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Abstract

We characterize least-perimeter enclosures of prescribed area on some piecewise smooth manifolds,
including certain polyhedra, double spherical caps, and cylindrical cans.

2000 Mathematics subject classification: primary 49Q10, 53A10.

1. Introduction

The classical isoperimetric problem seeks the least-perimeter enclosure of a prescribed
area on a given surface. We consider this problem on singular closed surfaces, such
as polyhedra, double discs (two round discs each of constant Gauss curvature, glued
together along their boundaries), and a cylindrical can, and characterize all such
minimizing curves for a few sample surfaces. The minimizers for the cube are
illustrated in Figure 1; the other polyhedra we study are the regular tetrahedron,
regular octahedron, and rectangular prism. We also consider the problem on double
discs in higher dimensions.

Singularities make this problem interesting. Previous proofs of existence and
regularity consider only smooth surfaces. On singular surfaces, not all minimizers
look the same. On the cube, for instance, the vertex singularities cause minimizers to
fall into distinct families based on how many vertices they enclose.

We classify all simple closed constant-curvature curves on several polyhedra, com-
pute the lengths and areas of these curves, and show that one-component curves are
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I

FIGURE 1. There are four types of least-perimeter enclosures on the cube.

best. For double discs and cylinders, we use spherical Schwarz symmetrization to limit
complexity and then show that the minimizers have one component by creating illegal
singularities in multi-component competitors. For general dimension double discs,
we use Schwarz spherical symmetrization combined with the maximum principle to
show that minimizers are spherical and not simply constant mean curvature.

Hugh Howards, Michael Hutchings, and Frank Morgan [9] provide a survey of least-
perimeter enclosures. Some higher dimensional ambients with conical singularities
are treated in [3], [15] and [16].

2. Existence and regularity

We consider piecewise smooth (stratified) ^-dimensional closed submanifolds M
of W, with a piecewise smooth, continuous Riemannian metric within a bounded
factor of the induced metric, possibly undefined on strata of dimension less than n — 1.
We do not allow M to have cusps. (Technically we require that M be a 'compact
Lipschitz neighborhood retract'; see [12, 5.5].) Such manifolds include polyhedra and
curvilinear polyhedra, cylindrical cans, truncated cones, and pairs of spherical caps
attached along their boundaries. Altering the metric on such spherical caps produces
flat and hyperbolic double discs.

On such manifolds, we seek regions R of prescribed volume and least perimeter.
The boundary dR of such a region is called an isoperimetric surface.

PROPOSITION 2.1 (Existence and Regularity). On a piecewise smooth, n-dimen-
sional closed Riemannian manifold M as above, given 0 < V < vol(M), there
exists a least-perimeter region R of volume V. Away from the singularities ofM, the
isoperimetric surface dR is smooth and has constant mean curvature, except for a set
of Hausdorff dimension at most n — 8. Where the metric is Lipschitz, dR is C1 (C1 1

ifn = 2) except for a set of Hausdorff dimension at most n — 8.

PROOF. For the metric induced from RN, standard compactness arguments of ge-
ometric measure theory [12, 5.6] produce convergence of a minimizing subsequence
Rj to a minimizer R. Since the prescribed metric remains within a factor of the
induced metric, the subsequence still converges to R in the prescribed metric. Since
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[3] The isoperimetric problem on some singular surfaces 169

the metric is continuous off a negligible set, area is lower semicontinuous (see [12,
12.5] and [6, Theorem 5.1.5]), and R is perimeter-minimizing. Regularity away from
the singularities is a standard result [12, 8.6], even if M is just C1'1 [14, Corollaries 3.7
and 3.8]. D

REMARK. On a 2-dimensional manifold, the constant mean curvature condition
implies that at a singular point an isoperimetric curve consists of finitely many arcs
(or else it would have infinite length).

PROPOSITION 2.2. A least-area enclosure of given volume on a piecewise smooth
manifold can coincide with a singular hypersurface on an open subset of the singular
set only if H\ + H2 < 0, where H\ and H2 are the mean curvatures of the singular
surface with respect to the normals N\ and N2 pointing into the two pieces bounded
by the hypersurface.

PROOF. Suppose that Hi + H2 > 0 at some point P on the singular hypersurface S,
and that the isoperimetric surface coincides with S on some open ball around P. Within
this open ball, perturb the surface slightly such that the amount of volume enclosed
on each side of the singularity changes by a small amount Av. This volume will
be inside the enclosed region on one side of the singularity and outside the enclosed
region on the other, so the total change in volume is zero. Since we are perturbing into
each side, the total change in area, to first order in Av, is — (H\ + H2)Av. Thus for
Av sufficiently small, we can reduce area while maintaining volume, so the surface
coinciding with the singularity is not a minimizer. •

Note that if H\ + H2 < 0, then the minimizer can coincide with the singularity (see
Theorem 5.4).

REMARK. An isoperimetric curve can cross a singular curve F infinitely many
times. For example, consider the curve T on the side of a tall cylindrical can which
encircles the can halfway up and locally looks like e~l/*2 • sin(l/;c). T divides the
can into two pieces, which fit together along this (removable) singular curve to form
the cylindrical can. On this can the horizontal circle around the middle of the can, a
geodesic isoperimetric curve enclosing half the can's area (see Theorem 6.3), crosses
the singular curve infinitely many times.

Regularity on 2-manifolds. When we consider only two-dimensional piecewise
smooth manifolds, we can prove stronger regularity results.

LEMMA 2.3. At an isolated singular point p of a piecewise smooth closed surface
S, if two pieces of a least-perimeter enclosure meet at an angle of 6 (where 9 is the
smaller of the two possible angles as measured within the manifold), then 0 > 180°.
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PROOF. By Proposition 2.1, at p the isoperimetric curve consists of finitely many
arcs of the same constant curvature. Consider two adjacent arcs, and suppose that
the angle 0 between these two arcs is interior to the region they enclose. Recall that
curvature is the rate of change of length with respect to area. If the two pieces of the
curve make an angle of less than 180° at the intersection point p, then we can shave
off a small piece of area A A near p, resulting in a decrease in length by ALP, such
that ALPIAA is arbitrarily large. Adding a corresponding piece of the same area near
a regular point p' with finite curvature has a corresponding ratio

AL •p'

AA

dL

P'

ALP

AA

So the total change in length will be ALP> — ALP < 0, and our region cannot be a
minimizer.

If the angle 0 is exterior to the enclosed region, then we may add a small piece of
area at p and remove a corresponding piece at p' to achieve the same result. •

LEMMA 2.4. On a piecewise smooth closed surface S, a least-perimeter enclosure
of area A has multiplicity at most \_4>/2n\ at an isolated {vertex) singularity ofS with
total angle <p. {We use [xj to denote the greatest integer less than or equal to x.)

PROOF. Let p e S have total angle <p = <f>(p). Suppose that our minimizer C has
multiplicity m > <f>/2n at p. By Proposition 2.1, m is finite. Since there are 2m
tangents to C at p, some two adjacent tangents must meet at an angle of less than
n = 180°, contradicting Lemma 2.3. Hence, as claimed, C has multiplicity at most
L0/27T J at an isolated singularity of total angle (p. •

COROLLARY 2.5. On a convex polyhedron, a least-perimeter enclosure does not
pass through any vertices.

