NUMBERS OF CONJUGACY CLASS SIZES AND DERIVED LENGTHS FOR A-GROUPS

MARY K. MARSHALL

Abstract

An A-group is a finite solvable group all of whose Sylow subgroups are abelian. In this paper, we are interested in bounding the derived length of an A-group G as a function of the number of distinct sizes of the conjugacy classes of G. Although we do not find a specific bound of this type, we do prove that such a bound exists. We also prove that if G is an A-group with a faithful and completely reducible G-module V, then the derived length of G is bounded by a function of the number of distinct orbit sizes under the action of G on V.

1. Introduction. The concern in this paper is with finite solvable groups all of whose Sylow subgroups are abelian. Such groups will be referred to as A-groups. We wish to find, for an A-group G, a bound on the derived length of G as a function of the number of distinct sizes of the conjugacy classes of G. Although we do not find a specific bound of this type, we do prove that such a bound exists, as stated in Theorem B. Here, we use the symbol $d \ell(G)^{+}$enote the derived length of G. Also, we write $\operatorname{cs}(G)$ to denote the set of all conjugacy class sizes of G, that is,

$$
\operatorname{cs}(G)=\left\{\left|G: \mathbb{C}_{G}(x)\right| \mid x \in G\right\} .
$$

Theorem B. There exists a function $g: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$such that

$$
d \ell(G) \leq g(|\operatorname{cs}(G)|)
$$

for every A-group G.
The following result is also proved, and it is the key to our proof of Theorem B.
THEOREM A. There exists a function $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$for which the following holds: If G is an A-group and V is a faithful and completely reducible G-module, then $d \ell(G) \leq f(b)$, where b is the number of distinct orbit sizes under the action of G on V.
2. Preliminary Lemmas. The first two lemmas appear as Hilfssatz 14.17 and Satz 14.18a in [2].

[^0]AMS subject classification: 20.
(C) Canadian Mathematical Society 1996.

Lemma 1. Suppose G is an A-group and a subgroup of $\mathrm{GL}(n, F)$, where n is an integer and F is a field whose characteristic does not divide $|G|$. Then $d \ell(G) \leq n$.

Proof. Note that if K is a field containing F, then $G \subseteq \mathrm{GL}(n, K)$. Thus, we may replace F by its algebraic closure and assume that F is algebraically closed. We induct on n. If $n=1$, then $G \subseteq F^{x}$ and so G is abelian and $d \ell(G) \leq 1$, as needed. Thus, we may assume that $n \geq 2$.

Since 1_{G} is an F-representation of G with F algebraically closed and since G is an M group, we know that every element of G is a monomial matrix. For each $g \in G$, define $\mathcal{N}(g) \in \mathrm{GL}(n, F)$ by

$$
\mathcal{N}(g)_{i j}= \begin{cases}1 & \text { if } g_{i j} \neq 0 \\ 0 & \text { if } g_{i j}=0\end{cases}
$$

That is, we obtain $\mathcal{N}(g)$ by replacing all nonzero entries of the matrix g by l's. One can check that $\mathcal{N}: G \rightarrow \operatorname{GL}(n, F)$ is an F-representation of G. Note that if $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an F-basis for F^{n}, then for any $g \in G$, multiplication by $\mathcal{N}(g)$ fixes the 1-dimensional subspace $\left\langle v_{1}+v_{2}+\cdots+v_{n}\right\rangle$ of F^{n}, since each $\mathcal{N}(g)$ is a monomial matrix. Thus, by possibly replacing \mathcal{N} by a similar F-representation of G, we may assume that there exists an F-representation \mathcal{N} of G such that

$$
\mathcal{N}(g)=\left[\begin{array}{cc}
1 & 0 \\
0 & \mathcal{N}_{1}(g)
\end{array}\right]
$$

for each $g \in G$. Then $\operatorname{ker} \mathcal{N}=\operatorname{ker} \mathcal{N}_{1}$ and we see that $G / \operatorname{ker} \mathcal{N}=G / \operatorname{ker} \mathcal{N}_{1}$ is isomorphic to a subgroup of $\mathrm{GL}(n-1, F)$. By the inductive hypothesis, it follows that $d \ell(G / \operatorname{ker} \mathcal{N}) \leq n-1$. But ker \mathcal{N} is the set of all diagonal matrices in G, and so $\operatorname{ker} \mathcal{N}$ is abelian. Hence, $d \ell(G) \leq n$.

