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Abstract

Equations describing a possible mode of propagation of plane waves in
isotropic plastic solids are solved numerically.

Introduction

Most of the experimental work available on the propagation of waves
in materials has aimed to produce longitudinal waves in wires or rods
[Bell (1956), (1961a), (1961b)]. In such experiments it is possible to make
detailed measurements of the longitudinal strain on the surface as a function
of time. It is known that, for high rates of strain, a one dimensional analysis
of the results is not satisfactory [Love (1931), p. 428] and yet a complete
mathematical analysis is extremely difficult. It has therefore been almost
impossible to deduce any general properties of materials at high rates of
strain from experiments of this kind. The few problems for which a complete
analysis is possible are either very difficult to reproduce in practice or are
not susceptible of detailed measurement.

Although a complete mathematical analysis is not normally possible,
tensor equations may be derived which describe the propagation of waves in
some simple model of a material. Our aim is to numerically solve these
equations for a particular model. For this model we assume that there is no
significant difference in the behaviour of the material at different rates of
strain. It has not been possible to extend the numerical results sufficiently
to allow of a complete comparison with experimental data. However, so far
as a comparison is possible, the results suggest that rate of strain effects are
not significant.

It is assumed that a two dimensional analysis is sufficient to give agree-
ment between numerical and experimental results. This is certainly so,
close to the impact surface, and the major discrepancy appears to be due
to the type of stress strain relation used.
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The model

We consider an isotropic material with stress tensor a(j defined relative
to a Cartesian coordinate system xt; i, j = 1, 2, 3. Define a yield surface

/K) = K,
such that for increasing /, the material behaves elastically for / < K and
plastically for / 2; if. In general /, K may depend on the previous history of
deformation of the material and may vary from point to point. We shall
deal with work hardening materials for which / is a definite function of its
arguments and K increases as work is done on the material. The yield surface
sets a limit on the stresses for which the material behaves elastically but
gives no direct information on the plastic behaviour. Stress strain relations
must be the subject of further assumptions. We assume that there is a plastic
potential that coincides with the yield function, /. The strain may then be
divided into two tensors, the elastic strain, eH, and the plastic strain, r\it,
such that

the u{ representing displacements in the x( directions.
For elastic deformation rjtj — 0, the superposed dot denoting the partial

derivative with respect to time. Also, for elastic deformation,

where E is Young's modulus, v Poisson's ratio, and dtj the unit tensor.
In terms of reduced stress, a'ijt

1+v , 1—2v

(2) , E , .

If the yield function is independent of the hydrostatic stress,
plastic strain takes place without change of volume.

The plastic strain is defined by

A 8f

Vu = AzT'
where A is a proportionality factor which is a function of time and position.
Since this equation is homogeneous and linear in the time derivative, stress
and strain in the model may depend on the loading history but not on the
rate of loading.
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It is assumed that unloading proceeds elastically. Then, whenever

f<K or f = K, / < 0 ,

plastic strain remains constant and

Va = °- «» = ««•
In order to include the effect of hardening put

so that (b is the rate at which plastic work is done by external forces. Hence

8a(i d(o 8a> dais

and A becomes determinate.
The particular model to be considered is a Prandtl-Reuss elastic-

plastic material. This model has a von Mises yield surface

„'„<,'„ = 2k* = K,
independent of hydrostatic stress. The definition of plastic strain becomes

Vu = Aa'a>
and hence

o[i on osz o[2 o13 ai3

thus determining the rjiS apart from a multiplicative constant. To complete
the determination of rj^ and to include work hardening we have

and hence
rjit <b k 2kk

a'u 2A2 ak dk dkli 2k*— 4k*— 4k* —
OOi CO) 00}

This implies r)kk = 0 so that plastic deformation takes place without change
of volume. For plastic deformation

where

G(aH) =

4k*™
Boo
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The material behaves elastically, etj = eijt for

(4) o'i$o'ij<2k* or o r ^ = 2ft», a«ff^<0.

We take 2&2 to be the maximum value the yield function has attained in
the loading history of the material at the point being considered. In the
elastic-plastic transition region equations 3, 4 are consistent since »jti = 0
when a'Ma'pq = 0.

Elastic deformation may be regarded as a special case, G(au) = 0,
of plastic deformation. If the criteria given by equations 4 are not invoked,
so that unloading proceeds according to equation 3, then the deformation
is termed non-linear elastic.

A complete discussion is given by Hill [(1950)].