PROOF. A vertex of a convex polyhedron is an isolated singularity with total angle
4> <2n. •

50

100

FIGURE 2. (Not to scale.) The least-perimeter enclosure of area 401, a curve of length 4 around the base
of the protrusion, passes through vertices of this non-convex polyhedron.
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[5] The isoperimetric problem on some singular surfaces 171

For non-convex polyhedra, however, a minimizer can indeed pass through vertices,
as in Figure 2. Morgan [13] treats higher-dimensional cases.

Least-perimeter enclosures will typically be one-component curves. To show this,
we will use the technical result below.

PROPOSITION 2.6. Let S be a piecewise smooth closed surface, and for 0 < A <
area(S), let ty be the set of all discs D C S such that D has constant boundary
curvature. Suppose that

f length(3£>)2 1
= inf | — — '- : D e<fr, area(D) = A \

is a non-increasing function of A. Then every region of least perimeter is an element

PROOF. Let us denote by an (i, j )-region one that has at most i components, each of
whose boundaries consists of at most j curves. (So a (1, l)-region is just a disc.) Let
Qij(A) denote the infimum of L2/A over all constant-curvature curves of length L
and area A that enclose an (i, j )-region. Note that Cl as defined above is equal to £2(i,i).
In addition, let £1 (A) denote the least value of the isoperimetric ratio L2/A, taken over
all curves of area A and length L.

We begin by eliminating (k, l)-regions (that is, regions with multiple components,
where the boundary of each component consists of a single curve). Suppose that we
have a region R consisting of k > 1 distinct components, of areas Aj, . . . , A/, and
corresponding boundary lengths Lu ..., Lk. We compute the value of L2/A for the
whole region R:

length^)2 (Li + .-. + L*)2 Lx
2 + • • • + Lk

2 Lx
2 Lk

2

= > = W\ h • • • + Wi ,
area(fl) A, + \-Ak Ax H + Ak Ax Ak

where iu, = A,/(Ai + • • • + Ak). Since W\ + • • • + wk = 1, this is just a weighted
average of the L,2/'A,-, so it is at least as big as the smallest value, say L2 /A\.

Now, one of the components of R is a (1, l)-region of boundary length L\ containing
area A\, so we know that L\2/A\ > Q.i\{A\). Using the fact that fiu is non-
increasing, we have

(Li-I \-Lk)
2 L,2

L,
AAx-\ h Ak A,

Hence there exists some (1, l)-region M containing area A\ + • • • + Ak such that

(L! + --- + L.)2 length(M)2

https://doi.org/10.1017/S1446788700008016 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008016


172 Andrew Cotton, David Freeman, Andrei Gnepp, TingNg, John Spivack and Cara Yoder [6]

that is, length(/?) > length(M).
It follows that £lkl(A) = £21T1(A): allowing (k, l)-regions does not decrease

the smallest possible length. Now, the complement of a (k, l)-region is a (1, k)-
region (that is, one component, with a boundary consisting of at most k curves).
Letting Luj{A) denote the infimum of the boundary length of all (i, _/)-regions of
area A (that is, Qu (A) = LUj (A)2/A), we see that LU(A) = Lt,i(area(5) - A) =
Lu(area(S) - A) = Lhl(A). Thus fiu(A) = fiu(A).

The reasoning given above to extend from fli.i to Qki generalizes exactly to
yield that £2,,* = &i,k- It follows that ft = £2i,i. Indeed, clearly Q(A) <
£2iti(A); if £l(A) < £2i,i(A) then there exists some (/, &)-region /? for which
length(fl)2/area(/?) < £2U(A), contradicting Qi<k(A) = £2i,i(A).

To see that £2 (A) is attained by (1, l)-regions, we note that by existence and
regularity, no region that is not of constant curvature can be a minimizer (that is,
attain Q(A)). Furthermore, inequality (1) above is strict, so that a (k, l)-region with
more than one component is strictly worse (that is, has longer perimeter) than some
(1, l)-region of the same area. It follows that a (1, &)-region with more than one
boundary curve is also strictly worse than some (1, l)-region, and an (/, Jt)-region that
is not a (1, l)-region is strictly worse than some (1, l)-region. Therefore, Q(A) can
only be attained by (1, l)-regions; since it is attained by some region, we know that it
is attained by a (1, l)-region. •

3. The Gauss-Bonnet theorem

The boundary of a piece of a piecewise smooth closed Riemannian 2-manifold 5
consists of finitely many smooth curves and finitely many singular points. Each such
curve will be called an edge, and the singular points on an edge will be called edge
singularities. The singular points will be called vertex singularities.

Since a vertex singularity v e S has a well-defined angle with respect to each
piece of S that u bounds, we may define the total angle <p (v) to be the sum of these
angles. For edge singularities and non-singular points p e S, we let 4>(p) = 2n.
We now define the total contribution to Gaussian curvature at a point p e S to be
G(p) = In — <p{p). If e e 5 is an edge singularity bounding two pieces of S for
which the edge containing e has curvatures K\ and K2, then we define the linear density
of Gaussian curvature to be k{e) = K\(e) + K2(e). With these definitions, the Gauss-
Bonnet Formula extends as follows (see for example [10, Chapter 9, Section 1.4]):

PROPOSITION 3.1. Let S be a two-dimensional manifold with singularities, and let
R C S. Suppose the boundary of R, dR, contains no vertices and only isolated
edge singularities. Let E and V denote the sets of edge and vertex singularities of S,
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respectively, and let K(p) be the Gaussian curvature of R at a non-singular point p.
Then

\ K = ( K + f k + f G = 2 n X ( R ) - f ic,
JR JR-E-V JRCIE JRnV J3R

where x(R) " the Euler characteristic and K is the curvature ofdR.

PROOF. It is well known that a singularity in dR where two smooth pieces meet at
an angle of a needs to be dealt with by adding a term n — a; our method of handling
vertex and edge singularities is analogous. •

Note also that one could use the Dirac delta function to write the Gaussian curva-
ture as K(p) = G(p)S2(p) for vertex singularities and K{e) — k(e)8l(e) for edge
singularities.

Typically, minimizers will also belong to a smooth family of curves. When this is
the case, they are much easier to work with.

LEMMA 3.2. Suppose that a family of constant-curvature, one-component curves
is smoothly parameterized by the radius of curvature r = 1/K and let each curve
enclose Gaussian curvature G(r). Then the length L and area A of these curves
satisfy L(r) = (In - G(r))r and A(r) = nr2 - r2G(r) + f G(r)rdr. If the
enclosed Gaussian curvature and length are smooth functions of area, then L (A)2/2 =
2nA - f G(A) dA. If furthermore G(A) > Ofor all A (for example, if the surface
itself has nonnegative Gaussian curvature everywhere), then these curves enclose
area more efficiently than flat circles if and only if the curve of smallest area (largest
curvature) does.

PROOF. By the Gauss-Bonnet Formula, 2n = fR K + fgR K = G(r) + L(r)/r.
Since we are working within a smooth family of curves, L(r) and A(r) are differ-
entiable functions. Recalling that curvature l/r is the rate of change of length with
respect to area, we have

A<r> = f ^T^Tdr = f ~i2n - G^ + rG'{r))drJ dL dr J K

= nr2-r2G(r)+ I G(r)rdr.

