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Abstract

Effectively controlling systems governed by partial differential equations (PDEs) is crucial in several fields of applied
sciences and engineering. These systems usually yield significant challenges to conventional control schemes due to
their nonlinear dynamics, partial observability, high-dimensionality once discretized, distributed nature, and the
requirement for low-latency feedback control. Reinforcement learning (RL), particularly deep RL (DRL), has
recently emerged as a promising control paradigm for such systems, demonstrating exceptional capabilities in
managing high-dimensional, nonlinear dynamics. However, DRL faces challenges, including sample inefficiency,
robustness issues, and an overall lack of interpretability. To address these challenges, we propose a data-efficient,
interpretable, and scalable Dyna-style model-based RL framework specifically tailored for PDE control. Our
approach integrates Sparse Identification of Nonlinear Dynamics with Control within an Autoencoder-based
dimensionality reduction scheme for PDE states and actions (AE+SINDy-C). This combination enables fast rollouts
with significantly fewer environment interactions while providing an interpretable latent space representation of the
PDE dynamics, facilitating insight into the control process.We validate our method on two PDE problems describing
fluid flows—namely, the 1D Burgers equation and 2D Navier–Stokes equations—comparing it against a model-free
baseline. Our extensive analysis highlights improved sample efficiency, stability, and interpretability in controlling
complex PDE systems.

Impact Statement

Controlling complex physical systems described by partial differential equations is central to many applications
in engineering and applied sciences. In recent years, data-driven control strategies, particularly reinforcement
learning, have gained attention due to their effectiveness and real-time applicability. However, these techniques
often struggle with sample inefficiency and lack of interpretability, especially when dealing with high-
dimensional systems. The proposed data-driven approach combines autoencoders with sparse model discovery,
enabling scalable, robust, and interpretable control of high-dimensional systems. Our method significantly
reduces the need for expensive simulations or experiments while uncovering low-dimensional and interpretable
dynamics models. These advances open new possibilities for the design and deployment of reliable, data-
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efficient control strategies across industries, such as energy, aerospace, and manufacturing, and provide a
foundation for more transparent and trustworthy AI-based control in safety-critical systems.

1. Introduction

Feedback control for complex physical systems is essential in many fields of engineering and applied
sciences, which are typically governed by partial differential equations (PDEs). In these cases, the state of
the systems is often challenging or even impossible to observe completely; the systems exhibit nonlinear
dynamics and require low-latency feedback control (Brunton et al., 2020; Peitz and Klus, 2020; Kim and
Jeong, 2021). Consequently, effectively controlling these systems is a computationally intensive task. For
instance, significant efforts have been devoted in the last decade to the investigation of optimal control
problems governed by PDEs (Hinze et al., 2008; Manzoni et al., 2022); however, classical feedback
control strategies face limitations with such highly complex dynamical systems. For instance, (nonlinear)
model predictive control (MPC) (Grün and Pannek, 2017) has emerged as an effective and important
control paradigm. MPC utilizes an internal model of the dynamics to create a feedback loop and provide
optimal controls, resulting in a difficult trade-off between model accuracy and computational perform-
ance. Despite its impressive success in disciplines such as robotics (Williams et al., 2018) and controlling
PDEs (Altmüller, 2014), MPC struggles with real-time applicability in providing low-latency actuation,
due to the need for solving complex optimization problems.

In recent years, reinforcement learning (RL), particularly deep RL (DRL) (Sutton and Barto, 2018), an
extension of RL relying on deep neural networks, has gained popularity as a powerful and real-time
applicable control paradigm. Especially in the context of solving FPDEs, DRL has demonstrated
outstanding capabilities in controlling complex and high-dimensional dynamical systems at low latency
(Yousif et al., n.d.; Botteghi and Fasel, 2024; Peitz et al., 2024; Vinuesa, 2024). Additionally, recent
community contributions of benchmark environments such as ControlGym (https://github.com/xian
gyuan-zhang/controlgym) (Zhang et al., n.d.), PDEControlGym (https://github.com/lukebhan/PDECon
trolGym) (Bhan et al., 2024), and HydroGym (https://github.com/dynamicslab/hydrogym), all wrapped
under the uniformGym (Brockman et al., 2016) interface, highlight the importance of DRL in the context
of controlling PDEs. Despite its impressive success, DRL faces three major challenges:

1. Data usage: DRL algorithms are known to be sample inefficient, requiring a large number of
environment interactions, resulting in long training times and high computational requirements
(Zoph and Le, 2016). This is particularly problematic in the context of controlling PDEs, as
generating training data often requires either long simulations (Zolman et al., n.d., section B.3) or
would necessitate very expensive real-world experiments (OpenAI, 2020).