Tensor equations for plane strain

Consider a plate of Prandtl-Reuss material bounded by xt = 0, x2 =zt«
and unbounded in x3 and the positive xx direction. Everywhere e13 = e^ —
s33 = al3 = a2S = 0. For a plastic or elastic region equation 3 gives

1+v ., 1 — 2v .

+

1+r , 1 —2v

+
Since <r̂  = 0 the addition of equations 5, 6 and 8 gives for both elastic
and plastic regions

l - 2 i > .
(9) ett = —=r- okle.

At this stage it is convenient to scale the stress unit to remove the
factor (l-\-v)[E. Assume for the present that the term 2k(8kl8w), occurring in
G{aiS), is similarly scaled. Then the subtraction of equation 8 from equations
5 and 6 leaves

(10) ku = 2a;i+<

(11) kz = ^ + 2
(12) eu = i ; + %
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Since a'ti = ait—%difokk equation 9 gives

\ / II 11 < n / i A \ U l i ' J.ZJ'

353

(14)

Also

(15)

(16)
<r12 = a-1 2 >

2 I

For an elastic region these equations reduce to

(17) [(!-»

1 - 2 7 '
(18) a.

(19) <*i2 = «1 2 ,

y^#vy V 3 3 V XI • 2 2 / '

Equations are still required to determine whether the region is elastic
or plastic. These equations are used to decide if G(aif) should be set to zero,
that is, whether equations 10—16 or 17—20 are to be used to evaluate the
stress derivatives. We have

and

This second equation requires the values of a'i} and these are not known at
the state that this equation is used. In practice this difficulty has been
avoided by assuming the region to be plastic whence

(22) a'vqavtl = (a'n'en+a'2ik22+2a'likli) 1 + dk

If the region turns out to be elastic then, after applying equations 17—20,
o'pta'pil is checked.

Dynamical and compatibility equations

The tensor equations already derived must be solved in conjunction
with the dynamical equations [Sokolnikoff, (1946), p. 82]. Let p denote the
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density. Then, since the body forces are zero

dait

Scale the time coordinate to remove the factor p, differentiate with respect
to Xf.Xj and sum. Then

The Saint-Venant compatibility equations [Love (1931), p. 49] are
valid for both elastic and plastic regions. For plane strain these equations
reduce to

(24) 0-^1-2-^- + ^?
1 ' dx\ 2 dxdx + dx\ '
This equation may be used to check the numerical results.

The stress strain relation

The simplest types of experiment for determining stress strain relations
are experiments involving pure shear only, such as torsion experiments
where

all a{j, except alt = an, being zero.
Data and graphs are available from such experiments [Wilkins and

Bunn [(1943), p. 7] and, suggest that a suitable functional relationship
between an and «12 is given by

(25) cr12 = — xi in scaled stress units.
Vl+2fe?

This relation gives the approximate shape of the stress strain curve for
various copper alloys with some possible variation in the slope of the
asymptote. Bell [(1959)] gives a static stress strain curve for annealed
aluminium which differs substantially from this type of relation both as
regards the slope of the asymptote and the degree of curvature. The para-
bolic relation given by equation 25 is used since it appears to be the easiest to
handle. Second order terms, although omitted in the numerator must be
included under the square root sign.

From equation 25
qj2

S-tn —

Vl-2do*
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and therefore

(26) —— = (1—2Bk2)~i—l.

This equation is assumed to hold for general stresses and strains.

Initial and boundary values

Assume that a shock of constant force is applied at time t = 0, the
force being applied in the direction of increasing xt. Then for

t ^ 0, xt> 0, all x2,

all stresses and strains are zero;

t 2> 0, xt = 0, all x2,

°n = ff22 = 0, au = a, where 0 is a constant;

/ 2S 0, all xx, x2 = ±a,
ff12 — °22 = 0-

The end conditions for large 2 are given by

<ru = <r, a12 = a22 = 0, for all xlt xz.

The propagated waves are symmetric about xt = 0 so that the equations
need only be solved for positive xz.

It has not been possible to include the boundary conditions in the
dynamical equations in such a fashion that the resulting differential equa-
tions can be solved on the boundary by stable numerical process. Therefore
on the boundary the method of solution that has been used is similar to that
used for the interior of the plate. The stresses <r12, <r22 are set to zero.

It does not appear to be as simple to use a boundary condition on the
impact face corresponding to a constant velocity impact.

