3.5 Mg/m3 , the same mean density as is 
attributed to the Galilean moon 10 whi ch, apparently, 
does not contain a noticeable amount of water. Then, 
using the parameters indicated in Table I, we obtain 
the following estimates for thickness of an outer en­
velope consisting of H20 for Europa, Ganymede, and 
Callisto: 

hE ~ 100 km , hG ~ 700 km , hc ~ 730 km. (8) 

The same value for hE is deduced by Cassen and others 
(1979, 1980). If one assumes that the mean densi t.Y of 
the basic heavy componenent is the same as that on 
the ~~oon, i.e. P = 3.1 1 Mg/m3 , then the estimates us­
ing equation (7)lare reduced as compared with these 
fi gures by approximately 25 to 30%. Tabl e I I shows 

Krass: Ice on planets of the solar system 

TABLE 11. ESTIMATES OF H20 CONTENT OF PLANETS 

planet Mass of 
the planet 

Earth 6 
Mars 0.66 
Europa 0.05 
Ganymede 0.15 
Callisto 0.11 

volwne 
of water 

109 km3 

1.3 
0.10 

3 
46 
40 

Mass of water rela­
tive to mass of 

planet 
% 

0.02 
0.015 

5 
31 
35 

the results of estimates of water content for the pla­
nets indicated above. 

The above values of total volume of water for the 
Earth and Mars may be increased if underground water 
is taken into account. First of all, it is interest-
i ng to note that the water content on the Ga 1 il ean 
moons considerably exceeds the total amount of H20 on 
our planet: on Europa it is more than twice, on Gany­
mede and ,Callisto thirty times. Whereas for the Earth 
and Mars the fraction of free water in the total mass 
of the planet is negligible, it is rather significant 
for Jupiter's moons. Recent publications (Marov, 1981; 
Sode rblom, 1980) estimate the thickness of an outer 
envelope of Europa, consisting of ice and water-ice 
sl.udg,e, to be some hundreds of kilometres. This value, 
however. seems to be overestimated since-. accordi ng 
to Equation (7), it requires the density of the heav.Y 
component (for a given mean density of the planet) to 
be P

1 
= 6 to 8 Mg/nil, which is evidently unjustified 

for a relatively small planet. 
To evaluate the validity of figures characertiz­

ing the total water content of planets of the solar 
system which are given here and below, one should 
bear in mind that different forms of ice may exist. 
Figure 1 s hows the phase diagram of H20 ice; it is 
general i zed from the fundamental works of Bridgman 
(1937), Brown and Whalley (1966), Kamb ([C1968J). 
Only the usual ice I has a density lower than that 
of water; the other structural forms of ice have high­
er dens i ty. As the pressu re grows due to more dense 

~ 
QI 

'-
" ... .. 
'­
QI 
0-
E 
QI 

f-

12 16 
Pressure/kbar 

Fig . 1. phase diagram fol' H20 ice . 

20 21 

packing of water molecules, not only does ice density 
increa se , but the phase transition temperature also 
increases. Thus, at a pressure of 200 kbar the melt­
ing point for ice VII is about 440°C (713 K) (Fletcher, 
1970). Each form of ice corresponds to its inherent 
field of stability in the (p,T)-pla ne, i.e. to the 
cond itions of pressure and temperature. 

Tabl e I I I gi ves the densiti es for the di fferent 
forms of ice correspondi ng to Figure 1 gi ven by 
Fletcher (1970). It can be seen from this table that 
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TABLE Ill. DENS ITIES FOR THE DIFFERENT FORMS OF ICE 

Form p T p 
bar °C Mgjm3 

ice I I 1 -150 1.17 
ice III and IX 1 -190 1.14 

ice V I 1 -175 1.31 
ice VII 25 X 103 -50 1.66 

the densities of the various forms of ice other than 
ice I exceed the density of water . However, the 
pressure and temperature conditions for the existence 
of these forms should be compared with specific 
conditions in the planets containing H20 in this or 
that form . Thus, according to Equation (8) for Europa 
the pressure at the bottom of the H20 layer hE does 
not exceed 1 kbar. Judging by the diagram in Figure 
1, one would hardly expect that other forms of ice 
than ice I could exist at such pressures and for 
temperatures T > lOOK. For Mars, with a mean rock 
density at the surface of about 1.5 Mg/nil (Kuz'min, 
1981) the pressure would not exceed 0.3 kbar even at 
the bottom of a 5 km layer, so that at temperatures 
T> -60°C only ice I should exist in this permafrost 
region. For Ganymede and Callisto the pressures in 
the ice or water envelope may reach as much as 10 
kbar, and in this case the form of ice VI at T > 
c.300 K may exist. 

If one assumes, for example, that the ice density 
is, on average, 1.2 Mg/m3 , (as in Consolmagno and 
Lewis, 1976) rather than 0 . 9 Mg/nil, as has been taken 
in making estimates using Equation (8), then the 
thicknesses of the ice layers for Ganymede ~nd Cal­
listo hG and hc will increase by 15% as compared to 
Equation (8). However, one should take into account 
here that such an estimate is valid for the case 
where an outer layer has a relatively low temperature 
and is composed of ice only. On the other hand, if 
one assumes that, as a result of internal heating, 
these planets have been stratified up to the present 
time with the formation of a silicate core and a 
liquid water mantle, then corrections to Equation 
(8) will be considerably smaller, since ice 11 may 
exist, according to (p,T)-conditions, up to depths 
of 250 to 300 km only. A considerable increase of 
water fraction in the total mass of Ganymede and 
Callisto may take place only if ice VII with a den­
sity of 1.66 Mg / m3 exists in the internal central 
region of these planets where pressures reach 50 
kbar and more. However, as follows from Figure 1, 
the temperatures in a core consisting of a mixture 
of silicates and i ce should not exceed in this case 
the val ue of 400 to 450 K, which is not in agreement 
with calculations of the thermal evolution of the 
Galilean moons of Jupiter (Gehrels, 1976) and cor­
responds to a cold state of their interior. 

Hence, the estimates of water content on the 
other planets, given in Table 11, are apparently 
close to the real values. It is a surprising fact 
that the amount of water on three of Jupiter's moons 
exceeds the total H20 mass on the Earth by a factor 
of nearly 70. Thi s fact becomes perhaps 1 ess mys­
terious if we take into account calculations of the 
lifetimes of volatiles in the solar system published 
some 20 years ago by Watson and others (1963). They 
show that, at heliocentric distan ces comparable t o 
that of Jupiter's orbit, volatiles like H20 are 
stable for periods exceeding the lifetime of the sol­
ar system. However at heliocentric distances such as 
those of the Earth and Mars, such volatiles can only 
sur'vive on very massive planets, i.e. the terrestrial 
planets probably lost a great deal of their volatiles 
during the accretion phase. 

POLAR CAPS OF MAR S 

One may suppose, apparently, that duri ng the per­
iod of summer sublimation of C02, which comprises the 
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variable part of the Martian polar caps, the caps of 
minimum size consist of water ice. From this view­
point, it is of interest to estimate the ice-sheet 
thickness and the amount of ice on Mars . These estim­
ates will be done using two methods which assume that 
ice domes composed of H20 are stationary . 