Also, within this family of curves, L(A) is a differentiable function of A, so
the curvature K is equal to L'(A). Integrating the Gauss-Bonnet formula G(A) +
L(A)L'(A) = 2n with respect to A, we get f G(A)dA + L(A)2/2 = 2nA, as
desired.
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Finally, note that for flat circles, L(A)2 = An A. Hence these curves enclose area
more efficiently than flat circles do if and only if / G(A)dA > 0. Since

JL
7A

( I G{A)dA J = G(A) > 0,

this inequality holds everywhere if and only if it holds for the smallest value of A
achieved by curves in this family. •

COROLLARY 3.3. On a polyhedron, the family of curves containing a given set of
vertices has lengths and areas satisfying L(r) = 2cr and A(r) = cr2 — d for some
positive constants c and d.

PROOF. All of the curves in such a family contain the same Gaussian curvature
G = G(r). Hence L = (2n - G)r, and A = (n - G)rl - Gr2/2 + d), where d is a
constant of integration and c = n — G/2. Of course, L2 = AcPr2 = 4cA + 4cd. •

We will see later that the constants have a geometric interpretation: an unfolded
constant-curvature curve will form a fraction c/n of a (planar) circle, enclosing a
region that is a fraction c/n of a circle with a hole of area dn/c.

CONJECTURE 3.4. On a two-dimensional closed convex surface, as enclosed area
increases, the Gaussian curvature G enclosed by minimizers is non-decreasing, the
curvature of the minimizer is non-increasing, and the isoperimetric ratio L2/A is
non-increasing.

By Theorems 4.6,4.8,4.4, and 5.4, this conjecture is true for regular tetrahedra and
octahedra, rectangular prisms, and double discs consisting of two identical caps. See
[7, Section 7] for further remarks.

4. Least-perimeter enclosures on polyhedra

In this section, we find all of the least-perimeter enclosures on a few polyhedra.
We do this by finding all constant-curvature curves and calculating which is best; by
Propositions 2.1 and 2.6 these will be the desired minimizers. The polyhedra we treat
are the cube, rectangular prisms, the regular tetrahedron, and the regular octahedron.
We give full proofs in the case of the cube; the other polyhedra are similar and
generally easier. For full details, see [7, Section 4].

To find constant-curvature curves, we let r = 1/K denote the radius of curvature.
We will unfold a constant-curvature curve into the plane by traveling along the curve
and drawing faces as we traverse them (see Figures 4, 7, 9, and 11).
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The cube. We first consider least-perimeter enclosures on the surface of a cube. We
begin by finding all simple closed geodesies.

LEMMA 4.1. There are three (types of) simple closed geodesies on the surface of
the cube. They make angles tan- 1( l) = 45°, tan"1 (2) ~ 63.4°, and tan"1 (oo) = 90°
with the edges of the cube.

R

\ )

B

F\

/ A
1

) -
/

= 45° and L = 6 « 63° and L = 2-Jl = 90° and L = 4

R •P
R

\ ^

D

F'-

tan"1 (3/2) < 9 < tan"1 (2)
D ;B

R B

D

F,

T ,L

B

R,

tan"1 (5/2) < 9 < tan"1 (3) tan"1 (3) < 9 < tan"1 (4)

FIGURE3. The three simple closed geodesies on the cube have angles tan"'(l) = 45°, tan '(2) ~ 63.4°,
and tan"'(oo) = 90°, and lengths 3V5, 2\/5, and 4, respectively. By unfolding the cube, we can show
that no other angles are possible: any other geodesies must cross themselves at the circled locations
(bottom). The faces of an unfolded cube are indicated as Front, Back, Top, Down, Right and Left.

PROOF. A geodesic must intersect some edge of the cube; by symmetry it suffices
to consider only intersection angles 9 for which 45° < 6 < 90°. Slide the geodesic
parallel to itself until it crosses (say) the Top-Right edge at angle 6 very near the Top-
Right-Back vertex. After passing through the Right face for a very small distance, the
geodesic enters the Back face, which we count as the first face it crosses.

• Suppose that tan"'((n + l)/n) < 9 < tan"1 (n/(n — 1)) for some n > 2.
Then the geodesic must cross, in order, the faces B, D, L, F, T, R, at which point the
cycle repeats. After crossing 2n faces, the geodesic exits this cycle at a Right-Down,
Down-Front, or Front-Right edge (if n is 0, 1, or 2 mod 3, respectively), traverses
another face (Down, Front, or Right, respectively), and then enters what would have
been the (2n + l)st face in the cycle (Back, Left, or Top, respectively) at right angles
to its previous crossings of this face. Hence the geodesic must cross itself on this face,
which is impossible. (See Figure 3 for an illustration of the case n = 2.)
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• Suppose that tan~1((2« + l ) /n ) < 6 < tan~'((2Az - l ) / (« - 1)) for some
n > 2. Then the geodesic must cross, in order, the faces B, D, F, L, T, R, at which
point the cycle repeats. After crossing 3n faces, the geodesic exits this cycle at a
Front-Top or Right-Down edge (if n is odd or even, respectively), traverses another
face (Top or Down, respectively), and then enters what would have been the (3n + l)st
face in the cycle (Left or Back, respectively) at right angles to its previous crossings
of this face. Hence the geodesic must cross itself on this face, which is impossible.
(See Figure 3 for an illustration of the case n — 2.)

• Suppose that tan"1 (n) < 6 < tan"1 (n + 1) for n > 3. Then the geodesic must
cross, in order, the faces B, D, F, T, at which point the cycle repeats. After crossing
n + 1 faces, the geodesic exits this cycle into the Left face, and enters the next face
(which would have been the (n + 2)nd face in the cycle) at right angles to its previous
crossings of this face. Hence the geodesic must cross itself on this face, which is
impossible. (See Figure 3 for an illustration of the case n — 3.)

It follows that there do not exist geodesies with angles other than tan~'(l), tan"1 (2),
or tan"1 (oo). Of course, these three (types of) geodesies clearly do exist. El

Now we can find all constant-curvature curves on the cube.

LEMMA 4.2. On the surface of the unit cube, constant curvature curves of the
following types exist. For a given curvature, types (2)-(6) are unique up to symmetries
of the cube {types (7)—(9) may also be shifted parallel to themselves). Furthermore,
these are all of the constant curvature curves on the cube.

(1) a circle containing no vertices;
(2) a circle centered at one vertex;
(3) a constant-curvature curve about two adjacent vertices;
(4) a constant-curvature curve about two vertices a distance V2 apart;
(5) a constant-curvature curve about three vertices sharing a face;
(6) a constant-curvature curve about three vertices, exactly two of which are adja-

cent;
(7) a straight line around four sides of the cube, meeting the edges at right angles;
(8) a straight line around five sides of the cube, meeting the edges at an angle of

(9) a straight line on all six sides of the cube, meeting the edges at 45° angles.

PROOF. We use an unfolding argument to find all constant-curvature curves; see
Figure 4.

• If a region contains no vertices, then it is a planar circle, with perimeter
L = 2nr, enclosed area A = nr2, and L2/n = 4A. There exists such a circle only
for r < 1/V2, that is, A < TT/2.
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B, ;P4
©
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.F . A

D R
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±
i>

FIGURE 4. All constant-curvature curves on the cube (excluding geodesies) are pictured here along with
their unfoldings in the plane. The three on the left can be least-perimeter enclosures. The faces of an
unfolded cube are indicated as Front, Back, Top, Down, Right, and Left. Dots indicate enclosed vertices.