Numerical solution of the equations

The partial differential equations, 23, are a set of simultaneous
equations of hyperbolic type. These equations may be replaced by finite
difference approximations. The resulting difference equations may then be
solved, for a rectangular mesh corresponding to the plate, by a stepping
ahead procedure in time. The mesh points are labelled by three indices I,
m, n,
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t = l6t, 1 = 0, 1,2, •••,

xx = mbxx, m = 0, 1, 2, • • -,
a.

x2 = ndx2, » = 0, 1, • • • — = 2V,
ox2

where 8t, 6xlt bx2, are constant increments in t, xx, x2. We choose dx =
dxx = 8x2 and dt must be chosen sufficiently small to guard against the
possible accumulation of rounding errors. The indices are placed in square
brackets after the variable. Where there is no likelihood of misinterpretation
some or all the indices may be omitted.

The method used to solve the equations is essentially as follows. Assume
that, for time intervals / and I—I,

CT11> ff22> " l 2 > ff33> e l l > £22> fi12 > "™ '

are known for all m > 0 and for all n. For m = 0, only

are required. Then for each pair of permissible values of m and n, m > 0,
we proceed in the following fashion.

The difference equations derived from the dynamical equations, 23,
give £„•[/+!] and 2dte{j[l]. From equations 2, a'4j[l] are determined and then
4&3( dkjdm) [I] may be evaluated using equation 26. Hence 2dto'v(lo'pq [I] may be
determined from equation 22. This procedure is used both for interior and
boundary points. If 2k2[l] > 2k?[l-l] or 2Sta'p<I6'],<1[l] > 0 the plastic equa-
tions, 10 to 16, are now used to compute values for 2<5fcx,i|7]. Otherwise the
elastic equations, 17 to 20, are used. At this stage, for points on the boundary
xz — a, the conditions aM = au = 0 are enforced and the value of <T33 ,
computed from equation 16 or 20, altered suitably. When the elastic equa-
tions are used 28ta'pila'p<1[l] is now recomputed and if 2dta'pila'pq[l] ^ 0 then
this value and the values of /, m, n are retained for investigation. From the
values of ao[Z] and 2dtaif[l], the stresses <rw|7-|-l] are determined. Hence
o^CTp^+l] is evaluated using equations 2 and 21. The maximum value of
2k2[l] and a'pqa'Pa[l+l] determines 2k?[l+l]. Values for

#11 > **22> ff12> ° 3 3 ' e l l > ^22 > £12 > "* >

have no been determined for the time interval /+1 for each pair of values
m, n, so that the procedure may be repeated for the next interval in time.

Finite difference approximations

The difference approximations used may be obtained from most stand-
ard texts on numerical analysis either explicitly [Buckingham (1957)] or
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derived by use of Taylor series or finite difference operators [Milne (1949)].
We give the approximations used for the required partial derivatives of a
function f(t,xltx2) known at points of the mesh.

We have

g > g + 1 ] - / g - 1 ] + » ( » ) • ' > » •

The functions which concern us are zero for I ̂  0 and hence the second
approximation is valid for all I. For 1=0 the factor \ should strictly be omitted
from the first approximation. But, since this approximation is used to
compute 2&£ti[7] from eM[/+l] and ew[Z—1] and then used to compute
alt[l+l] from 2dtaif[l] and a all—I], the factor may be retained. Hence,
apart from ensuring that the functions are everywhere zero for 1 = 0,
I = — l, no special starting procedure is required. Similar approximations
are used for

a2/
—; [w] for m > 0,
cx\

a2/
^ [«] for 0 < n < N.

For n = 0 the approximation holds if /[I] is substituted for /[—I] since
there is symmetry across n = 0. For n — N the following approximation,
using backward differences, is needed.

- [w, » ] = •

For M = 0 this approximation holds with / [ w ± l , 1] substituted for
l. —1]. For » = N we use

r A71[w, iVJ =
2 46a;2

/[wt-i,y-i]-/N+i,y-l]

dx%

Results given later were all obtained using these difference approxi-
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mations and difference checks showed that fourth order differences were
small. Results have also been obtained using simpler difference approxi-
mations on the boundary with truncation errors of the order of dx. No
significant difference has been observed provided N 2: 7.

Difference equations

Using these finite difference approximations the following difference
equations are obtained from the dynamical equations 23.