The first method uses the idea that ice flows as 
perfectly plastic body . Integral estimations of the 
type which have been done for ice domes on the Earth 
correspond satisfactorily enough (with 20-30% uncer- ' 
tai nty) to the characteri sti cs observed (Paterson, 
1969). We shall consider an axially symmetrical ice 
dome resting on a flat bed; one may show that the 
profile of a perfectly plastic glacier should in this 
case have a parabol ic shape of the form 

(9) 

where His the ice thi ckness at the centre where 
r = 0 and R is the ice-dome radius. The shear stress 
at the bottom is determined in the first appro ximation 
as 

a h 
- pgh­

a r 

The mean val ue of a shear stress at the bed is 

(10) 

Substituting Equations (9) and (10) into this equa­
tion, we obtain 

For the equi 1 i bri um state of an i ce dome the con­
dition 

should be generally satisfied where TO is the yield 
point . The substitution of an expression for ~b de­
termines H as a function of radius R: 

H (11) 

The ice vol ume is then determined as 

H z2 
V = 11 J rL (1 - - )dz 

o J12 
(12) 

Assuming for ice T 0 ~ 1 bar (Paterson, 1969), and 
using the gravitational accel eration on Mars, 
gM = 3.71 m/s2 (Table 1), the maximum thickness and 
mass of ice in the northern po 1 a r cap for whi ch 
RN = 450 km are equal to 

HN = 5200 m, MN = 1.6x1018 kg, (13) 

and for the southern polar cap for which RS 150 km, 

HS = 3000 m, MS = 1 Ql 7 kg. (14 ) 

The total mass of ice in both caps is such that, 
according to Equations (13) and (14) the amount of 
water, recalculated per unit surface area of the 
planet, is equal to 

l.2x1r1+ kg/TT? (15 ) 

https://doi.org/10.3189/S0022143000006080 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000006080


This estimate shows the me~n thickness of a water 
layer which would cover the Martian surface if the 
polar caps were melted provided that the relief of 
the planet were uniform. A close value (about 
10' kg/rrf) is indicated in the scientific literature 
on Mars studies (Marov, 1981; Cutts, 1973). 

The second method for estimati ng the r~artian ice 
domes is based on an ice model with a linear viscos­
ity. For the mean thermal flux from the interior of 
Mars, estimated to have the same value, approximately, 
as that for the Earth, qm ~ 4xlO-2 W/m2 and for an 
ice surface temperature of about 150 K, the mean 
temperature of the ice domes is about 200 K. This 
low temperature of the water ice in the domes can be 
maintained by the seasonal sublimation of the C02 
condensate from its surface with the consumption of 
a latent heat of condensation Q = 585 J/g . The effect­
ive viscosity of ice at such a temperature, as follows 
from the rheological law (Grigoryan and others, 1977) 
with an exponential temperature dependence, 
~oexp (E/RT) with ~0~1015 P (Shumskiy, 1969) is 

~ ~ 10 18 P. 

At such viscosity it is advisable to consider the con­
dition for the existence of an axially symmetrical, 
stationary glacial dome, which in the isothermal 
approximation has the form (Krass, 1983) 

2 pg d dh 
- --(d~-) - a (16) 
3 ~ rd r d r 

where a is the accumulation function. From this re­
lation under the condition 

r = R, h = .0 

we obtain the equation for a stationary ice cap in 
the form 

where ~ and n are the variables over which the inte­
gration is performed. Assuming for simplicity that 
a = const, we obtain the approximate formula 

[ 
2 ~ a 1 1/4 

h = - - (R2 - r2) 
3 pg 

(l8) 

According to Viking orbiter measurements, during the 
summer season over the northern polar cap of Mars the 
content of H20 in the atmosphere was found to be equal 
to about 80 lJm of precipitated water; the ma ximum 
abundance of H20, measured outside the polar caps, was 
equal to 30 lJm of precipitated water. Probably, there 
exi sts some water ci rcu.lation on Mars, where evapora­
tion occurs according to the principle of freezing-
out of the soi 1 1 ayer contai ni ng permafrost. The 
presence of water in the atmosphere is an essential 
argument in favour of a water- ice containing perma­
frost . The presence of water in the atmosphere is an 
essential argument in favour of a water-ice composition 
of the "permanent" domes of Mars . Apparently, in the 
autumn season, before C02 condensation, precipitation 
of this liquid on the water-ice domes' surface occurs. 
Assuming, in accordance with the measured quantities, 
the mean value of these precipitations to be 
a = (2 to 3)x10- 10 cm/s, we obtain corresponding 
estimates of the maximum thickness for the polar caps 
of Mars: 

HN = 2500 to 3300 m, HS = 1400 to 1900 m. (19) 

In this case the volume of ice in a cap is determined 
according to Equation (18) by formula 

Krass: Ioe on p"/'anets of the Bo"/,aI' system 

V 
411(2 IJa) 1/4 
- - - R2.5. 
5 3 pg 

(20) 

With due respect for accepted numeri ca 1 values of 
quantities composing this relation, the masses of 
Martian polar caps are in this case equal, respect­
ively, to 

MN 1~1 to 1.8x1~1 g, MS = 7x1019 to 1.1x1Q2o g. 
(21 ) 

Of course, the estimates (l9) and (21) are rather 
approximate like the estimates (13) and (14); never­
theless, the corresponding values of ice volumes, 
found from these estimates, are nearly equal. The 
"viscous" ice dome is more gentle and elongated as 
compared to the "plastic" one. 

Of interest is the estimate of temperature TB on 
a bed of Martian ice domes. The substitution of esti­
mated values for HN and HS into Equation (2) 'yields 
the following results. In the case of the perfectly 
plastic glacier, since its height is greater accord­
ing to Equation (13), the temperature of ice on the 
bed of the northern polar cap in the central region 
may reach the melting point. For the case of the 
viscous dome model T8"'240 to 250K, and ice is frozen 
to the bed. The southern polar cap does not have any 
basal ice melting region in either of the above mod­
els. The fluctuations of the deep thermal flux in 
the polar glaciation regions of Mars are, apparently, 
not so intensive that bottom ice melting and stream 
flow of ice as in the outlet glaciers on Earth can 
be caused (Krass, 1983). The photographs of the polar 
caps did not exhibit such formations (Moroz, 1978). 

The polar caps of Mars are the so-called "indica­
tors of history": the "Viking" photographs (Davies 
and others, 1977) clearly show the existence of 
alternating dark and white layers of ice on the 
sections of terraced ledges. Traces of volcanic 
eruptions and seasonal dust storms, like the annual 
rings of a tree, were imprinted upon the "ice memory" 
of thi s planet. 

GLACIAL ENVELOPE OF EUROPA 

The purpose of the Section is to study the ice­
cover dynami cs for one of the most mysteri ous and 
astonishing moons of Jupiter. Floating ice domes are 
typical of the Earth's polar regions as well; a con­
siderable distinction from Europa consists in the 
thickness of ice armour, as well as in their contin­
uity and temperature. The problem of their mechanics 
has been considered for the floating shelf glaciers 
of the Earth within the framework of ice creep 
(Sanderson, 1979) and non-linear viscosity with due 
respect for their temperature dependence (Shumskiy 
and Krass, 1976). 

Such an approach is hardly valid for Europa in 
view of the continuity of its ice cover and the small 
variations of its surface elevation : here the main 
role should be played by oscillations of a floating 
ice envelope and stresses caused by the vertical 
temperature gradient within it. 

Severa 1 recent papers show that there is some 
doubt concerning the existence of a water mantle on 
Europa under the ice shell (Cassen and others, 1979) 
because tidal energy dissipation (lOll J/s) is in­
sufficient to heat ice to the melting point. But in 
a later paper the same authors write: "The clean 
appearance of Europa's surface, the very low topo­
graphic relief, the apparent scarcity of identifiable 
impact craters, and the network of curvilinear tec­
tonic features all would be plausible consequences 
of a thin crust over liquid water" (Cassen and others, 
1980). More correct calculations show that even the 
tidal dissipation in a thin shell can be sufficient 
to support the existence of a water mantle (Cassen 
and others, 1980) . 
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The main parameters of Europa, used below, are 
taken from Table I. The densities of ice p and water 
pw are assumed to be 900 and 1000 kg/m3 , respect­
ively. The schematic cross-section of the planet is 
shown in Figure 2. 

I .. ······· .. , . __ ....... . 
.« c o •• 

I -~ ·- J 2 

MXl!l1 3 

Fig. 2 •. Schematic cposs-section of Euro [Xl. 