Lemma 2. Suppose G is an A-group and G has no normal elementary abelian subgroup with rank greater than k. Then $d \ell(G) \leq k+1$.

Proof. For a prime q, let $B_{q}=\mathbb{O}_{q}(G)$ and let $A_{q}=\Omega_{1}\left(B_{q}\right)$. Using Fitting's Theorem and the fact that Sylow subgroups of G are abelian, we have $\mathbb{C}_{G}\left(B_{q}\right)=\mathbb{C}_{G}\left(A_{q}\right)$. Then $G / \mathbb{C}_{G}\left(B_{q}\right)$ is isomorphically embedded in $\operatorname{Aut}\left(A_{q}\right)$, which is isomorphic to $\operatorname{GL}\left(\operatorname{rank}\left(A_{q}\right), q\right)$. Also, since a Sylow q-subgroup centralizes $B_{q}, G / \mathbb{C}_{G}\left(B_{q}\right)$ must be a q^{\prime}-group. Thus, by Lemma 1, $d \ell\left(G / \mathbb{C}_{G}\left(B_{q}\right)\right) \leq \operatorname{rank}\left(A_{q}\right)$. But $\operatorname{rank}\left(A_{q}\right) \leq k$. Therefore, $d \ell\left(G / \mathbb{C}_{G}\left(B_{q}\right)\right) \leq k$ for all primes q.

We now have $G^{(k)} \subseteq \cap \mathbb{C}_{G}\left(B_{q}\right)$. But since $\mathbb{F}(G)=\Pi B_{q}$, we also have $\mathbb{C}_{G}(\mathbb{F}(G))=$ $\cap \mathbb{C}_{G}\left(B_{q}\right)$. Hence, $G^{(k)} \subseteq \mathbb{C}_{G}(\mathbb{F}(G))=\mathbb{F}(G)$. Finally, since $\mathbb{F}(G)$ is abelian, it follows that $d \ell(G) \leq k+1$.

The final lemma is rather technical and is designed to simplify the proof of Theorem A.
Lemma 3. Suppose A is an elementary abelian q-group with $\operatorname{rank}(A)>k$. Suppose $\left\{K_{i} \mid 1 \leq i \leq r\right\}$ is a collection of subgroups of A with A / K_{i} cyclic for each i. Then no subcollection of k or fewer of the K_{i} 's can intersect trivially.

Proof. Assume $\ell \leq k$ and that a set of ℓ of the K_{i} 's intersect trivially. Without loss of generality, assume that $K_{1} \cap K_{1} \cap \cdots \cap K_{\ell}=1$. For each $t \in\{1,2, \ldots, \ell\}$, let
$N_{t}=K_{1} \cap \cdots \cap K_{t}$. Note that since A / K_{i} is both cyclic and elementary abelian, we must have $\left|A: K_{i}\right| \leq q$ for each $i \in\{1,2, \ldots, \ell\}$. Now, $\left|A: N_{1}\right|=\left|A: K_{1}\right| \leq q$. Also, for $t \in\{1,2, \ldots, \ell-1\}$, we have

$$
\left|N_{t}: N_{t+1}\right|=\left|N_{t}: N_{t} \cap K_{t+1}\right|=\left|N_{t} K_{t+1}: K_{t+1}\right|
$$

But since $K_{t+1} \subseteq N_{t} K_{t+1} \subseteq A$, this implies that $\left|N_{t}: N_{t+1}\right| \leq\left|A: K_{t+1}\right| \leq q$ for each $t \in\{1,2, \ldots, \ell-1\}$. Therefore, since

$$
1=N_{\ell} \subseteq N_{\ell-1} \subseteq \cdots \subseteq N_{2} \subseteq N_{1} \subseteq A
$$

we have

$$
q^{k}<|A|=\left|A: N_{1}\right|\left|N_{1}: N_{2}\right| \cdots\left|N_{\ell-1}: N_{\ell}\right| \leq q^{\ell} .
$$