• If a region contains one vertex, then it can be unfolded in the plane to curve
three-fourths of the way about the origin. Since the folded curve meets itself smoothly
on the cube, rotating the unfolded curve 270° about the origin will extend it smoothly.
Four copies of the unfolded curve form a closed, constant-curvature curve that wraps
about the origin three times and has 270° rotational symmetry. Hence this curve must
be a single circle (with multiplicity three), centered at the origin. Our original region
on the cube is therefore a circle centered at the vertex, with L = 3nr/2, A = 3nr2/4,
and L2/n = 3A. Such circles exist only for r < 1, that is, A < 3JT/4.

• If a constant-curvature curve contains two vertices, there are three possibilities:
the vertices can be adjacent, diagonally opposite along a face, or antipodal. If the
two enclosed vertices share an edge, then when unfolded, the curve forms half of a
circle, and encloses a region that is half of a circle with a one-face square hole (of
area 1). It follows that the region has length L = nr, area A = (nr2 — l)/2, and
L2/JT = 2A + 1. A curve about two adjacent vertices exists for V2/2 < r < V5/2,
that is, for TT/4 - 1/2 < A < 5TT/4 - 1/2 (0.29 < A < 3 A3).

If the two enclosed vertices are a distance of \[2 apart, then when unfolded, the
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curve encloses a region that is half of a circle with a two-face diamond-shaped hole
(of area 2). So for these curves, L = nr and A = (n r2 — 2)/2, which is always worse
than a curve around two adjacent vertices.

The third case cannot occur; the unfolded curve would have to enclose a region that
would be half of a circle with a diamond-shaped hole of area 5 (see Figure 5). But then
to stay on the faces indicated, the radius would have to satisfy -s/lO/2 < r < <JlO/2,
since the L-T-F vertex needs to be outside the circle while the T-B-R vertex is inside it.

A ^ ^

V /
B

y/

K

-\
T "

/

D

)

FIGURE 5. Two antipodal vertices cannot be enclosed by a constant-curvature curve.

• If a region is to contain three vertices, there are again three possibilities: the
vertices share a face; two vertices are adjacent to each other but not to the third; or no
two vertices are adjacent. If the three vertices share a face, then when unfolded, the
curve encloses a region that is a quarter of a circle with a plus-shaped hole (of area
12). Hence L = nr/2, A = (nr2 - 12)/4, and L2/n = A + 3. These curves exist
for V5 < r < y/S (since the F-D-R vertex must be inside the region and the L-F-D
vertex outside it), or for 5n/4 -3<A<2TT-3 (0.93 < A < 3.28).

If only two of the vertices share an edge, then the unfolded curve encloses a region
that is a quarter of a circle with a square hole of area 16. Hence L = nr/2 is the same
as for three co-facial vertices, but A = (nr2 — 16)/4 is less, so these curves do worse
than ones containing three co-facial vertices.

The third case cannot occur. To see this, consider what happens on each of the
three faces containing two enclosed vertices. The curve must have two components
on such a face, since it intersects each of the four edges. The region can enclose either
one (Figure 6 (a)) or two components (Figure 6 (b)) on the face. If the region has one
component on all three faces, its boundary would consist of two curves (Figure 6 (c)),
and if the region has two components on two faces, then the region has (at least) two
components (Figure 6 (d)). Since (for the moment) we are only considering single
constant-curvature curves, we can assume that (say) the Front and Right faces have
one component and the Down face has two (Figure 6 (e)). But now consider the
Front-Right edge: the curve proceeds from this edge down to the Front-Down and
Right-Down edges, so cannot be convex inwards to the region—a contradiction.
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(e)

FIGURE 6. If a constant-curvature curve could enclose three vertices, no two adjacent, then a given face
would look like either (a) or (b). Neither (c) nor (d) can happen with a single curve, so we just need to
rule out (e). The drawings are schematic only, with curves replaced by straight lines.

• If a region is to contain four vertices, it must be a (simple closed) geodesic, by
the Gauss-Bonnet Formula (Proposition 3.1). By Lemma 4.1, there are only geodesies
making angles of 90°, 45°, or tan"1 (2) with the edges of the cube. These have lengths
L — 4, L = 3 V2, and L = 2>/5, respectively (see Figure 3, top).

• If a region contains v > 4 vertices, its complement must contain 8 — v < 4
vertices, so we get no new constant-curvature curves.

Hence we have an exhaustive list of all possible combinations of vertices that can
be enclosed by a constant-curvature curve, so we have explicitly found all constant-
curvature curves on the cube. They are unique as described in the statement of
Lemma 4.2 (that is, there is only one way to enclose a given set of vertices with a
curve of given constant curvature) because they must meet themselves smoothly, as
described above. •

Having found all constant-curvature curves, we can now find all least-perimeter
enclosures.

THEOREM 4.3. On the surface of the unit cube, the following are all of the least-
perimeter enclosures of given area A:

• curves of type (2),forO < A < 1;
• curves of type (3), for 1 < A < 2;
• curves of type (5), for 2 < A < 16/n - 3 ( « 2.09); and

• curves of type (7), for 16/n — 3 < A < 3.

Of course, for A > 3, the least-perimeter enclosure of an area of A is the complement

of the least-perimeter enclosure for area 6 — A.

PROOF. It follows from Propositions 2.1 and 2.5 that least-perimeter enclosures
exist, have constant curvature, and do not pass through any vertices. Lemma 4.2 gives
us a complete classification of constant-curvature curves, so we just need to determine,
for given area A, which of types (l)-(9) has the least perimeter.

It is clear that, for a given area that can be enclosed by both of the corresponding
types, a curve of type (2) beats one of type (1), (3) beats (4), (5) beats (6), and (7)
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FIGURE 7. All constant-curvature curves on a rectangular prism (excluding geodesies) are pictured here
along with their unfoldings in the plane. The three on the left can be least-perimeter enclosures. The faces
of an unfolded prism are indicated as Front, Back, Top, Down, Right, and Left. Dots indicate enclosed
vertices.

beats (8) and (9). (For instance, type (2) has L2 = 3nA while type (1) has I? = An A,
so the former is better as long as it exists, that is, for 0 < A < 3n/A.)

Now, for 3A < 2A + 1 (that is, A < 1), type (2) beats (3); for A < 2, type (3)
beats (5); and for A < 16/n — 3, type (5) beats (7). Since A < 1 are areas attainable
by type (2), we see that type (2) will be a least-perimeter enclosure (among one-
component constant-curvature curves) for areas A < 1. Similarly, we can identify
which types do best between the other transition points.

Hence we know which constant-curvature curves do best. It is easy to check
that L2/A for these best constant-curvature discs is decreasing, and therefore by
Proposition 2.6 they are indeed the least-perimeter enclosures. •

The rectangular prism. We next consider a rectangular prism with sides a, b, and c.
This is the only non-regular polyhedron we study.

THEOREM 4.4. Letm = (4- n)/(2n - 4) and K = m + -Jm2 + m « 1.10. On
the surface of a rectangular prism with sides c < b < a, the following are all of the
least-perimeter enclosures of given area A:

• a circle about one vertex, for 0 < A < c2;
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• a constant-curvature curve about 2 adjacent vertices a distance of c apart, for
c2 < A < b2 + be;

• a constant-curvature curve about 3 vertices sharing a face with edges of length
b and c,for b2 + be < A < (4/TT - l)(b2 + c2 + 2bc) + be if b/c < K;

• a geodesic meeting the edges of length a at right angles, for (4/n — Y)(b2 +
c2 + 2bc) + be < A <ab + bc + ac ifb/c < K, or for b2 + bc <A <ab + bc + ac
if b/c > K.