1 - ~ce enveLope; 2 - water-ice mantLe' 
J - basic rocks. ' 

Thickness of the fLoating ice enveLope 
The temperature field of an ice crust when there 

is no ice flow due to small surface gradients, may 
be consi dered to be a steady one. Thus, one may use 
the solution of a stationary one-dimensional tempera­
ture problem in the form of Equation (2) with the 
given temperature TS at the envelope surface and 
thermal flux q at its bottom, generated in planetary 
interiors. The melting temperature Tm of ice I de­
pends on a hydrostatic pressure, 

(22) 

where Co = 7.28x10-3 deg/bar is the coefficient of 
the change of melting point with pressure (Shumskiy, 
1982) and Tmo is the melting temperature of ice I 
under normal pressure. With due account for a zero 
pressure at Europa's surface, we obtain from Equations 
(3) and (22) the formula for estimating the thickness 
H of the sol id ice layer 

H 
A (PoCo + Tmo - Ts) 

q+AC&g 
(23) 

where Po is the normal pressure equal to 1 bar. 
Assuming that the thermal flux of Europa is of the 
same order as that on the Moon 

q ~ (0.7 to 1.0)xl0-3 J/m2s 

we obtain H ~ 20 to 25 km. The lower value of 
q ~ 0.25x10-3 J/m2 res'ults in increasing H up to 85 km, 
according to Equation (23). In this case the ice melt­
ing temperature at the bottom of a solid crust is 
equal, according to Equation (22), to -2 to _3°C in 
the first case and about _8°C in the second. If we 
consider tidal heating the total surface heat flux 
can be as high as 5xl0-2 J m-2 s-1 and in this case a 
liquid water mantle can persist (Finnerty and others, 
1981) • 
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The above estimates confirm the validity of the 
supposition that Europa's ice crust floats on a water­
ice mantle whose state is close to a liquid one, and 
also testifies to a considerable role of temperature 
in the mechanics of this floating ice cover. This con­
sideration results in a number of interrelated prob-
1 ems: 

The proper oscillations of a floating ice crust; 
The stress state in such a crust caused by a 
stationary temperature field; 
The i nfl uence of tempora ry va ri at ions of tempera­
ture at the surface. 

This cycle of problems should explain the principal 
features of the dynamics of Europa's ice crust and 
the peculiarities of its surface relief. 

The following remarks can be made concerning 
water-ice envelopes for Callisto and Ganymede. The 
variations of relief elevations of these moons of 
Jupiter are comparatively large (Gehrels, 1976); 
well-conserved meteorite craters and large valleys 
are observed on their surfaces. Apparently, these 
planets are not subjected to active endogeneous 
processes leading to the internal heat generation. 
By virtue of this circumstance, one cannot exclude 
the possibilities that nearly all the water on Gany­
mede and Callisto is effectively in a solid state, 
as ice, or else the outer envelope of these planets 
is an ice crust some hundreds of kilometres thick, 
which is floating on a water mantle. 

Tempepature in the sphericaL ice enveLope 
In what follows we shall use spherical polar 

coordinates (r, 0, 4) for the case of radial sym­
metry. In other words, we shall assume that the ice 
envelope, floating on a liquid substrate, is uniform 
in thickness. Generally speaking, since the latitud­
inal variations of temperature at Europa's surface 
reach some tens of degrees (Soderblom, 1980), then, 
according to Equation (23), the corresponding varia­
tions of thickness of a solid ice armour may reach 
10 to 15% of its mean thickness. We shall negl ect 
this non-uniformity in order to simplify the problem 
and shall consider further the radially symmetrical 
scheme only with variations limited to one coordinate 
directed along radius r. 

The stationary temperature field in the ice en­
velope (in the absence of heat sources) is described 
by the equat ion 

d dT 
- (r2-) O. 

~ dr dr 

The boundary conditions are: femperature Ts is 
specified at the surface as 

(24) 

(25) 

and the melting temperature is specified at the bottom 
of the solid envelope as 

(26) 

The solution to Equations (24) to (26) is given by 

T = [T sRs-TmRbtRbRs(Tm-Ts)/rJ/(Rs-Rb). (27) 

Equation (27), as well as Equation (23), were obtained 
for the case where the thermophysical parameters are 
constant. In actual fact, they are temperature depend­
ent. Thus, the heat capacity Cl] varies almost linearly 
within the temperature range 50 to 270 K (Giauque and 
Stout, 1936). The dependence of thermal conductivity 
A on T has been studied by Klinger (1975), Anderson 
and others (1980), and Kl inger and Rochas (1982). The 
curve of the dependence of A on T has a maxi mum at a 
temperature below 10 K and decreases as temperature 
increases. 
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· In Equation (27) the ice melting temperature Tm 
at the bottom of the solid crust (for ice I) is de­
termined by a formula similar to Equation (22) with a 
correction for zero pressure at the surface, 

Tm=Tmc+PoCo - Cr:f'9H. (28) 

Along with a stationary (in the accepted approxi­
mation the radially symmetrical) temperature field, 
resulting from the long history of the planet's ex­
istence, there is also a temporal component caused 
by at least two time variations of temperature at 
Europa's surface: from the period of revolution 
around Jupiter, td = 3.55 Earth days, and from the 
sidereal period with the duration ts = 11.86 Earth 
years. The attenuation decrement of osciallations at 
frequency wi' generated at the surface of a homo­
geneous medium with temperature diffusivity k, is 
determined by the penetration depth hi estimated by 
equation (Carslaw and Jaeger, 1959) 

hi ~ lk/wi. (29) 

Table IV gives values of hi (in metres) for differ­
ent values of k (ml/year) and ti = 211 /wi. 

TABLE IV. PENETRATION DEPTHS OF THERMAL FLUCTUATIONS 

ti 

3.55 days 
11.86 years 

k=30 

0.22 
7.5 

k=40 k=50 k=100 k=100Qm2 yea r-1 

0.25 
8.7 

0.28 
9.7 

0.39 
13.7 

1.24 
43.4 

The table shows that in a wide range of possible 
variations of thermophysical parameters of ice, the 
temperature effects caused by variations with a per­
iod td influence a thin near-surface layer having a 
depth of up to one metre only; the depth of action of 
sidereal variations does not exceed, apparently, some 
tens of met res. 

In connection with the existence of considerable 
temperature gradients in the depth of ice, the prob­
lem of studying the temperature dependence of pro­
perties of this material arises, the temperature being 
varied within wide limits - from very low absolute 
temperatures up to the ice melting pOint under the 
normal conditions. This problem is very complicated 
and multi-facetted, particularly in its experimental 
aspect. At present, the temperature dependence of 
the coefficient of linear expansion for ice a is known 
confidently enough (Forsythe, 1954; Vagaltik, 1956). 

The last two columns in Table V represent values 
calculated by approximation formulae for a of the 
first (PI) and second (P 2) orders respectively, ob­
tained by the least-squares method using the values 
given in the first two columns of the Table: 

PI (T )=ao[0.26524(T -69.5 )+2 .718J, (30) 

P2(T) ~o[0.3035(T -69.5)-1.3323x10 ..... (T -69.5)2 J, (31) 

where a o = 10-6 deg-1 • As Table V shows, the co­
efficient of linear expansion for ice is strongly 
dependent on temperature. This fact, by itself, shows 
how complicated experimental work with ice at low 
temperatures is. 