For I ^ 0, m > 0, 0 < n < N,

su[l+l, m, n] = 2eu[l, m, »]— eu[l— 1, m, n]

A ( P +1> »]-2au[/, m, h]+au[l. m-l, »])

—on[l, tn—l, «+l]+tr12P, m-l, n-l])

£22[l+l, m,«] = 2eM[/, m, »]— s22[l— 1, w, »]
/st
1 -2<r22[/, m, n]+au[l, m, » -

( t o ) (<Tl2[/>

+<rup, w, «—1]—4a18p, w, n])

) P. W - 1 ' W

On the axis xt = 0 these difference equations are valid if » + l is substituted
for n—1. For I ^ 0, m > 0, « = N,
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«„[/+1,m,N] = 2eu[/, m, N]-en[l-l, m, N]

uP. m+l,N]-2an[l, m,N]+on[l, tn-l.N])

V-l]+4<ra2p, m, N-2]

~o22[l,m,N-3])

' N~

, w, i\T]-£12P-l, w, N]

-5<r12[/, «n, N - l ] + 4 a i a p , m,N-2]

o12[l,m,N-3])

It follows from equation 12 that e12 = 0 on the boundary and therefore this
last difference equation serves as a check on the numerical process. It does
not appear to be feasible to apply a Mesh Fourier analysis to these difference
equations, and hence to obtain bounds on the ratio dt/dx which ensure
numerical stability. Estimates may be obtained by comparison with the
problem of pure elastic deformation, which is the special case 6 = 0. It
can then be shown that the dynamical equations may be expressed as a pair
of wave equations with a fast wave velocity.

and a slow wave velocity
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1

This indicates a likelihood of numerical stability when

dt 1
<̂ - ^

bx cx

Difference approximations to the elastic equations have been subjected
to a Mesh Fourier analysis and this has confirmed this estimate. Numerical
results also confirm the estimate. Numerical results for plastic deformation
indicate that the fast wave velocity is virtually identical with that for pure
elastic deformation and also that oscillations are introduced if the bound
is exceeded. For Poisson's ratio \ the bound is

dt

Results given later have all been obtained using

fdt\2

Programs

The computations have been performed on the Ferranti Pegasus
digital computer installed at Leeds University. To obtain reasonable
operating speed and efficient use of storage space it was necessary to
program the machine in basic code. As a comprehensive check another
program was written in an autocode language and results compared for
the first 20 intervals in time. Results for the first few time intervals were
also obtained by hand computation. Comparison of results was exact to
within machine rounding errors. This alone would indicate that errors are
not propagated through the system in an accumulative fashion.

The programs were written so that results could be obtained for the
propagation of waves in plastic materials and also in elastic materials with
both linear and nonlinear stress strain curves. The results for linear elasticity
agree with those obtained from an earlier basic code program. This program
was based on a slightly different mathematical analysis, the equations being
expressed in terms of displacements. A boundary condition corresponding
to a constant velocity impact was imposed and this presumably accounts
for the minor differences observed.

Due to the comparative slowness of the autocode programs, most checks
were carried out for N = 3. Results detailed later were obtained for N — 7,
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corresponding to a total of 14 intervals across the plate. Results for N ^ 7
differed only slightly.

The machine used has a small high speed store and a large backing
store. Program and data in the backing store must be transferred to the
high speed store before use and transfers can be carried out in blocks of eight
39 bit words. Since eight variables are required for each mesh point one
block was associated with each point. All variables for all mesh points for
the last two time planes, I, l—\, evaluated are stored in the backing store.
When the new variables for the time plane /+1 are calculated they are stored
in place of the I— 1 plane. The principal limitation on the basic code pro-
gram is one of storage. With N = 7 roughly the first 100 time intervals
may be computed.

The program is divided into three parts. The first section clears the
whole of the store, reads in the parameters required (in particular, v, 6, r\, N,
and some print parameters) and stores them. The second part deals with the
evaluation of all the difference equations and tensor equations for the
stresses. As much of this section as possible (roughly one half) has been
fitted into the high speed store. For one time plane this section evaluates
the eight variables for all the intervals in x2 for successive intervals in xx

until all the strains for an interval in x1 are zero or until storage space has
been exhausted. The third part, the print section, is then called in to decide
what information, if any, is to be printed and to output it in a suitable
format. Control is then returned to the second section which proceeds with
calculations for the next time interval. If required all relevant information
may first be stored on magnetic tape so that the calculations may be re-
started from some time interval other than I = 0.