2. Robustness of the control performance: In high-dimensional state-action spaces, as in the
context of (discretized) PDEs, it is challenging to generate sufficient training data for the agent
to adequately cover the state-action space. This is crucial for ensuring a reliable and trustworthy
controller, impeding the application to safety-critical use-cases like nuclear fusion (Zhi et al., 2018)
or wind energy (Aubru et al., 2017).

3. Black-box model: DRL methods often result in policies and learned dynamics that are difficult to
interpret. While interpretability may not be critical when the sole objective is control performance,
it becomes important in scenarios where understanding the underlying PDE dynamics or ensuring
transparent and verifiable decision-making is necessary. This includes applications in scientific
discovery, safety-critical systems, or when diagnosing and improving controllers. In the context of
PDE control, interpretability aids both in gaining insights into complex dynamics and in building
trust in the learned controllers (Alla et al., 2023; Botteghi and Fasel, 2024).

A popular approach to address the aforementioned problem of sample inefficiency is the use of model-
based algorithms, specificallymodel-based RL (MBRL) (Sutton, 1990;Deisenroth andRasmussen, 2011;
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Chua et al., 2018; Clavera et al., 2018; Wang et al., 2019; Hafner et al., 2020). One of its various forms is
the Dyna-style MBRL algorithm (Sutton, 1991), which iteratively collects samples from the full-order
environment to learn a surrogate dynamics model. The agent then alternates between interacting with
the surrogate model and the actual environment, significantly reducing the amount of required training
data, allowing faster rollouts. Recent contributions inMBRL for PDEs include the use of convolutional
long-short term memory with actuation networks (Werner and Peitz, 2023) and Bayesian linear
regression for model identification in the context of the State-Dependent Riccati Equation control
approach (Alla et al., 2023).

Sparse dictionary learning is a class of data-driven methods that seek to approximate a nonlinear
function using a sparse linear combination of candidate dictionary functions, for example, polynomials of
degree d or trigonometric functions. In the context of identification of dynamical systems, sparse
dictionary learning is used by the Sparse Identification of Nonlinear Systems (SINDy) method
(cf. Section 2.3). SINDy is a very powerful method to identify a parsimonious, that is, with a limited
number of terms, dynamics model and resolve the issue of lacking interpretability, for example, of deep
neural networks. The PySINDy (https://github.com/dynamicslab/pysindy) package (Kaptanoglu et al.,
2021) makes implementations easy and fast. With its active community, SINDy has been extended to
various forms, such as ensemble versions (Fasel et al., 2022), uncertainty quantification for SINDy (Hirsh
et al., 2022), Bayesian autoencoder (AE)-based SINDy (Gao and Kutz, 2024) and applied to a variety of
different applications, including turbulence closures (Zanna and Bolton, 2020), PDEs (Rudy et al., 2016),
continuation methods (Conti et al., 2023), and variational architectures (Conti et al., 2024). In practice,
problems governed by PDEs usually require a fine enough discretization in order to be solved effectively,
leading to high-dimensional dynamical systems (order of magnitude 50 × 103, or even larger). However,
SINDy does not scale to high-dimensional systems, which is why we learn the latent representation of the
high-dimensional states and actions of the PDE with two AEs. This dimensionality-reduction step allows
for using SINDy and improves the robustness (we learn a low-dimensional representation of the PDE
states) of the control policies (Lesort et al., 2018; Botteghi et al., 2025).

Our contribution can be summarized as follows:

• With AE+SINDy-C, we present a novel combination of the AE framework and the SINDy-C
algorithm, incorporating controls into the AE framework as a Dyna-style MBRL method for
controlling PDEs.

• AE+SINDy-C enables fast rollouts, significantly reducing the required number of full-order
environment interactions and provides an interpretable, low-dimensional latent representation of
the dynamical system.

• Wedemonstrate the feasibility of our approach by solving two different fluid-flow PDEs, comparing
it to a state-of-the-art model-free baseline algorithm.

• We provide an extensive analysis of the learned dynamics and numerical ablation studies.

In particular, our work relies on two SINDy (Brunton et al., 2016) extensions:

1. For control applications, SINDy has been extended to work with controls, namely SINDy-C, MPCs
(Kaiser et al., 2018; Fasel et al., 2021), and importantly, in the context of RL in the work of Arora
et al. (Arora et al., 2022), and more recently by Zolman et al. (Zolman et al., n.d.) (see Section 2.3.1
for more details).

2. The work of Champion et al. (Champion et al., 2019) enables data-driven discovery using SINDy
and anAE framework for high-dimensional dynamical systems (see Section 2.3.2 formore details),
which has been extended to the continuation of parameter-dependent PDE solutions by Conti et al.
(Conti et al., 2023).