The elastic characteristics of polycrystalline 
ice slightly change with temperature: when the 
temperature changes from 0 to -180°C, the Young's 
modulus increases by 10% at constant load (Zarem­
bovitch and Kahane, 1964). In solving the problems 
below we shall assume the main elastic characteristics 
of ice, the shear modulus G and Poisson's ratio v, 
to be constant. In particular this assumption is quite 
justified forv: it is well known that v is almost 
independent of the ice structure and equals 0.33. As 
far as the shear modulus G is concerned, it strongly 

l<:t'ass: Ice on pLanets of the soLar system 

TABLE V. DEPENDENCE OF LINEAR EXPANSION COEFFICIENT 
OF ICE ON TEMPERATURE 

T CL x106 Pl P2 
K deg-1 

23 -6.1 -9.6 -14.4 
63 -1.3 0.99 - 1.98 
73 0.8 3.65 1.06 
83 3.3 6.3 4.07 

123 16.8 16.9 15.9 
173 33.9 30.17 30.0 
193 39.2 35.47 35.45 
223 45.6 43.43 43.45 
253 50.50 51.4 51.21 
273 52.7 56.7 56.24 

depends on the structure and, hence, on the tempera­
ture of ice; however, there are no reliable data on 
this dependence. Therefore, by assuming G = constant, 
we mean that an average value of this parameter is 
used. 

Free osciLLations of an ice envelope 
We shall consider two types of oscillations of 

a floating spherical ice envelope in the self­
gravitati onal field of a planet, radial (the simplest 
type of spheroidal oscillations) and torsional. 
Similar problems have been solved in theoretical geo­
physics as applied to the analysis of the proper 
oscillations of the Earth (Magnitskiy, 1965, Jeffreys, 
1970); for this reason, the detailed derivation of 
the basic relations is omitted here. Temperature 
effects are not considered in the analysis that foI­
lows. 

Radial osciLlations 
In the case of a radially-axial symmetry only one 

elasticity equation (Love, 1927) is retained, namely, 
the equation containing differentiation with respect 
to coordinate r (without taking into consideration 
the planet's rotation) 

aw aO rr 1 a2 u 
p- + -- + - (20 rr - 000 - 04>40) = p - (32) 

a r a r r a t2 

Here u is the displacement along the radius r, W is 
the gravitational potential, and 0ii are stresses 
determined by the equations 

a p v 

} ° i i -p + u - + 2G(E i i +- £), 
ar 1-2v 

(33) 
au 2u u au 

£ = - +-, £00 = £H = - , £ rr = 
a r p r ar 

In Equations (33) p is the pressure determined from a 
hydrostat i cs law 

dp 
-p g. (34) 

dr 

The boundary conditions of the problem are as follows. 
On a free surface the normal stress is zero 

r = Rs + u, 0rr = O. (35) 

On the lower surface the Archimedean floating con­
diti on 

is met. The condition of absence of tangential stres­
ses on both surfaces is automatically satisfied by 
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virtue of the radially-axial symmetry of the problem. 
We substitute Equations (33) and (34) into Equa­

ti on (32). With due respect for the expansion of the 
potential W 

W = Wo + oW 

where Wo is the non-perturbed potential and oW is 
the perturbation (Magnitskiy, 1965), as well as the 
self-gravitating sphere conditions 

4 d 
g =- lTTpr = Br, - oW = 4rrTpu, 

3 dr 

we obtain, similarly to Pekeris and Jarosch (1958), 
an equation in terms of the displacement u, 

2 a u 2u 2Bpu 
+-- +--

ar2 rar r2 G 
(37) 

2G a t 2 

In relations for oW and g, f is the gravitational 
constant. The solution to Equation (37) is sought in 
the form 

u = u ( r ) e iw t . 

Substitut ion into Equation (37) yields the equa­
tion for the function u(r) (Magnitskiy, 1965) 

dlu 2du 2u 
- + - -- - + 12 U = 0 (38) 
d r2 r dr r2 

where in our case 

p 16 
1 = - (wZ + - IT fp) . (39) 

2G 3 

After substituting Eguations (33), (34), the boundary 
conditions (35) and (36) are as follows: 

uJ - =0 
r r=Rs ' 

du 2v 
+ --

dr I - Cv 
(40) 

2v u Pw - p J 
- +---gu = O. 

I-Cv r 2G r=Rb (41) 

Equation (38) has two linear independent solutions in 
the form of the Bessel functions of semi-integer or­
der (Magnitskiy, 1965; Pekeris and Jarosch, 1958), 

1 (Sin lr 
ul = ~ -l-r- - cos ) 

1 ( cos lr) 
1 r , Uz = - sin 1 r +-- • 

1 r 1 r 
(42) 

The general solution to Equation (38) can be repre­
sented as 

(43) 

where Sand Cz a re constants to be determi ned . We 

can do this by subst ituting Equ~tions (43) and (42) 
into conditions (40), (41). In order that the non­
trivial solution of a system of two linear homogeneous 
algebraic equations in Cl and Cz exist, its determi n­
ant should be zero, i.e. the equ~lity 
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has to be satisfied. This equation may be written in 
dimensionless form as 

1 ar;2 + b 
- tan[r; (1-1/y)] + 0, 
r; 

where 

I-v 
a = [2(l-y) 

l-2v 

c = (~) 2 
l-2v 

I-v 
d [y (2y 

1-2v 

B 
e= 2y(2y--). 

2 

cr;4 +dr;2 +e 

a 
+-], b 2(1-y)(2y 

2 

a a 
) + 2J+2( 2y -- ), 

2 2 

(44 ) 

B 
), 

2 

(45) 

Equations (44) and (45) include the following dimen­
sionless parameters of the problem: 

(46) 

In this notation the dimensionless thickness of an 
envelope is equal toy - 1. 

Let xl = llRs be the smallest root of Equation 
(44). In order that instability of radial oscilla­
tions of a solid spherical envelope take place, the 
condi t ion 

should be met, or, as follows from Equations (39) and 
(46) , 

( 47) 

Then one of the multiplier exponents in the u(r,t) 
solut ion is positive, i.e. the radial displacement 
grows indefinitely with time. Some estimates are given 
below. As has al ready been mentioned above, the prob­
lem has been solved for the case G = const. At an ice 
temperature of the orde r of -20°C the Young's modulus 
E = 2G(1+v )d()l °N/rn2 (Bogorodskiy and Gavrilo, 1980), 
i .e. for f = 6.672x10-l1 N rrf- /kgl, m ~ 1. For G values 
which are an order of magnitude lower we have m • 3. 

We sha 11 now ana lyze the dependence of the 1 east 
root xl of Equation (44) on the parameters of the 
problem, namely a (the rigidity parameter) and y (the 
envelope thickness parameter) . The plots of xl(a) are 
shown in Figure 3. As the rigidity parameter a in­
creases, xl a 1 so grows. Withi n the possi bl e range of 
Young's modulus E (HP N/rrf-,E<9xl()9N/rrf-) it follows 
from Equation (46) that 

0.02 <. B < 0.2 . 

For the interval of val ues B < 0.05 the root xl at 
a ~ 0.05 is less than unity for y <; 1.03 and, hence, 
instability of proper oscillations of an ice envelope 
may take place. Figure 4 gives the dependence of xl 
on the thickness parameter y of a floating solid en­
velope. When the ice cover thickness increases, the 
stabi 1 ity of its osci 11 at ions grows; at y ;> 1.03 the 
instability of oscia11ations for a < 0 . 05 is practic­
ally absent. In other words, very thin ice envelopes, 

https://doi.org/10.3189/S0022143000006080 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000006080


IJ%r·~-------.----------,----------.---------. 

1.0 

0.5 

0.05 

Fig . 3. Dependence of the root xl of Eqlntion (44) 
on e. CUI'ves nunbeI'ed 1,2,3,4,5,6 COI'I'esFVnd 
to y = 1. 02 , 1.03, 1.04, 1.05, 1.06, and 1.07 
res pectiveLy. 
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0.5 - ---- I t----J 
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--11------ -._- - ---
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Fig . 4. Dependence of the root xl of Eqlntion (44) 
on the ice enveLo pe thickness [XlY'ameter, y. 
CU!'ves nWlbeI'ed 1,2,3,4,5,6,7 cOI'I'esp:md to e = 
0 . 02 , 0 . 03 , 0 . 05, 0 . 08 , 0.1, 0 . 15, and 0. 2, respect ­
iveLy. The dashed Lines show vaL ues of m caLc uLated 
from Eq lntion (47) . 

floating on a liquid substrate, undergo unstable rad­
ial oscillations which lead to a breaking down of 
continuity . On the contrary, covers which are thick 
enough are less subject to destruction due to their 
proper radial oscillations, even if the shear modu­
lus G is relatively low, i.e. very thick floating 
envelopes are most secure . 