Of course, for A > ab + be + ac, the least-perimeter enclosure for area A is the
complement of the least-perimeter enclosure for area 2(ab + be + ac) — A.

PROOF. AS with the cube, one finds all constant-curvature curves (shown in Fig-
ure 7) and selects the best. For further details, see [7, Theorem 4.8]. The condition on
the ratio b/c occurs because the transition points between types of curves depend on
the shape of the prism; comparing these transition points shows that a curve enclosing
three vertices can be most efficient if and only if the smallest face is nearly square. •

The regular tetrahedron. One feature of the regular tetrahedron not encountered
in other polyhedra is that there are infinitely many types of simple closed geodesies,
a fact mostly irrelevant to the present investigation but of independent interest. (For
our purposes it suffices to show that the shortest simple closed geodesic has length 2;
this can be done without the following lemma.)

LEMMA 4.5. Consider a tiling of the plane with equilateral triangles that have one
side parallel to the x -axis. Suppose a straight line connecting two vertices of this
tiling makes an angle 8 with the x-axis. Then there exist geodesies on the regular
tetrahedron that make an angle of 6 with some edges of the tetrahedron. Furthermore,
these are simple closed geodesies, and all simple closed geodesies can be obtained in
this manner.

The angle 9 — 60° is the most obvious simple closed geodesic, and was all that the
1995 Geometry Group found in [2], although, as Heppes later pointed out [8], there
is an infinitude of geodesies. The 1996 Geometry Group [5] also found the next most
obvious 9 = 90° geodesic, and it was their Figure 4 that led to our discovery of all of
the simple closed geodesies.

PROOF. We begin by unfolding our surface as in Figure 8; the nice feature of the
tetrahedron is that it unfolds to a regular tiling of the plane. A simple closed geodesic
will unfold to become a straight line in the plane. Translate this line parallel to
itself until it passes through a vertex; since our unfolding is a lattice, it will hit other
vertices every time the lattice repeats. Conversely, given a line segment connecting
two occurrences of the same vertex in our lattice, we can translate the segment parallel
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FIGURE 8. To find geodesies on the regular tetrahedron, we unfold it to a tiling of the plane. The
fundamental domain—one copy of the tetrahedron—is outlined. Simple closed geodesies must be
(translates of) line segments connecting two occurrences of the same vertex, here indicated by the large
dots. The 60° and 90° geodesies (of lengths 2 and 2V3, respectively) are shown in the tiling, on the
tetrahedron, and on a single unfolded tetrahedron.

FIGURE 9. The least-perimeter enclosures on the regular tetrahedron are circles centered at a vertex and
simple closed geodesies. Enclosed vertices are indicated by dots.

to itself by a small amount so that it no longer goes through a vertex, and then the line
becomes a simple closed geodesic on the folded-up tetrahedron. (The geodesic does
not intersect itself because any two occurrences of a given face of the tetrahedron in
the lattice are either translates of each other or 180° rotations, and thus all segments
of the closed geodesic on that face are parallel to each other.)

Hence it suffices to find all lines connecting occurrences of the same vertex in our
lattice. That is, the possible angles of simple closed geodesies are the possible angles
of lines between two points of the lattice, as claimed. •

THEOREM 4.6. On the surface of the regular tetrahedron with edge 1, the following
are all of the least-perimeter enclosures of given area A {see Figure 9):

• a circle about a single vertex, for 0 < A < 2/n ( « 0.637); and
• a simple closed geodesic making an angle of 60° with four edges of the

tetrahedron, for 2jn <A< -v/3/2 ( « 0.866).

Of course, for A > V3/2, the least-perimeter enclosure for area A is the complement
of the least-perimeter enclosure for area V3 — A.
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PROOF. Again, one finds all one-component constant-curvature curves and selects
the best. For further details, see [7, Theorem 4.2]. •

The regular octahedron. Finally, we consider the regular octahedron. The simple
closed geodesies are as follows:

LEMMA 4.7. There are two (types of) simple closed geodesies on the surface of the
regular octahedron. They make angles tan-1(V3) = 60° and t a n " 1 ^ ) = 90° with
some edges of the octahedron.

tan'1 (2^3) < 6 < tan"1 (3^3)

FIGURE 10. The two simple closed geodesies on the octahedron have angles tan '(\/3) = 60° and
tan-1(oo) = 90°; and lengths 3 and 2^3, respectively (top). By unfolding the octahedron (bottom left),
we can show that no other angles are possible: any other geodesies must cross themselves at the circled
locations (bottom).

PROOF. The proof uses an unfolding argument similar to that used for the cube (see
Figure 10) to show that the geodesic can only intersect an edge at 60° or 90°. For
further details, see [7, Lemma 4.3]. •

THEOREM 4.8. On the surface of a regular octahedron with edge 1, the following
are all of the least-perimeter enclosures of given area A (see Figure 11).

• a circle about a single vertex, for 0 < A < V3/2 ( « 0.866);
• a constant-curvature curve about two adjacent vertices, for V3/2 < A <

27/4TT - V3/2 ( « 1.28); and

m a simple closed geodesic making an angle of 60° with six edges of the octahe-
dron, for 27/Art - V3/2 < A < V3 ( « 1.73).

Of course, for A > \fl>, the least-perimeter enclosure for area A is the complement
of the least-perimeter enclosure for area 2\/3 — A.
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FIGURE 11. The least-perimeter enclosures on the regular octahedron are (1) circles centered at a vertex,
(2) constant-curvature curves about two adjacent vertices, and (3) simple closed geodesies containing a
face (Figure 10, upper left). Also shown, on the right, is a (non-minimizing) constant-curvature curve
about two antipodal vertices. Enclosed vertices are indicated by dots.

PROOF. Again, one finds all one-component constant-curvature curves and selects
the best. For further details, see [7, Theorem 4.4]. •

5. Double discs

We now move away from polyhedra, which have only isolated vertex singularities,
and consider manifolds with edge singularities. (The edges of polyhedra are not
intrinsic singularities, as one can see by unfolding the polyhedron.) We first study
manifolds that consist of two round, constant-curvature n-dimensional discs glued
together along their spherical boundaries; see Figure 12 for some examples. These
manifolds have one singular surface and are symmetric under rotation about a par-
ticular axis. If the two halves of the manifold are identical, then there is additional
reflectional symmetry. Although we will usually draw these manifolds using spherical
caps, we also allow the sectional curvature of one or both caps to be negative, in which
case part or all of the manifold is hyperbolic. These manifolds are C1 1 Riemannian
manifolds everywhere (see Proposition 2.1), but we will not use this fact in proving
our results.

PROPOSITION 5.1. Consider an n-dimensional manifold M constructed by taking
two round balls, each of constant sectional curvature, and gluing them together along
their boundaries. {Of course, to do this their boundaries must be congruent.) On this
manifold, a least-area enclosure of given volume is either a round spherical cap on
each side of the singularity or a round sphere on one side {possibly the singular set).

PROOF. We use spherical Schwarz symmetrization (see Figure 13 and [4, Chapter 2,
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FIGURE 12. Examples of two-dimensional double discs. Left: convex double disc consisting of two
identical caps. Right: non-convex double disc consisting of two non-identical caps.