Hence, $\ell>k$. This is a contradiction, as needed, and the lemma is proved.
3. Proofs of Theorems. As a tool to be used in the proof of Theorem A, we first define a sequence of positive integers,

$$
1=f(1)<f(2)<\cdots,
$$

as follows. Put $f(1)=1$. Then, whenever $f(i) \geq 1$ is given, note that the exponential function

$$
2^{x-f(i)}
$$

grows faster than the polynomial function

$$
\binom{x}{f(i)} .
$$

Thus, given $f(i) \geq 1$, we can define $f(i+1)$ to be the smallest integer such that $f(i+1)>$ $f(i)$ and

$$
2^{f(i+1)-f(i)}>\binom{f(i+1)}{f(i)} .
$$

This defines a strictly increasing function $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$to be used in the proof of Theorem A.

Proof of Theorem A. Let f be the function defined in the preceding paragraph. Note that if $b=1$, then G acts both faithfully and trivially on V, which means that $G=1$ and so $d \ell(G) \leq f(1)$. Thus, we may assume $b \geq 2$.

We claim that it is no loss to assume that V is an irreducible G-module. To see this, write $V=W_{1} \dot{\times} \cdots \dot{\times} W_{k}$, where each W_{i} is an irreducible G-module. Then $G / \mathbb{C}_{G}\left(W_{i}\right)$ is an A-group and W_{i} is a faithful irreducible $G / \mathbb{C}_{G}\left(W_{i}\right)$-module. Also, each orbit size under the action of $G / \mathbb{C}_{G}\left(W_{i}\right)$ on W_{i} is also an orbit size under the action of G on V. Hence, assuming the theorem is true in the case that the G-module is irreducible instead of only completely reducible, we have $d \ell\left(G / \mathbb{C}_{G}\left(W_{i}\right)\right) \leq f(b)$ for all $i \in\{1,2, \ldots, k\}$.

This means that $G^{(f(b))} \subseteq \cap \mathbb{C}_{G}\left(W_{i}\right)=\mathbb{C}_{G}(V)=1$. Hence, $d \ell(G) \leq f(b)$, as needed. Therefore, we may assume that V is irreducible as a G-module.

Note that $\mathbb{C}_{V}(G)$ is a G-submodule of V. Thus, since V is irreducible, either $\mathbb{C}_{V}(G)=1$ or $\mathbb{C}_{V}(G)=V$. But if $\mathbb{C}_{V}(G)=V$, then $G=\mathbb{C}_{G}(V)=1$ since the action of G on V is faithful. Hence, we have $\mathbb{C}_{V}(G)=1$.

Note that if G has no normal elementary abelian subgroup of rank greater than $f(b)-1$, then $d \ell(G) \leq f(b)$ by Lemma 2, and we're done. Thus, we may assume that there exists a normal elementary abelian q-subgroup A of G with $\operatorname{rank}(A)>f(b)-1$ for some prime q. We will see that this leads to a contradiction.

By Clifford's theorem and since $A \triangleleft G$, we have

$$
V=V_{1} \dot{x} \cdots \dot{x} V_{r}
$$

where $\left\{V_{1}, \ldots, V_{r}\right\}$ are the A-isotypic components of V, and where G transitively permutes $\left\{V_{1}, \ldots, V_{r}\right\}$. For $i \in\{1,2, \ldots, r\}$, let $K_{i}=\mathbb{C}_{A}\left(V_{i}\right)$, and note that since A / K_{i} is abelian and since any A-simple submodule of V_{i} is a faithful irreducible A / K_{i}-module, we know that each A / K_{i} is cyclic.