Th e dashed lines in Figure 4 show the va l ues of 
m calculated by Equation (47) for e = 0.02, 0 .033, 
and 0 .05 . The sections of the correspondence cu r ves 
lying below these lines correspond to unstable 
oscil l ations, and those lying above the lines to 
stable ones . The po i nts of intersection of one­
parameter curves and direct lines divide the region 
of radial osc ill ations into stable and unstable parts . 
At e = 0.08 , m = 1.72, so that when e > 0.08 the sec­
tions of all curves for 1<y<1.07 fall within the un­
stabl e region. In other words, a decrease of "rigid­
ity" of the floating envelope mate ri al (an inc rease 
of "pliability") l eads to an extension of the region 
of instability of it s oscillations. 

According to estimates made above, the thickness 
of Europa's enve lope for the case of the same i n­
terior therma l flux q as on the Moon is 20 to 25 km . 

J<rass: Ice on pLanets of the soLaI' system 

When the value q is an order of magni tu de lower than 
that on the Earth, this thickness increases up to 
85 km . The mentioned values correspond to the follow­
i ng va 1 u es of y : 

Yl = 1.013 to 1.016, Y2 = 1.057. 

For y 1 at £\ ~ 0.032 whi ch corresponds to the accept­
able value of E ~ 8 .8xl09 N/IT~ for ice (B09orodskiy and 
Gavrilo, 1980), according to Equation (47), m = 1.1. 
The unstable sect ion in curve 2 is within 1<y<1.015, 
i . e. an envelope of up to 25 km thick undergoes un­
stable aperiodic motions; a thicker spherical ice 
cove r oscillates in a stable mode . 

As has al rea-dy been not ed, the whol e surface of 
Europa is covered with a dense gri d of cracks and 
fractures, many of which are quite long; this is 
clearly seen on photographs which show surface frag­
ments transmitted from Voyager-2 IAS (Soderblom, 
1980). Based on the above calculations and assuming 
that the mechanism of destruction of an ice envelope 
floating on a water-ice mantle is valid, due to the 
instability of radial oscillations for some particular 
combinations of basic parameters, at E ~ 9x10'+ bars 
the va 1 ue of 20 to 25 km seems to be more acceptabl e 
for an ice-cover estimation. 

It is also of interest to calcu late the periods 
of proper radial oscillations of an ice envelope 
within the stable region. Table VI gives the values 
of first periods of these oscillations calculated 
according to Equations (39) and (46), by using the 
equat ion 

2 16 
- -1ffp. 

3 
(48) 

For an envelope 25 km thick with a Young's modu lus 
E ~ 90 000 bars (2G = 6.6x109 N/m2), the fi rst period 
of proper radial osci llations is 

T 1 = 2 h 41 mi n • 

As G increases the first period decreases and vice 
versa; for a relatively low values of G the period 
can be as much as seve ral hours; as the shear modulus 
further decreases, the oscillations become aperiodic 
(unstable) . The values of the second roots, as follows 
from the asymptotic form of Equation (44), are cal­
culated approximately by the e~uat ion 

(49 ) 

It is seen that for y~ 1 the val ues of the second 
r oots are of the order of some tens and hundreds; in 
this case the second periods of proper oscillations 
are as low as a few seconds, which makes no physica l 
sense. 

TABLE VI. FUNDAMENTAL PERIODS OF THE PROPER RADIAL 
OSCILLATIONS OF THE ICY CRUST OF EUROPA 

Il 0. 02 
y 2Gx10-10 1 

1.01 56 mi n OOs 
1.015 50 mi n 20s 
1.03 45 mi n 30s 
1.05 43 mi n 50s 
1.07 42 mi n 40s 

0. 035 
0. 66 

2h 41 mi n 
1h 50 mi n 
1h 28 min 
1h 26 min 

0 . 05 
0 . 41 

7h 35 
4h 13 

min 
min 

As seen from Equations (46) and (47), when the 

0. 1 
0. 2 N/rn2 

pl anet ' s radius Rs and mean density p increases, £\ 
and m become larger. This means, according to Figure 
3, that the region of instability of radial oscilla­
tions i s considerab ly extended . For examp l e, on a 
planet like the Earth , a floating continuous ice cover 
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some tens of kilometres thick would necessarily be 
crushed as a result of its proper aperiodic radial 
oscillations. Thus, the ice envelopes of relatively 
small planets are more stable and secure in the sense 
of thei r integrity. 

TorsionaL osciLLations 
A similar problem was considered in theoretical 

geophysics as applied to the proof of existence of a 
liquid core in the Earth under the spherical layer of 
the solid mantle (Shlanger, 1959). 

Under torsional (toroidal) oscillations, volu­
metric strain is absent so 

6 W = O. 

Only one equation of the system of elasticity equa­
tions remains since, by the definition of torsional 
oscillations, we have 

u = v = O. 

The remalnlng component of displacement is represented 
in the form 

w = w( r) ~(0 )e iWT • (50) 

\(11 (x) 
1 

(x sin x + cos x), 
x3 

x' (x) = - Xx n+l (x), \(I' (x) = - XI(! n+l (x) • 
n 

(56) 

The substitution of Equations (55) and (56) into the 
boundary conditions (51), along with the requirement 
of the exi stence of a non-tri vial solution for An and 
Bn yields an equation which determines k and, hence, 
the frequency W (Shlanger, 1959): 

(n- l lx n(kR s) - (kR s)2 Xn+l (kRs) 

(n-l)\(In(kR s) - (kR s)2 l/In+j (kRs) 

(n-lJx n(kRb) - (kR b)2 X nt (kRb) 

(n-l)l/I n(kRb) - (kR b)2 l/I n+l (kRb) 

(57) 

For n = 1 we obtain from Equation (57) the transcend­
ental equation with respect to x = kRs in dimension-
1 ess form 

The torsional oscillations are related to shear deform- tan[x(I-6)] 
ations and affect the rigid floating envelope only, 
i.e. the boundary conditions are of the form x(I-6) 

3(6 x2 + 3) 
( 58) 

62 X' - 3 (1 + 62 - 3 )k2 + 9 

or 
dw w 

(51 ) 
dr r 

Substituting Equation (50) into a single elasticity 
equation 

p ~ = dO r$ + 

ot2 or r sin0 

3 
+-onp, 

r 

we obtain, by using the method of separation of vari­
ables, the system of two equations with respect to 
w( r) a nd ~ (0 ): 

ct2 w 2 dw 
-- +-- + 
drZ r dr 

+ cot El 
dEl2 

[

W2p 

2G 
(52) 

<Jp 
+ n (n+ 1)q, = O. (53) 

Equation (53) is the differential equation of spher­
ical functions, i .e. 