The tensor equations for an elastic region have been treated separately
to those for a plastic region. This is not necessary but provides a useful
check. Results obtained for elastic deformation using the elastic equations
agree with those obtained using the plastic equations with 6 = 0.

Other facilities that have been included are concerned with checking
procedures. The St. Venant compatibility equation 24 has been replaced
by a finite difference approximation and values obtained for the left hand
side may be printed for selected mesh points. It has been pointed out that
the strain e12 should be zero on the boundary and the print section prints
all three strains en, e22, e12 on the boundary. On the boundary the stress
cr22, a12 are forced to zero having previously been computed by the same
procedure used for interior mesh points. The values obtained by this proce-
dure may be printed and, as the numerical solution is expected to behave
smoothly, should be small.

There is some danger of overflow when working in fixed point arith-
metic. It was expected that the maximum stresses likely to occur would be
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some 10 % higher than the initial applied stress, a. This was therefore kept
small. No estimate of the maximum strains could be obtained. However
as far as the numerical calculations have been taken a value of a of 0.125
has been satisfactory. There is some indication that if the calculations were
taken further the strains would increase to a point where overflow would
occur. There are two problems to be considered when computing G(ati).
Equation 26 shows that if the stresses become large 20£a approaches unity.
This causes a loss of significant figures and cannot be prevented. Also
since the computations involve rounding errors 20k2 may actually be evalu-
ated as slightly greater than unity thus causing overflow. This only happens
when working high up on the stress strain curve and it can be assumed that
2k2 is constant and hence o'vtavq = 0. That is, G{ait) — 0. As 20k2 approaches
unity 2k{dkjdai) becomes large so that care must be exercised in computing
G(atj) in order to avoid overflow.

It can be shown using equation 21 that for a = -125 the maximum
permissible value of 6 is 128. For 0 ^ 60 the problems mentioned in the
previous paragraph have not been important.

Results

The results given here have all been obtained using v = jj-, N = 1,
t] = ^, a = j . All the checks mentioned have been carried out and have
proved satisfactory. In particular St. Venant's compatibility equation is
approximately satisfied and the boundary stresses a^, a12 approximate to
zero. The errors involved are, except near the impact face, an order of
magnitude less than the maximum strains or stresses at the mesh point
considered. In all the graphs the strain, sn, has been plotted against time
at a half and one, plate width from the impact face. The velocity of sound in
aluminium is approximately 5000 metres/sec and for a plate of width one
inch it can be shown that for N = 1, v\ = \, 6t ~ 0.2 ps.

Graph 1 gives results obtained for pure elastic deformation. These
results compare reasonably with previous results obtained for v = \ and a
constant velocity impact although the oscillations are less pronounced. The
ratio of the times taken for the strain to build up to the first peak and to
the second peak is very close to the ratio of the two wave velocities clt c%.
The strain level should settle down to an asymptotic limit given by the end
conditions imposed on equations 17, 18. This gives

limeu = (1— v)a,
(-.00

Graph 2 gives results for plastic deformation with 6 — 120. These results
may be compared with experimental data [Bell [1959)]. Our model differs
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strain at m = 7,14-

-125-

•10'

363

•075'

•OS

•025

. N=7,

= 1/4 , <r=1/8 .

10 30 50

Graph 1. Elastic deformation, X = 0.

70 90
time interval.

30-

24-

« •
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straln at r

/

n = 7,14

/

^/ y=1/3,N=7.

^=1/4 , cr=tfS .

10 30 50 70 90
time interval.

Graph 2. Plastic deformation, X = 120.
The dotted line shows the result deduced from uniaxial stress.

from Bell's experimental approach in various ways. In particular the
experiments were carried out using rods of aluminium. We have considered
a two dimensional plate and a comparison of results cannot be expected to
give good agreement except close to the impact face. The static stress
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strain curve obtained by Bell for a rod of aluminium has an asymptote
which is not horizontal and also has a very sharp curvature away from the
initial linear elastic section. A constant velocity impact is used as distinct
from the constant force impact in these investigations. Nevertheless the
rapid increase in strain, observed at half a plate width from the impact
face at about 15,us after impact, agrees approximately with the experi-
mentally observed increase some 10 ̂ s after impact. It has not been possible
to extend results further to determine whether or not the strain levels off
as shown experimentally.

The importance or otherwise of strain rate effects cannot be decided
on the basis of these results. However it does appear that at least the initial
behaviour is not significantly dependent on rate of strain.
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