Since $\operatorname{rank}(A)>f(b)-1$, we know by Lemma 3 that no collection of $f(b)-1$ or fewer of the K_{i} 's can intersect trivially. Since $\bigcap_{i=1}^{r} K_{i}=1$, we must have $f(b)-1 \leq r-1$. Also, since $b \geq 2$, we have $f(b)-1 \geq f(2)-1 \geq 2-1=1$, which means that $K_{1} \neq 1$. Hence, since $\bigcap_{i=1}^{r} K_{i}=1$, there exists some K_{i} which does not contain K_{1}. Without loss of generality we may assume that $K_{1} \nsubseteq K_{2}$. Now, if $2 \leq f(b)-1$, then $K_{1} \cap K_{2} \neq 1$ and without loss of generality we may assume that $K_{1} \cap K_{2} \nsubseteq K_{3}$. In general, if $i \leq f(b)-1$, then we may assume that $K_{1} \cap K_{2} \cap \cdots \cap K_{i} \nsubseteq K_{i+1}$.

For $i \in\{1,2, \ldots, f(b)\}$, let $N_{i}=K_{1} \cap \cdots \cap K_{i}$. Let $x_{1} \in V_{1}-\{1\}$. For $i \in$ $\{2,3, \ldots, f(b)\}$, note that $N_{i-1} \subseteq A$ but $N_{i-1} \nsubseteq K_{i}=\mathbb{C}_{A}\left(V_{i}\right)$. Thus, for $i \in\{2, \ldots, f(b)\}$, we can choose $x_{i} \in V_{i}$ with $N_{i-1} \nsubseteq \mathbb{C}_{G}\left(x_{i}\right)$.

For $t \in\{1,2, \ldots, b\}$, let $y_{t}=x_{1} x_{2} \cdots x_{f(t)}$, the product of the first $f(t) x_{i}$'s. We claim that

$$
\left|\mathbb{C}_{G}\left(y_{1}\right)\right|>\left|\mathbb{C}_{G}\left(y_{2}\right)\right|>\cdots>\left|\mathbb{C}_{G}\left(y_{b}\right)\right| .
$$

Since $\mathbb{C}_{V}(G)=1$, this would provide a list,

$$
\left|G: \mathbb{C}_{G}\left(y_{1}\right)\right|<\left|G: \mathbb{C}_{G}\left(y_{2}\right)\right|<\cdots<\left|G: \mathbb{C}_{G}\left(y_{b}\right)\right|,
$$

of b nontrivial orbit sizes under the action of G on V, which is the contradiction we need to finish the proof.

Fix $t \in\{1,2, \ldots, b-1\}$. Let $T=\mathbb{C}_{G}\left(y_{t}\right) \cap \mathbb{C}_{G}\left(y_{t+1}\right)$. Note that $\mathbb{C}_{G}\left(y_{t+1}\right)$ acts on $X=\left\{x_{1}, x_{2}, \ldots, x_{f(t+1)}\right\}$. Thus, $\mathbb{C}_{G}\left(y_{t+1}\right)$ also acts on

$$
\Omega=\left\{X_{0} \subseteq X:\left|X_{0}\right|=f(t)\right\}
$$

and $T=\mathbb{C}_{G}\left(y_{t+1}\right) \cap \mathbb{C}_{G}\left(y_{t}\right)$ is the stabilizer of $X_{0}=\left\{x_{1}, x_{2}, \ldots, x_{f(t)}\right\}$ under this action. Hence, $\left|\mathbb{C}_{G}\left(y_{t+1}\right): T\right|$ is an orbit size under the action of $\mathbb{C}_{G}\left(y_{t+1}\right)$ on Ω, which means that $\left|\mathbb{C}_{G}\left(y_{t+1}\right): T\right| \leq|\Omega|=\binom{f(t+1)}{f(t)}$.