(54) 

Equation (52) can be reduced to the Bessel equation; 
its solution is of the form (Tikhonov and Samarskiy, 
1966 ) 

(55) 

where k"- = ~w2/2G. The following recurrence equations 
a re va 1 i d for x n and l/I n fun c t ion s : 

x o(x) = - sin x, 1jJ o( x) = - cos x. 
x x 

1 
Xl (x) = - (sin x - x cos x) , 

x 
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where 6 = y-l = Rb/Rs. For 6 close to unity, as well 
as for small values of x(l--y), we have from Equation 
(58) the approximate equation for determining some 
first roots 

tan[x(l-6)] ~ x(l-6). (59) 

Table VII gives the values of three fundamental 
periods of torsional oscillations for y ~ I, corres­
pondingly to the roots of Equation (59): 

xl = 4.494, x2 = 7.725, x3 = 10.996, 

calculated from the equation 

Ti=Crr~ _ IT=Crr 2 y p(l+O) 
xi ,, ~ xi E 

(60) 

TABLE VII. FUNDAMENTAL PERIODS OF TORSIONAL OSCILLA-
TIONS OF THE FLOATING ICY CRUST OF EUROPA 

2Gxl 0-1 0 1 0.66 0.41 0.2 0 .05 N/mt 

IT 11 00 13 30 17 05 24 30 49 min OOs 

1 T 2 6 20 50 9 55 14 20 28 min 30s 

IT 3 4 30 5 30 7 00 10 00 20 mi n DOs 

It is seen from Equation (60) and this Table, that a 
decrease of shear modulus of the material results in 
an increase of the period of torsional oscillations 
of the floating solid envelope . For the values of 
the basic parameters of Europa's ice cover assumed 
above, the periods of the first harmonics apparently 
do not exceed 15 to 20 min. In this case the planet ' s 
radius is linearly dependent on the value of the 
period. 

ThermoeLastia state of an enveLo [X3 
To determine the deformations and stresses aris -

i ng in a fl oat i ng ice cover due to the i nhomogenei ty 
of its vertical temperature profile, we shall con­
sider the boundary-value thermoelasticity problem for 
a radially symmetrical case. The temperature variation 
along the radius is described by Equation (27). At 
the bottom of the envelope, for r = Rb' the ice tem-
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perature at the melting point Tm is determined by 
Equation (28); the temperature T s is speci fied at the 
free su rface. 

A single equilibrium equation is of the form 

(61) 

The stresses cr ii are determined as follows (the 
thermo-elasticity relations (Melan and Parkus, 1953): 

v I-v 
cr i i = 2G(E i i + -- E - -- aT) (62) 

1-2v 1-2v 

where the components of the strain tensor and the 
volumetric strain are determined by Equation (33). 
The substitution of Equations (62) and (33) into 
Equation (61) leads to the equation for a radial dis­
placement 

d ( dU U) 1 + v d 
- - + 2 - = -- - (a T) 
dr dr r 1 - v d r 

(63) 

where a = arT). Upon double integrating we obtain the 
expression for u(r) 

1 {1+V r } u = - - f a TrZ dr + r, (r3 - Rt) + S 
rZ I-v Rb 

(64) 

where Cl and C2 are constants determined from the 
boundary conditions. The boundary conditions of the 
problem are determined as follows. On the free upper 
surface the normal pressure from a displacement u of 
opposite sign is specified as 

(65) 

On the lower surface, the hydrostatic equilibrium 
condition (Archimedean floating) 

r = R b - u, cr r r = - (p w - p) g u 

should be met. 
We introduce the dimensionless variables 

u = uR s ' r =rRs' y = Rs/Rb' 

[3 = pgRs/2G, T = TT mo ' a o = aoTmo. 

(66 ) 

(67) 

The problem of Equations (63), (65), and (66) is 
solved in two versions: for constant coefficient of 
linear expansion of ice a and for the case where this 
value depends on temperature according to Table V. 
For the second version the approximate dependence in 
the form of the second order polynomial gi ven in 
Equation (31) was used; this dependence is written in 
dimensionless form as 

(68) 

where a = 82 .885, b = 9.9225, To = 0.2446; here T is 
the dimensionless analogue of Equation (27): 

T aT+ aT= 
r y - 1 

Tm - Ts 

y - 1 

(69) 

The use of boundary conditions (65) and (66) yields 

Krass: Ice on pLanets of the soLar system 

the formula for u (in the dimensionless expression 
the rule over the dimensionless variables is omitted 
for the sake of simplicity). 

In the general case the solution of Equation (64) 
is of the form 

1 
u =-[fT(r) + xl (r3 _ y -3 ) + ~ J , 

rZ 
( 70) 

where 
fT(I) a21 fT (1) 

xl = ~ 
all - a21 all - a21 

3 I-v 
all 1 _ y-3 +-

[3-2 1-2v 
(71) 

I-v 
a21 = 3·- y-3 [[3i,pw/p _1)y-1_2J. 

1-2v 

In the case of a constant coefficient of linear expan­
sion, a = const, the function fT(r) in Equation (71) 
is expressed as 

1+v 
fT(r) = cr - [aT(r3-y-3 )/3+0.5bT(rZ-y -Z )J. 

I-v 
(72) 

In the case where a depends on temperature accord­
ing to Equation (68), the solution to the problem of 
Equations (63), (65), and (66) is also expressed by 
Equations (70), (71), but here the function fT has 
another form, namely, 

+ 3a T[)2 (r - y -1) + b3 1 n r y J} 
T T 

(73) 

It was assumed in calculations: for ex = const = 
5xl0~ deg-l ; for a = a (T), ex = 10~ deg-l (accord­
ing to Table V); Ts = 0.34 (9~ K is the temperature in 
the terminator region (Soderblom, 1980)). Tm was cal­
culated according to the dimensionless analogue of 
Equat ion (28). 

Figure 5 shows the dependence of the corresponding 
dimensionless deformation 

lIU = Us - ub = u(I) - U (yi ) (74) 

on [3 and y. Curves ([3, lIu) grow with [3 more noti ceably 
as y increases. The growth of lIu with increasing [3 
means that as the "rigidity" of an envelope material 
decreases, the thermoelastic deformations in it in­
crease. The increase of thickness of a floating ice 
cover should lead to the growth of its corresponding 
deformations almost according to a linear law. The 
dependence of the coefficient of linear expansion of 
ice on temperature lowers lIu by 30 to 40% as compared 
to when ex = const; the gradients also decrease, i.e. 
all curves are more gentle for the case of a = ex (T). 
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Fig . 5. ~pendence of pe Lati ve de f opmation Vs - vb on 
S (C Ul'ves nunbeped 1,2,3 coppesp:md to 
y = 1. 015, 1. 04 and 1. 06) and on Y (c Ul've 
nunbeps 4,5, 6 coppespond to 8 = 0 . 02 , 0. 05 and 
0.2 ) . 
I : - a = const ; 11: - a = a(T) accopdi ng 
to Eqw.tions (31) , (68) . 

Apparentl y , the situation whi ch allows for the a (T) 
dependence is more realistic; the results of calcul­
ations for this version will be preferred in the 
interpretation that follows. For the values of the 
basi c parameters of E<uropa, indicated above, 8 ~ 0. 2 
according to Equation (67) and, as follows from curve 
1, the corresponding radial thermoelastic deforma­
tion of an i ce envelope may reach 2 x l0~ of the planet 
radius, or about 300 m. 