FIGURE 13. Schwarz symmetrization of a region about a line I. Volume is maintained and boundary area
does not increase.

Section 9.2]). The details of this argument, in the most general context of geometric
measure theory in R", can be found in [1]. Generally, we work modulo sets of measure
zero.

By Proposition 2.1, we know that a minimizer exists and has constant mean curva-
ture away from the singularity, except possibly for a singular set of dimension at most
n — 8. Let R denote a region of least area. Draw a geodesic £. connecting the poles of
the two balls. For each (n — l)-sphere S centered at the pole of a given face, determine
the area of the slice R n 5. To obtain a more symmetric region R', replace RC\ S with
a round (n — l)-ball on S enclosing the same area and centered on the geodesic £.
After doing this, vol(/?') = vol(/?), and area(3/?') < area(3/?), with strict inequality
unless every slice of R is a round spherical cap centered on a geodesic (which we
may assume is I). We conclude that every slice of R is a round spherical cap; if the
intersection with dR is empty, the slice is either the whole sphere or the empty set.

Consider the points of 3 R closest to the pole of one ball. Suppose there is more than
one point. There must be a spherical cap of such points, and by analytic continuation,
a whole sphere of such points. There can be no other components of dR on this ball,
or we could slide this sphere until it touches another component, creating an illegal
singularity.

On the other hand, suppose that there is a unique point p closest to the pole. Take
a slice of the minimizer by an (n — l)-sphere centered at the pole, with radius slightly
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larger than the distance from p to the pole. This sphere separates 3 R, and we consider
the small component S inside this sphere. We choose spheres of mean curvature
equal to that of the minimizer away from the singularity, position one above and one
below S, and move them in toward the component until one touches dR on the interior
at a point q. By a standard argument of geometric measure theory, q must be a regular
point of dR. (If the tangent cone lies in a half-space, it must be a hyperplane and
hence the point is a regular point.) By the maximum principle, this component of dR
is locally and hence globally round on this ball; that is, a round sphere, a spherical
cap, or the empty set. In any of the three cases, it must be the only component of dR
on the ball.

We now know that the minimizer consists of two spherical caps or two round
spheres, one on each side of the singularity, or a round sphere on one side. If
it consists of two round spheres, we can slide the two spheres until they touch at
the singularity, and then a simple variational argument shows that this cannot be a
minimizer. We conclude that the minimizer is either a round spherical cap on each
side of the singularity or a round sphere on one side. •

In general, if the minimizer crosses the singularity we cannot determine the pro-
portion of the area enclosed on each side. However, on manifolds consisting of two
identical discs we can describe the minimizer precisely.

LEMMA 5.2. Construct an n-dimensional manifold M by taking two identical round
discs of constant sectional curvature and gluing them together along their boundaries.
If M is not a round sphere, then for all 0 < V < vol(Af) there is a unique (up to
rotations about the axis of symmetry) C1 surface which encloses volume V and consists
of a round spherical cap on each side of the singularity. It consists of two identical
spherical caps meeting the singular curve orthogonally.

PROOF. We first consider the two-dimensional case. Without loss of generality, we
can scale M so that its sectional curvature is 0, 1, or — 1. Consider two circular arcs of
the same curvature, one on each face of M, meeting up so that they subtend the same
edge length.

On each disc, draw a geodesic connecting the two points on the edge where the
arcs meet. (Note that if M consists of two spherical caps greater than hemispheres,
this geodesic will only exist on the discs completed to a sphere; this does not affect
our argument.) Let a be the angle at which this geodesic meets the edge (negative if
the discs are more than half spheres). Let the angles between these geodesies and the
constant curvature arcs be /J and y on respective discs. Thus the angle at which the
arc crosses is a + /J on one side and a + y on the other. (See Figure 14.)

By consideration of a sector of a circle of curvature K, where the angle between the
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r= \/K

FIGURE 14. Calculation of a minimizer crossing the singularity of a double disc made up of two identical
caps.

arc and the chord is fi, we find that

f(x/2)sin fi = cos(--0J =
fir) '

where / (f) is t if the sectional curvature of M is zero, tan t if it is 1, and tanh t if
it is — 1, and where x is the length of the geodesic chord and r is the radius of the
circle. (These formulae are standard in non-Euclidean geometry and can be found in
any introductory text on the subject.) Since the lengths of the geodesic chords are
the same on both sides, we consider the same wedge on the other side and find that
sin/3 = sin y.

Since both fi and y are in [0, n], the only solutions to sin/3 = sin y are fi = y
and fi = n — y. The fact that these arcs must cross the edge in a C1 fashion tells us
that 2a + fi + y = n. Thus if fi = n — y, then a = 0, and either M is a sphere,
in which case the geodesic chord makes zero angle with the singularity, or the edge
length is zero, in which case the curve lies entirely on one side (it is a circle tangent
to the edge).

If fi = y, then we have a+fi = a + y = n/2, and thus the curve crosses the
edge orthogonally and is the same on both sides. Since there are no other solutions
for fi, y 6 [0,7r], this curve is the unique one that has constant curvature and crosses
the edge in a C1 manner.

Uniqueness for a given area follows because if we have two curves of different
curvatures meeting the edge orthogonally, it is clear that we can place them tangent
to each other at the edge such that the curve of higher curvature is entirely contained
in the one of lower curvature. Thus area enclosed is a strictly decreasing function of
curvature, and the curve we have constructed is the unique one for a given area.

For n > 2, the fact that the surface must be a spherical cap on each side of
the singularity means we need only consider a two-dimensional cross-section that
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intersects the axis of symmetry. Since the surface is C1, the argument above applies,
and we conclude that each cross-section consists of identical circular arcs meeting the
edge orthogonally. Thus the surface consists of identical spherical caps meeting the
edge orthogonally. •

LEMMA 5.3. Construct an n-dimensional manifold M by taking two identical round
discs of constant sectional curvature and gluing them together along their boundaries.
On this manifold, the symmetric surface crossing the singularity orthogonally encloses
volume more efficiently than a sphere on one of the caps if and only if the mean
curvature of the edge singularity as viewed from each face is greater than zero.

PROOF. If curvature of the edge is positive, we consider a sphere entirely on one
disc. By Figure 15, it is clear that if we cut this sphere in half and place each half
against the singularity, we can enclose more volume with the same area. It is then
easy to reduce area and restore the original volume.

If the curvature of the edge is negative, we consider the surface consisting of two
identical spherical caps meeting the edge orthogonally. By Figure 15, it is clear that
if we place the two caps together on the same disc, we can enclose more volume with
the same area. It is then easy to reduce area and restore the original volume. If the
two halves do not fit on the same cap, then they must each have area greater than
half that of an equatorial sphere on one of the discs, since each disc is greater than a
hemisphere. Since it is possible to enclose any volume with an area equal to or smaller
than that of an equatorial sphere on one disc, such a surface crossing the singularity
cannot be a minimizer.