Note that

$$
N_{f(t)}=K_{1} \cap \cdots \cap K_{f(t)} \subseteq \mathbb{C}_{G}\left(x_{1} x_{2} \cdots x_{f(t)}\right)=\mathbb{C}_{G}\left(y_{t}\right)
$$

Thus, $T \subseteq N_{f(t)} T \subseteq \mathbb{C}_{G}\left(y_{t}\right)$, and so

$$
\left|\mathbb{C}_{G}\left(y_{t}\right): T\right| \geq\left|N_{f(t)} T: T\right|=\left|N_{f(t)}: N_{f(t)} \cap T\right| .
$$

Also, since $N_{f(t)} \subseteq A \subseteq N_{G}\left(V_{i}\right)$ for all $i \in\{1,2, \ldots, r\}$ and since $N_{f(t)} \subseteq \mathbb{C}_{G}\left(y_{t}\right)$ we have

$$
\begin{aligned}
N_{f(t)} \cap T & =N_{f(t)} \cap \mathbb{C}_{G}\left(y_{t}\right) \cap \mathbb{C}_{G}\left(y_{t+1}\right) \\
& =N_{f(t)} \cap \mathbb{C}_{G}\left(y_{t+1}\right) \\
& =N_{f(t)} \cap \mathbb{C}_{G}\left(x_{1} x_{2} \cdots x_{f(t+1)}\right) \\
& =N_{f(t)} \cap \mathbb{C}_{G}\left(x_{1}\right) \cap \mathbb{C}_{G}\left(x_{2}\right) \cap \cdots \cap \mathbb{C}_{G}\left(x_{f(t+1)}\right) \\
& =N_{f(t)} \cap \mathbb{C}_{G}\left(x_{f(t)+1}\right) \cap \mathbb{C}_{G}\left(x_{f(t)+2}\right) \cap \cdots \cap \mathbb{C}_{G}\left(x_{f(t+1)}\right) .
\end{aligned}
$$

Now, note that

$$
N_{f(t)}>N_{f(t)} \cap \mathbb{C}_{G}\left(x_{f(t)+1}\right),
$$

since otherwise,

$$
N_{f(t)} \subseteq \mathbb{C}_{G}\left(x_{f(t)+1}\right),
$$

which we know is not the case. Also, we have

$$
N_{f(t)} \cap \mathbb{C}_{G}\left(x_{f(t)+1}\right)>N_{f(t)} \cap \mathbb{C}_{G}\left(x_{f(t)+1}\right) \cap \mathbb{C}_{G}\left(x_{f(t)+2}\right),
$$

since otherwise,

$$
N_{f(t)+1} \subseteq N_{f(t)} \cap \mathbb{C}_{G}\left(x_{f(t)+1}\right) \subseteq \mathbb{C}_{G}\left(x_{f(t)+2}\right)
$$

which we know is false. In general, for $i \in\{2,3, \ldots, f(t+1)-f(t)\}$, we have

$$
N_{f(t)} \cap \mathbb{C}_{G}\left(x_{f(t)+1}\right) \cap \cdots \cap \mathbb{C}_{G}\left(x_{f(t)+i-1}\right)>N_{f(t)} \cap \mathbb{C}_{G}\left(x_{f(t)+1}\right) \cap \cdots \cap \mathbb{C}_{G}\left(x_{f(t)+i}\right),
$$

since otherwise,

$$
N_{f(t)+i-1} \subseteq N_{f(t)} \cap \mathbb{C}_{G}\left(x_{f(t)+1}\right) \cap \cdots \cap \mathbb{C}_{G}\left(x_{f(t)+i-1}\right) \subseteq \mathbb{C}_{G}\left(x_{f(t)+i}\right),
$$

which is false. In summary, we have

$$
\begin{aligned}
N_{f(t)} & >N_{f(t)} \cap \mathbb{C}_{G}\left(x_{f(t)+1}\right) \\
& >N_{f(t)} \cap \mathbb{C}_{G}\left(x_{f(t)+1}\right) \cap \mathbb{C}_{G}\left(x_{f(t)+2}\right) \\
& >\cdots \\
& >N_{f(t)} \cap \mathbb{C}_{G}\left(x_{f(t)+1}\right) \cap \cdots \cap \mathbb{C}_{G}\left(x_{f(t+1)}\right) \\
& =N_{f(t)} \cap T,
\end{aligned}
$$