The increase of thickness of a floating ice cover 
leads to the increase of deformation and its gradients. 
Figure 6 shows the dimensionless dependences of stress 

0cp<j> and stress intensity T on radius. These dependences 
a re norma 1 i zed with respect to the va 1 ue E = 2x 1 011 Njnr. 
and calculated from the Equations 

1 du u 
OH = - [v - + - - (1+v) aTJ, 

1-2.1 dr r 
( 75) 

In the ca se of a = const' 0<j><j> varies with radius by a 
law close to linear; for a = a rT) deviations from a 
linear dependence are observed. The thermoelastic 
stresses for a = Cl (T) are negative at the bottom of a 
floating envelope and positive at the free surface. 
As the shear modulus decreases ~ increases) the 
stress lowers, i.e. as the "pliability" increases, 
the thermal stresses in an ice crust decrease. The 
a (T) dependence has a considerable effect on the 
depth distribution and values of stresses: the gra­
dients are much larger as compared to the Cl = const 
version. As S increases, the zero surface for O"<j><j> 
and the minimu m of T are noticeably shifted towards 
the free surface: whereas for S. = 0.01 the O" <j><jl = 0 
surface occurs almost in the mlddle, for S = D.2 lt 
is situated at a distance from the free boundary, 
r = 1, equal to only one tenth of the thic kness of 
the rigid layer. For small values of ~ the stresses 
are rather high; for ~ = 0.2 they are about 10 to 
20 bars. As the envelope thickness, Y - I, increases, 
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Fig . 6. ThepmoeLastic stpesses i n an ice cpust. 
Y = 1. 015. a: - 0"<1> <1>' b - T. 
I: - a = cons t ; 11_- - a = a(T) . CUl'ves 
nunbeped 1,2, 3 , coppespond to S = 0.1, 0 . 2, and 
0.5, pespect i veLy . 

the stres ses vary insignificantly provided S remains 
the same. The values of stresses at the bottom of a 
floatin g envelope are considerably higher than those 
on the free surface; thus, for y = 1.015 (whi ch cor­
responds, as has already been mentioned, to an ice 
cover 25 km thic k) these values differ by a factor 
of 3 to 4. As follows from the curves of the series, 
the lower portion of an ice crust undergoes com­
pression in the 0 and <p directions and the upper (in 
particular the near-surface) region undergoes exten­
si on. 

Fi gure 7 shows the dep~ndence of O"<j><j> and T on 8 
for varlOUS lnternal spherlcal surfaces in an ice 
crust. For the currently accepted value of Young's 
modulus for ice (8 = 0.2) the thermoelastic stresses 
do not exceed 10 to 20 bars. This value is close to 
the spalling strength of ice; at the free surface, 
as has been mentioned above, these stresses are three 
to four times lower. The role of increasing S (de­
creasing Young's modulus) in lowering the influence 
of a temperature inhomogeneity on the stress state of 
an ice armour is clearly seen in this case. 

Reasons f op EUl'opl's sUPface peLief pecuLiapities 
As has been noted above, the main possible reason 

for the numerous cracks and giant fractures occurring 
in Europa's surface is the instability of natural 
oscillations of an ice crust floating on a water-ice 
mantle. The ice envelope is literally crushed into 
separate blocks (Soderblom, 1980); an apparent ab­
sence of regu larities and the chaotic character of 
the location of these numerous traces of the break­
up of an ice armour on the planet's surface proves 
the validity of the stated supposition. One cannot 
also exclude the possibility that one of the reasons 
for the break-up of the ice crust may consist in the 
influence of periodic perturbations from Jupiter and 
its other moons being in resonance with some of the 
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Fig . 7. Dependence of thermoeLastic stresses on ~. 
y = 1.02. 
I: - a = const, I I: - a = a( T). a: - a cj>41' 
b: - T. CUl'ves nunbered 1,2,3, correspond to 
r = l/y, 0.5 (1 + l / y), and 1, respectiveLy. 

frequencies of a spectrum of natural radial oscilla­
tions of Europa's solid ice envelope. To answer this 
question finally, the problem of Equations (32), (33), 
(34), (35), and (26) should be considered while 
specifying the law for the variation of the shear 
modulus G and ice density p with radius r; these data 
could be obtained from the corresponning experiments. 
Of course, the eigenvalue problem can be solved in 
this case only by numerical methods. In a simplified 
formulation (with G and p constant) the problem of 
forced oscillations of an ice crust can be solved by 
analytical methods which can allow the calculation of 
the resonance frequencies and amplitudes. 

Cassen and others (1980) advance thermal convec­
tion in the water mantle of Europa as the main reason 
for the break-up of the ice crust. However it is well 
known that thermal convection only takes place in the 
case of a pure and extremely homogeneous medium. 
Estimates show that density inhomogeneities of as 
little as c.O.Ol % are sufficient for thermal convec­
tion not to occur. It is doubtful if the real natural 
medi um is that pure. Furthermore thermal convection 
would inevitably produce rapid cooling of the plan­
eta ry i nteri or. 

Pi eri (1981) has descri bed two types of patterns 
of fracture polygons on Europa ' s surface: (1) roughly 
equal polygons and (2) complex trapezoidal patterns . 
These classes form distinct groups, often localized; 
but also some of gl oba 1 cha racter . 

Finnerty and others (1981) suggest a model for 
the cracking of a thin, brittle crust floating on a 
water mantle 270 km deep in which it is due to the 
dehydration of enclosed serpentine which provides 
stresses great enough to fracture the ice on Europa. 
However there are two difficulties with their model: 
the thickness of Europa's H20 layer is only c. 100 km 
and so the high temperatures (0. 500't) needed for 
the dehydration of serpentine seem unrealistic . 

Kl'ass: Ice on pLanets of the soLaI' system 

Apart from the fact of the existence of fractures 
and crack systems in Europa's ice crust as such, the 
analysis of their dynamics is of definite interest . 

The thermoelastic stresses in a floating ice 
crust due to the existence of a temperature gradient 
in it, which may reach 7 to 8 deg/km, may be as high 
as tens of bars. True, under the conditions of con­
siderable hydrostatic pressure, the gradient of which 
in an ice layer is 12 bar/km in the conditions pre­
vailing on Europa, ice may change its structure and 
its mechanical characteristics. The ice structure may 
also be considerably reconstructed as a result of a 
long period at low temperature. 

One of the most effective factors influencing 
the planetary surface is temporal variations of tem­
perature. The amplitude of the diurnal temperature 
variations at the surface is about 100 deg (Gehrels, 
1976), the minimum value of the temperature on the 
night side of a planet being equal to only some tens 
of Kelvins . As follows from Table IV, when the tem­
perature drops below 70 K, ice begins to expand; for 
temperatures of the order of 10 to 30 K the total 
relative expansion of ice when cooling may be about 
2xl0"" • On the other hand the mi nimum temperature on 
the night side could be close to 50-70 K if we take 
into account the thermal inertia J = (Apc)t, albedo, 
and radiation. The larger J~ the higher the night 
temperature will be and the more the day maximum 
temperature wi 11 be retained. In thi s case tempera­
tures well below 60 K may occur only in the sub­
polar regions of the planet . 

For a sufficiently large distance between the 
crack systems (of some tens of kilometres) such an 
expansion is large enough for filament-like cracks 
some tens of metres wide, which were opened on the 
day side, to be closed from the surface in the night­
time. For cracks some hundreds of metres wide and 
larger, the closing process, if any, has to be caused, 
apparently, in other ways. It is well known that 
closed cracks in an ice layer are observed from 
space as dark regions due to their decreasing albedo 
against the surrounding surface background . This 
factor is used for forecasting surges of glaciers 
on Earth from satellite data: prior to surges glaciers 
are usually covered with a grid of internal cracks, 
and thei r al bedo sharply decreases . Of course, the 
process of closing cracks on the night side of a 
planet at temperatures of some tens of kelvins, as 
well as the process of their subsequent opening on 
the day side and narrowing due to the reversal of 
sign of the coeffi ci ent of 1 i nea r expansion a, de­
pend considerably on the latitudinal position of the 
crack system, because the angle of inclination of 
Europa's rotation axis to the ecliptic plane is 
close to zero. Unl ike the Earth, there are, apparently, 
no noticeabl e "wi nter" and "summer" temperature 
variations on this plant; the sidereal change of 
seasons plays a far greater role here. The set of 
major temperature harmonics, in which the diurnal 
and sidereal components play a considerable part, 
defines a complicated history of crack dynamics in 
the near-surface layer some tens of metres deep . 

