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A theoretical analysis of linkage disequilibrium produced by
genetic drift in Drosophila populations
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Summary

We analyse the progression of linkage disequilibrium produced by random genetic drift in
populations subject to cyclical fluctuations in size. Our model is applied to natural populations of
Drosophila which show an annual demographic cycle of bottleneck (finite size) and demographic
burst (size supposed to be infinite). In these populations, linkage disequilibrium stabilizes in such a
way that, at equilibrium, the expected square of the correlation of gene frequencies E(r2) shows a
stable cycle from year to year. If two loci are tightly linked, E(r2) barely varies during the annual
cycle. Its values remain close to the value expected in a population of the same but constant
effective size. If two loci are loosely linked, fluctuations in E(r2) are large. The maximum value,
reached at the end of the bottleneck, is 10 to 100 times greater than the value obtained at the end
of the burst. Our results show that the interpretation of observed linkage disequilibrium, by means
of statistical tests, requires an accurate knowledge of population demography.

1. Introduction

Many authors have measured linkage disequilibrium
D betwen allozymes in natural populations of Droso-
phila (see Hedrick, 1983, for a review). Significant
values of D are generally rare and can be due to sam-
pling error. However, Langley (1977) demonstrates a
faint negative correlation between the values of the
observed gametic x2 for two loci and their effective
recombination frequency in natural populations of
Drosophila melanogaster. The same observation was
made by Montchamp-Moreau (1985) in natural popu-
lations of Drosophila simulans. Such results can be due
either to random drift or to selection. In order to
analyse the behaviour of linkage disequilibrium in
small populations with constant size (8 < Ne ^ 25),
Hill & Robertson (1968) performed Monte-Carlo
simulations.

In this paper, we present a theoretical analysis and
the results of simulations concerning the linkage dis-
equilibrium which can be produced by random drift in
natural populations of Drosophila. We based our
study on the demographic data available for such popu-
lations (Mukai et al. 1971; Begon, 1977; Mclnnis,
1982). Taking into account annual fluctuations in
their size, we show that stable linkage disequilib-
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rium can be produced by random drift in these
populations.

2. Kinetics of linkage disequilibrium with constant Ne

Weir & Hill (1980) gave an approximate expression
for the variance of the gametic correlation coefficient
r, produced by random drift in dioecious populations
with random mating:

This approximation is satisfactory when Ne is large
and c is not too small. Hill & Robertson (1968)
showed that E(r2) is not very sensitive to the initial
allelic frequencies at each of the loci concerned.

Sved & Feldman (1973) established, for mono-
ecious populations with random selfing, the recur-
rence relationship describing the increasing in E(r2)
from one generation to the next. From this relation-
ship, they obtained for E{r2) at generation t (with

1 - I—.

~v " H-[(2iVg-l)(2c-c2)] • ( 2 )

We undertook Monte-Carlo simulations in order to
compare values of E(r2) obtained with the values pre-
dicted from (1) and (2).

https://doi.org/10.1017/S0016672300024952 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300024952


Catherine Montchamp-Moreau and M. Katz 162

(i) The model

We consider a dioecious population with random
mating, sex ratio = 1, no mutation, no crossing-over
in males (subsequently, c will represent the effective
recombination frequency, i.e. half the recombination
frequency in the females).

The initial linkage disequilibrium (Do) is zero; there
are two alleles at each locus, and both initial allelic
frequencies are 0-5.

We made simulations for the following situations:

Ne= 1000,5000,
c = 001;005;010;0-25.

In each case, between 500 and 1000 runs were per-
formed, for at least 30 generations.

(ii) Results and discussion

The simulated evolution of E(r2) during the 30 first
generations (for Ne = 1000) is represented in Fig. 1.
The curve obtained from Sved and Feldman's recur-
rence relationship (2) fits our simulated values quite
closely. Similar results were obtained for Ne = 5000.
Then this formula, strictly established for a mono-
ecious population with random selfing, can also be
used to approximate the evolution of E(r2) in di-
oecious populations if Ne is large.