where there are a total of $f(t+1)-f(t)$ strict inequalities. Therefore,

$$
\left|N_{f(t)}: N_{f(t)} \cap T\right| \geq 2^{f(t+1)-f(t)}
$$

Then since $\left|\mathbb{C}_{G}\left(y_{t}\right): T\right| \geq\left|N_{f(t)}: N_{f(t)} \cap T\right|$, we have

$$
\left|\mathbb{C}_{G}\left(y_{t}\right): T\right| \geq 2^{f(t+1)-f(t)}
$$

However, by the definition of $f(t+1)$, we know that $2^{f^{f(t+1)-f(t)}}>\binom{f(t+1)}{f(t)}$, and we have already shown that

$$
\left|\mathbb{C}_{G}\left(y_{l+1}\right): T\right| \leq\binom{ f(t+1)}{f(t)}
$$

Hence, we have $\left|\mathbb{C}_{G}\left(y_{t}\right): T\right|>\left|\mathbb{C}_{G}\left(y_{t+1}\right): T\right|$, which implies that $\left|\mathbb{C}_{G}\left(y_{t}\right)\right|>\left|\mathbb{C}_{G}\left(y_{t+1}\right)\right|$, as needed. As mentioned earlier, this provides a contradiction and the theorem is proved.

We are now ready to prove Theorem B, which is a corollary of Theorem A.
Proof of Theorem B. Let f be the function given by Theorem A , and define g by $g(b)=f(b)+1$ for all $b \in \mathbb{Z}^{+}$. Let $b=|\operatorname{cs}(G)|$.

For every prime q, let $B_{q}=\mathbb{O}_{q}(G)$ and let $A_{q}=\Omega_{1}\left(B_{q}\right)$. Then using the fact that a Sylow q-subgroup of G is abelian, we have $\mathbb{C}_{G}\left(B_{q}\right)=\mathbb{C}_{G}\left(A_{q}\right)$ for all primes q, by Fitting's Theorem. Write $C_{q}=\mathbb{C}_{G}\left(B_{q}\right)=\mathbb{C}_{G}\left(A_{q}\right)$.

Fix a prime q. Now, A_{q} is a faithful $F\left(G / C_{q}\right)$-module, where F is the field with q elements. Also, if $Q \in \operatorname{Syl}_{q}(G)$, then since $B_{q} \subseteq Q$ and Q is abelian, we have $Q \subseteq$ $\mathbb{C}_{G}\left(B_{q}\right)=C_{q}$. Thus, $\operatorname{char}(F)=q$ does not divide $\left|G / C_{q}\right|$, and so Maschke's theorem implies that A_{q} is completely reducible as a B / C_{q}-module. Clearly, every orbit size under the action of G / C_{q} on A_{q} is also a conjugacy class size of G. Thus, there are no more than b orbit sizes under the action of G / C_{q} on the faithful and completely G / C_{q}-module A_{q}. Therefore, by Theorem A, we have $d \ell\left(G / C_{q}\right) \leq f(b)$.

By the above paragraph, we have $d \ell\left(G / C_{q}\right) \leq f(b)$ for all primes q. That is, $G^{(f(b))} \subseteq$ C_{q} for every prime q. But since $\mathbb{F}(G)=\Pi B_{q}$, we have $\mathbb{C}_{G}(\mathbb{F}(G))=\cap \mathbb{C}_{G}\left(B_{q}\right)=\cap C_{q}$. Hence,

$$
G^{(f(b))} \subseteq \bigcap C_{q}=\mathbb{C}_{G}(\mathbb{F}(G))=\mathbb{F}(G)
$$

Finally, since $\mathbb{F}(G)$ is abelian, we conclude that $G^{(f(b)+1)}=1$. That is, $d \ell(G) \leq f(b)+1=$ $g(b)$, as required.

References

1. L. Dornhoff, Group representation theory, Dekker, New York, 1967.
2. B. Huppert, Endliche Gruppen I, Springer Verlag, Berlin, 1967.
3. W. R. Scott, Group Theory, Prentice Hall, Englewood Cliffs, New Jersey, 1964.

Department of Mathematics

Illinois College
Jacksonville, IL 62650
U.S.A.

[^0]: Received by the editors January 12, 1995; revised June 1, 1995.