If the curvature of the edge is zero, the surface is a round sphere, and thus the two
candidates are identical and equally efficient. •

beats

and

beats

FIGURE 15. Top: If the curvature of the edge singularity is positive, it is more efficient to enclose area
against the edge than with a circle on one cap. Bottom: If the curvature of the edge singularity is negative,
it is less efficient to enclose area against the edge.
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REMARK. Alternatively, one could prove Lemma 5.3 for the case n — 2 using the
extension of the Gauss-Bonnet formula from Proposition 3.1. If the curvature of the
edge singularity is positive, then enclosed Gaussian curvature is always greater for
the family of curves that cross the edge than for circles which lie only on one face,
so length is less for the curves crossing the edge. Similarly, if the curvature of the
edge singularity is negative, then enclosed Gaussian curvature is less for the family
of curves that cross the edge than for the curves which lie only on one face, and so
length is greater for the curves crossing the edge.

We can now prove our double disc theorem:

THEOREM 5.4. On an n-dimensional manifold M (n > 2) constructed by taking
two identical round balls of constant sectional curvature and gluing them together
along their boundaries, the least-area surface enclosing a given quantity of volume V
is as follows. (See Figure 16.)

(1) If the balls are hemispheres, M is a round n-sphere, and the surface is a round
(n — l)-sphere anywhere on M.
(2) If the balls are spherical caps greater than hemispheres, the surface is a round

sphere on one cap {possibly the singular surface).
(3) Otherwise, the surface is two congruent round spherical caps meeting the sin-

gular surface orthogonally.

FIGURE 16. There are two types of least-area enclosures on a double disc composed of two identical
caps: a circle on one cap (left), and a curve which is identical on both sides and meets the singularity
orthogonally (right).

PROOF. By Proposition 5.1, the minimizer must be either a spherical cap on each
side of the singularity or a round sphere on one side. In the former case, by Lemma 5.2
it consists of two identical spherical caps meeting the edge orthogonally. Lemma 5.3
allows us to determine when each case occurs. If the two balls are spherical caps
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greater than hemispheres, then the curvature of the singularity is negative, and the
surface crossing the edge is less efficient than a round sphere on one side. Since these
are the only two candidates, the minimizer in this case must be a round (n — l)-sphere
on one side. If the two balls are Euclidean, hyperbolic, or spherical caps less than
hemispheres, then the curvature of the edge singularity is positive, and the minimizer
is the unique surface crossing the edge orthogonally. Finally, if the two balls are
hemispheres, then M is a round sphere, and by the standard isoperimetric theorem on
spheres the minimizer is an (n — 1)-sphere anywhere on M. •

We conjecture that this result generalizes to manifolds made up of discs that are
not identical. We believe that the statement analogous to Lemma 5.3 is that the choice
between a round sphere on one side and a spherical cap on each side is determined by
the sum of the curvatures of the singularity as viewed from each side. It is relatively
straightforward to show that this sum is negative if and only if the manifold M consists
of two spherical caps such that M is not convex when standardly embedded in Kn+1.
We thus have the following conjecture:

CONJECTURE 5.5. On an n-dimensional manifold M (n > 2) constructed by taking
two round balls of constant sectional curvature whose boundaries are congruent and
gluing them together along their boundaries, the least area surface enclosing a given
quantity of volume V is as follows:

(1) Of course ifM is a round n-sphere the surface is a round (n — l)-sphere anywhere
on the n-sphere.
(2) If M consists of two spherical caps such that M is not convex {standardly

embedded in R"+1), the surface is a round (n — l)-sphere on one cap.
(3) Otherwise the surface consists of round spherical caps in each ball meeting

dijferentiably in a round (n — 2)-sphere inside the singular set.

In (2), when V is less than or equal to the volume of the ball of greater curvature, the
surface is contained in the ball of greater curvature.

6. The cylindrical can

We continue to increase the complexity of the surfaces we are considering, this
time by adding another edge singularity. The cylindrical can is a family of two-
dimensional surfaces with two edge singularities, which are the circles where the lids
meet the sides. We assume that the can is symmetric around the 'vertical' z-axis and
the 'horizontal' xy-plane.

Like the double discs of Section 5, a cylindrical can is a C1 1 Riemannian manifold
everywhere. It follows by Proposition 2.1 that a perimeter-minimizing curve is C1 1

everywhere. We will not need these facts to prove the results in this section.
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Note: in this section, by unique, we mean unique up to rotation about the cylinder's
axis of symmetry and reflection about the cylinder's horizontal plane of symmetry.

PROPOSITION 6.1. The shortest curve enclosing a given quantity of area on a cylin-
drical can is a simple closed curve that crosses no edge more than twice.

PROOF. We use Schwarz symmetrization as in the proof of Proposition 5.1. Let R
be a region of least perimeter. Draw a straight line i on the can connecting the centers
of the two lids. For each circle S on the can, centered on the can's axis of symmetry,
determine the length L of R D S. Replace R D 5 with a circular arc of length L centered
on I, creating a new region R'. The areas of R and R' are the same, and the length of
the boundary of R' is less than that of the boundary of R unless each slice of R by one
of these circles was originally a circular arc. Each slice of dR by such circles thus
consists of two points which subtend a circular arc (unless the minimizer coincides
with the circle for positive length and thus has that circle as one of its components).
We note that this construction ensures that the minimizer intersects each singularity
at no more than two points, for it cannot coincide with the singularity for a positive
length by Proposition 2.2.

By Proposition 2.1, we deduce that dR consists of one or more of the follow-
ing:

(1) Round circles on a lid or the side, centered on t or the antipodal line (.'.
(2) At most one constant-curvature curve crossing the top (or bottom) rim twice.
(3) At most one constant-curvature curve crossing both rims twice.
(4) Horizontal circles around the side.

Since any area may be enclosed with no more perimeter than that of (4), if there is
one such curve it is all of dR. Also, if (3) occurs, it is all of dR, for otherwise curves
of type (1) or (2) could be moved to touch it, creating an illegal singularity.

We now show that in the remaining cases the minimizer consists of one curve of
either type (1) or type (2). We eliminate most possibilities by sliding curves until
they touch, creating illegal singularities. There cannot be multiple curves of type (1)
on either lid or the side, for then we could slide any two together until they touch.
Similarly, if there is a curve of type (2), there can be no curve of type (1) on the side
or on the lid it overlaps. Finally, if there are no type (2) curves, there cannot be curves
of type (1) on the side and a lid, for otherwise we could move them to circles tangent
at the singular curve, easily seen to be not minimizing.

At this point, there are three multi-component curves we have not ruled out: a type
(1) curve on each lid, a type (2) curve on each edge, and one curve of each type on
opposite lids. To eliminate these cases, we temporarily overlap these two regions and
then separate them into two different curves, each with an illegal singularity. We first
move the two components to the same lid and translate them until they intersect in
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two places. Let M be the union of the two enclosed regions and N be the intersection.
Replace the two original curves with the boundary of M on one lid and the boundary
of N on the other (see Figure 17). These new curves do not touch on the side, because
if they did then we could have moved the original curves until they touched. The new
curves have the same length as the original ones and enclose the same total area, but
both have illegal singularities, so we can reduce length and maintain area enclosed.

We conclude that the minimizer is a simple closed curve that crosses no edge more
than twice. •

FIGURE 17. A minimizer on a cylinder cannot consist of two closed curves, one crossing each edge
(left), because we can place the two curves on the same edge so that they overlap (center), and move the
overlapping portion to the other edge (right). The resulting curves have the same length as the original
ones and enclose the same total area, but both have illegal singularities. The same method can be used to
eliminate the case of a circle on each lid and the case of a circle on one lid and a curve crossing the other
edge.