Let us consider now the limiting value of E(r2) for
an infinite number of generations (f-» oo); we have
two expressions:
- Weir and Hill's formula (1),
- Sved and Feldman's formula (2), which becomes:

1
(3)

The values obtained from (1) and (3) in our situa-
tions are given in Table 1. The first values (from 1) are
always slightly greater than the second values (from
3). Hill (1976) showed that for Ne = 8, the exact value
E(r2)m is underestimated by (3) and overestimated
by (1). Being close to the equilibrium, the values
obtained in our simulations are sometimes overesti-
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Fig. 1. Evolution of E(r2) in populations of constant size.
Ne = 1000 ( • , O, • , A: simulated values; — £(r2) from
eq. (1); £(r°) from eq. (2)).

mates, sometimes underestimates of the values pre-
dicted by (1) and (3). However, (1) and (3) give very
close values (the difference varies from 1% to 6%);
and there is a satisfactory correspondance between the
values of E(r2) observed from generation to genera-
tion by simulation and the values obtained by Sved
and Feldman's relationship (2). It seems reasonable to
use this relationship to calculate the number of genera-
tions (G 1 %) necessary to approach the limiting value
within 1 % :

In
\\-c) \\-(\l2Ne))

(4)

When Ne is large, (4) is approximated by

Gl%=-
2 In 10

In
1 - ,

1
"2A^

which shows that G 1% depends mainly on c. The
values of G 1 % when Ne = 1000 and Ne = 5000 are
given in Table 1. They are, indeed, independent of
Ne.Gl% varies from 8 generations (c = 0-25) to 228
generations (c = 001). The time necessary before the
limiting value of E(r2) for two loci moderately linked
(c = 010) is reached is rather long (22 generations).

The relevance of the relationships established in the
case of a constant population size needs to be exam-
ined, as the size of a natural population of Drosophila
fluctuates greatly in the course of a year. We next
analyse the evolution of E(r2) when the population
size fluctuates.

3. Linkage disequilibrium evolution with fluctuating
Ne

Begon (1977) estimated the number of generations
during the winter bottleneck of an English population
of D. subobscura to be between 1 and 2 (with
Ne = 900), and the number of generations during the
demographic burst to be about 4 (Ne = 10000 to
15000). For North American populations of D. simu-
lans and D. melanogaster, the effective size was esti-
mated to be between 500 and 1000 (for each species)
from November to June, and about 10000 from
August to October (Mclnnis et al. 1982). From these
data, we have analysed the behaviour of E(r2) when
the population shows cyclical fluctuations.

(i) The model

Tx = number of generations with a finite size Ne,
T2 = number of generations with an infinite size,
T1 + T2 = number of generations in one cycle.

Initial linkage disequilibrium Do = 0.
For Ty generations, E(r2) increases according to (2),

while for T2 generations, E(r2) decays according to the
following relationship:

rt+1=(.l-c)rt
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Table 1. Square of the correlation of gene frequencies expected at
equilibrium in dioecious populations with random mating {from (7)) and
in monoecious populations with random selfing {from (3)), for various
values of Ne and c. Gxy^ = number of generations before reaching
equilibrium close to 1 %.

1000

5000

c

001
005
010
0-25
001
005
010
0-25

£(r2) from (1)
1 +c2

2Nec(2-cy

2513
514
2-66
1-21
503
103
0-53
0-24

E(r2) from (3)
1

\+(2Ne-\)(2c-c-

24-52
510
2-63
114
500
102
0-53
0-23

-(X103)
G •>/

224
45
22
8

228
45
22
8

so

= (l-c)2E(r2)t. (5)

Equilibrium is established when the increase A1 of
E(r2) for Tt generations is exactly counterbalanced
by the decrease A2 of E(r2) for the following T2

generations.
We have:

Ax = E(r2\ -E(r\_Ti (according to (2)),
A2 = E(r2\ -E(r*)t+T2 (according to (5))

for Ax = A 2, we obtain the maximum value of E(r2) for
an equilibrium cycle:

1 - 1 - ;
(6)

(see appendix), and the minimum value:

E(r2)_ = (\-c)2T*E(r2)+.

When Ne is large (6) is approximated by:

(6')

E(r2)+=-
1 - O-<

2Ne 1 - (1 - c)2 T i + 2 T *

x U-
This shows the inter-relations of generation number
and population size.

If E(r2\ < E(r2)+ then A1 > A2.
If E{r2)t > E(r2)+ then Ax < A2.

This cycle therefore represents a stable equilibrium.

(ii) Results

We have applied this model to the following cases:

Tx = 1 or 2 generations with Ne = 500,
T2 = 4 or 8 generations with Ne = oo.

