
Ultra Massive Passive Galaxies at z~1.7

Liz Arcila-Osejo¹, Marcin Sawicki¹, Anneya $Golob^1$, Stephane Arnouts^{2,3} and Thibaud Moutard^{2,3}

¹Saint Mary's University, 923 Robie Street, Halifax, N.S., Canada ²Laboratoire d'Astrophysique de Marseille, Rue Frdric Joliot Curie, 13013 Marseille, France ³CFHT, 65-1238 Mamalahoa Hwy, Waimea, Kamuela 96743, United States. email: osejo@ap.smu.ca

Abstract. At redshift $z\sim1.7$ the Universe was at the peak of its star-formation activity. It is thus a puzzle why some galaxies, many of them very massive $(M_* \ge 10^{11} \text{ M}\odot)$, had already chosen to stop forming stars. These ultra-massive galaxies, guaranteed to be the central galaxies of their host dark matter halos, must have attained very high rates of star formation to assemble their stellar masses in such a short amount of time. Using the largest (to date) K-selected gzK_s survey of passive galaxies (in an effective area of $\sim 27.5 \text{ deg}^2$) we study the demographics of these dead monsters, hoping to help understand the quenching mechanism that shut them down.

Keywords. galaxies: evolution, galaxies: high-redshift, galaxies: surveys.

- (a) A combination of the CFHTLS Deep + Wide surveys and the Vipers K-band and WIRDS surveys, allows us to construct the largest catalog of K-selected gzKs passive galaxies at $z\sim1.7$.
- (b) Using this sample we are able constrain the massive end of the stellar mass function with unprecedented precision.
- (c) Simple density evolution (as seen in the Figure in red arrows) of the $z\sim1.7$ MF, matches the $z\sim0$ MF (yellow curve from Peng et al. 2010, ApJ, 721, 193); the number density of galaxies increases uniformly independently of mass.
- (d) This simple density evolution suggests that the mechanism that quenches star-formation in massive galaxies does not change with time and indicates a lack of post-quenching mechanisms that could alter M^* (e.g., mergers).