We now show that a flat circle on a lid or the side cannot be a minimizer.

PROPOSITION 6.2. On a cylindrical can, the least-perimeter enclosure of a given
quantity of area cannot be aflat circle.

PROOF. Consider a flat circle on the side. Translate this circle until it is tangent
to an edge. Now truncate the circle a small distance from the edge, and translate the
remainder upwards until it touches the singularity at two points p\ and p2. Let A
be the area lost by this truncation. On the lid, draw a circular arc connecting px

and pi that encloses an area A above the chord connecting p\ and p2. Since we can
make A arbitrarily small, we may assume that this arc is less than a semicircle. Since
P\ and p2 are closer together on the lid than on the side, the curvature of this arc is
higher than that of the original circle. It is easy to show that for circular arcs less
than a semicircle enclosing area against a given chord, L2/A decreases as curvature
increases. (See Figure 18.) Thus the length L\ of the new arc between px and p2 is
less than the length Lo of the arc cut off from the circle on the side. Since the edge
of the lid curves outward, the total area enclosed is now greater than the original area,
so we can perturb the portion of the circle that remains on the side so as to regain the
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original area and reduce length (for example, by replacing a small curved arc with a
chord). Our new curve now encloses the same area as the original circle, but with a
smaller length.

FIGURE 18. Replacing a small portion of a circle on the side of a cylinder with an arc on the lid increases
area while decreasing length.

Now consider a flat circle on one lid. Again, we cut a small portion off the top of
the circle and push the circle until it touches the edge at two points p i and p2- Let L be
the length of the arc cut off. On the side, draw a circular arc of length L connecting p i
and p2- (See Figure 19.) By the thread inequality [11, Theorem 2.3], this arc encloses
more area than the area lost by the truncation. It is now easy to perturb the portion of
the circle that remains on the side so as to regain the original area and reduce length.
Again, our new curve encloses the same area as the original circle, but with a smaller
length.

L L

FIGURE 19. Replacing a small portion of a circle on the lid of a cylinder with an arc on the side increases
area while maintaining length.

Alternatively, we can rule out a flat circle on one lid without using the thread
inequality. If the height H of the cylinder is greater than or equal to twice the radius
of this circle, we can draw this circle on the side instead and use the same argument
as above. If not, find the length L of a chord a distance H/2 from the center of the
circle. Draw chords of length L at the same place on the two lids (that is, so that
the lines connecting their endpoints are vertical). Connect the four points where the
chords intersect edges with curves of the same curvature as the circle. The length of
this new curve is the same. However, the area has increased, since the two curves
on the side are farther apart, and there is an extra lune enclosed on both lids. (See
Figure 20.) Thus the area enclosed is greater than A. To reduce the area to A, reduce
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the curvature of the connecting arcs identically on both lids. Since the curvature of
our curve is greater than that of the edge (because the circle fit on the lid originally),
the length decreases as we decrease the curvature of the arcs on top and bottom. The
curve which results after we have restored the original area cannot coincide with both
edges, for then then the whole closed curve would be a plane figure (on the side of the
cylinder) enclosing area more efficiently than a circle. Our new curve now encloses
the same area as the original circle, but with a smaller length. •

'(> B)

FIGURE 20. Replacing a circle on the lid of a cylinder with arcs of the same curvature on the two lids and
side increases area while maintaining length.

The 1998 Geometry Group [7, Section 5] showed that on a cylindrical can of
height H, for any given curvature K < \/H there is a unique C1 curve of curvature K
which crosses one edge twice, and for any given curvature K < 2/H there is a unique
C1 curve of curvature K which crosses both edges twice and is symmetric about the
cylinder's horizontal plane of symmetry. However, these uniqueness results are for
given curvature, not area enclosed, so on a given cylinder, two curves of the same
type, but different curvature, may enclose the same area. Such a pair of curves exists
for the class of curves crossing one edge; the proof follows from Proposition 6.2. In
addition, there will usually be asymmetric curves crossing both edges of the cylinder,
and we have not yet found a way to classify these curves.

THEOREM 6.3. The least-perimeter enclosure of a given area A on a cylindrical
can is one of the following {see Figure 21).

(1) a horizontal circle around the side of the cylinder,
(2) a C1 constant curvature curve which crosses one edge twice; or
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(3) a C1 constant curvature curve which crosses both edges twice. (We conjecture
that this curve must be symmetric about the cylinder's horizontal plane of symmetry.)

Each case occurs as a minimizer for some area on some cylinder.

FIGURE 21. There are three types of least-perimeter enclosure on the cylinder.

PROOF. By Proposition 6.1, a minimizer must be a one-component constant-
curvature curve that crosses no edge more than twice. There are two types of curves
that do not cross any edges: flat circles and geodesies around the side of the cylinder.
By Lemma 6.2, the flat circle cannot be a minimizer. Hence every minimizer is one
of the three types stated above.

It remains to show that each type occurs. It is clear that curves of type (1) are best
for enclosing half the area on a tall, thin cylinder. It is also clear that curves of type
(2) are best for enclosing a very small area on any cylinder. We claim that curves of
type (3) are best for enclosing half the area on a short, fat cylinder, that is, one for
which the height H and radius R satisfy R y>> H. To see this, observe that a type (1)
curve would have length 2nR, and a type (2) curve would have to enclose most of the
top and go nearly all the way around the side, so it would have length nearly 27r R or
greater. On the other hand, the type (3) curve that is a geodesic passing through the
center of both lids would have length 4R + 2H, which is less. •

Note that a minimizer need not be unique. For example, at a transition point
between type (2) and type (1) curves on a tall, thin cylinder, there would necessarily
be a curve of each type that is a minimizer for the same area.

Numerical calculations with a computer program indicate that a curve about one
edge with curvature K S» 0.8207//? has length L = 2nR and area A « 3.7052/?2. So
for a sufficiently tall cylinder (that is, one for which minimizers never cross two edges),
this will be the transition point between the two types of least-perimeter enclosures.
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Furthermore, if 3.7052/?2 > nR2 + RH/2 (= area(5)/2), that is, if H/R < 1.1272,
then the least-perimeter enclosures will never be geodesies.

In addition, the smallest curves across two edges will have r > H/2, with perimeter
L > 2nr, so that geodesies beat two-edge curves (both symmetric and asymmetric
ones) if 2nR < nH, that is, if H/R > 2. Hence a cylinder for which H/R > 2 will
never have a minimizer that crosses both edges.

Beyond these results, the determination of which types of minimizers can occur on
a given cylinder remains an open question. Calculation of the exact transition points
on a given cylinder in terms of area enclosed also remains open.

We also note that in the limit where the height H is zero, the cylinder becomes a
manifold consisting of two identical flat discs. By Theorem 5.4, all minimizers on
this 'double disc' consist of two identical circular arcs meeting the edge orthogonally.
This curve corresponds to the symmetric curve on the cylinder that crosses both edges
twice.

Finally, Theorem 6.3 allows for the possibility that asymmetric curves crossing both
edges can be minimizing. We believe that this is never the case, but the the formulae
are extremely complicated, and we have not found a nice geometric argument. We
thus have the following conjecture:

CONJECTURE 6.4. On a cylindrical can, there is at most one Cl constant curvature
curve which crosses both edges twice, encloses a given area, and is not symmetric
about the horizontal plane of symmetry. Any such curve is unstable and thus cannot
be a least perimeter enclosure.
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