Thus, the annual cycle includes between 5 and 10
generations.

Fig. la, b represent two extreme situations for the
recombination frequencies (c = 001 and c = 0-25, re-
spectively) between the two loci considered. In both
cases Tx = 2, T2 = 8 and JVe = 500.

The effective size ~N~e for a whole annual cycle is
given by the expression:

± L

so

= 2500.

When the recombination frequency is small
(c = 001), E(r2) increases very slowly, oscillating at
the same time. After about 225 generations, the cycle
of E(r2) is almost stable. Its value fluctuates between
an upper limit E(r2)+ previously defined in the model
(6), and a lower limit E(r2)_ (6'). The two correspond-
ing effective sizes, calculated from (1) are respectively
#„ =2308 and iV. =2715. These two values are
very close to Ne = 2500. We also represent in Fig. 2a
the evolution of E(r2) obtained from (3) and the value
E(r2)jTe expected at equilibrium from (1) for a popula-
tion of constant size equal to Ne (= 2500).

When the recombination frequency is high
(c = 0-25) the stable cycle for E(r2) is reached after a
few cycles (Fig. 2b). Starting at the first cycle, E(r2)
fluctuates between two values very close to E(r2)+ and
E(r2)_. The ratio E(r2)+/E(r2)_ is 65 times greater than
when c = 001 (78-5 and 1-2, respectively). Ne+ and
Ne are equal to 727 and 72792, respectively. These
values are very different from We (= 2500).
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tion of constant size Ne (from 4). These results show
that the number of generations necessary to reach
equilibrium is the same, plus or minus the length of a
cycle, with either fluctuating or constant population
size. It depends only on c. So, in the analysed situa-
tions, G 1 % fluctuating is independent of Tx and T2. In
addition, the ratios

- rp and —y-

depend mainly on c and are only faintly influenced by
7i and T2.

5 10 15
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Fig. 2. Evolution of E{r2) in populations with cyclical size
fluctuations (• : two generations with Ne = 500 then
eight generations with Ne = oo; -»E(r2) from equation (1)
when constant Ne = 2500; E(rz) from equation (2)
when Ne = 2500). (a) c = 001; (b) c = 0-25.

The values of the parameters previously described:
E(r2)+, E(r2)_, Ne+, Ne_ and £(r2V were calculated
for different values of c (001, 005,010, 0-25) when
Ne = 500 (Table 2). We have also indicated the genera-
tion, G 1 •% fluctuating, from which the upper value of
E(r2) observed during a cycle approaches E(r2)+ within
1 % and G 1 % constant corresponding to a popula-

4. Discussion

When £(r2) reaches equilibrium, the characteristics of
its fluctuations are different, according to the inten-
sity of the linkage between the loci. This must be taken
into account when analysing linkage disequilibria ob-
served in natural populations of Drosophila.

When c is small (001 —005), the relative variation
of £(/-2) is small in the course of a cycle. Thus the
effective size calculated at equilibrium from E{r2), at
each point in the annual cycle, is close to the annual
harmonic mean (Ne) of the population sizes.

Consequently, the r values obtained from tightly
linked loci can be used to estimate Ne from Hill's
formula (1981). lfWe has been estimated from data
other than linkage disequilibrium (i.e. allelic drift,
lethal allelism, .. .) this Ne value can be used to test
drift versus selection as follows. When sampling n
gametes in isolated equilibrium populations of con-
stant effective size, we expect, due to the drift effect:

E(r) = 0

2Nec(2-c) n 2Ne

(Weir & Hill 1980).

Table 2. Square of the correlation of gene frequencies expected by random drift within populations with
fluctuating size