Consider the depth distribution of the thermo­
elastic stresses arising in the near- surface ice 
layer due to short-period oscillations of tempera­
ture at the surface of an ice envelope. In the pre­
liminarily stressed state, caused by a stationary 
temperature field, it is the short-period oscilla­
tions which cause the appearance of systems of 
cracks in the uppermost layer of an ice cover. Since 
the periodic oscillations of temperature rapidly de­
crease with depth, it is sufficient to consider a 
one-dimensional problem with a variable z in the 
vertical direction. Under an assumption of independ­
ence of thermophysical parameters with temperature, 
the thermal-conductivity equation is of the form 

ae a2e 
k-

a t a z2 
(76) 
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where k is the thermal diffusivity. On the free sur­
face the temperature perturbation 0 is specified as a 
harmonic with frequency wand amplitude Ao: 

a = 0, 0 = Ao cos wt. (77) 

In addition, the condition that the perturbation de­
creases with depth is necessary, i.e. 

z+oo, 0+0 . (78) 

The solution of Equations (76), (77), and (78) (tem­
perature waves) is given by (Carslaw and Jaeger, 
1959; Tikhonov and Samarskiy, 1966) 

We shall now consider thermoelastic stresses arlslng 
due to the propagation of temperature perturbations 
from the surface to the depth. When the horiiontal 
gradients are neglected, the thermoelasticity problem 
is also one-dimensional. A single equation of quasi­
static equilibrium yields, with a zero value for the 
normal stress at the free surface taken into account, 

o rr = O. 

Since 

a i k = 2G [E i k + V EO i k - 1 +v a00 i kJ 
1-2v 1-2\1 

it follows from Equation (80) that 

aw 1 + v 
a0, 

a z 1 - v 

and then from Equation (81) we obtain 

1 + v 
ax x = -2G -- a0 

1 - v 

(80) 

(81) 

(82) 

'In Equation (82) we consider a = a(T) according to 
Equation (31), which represents the data of Table V. 
In our case this dependence is of the form 

a (T) = a o[a (T s - To + 0) - b (T s - To + 0)2 J (83) 

where Ts is the time-averaged temperature of the sur­
face, and To, a, and b are the coefficients of Equa­
tion (31). The substitution of Equation (83) into 
Equation (82) leads to the dependence of the horizon­
tal stress on the perturbation 0 , determined by Equa­
tion (79), 

1 + v 
a xx -2G { --ao[a - b(Ts - To)J(T s - To)0 + 

1 - v 

+ [a - 2b(T s - To)J02 - b03 } 

The test for an extremum leads to two equations 

tan ~t - -~ z) = I, ,, ;-

3be2 - 2[a - 2b(Ts - To)J0 -

- [a - b(Ts - To)](Ts - To) = o. 

Equation (85) is valid for the case a = const as 
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(84) 

(85) 

(86) 

well; here the absolute maxi mum of Ox x is reached 
at the boundary, for z = O. By vi rtue of the relation 
between a and b, for T s > To Equati on (83) has two 
roots of opposite sign, i.e. the absolute maximum of 
o xx is reached for z > O. Thi s means that when the 
coefficient of linear expansion of ice depends on tem­
perature, the maximum tensile stress from periodic 
oscillations of surface temperature may be reached at 
some depth. Thus, under some conditions the cracks may 
arise inside the ice; this phenomenon is well known in 
the freeze cracking of soils as "blind cracks". These 
cracks do not reach the surface, but, by virtue of the 
fact that a(T) increases with temperature, can develop 
into the depth. As has already been mentioned, these 
surface regions with internal cracks, when observed 
visually from space, are viewed as dark stripes, and 
the alternation of opened and closed cracks as in­
termittent light and dark systems of stripes. 

We shall now estimate possible uncompensated 
variations of a floating ice envelope's relief. It 
follows from the balance equations that the horizon­
tal (oxx) and vertical (az z ) stresses in a thin 
layer are related by an approximate dependence 

a xx" (L/h)2 a zz (87) 

where L is a characteristic linear dimension. In our 
case 

Ozz=pgO, (88) 

where 0 is the ampl itude of an uncompensated el evati on. 
Ifo~x is the compressive strength of ice, then 
the extremal value of 0 is estimated as 

o = (~)2 ah 
L pg 

(89) 

The characteristic linear dimension L of blocks of 
Europa's crust is of the order of some hundreds of 
kilometres (Soderblom, 1980). Assuming L .. 100 to 
200 km, h .. 25 km, we obtain that for ooxx < 

c .10 bars (Shumskiy, 1969) the extremal value 
of an uncompensated el evation may be some tens of 
metres. This value is in good agreement with the 
heterogeneities of the observed surface relief of 
Europa (Soderblom, 1980). 

As far as the global dynami cs of the crack sys­
tems in the floating ice armour of Europa in which 
the opening and closing of large cracks and fractures 
are concerned, probably, in this case, one should con­
sider the problem of forced oscillations of an ice 
envelope with periodic perturbations from Jupiter's 
gravitational field and its other satellites taken 
into account. 

CONCLUSION 

An exclusive role for ice in forming the appear­
ance of Jupiter's and Saturn's satellites has been 
emphasized in the science literature of recent years. 
Poirier (1982) considers the complex rheology of 
ice to be the key to the tectoni cs of the ice moons 
of the giant planets. One cannot disagree with this 
statement; however, we should not restrict ourselves 
to the ' study of ice rheology at low temperatures and 
high pressures; in order for research on the surface 
dynamics of these planets to be successful, an 
approach based on ice thermomechanics is necessary. 
Such a theory has been successfully developed and 
applied to studying glaciers on the Earth (Shumskiy, 
1969, 1982 ; Grigoryan and others, 1977; Krass, 1981, 
1983). 

The necessity of broad experimental and theoret­
ical studies of the variations of the mechanical and 
thermophysical parameters of ice, as well as of the 
reconstruction of ice structure at very low tempera-
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tures and high pressures, is now of particular im­
portance. On this basis, one would be able to make 
fundamental advances in the theory and refine our 
ideas about the ice moons of Jupiter and Saturn as 
well as about ice covers on other planets of the 
Solar system. 

The problems considered in this paper allow us 
to draw a number of conclusions on the role of water 
ice in the physics of the planets of the solar sys­
tem. 

1. Definition of the water volume on the planets is 
connected with the problem of their interior 
structures (Consolmagno and Lewis, 1976). Approxi­
mate estimates are given in the paper; when a new 
model has been constructed these values will be 
capable of being defined more precisely. Europa 
conta ins H20 as about 5 per cent of its volume. 
More than one-third of the volume of both Ganymede 
and Callisto consists of H20. 

2. Mars is a typical terrestrial planet according to 
the relative amount of water. Most of its volume 
of H20 is contained as ice in permafrost, of which 
the mean thickness is about 3 km. Liquid water may 
occur under the permafrost layer. The Martian 
polar caps contain only about one per cent of the 
whole amount of water of the planet. The ice , sheets 
of the Earth, by comparison, contain about 90 per 
cent of the volume of fresh water. 

3 . The thickness of the ice crust and liquid water 
mantle of Europa are 25-30 km and 60-80 km re­
spectively. The relatively thin, floating, rigid 
envelope is broken up by its unstable radial 
oscillations. Probably this is the main reason for 
the formation of the fracture system on the surface 
of the planet. 

4. The thermal stresses in the floating ice shell of 
Europa can play an important role in the dynamics 
of the ice shell and the pattern of the system of 
fractures. 

5. Probably all of the water on Ganymede and Callisto 
consists of various forms of ice, i .e. tidal energy 
dissipation provides insufficient heat to melt 
thei rice crust. 
Some speculation can be made on the scientific 

investigations now desirable. It is necessary: 
(a) to develop new rheological models of ice tak­
ing into account the properties of ice at low 
temperatures and their temperature dependence; 
(b) to create models of ice thermomechanics which 
are suitable for application to the surface dynam­
ics of planets containing ice; 
(c) to study the properties of "ices" of other sub­
stances and their role in the complex interaction 
wi th water ice. 
The study of ice on other planets will allow us to 

gain new insights into the glacial covers of the Earth, 
and the conditions of their formation, as well as into 
the past glacial epochs on our planet. 
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