c

001

005

010

0-25

T,

1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2

r2
4
4
8
8
4
4
8
8
4
4
8
8
4
4
8
8

£(r2)+ x 10
3

10-36
1715
601
10-77
2-49
413
1-66
2-96
1-53
2-52
118
206
106
1-61
101
1-57

Ne+

2400
1440
4154
2308
2057
1237
3243
1968
1712
1043
2236
1275
1078
709
1136
727

£(r2)_ x 103

9-50
15-80
512
917
1-65
2-74
0-73
1 30
0-66
108
0-22
0-38
011
016
001
002

Ne_

2620
1566
4809
2715
3103
1868
7023
3940
3979
2435
12069
6896
10781
7097

114285
72792

E{r2)we x 1C

9-95
16-48
5-55
9-95
205
3-41
114
205
105
1-75
0-58
105
0-46
0-76
0-25
0-46

>3 Ne

2500
1500
4500
2500
2500
1500
4500
2500
2500
1500
4500
2500
2500
1500
4500
2500

constant

227
225
228
227
45
45
45
45
22
22
22
22
8
8
8
8

fluctuating

226
223
226
221
41
43
37
41
21
25
19
21
6
9
1
2

7J generations with iVe = 500 then 7J generations with Ne = co.
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Table 3. Critical values (xl)N' when sampling 600
gametes in a population of effective size Ne.

a.

005
001
0001
005
001
0001
005
001
0001

1000

60-58
104-60
17101

8-81
15-21
24-85

5-49
9-47

15-47

10000

5-54
9-57

15-63
4-34
7-49

12-23
400
691

11-29

001

010

0-25

c: recombination frequency, xliaai critical values are 3-84,
6-64 and 10-83 for, a = 005, 001 and 0001 respectively.

We deduced the critical values (xDN' f°r t n e Chi
square used to test the significance of an observed
disequilibrium. These values take into account the dis-
equilibrium produced by random drift in a popula-
tion of size N,:

(7)

(xl = critical value, for the confidence level a, of the
l.d.f. x2 distribution).

Table 3 shows some values of (xl)N' f°r t n e confi-
dence level a = 005,001 and 0001 when n = 600 and
Ne = 1000 and 10000. Such sizes encompass the Ne+

and Ne_ values estimated for Drosophila populations
previously cited. When loci are tightly linked, due to
random drift there is a large increase in the critical
values (xldNe m a^ points of the cycle. It must be
pointed out that when loci are tightly linked, the stable
cycle is reached after a long time. Further, as Prout
(1973) showed, migration or transient subdivision of
the population can modify and eventually reduce for
some time the linkage disequilibrium produced by
genetic drift.

When c is large, disequilibrium is established only
after a few generations of bottleneck and disappears
accordingly during the burst. Correspondingly, for a
given cycle, E(r2) shows large relative variations; it is
no longer related to the harmonic mean Ne. The popu-
lation size which must be used to test drift versus
selection lies between Ne+ and JVe_, and depends on
the point of the cycle at which the disequilibrium is
observed. A comparison of values presented in Table
3 with those in Table 2 shows that when two loci are
far apart, the random drift effect becomes negligible at
the end of the demographic burst. For example, for a
single generation of bottleneck (Ne = 500) and four
generations of burst (Ne = oo), with c = 0-25 we
obtain (xl.0!)

N'- ^ 400. But with the same parameters
we have at the beginning of the burst
(xlo5))N'+ — 5-49. Then the annual demographic cycle

of the population must be known in order to accu-
rately predict the gametic disequilibrium expected by
drift. Unfortunately, these demographic data are not
generally available.

Despite these difficulties, it may be possible to com-
pare the observed dynamics of the linkage disequi-
librium with the dynamics expected from our model :

- E(r2) must have the same value from year to year
when measured at the same point of the cycle,
whether the loci are tightly linked or not;

-E(r2) must fluctuate during one year, especially
when loci are loosely linked. The expected negative
correlation between observed linkage disequilibrium
and recombination frequency must then be the high-
est at the end of the demographic burst. Too few data
are available to verify this second point; for this
reason, the results are unclear (Langley et al. 1977).

It is clearly the case that the most precise approach
is the use of experimental lab-based populations. By
controlling their effective size it is possible to accu-
rately investigate the relative effects of selection and
drift in linkage disequilibrium.

Appendix

Equilibrium value of E(r2) when the population size
fluctuates.

- During Tx generations, the size is finite, so we have:

A1 = E(r*)t-E(r*)t_n (Al)

with

[l+(2iVe-l)(2c-c2)]

writing

we have

then

\r\_Ti. (A 5)

- During T2 generations, the size is infinite, and we
have

A2 = E(r2)t~E(r2)t+Tt (A3)

with

j?tfZ\ = (1 c)2T*E(r2) (A 4)

At equilibrium Ax = A2 so, from (A 2) and (A 4)

l-ATi
E(r*)t = E(r*\ = 2Ne(\-A){\ -
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