The remainder of this paper is structured as follows: Section 2 provides a brief overview of the general
problem setting, related with control strategies relying on DRL, and the two aforementioned SINDy
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extensions upon which AE+SINDy-C is based. Section 3 explains the proposed method in detail and
highlights the usage of AE+SINDy-C in the context of DRL for controlling PDEs. In Section 4, we
explain the two PDE benchmark cases and analyze the numerical results in detail. Section 5 provides an
overview of possible interesting directions for follow-upwork and variations ofAE+SINDy-C. All details
about the used environments, DRL, and the training of AE+SINDy-C can be found in Appendix A.

2. Background and related work

2.1. Problem setting

In this work, we address the problem of controlling a nonlinear, distributed, dynamical system described
by the equation:

d

dt
x tð Þ= f x tð Þ,u tð Þð Þ,

where the state x tð Þ∈ℝNx and control input u tð Þ∈ℝNu are continuous variables, with potentially very
large dimensions Nx and Nu, respectively. The function f :ℝNx ×ℝNu !ℝNx is assumed to be unknown,
but we can observe a time-discrete evolution of the system, resulting in a sequence of (partially or fully)
observable measurements mt,mt + 1,…,mt +H of the state over a horizon H ∈ℕ+ . A system is fully
observable (FO) if the observationsmi ∈ℝNx allow to observe each (full) state of the system directly, that
is,NObs

x =Nx andmi = xi. On the other hand, a system is partially observable (PO) if only a limited number
of sensors is available, resulting in a lower-dimensional observation spacemi ∈ℝNObs

x , where NObs
x ≪Nx

that does not capture the full state of the PDE. In this work, we consider both FO and PO systems.
Similarly, we assume a limited number of actuators are available to control the system. The combination
of nonlinear system dynamics with a limited number of state sensors and control actuators entails a
complex and challenging problem in PDE control.

2.2. Reinforcement learning

RL is a general framework for solving sequential decision-making processes. RL has been applied to a
variety of different tasks, including natural language processing for dialogue generation (OpenAI Team,
2024) and text summarization (Li et al., 2016), computer vision for object detection and image
classification (Mnih et al., 2013), robotics for autonomous control and manipulation (Levine et al.,
2016), finance for portfolio management and trading strategies (Jiang et al., 2017), and game playing for
mastering complex strategic games (Silver et al., 2016). These applications highlight the broad versatility
and significant impact of RL across multiple fields.

RL is the subset of machine learning that focuses on training agents to make decisions by interacting
with an environment. The RL framework is typically modeled as a Markov decision process (MDP),
defined by the tupleM≔ X ,U ,P,R,γð Þ, whereX⊆ℝNx is the set of observable states, U⊆ℝNu is the set of
actions, P :X ×X ×U! 0,1½ � is the transition probability kernel with P x0,x,uð Þ representing the
probability of reaching the state x0 ∈X while being in the state x∈X and applying action u∈U ,
R :X ×U !ℝ is the reward function, and γ∈ 0,1ð � is the discount factor.

The goal of anRL agent is to learn an optimal policy π thatmaps states x of the environment to actions u
in a way that maximizes the expected cumulative reward over time a control horizon H:

RH =E
XH
t = 0

γtrt

" #
, (2.1)

with rewards rt collected at timesteps t and a control horizon H being finite or infinite—in this work we
focus on finite control horizons. RL agents often optimize the policy by approximating either the value
function V :X !ℝ or the action-value function Q :X ×U !ℝ to quantify, and optimize the cumulative
reward (eq. [2.1]) for a state x∈X or a state-action pair x,uð Þ∈X ×U , respectively. When dealing with
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high-dimensional state spaces, continuous actions, and nonlinear dynamics, the estimation of the value
function becomes a very challenging and data-inefficient optimization problem.

In general, we distinguish between model-free and model-based RL algorithms. Model-free algo-
rithms do not assume any explicit model of the system dynamics, and aim at optimizing the policy directly
by interacting with the environment. This approach offers more flexibility and is more robust to model
inaccuracies but usually requires a large number of interactions to achieve good performance, making it
difficult to apply in cases of data sparsity or expensive interactions. On the other hand, model-based RL
algorithms internally create a model of the environment’s dynamics, that is, the transition probability
kernelP and the reward functionR (note that in this work we only consider the case of a known full-order
reward functions). The agent leverages this model to simulate the environment and plan its actions
accordingly, typically resulting in more sample-efficient training. We focus on Dyna-style (Sutton, 1991)
RL algorithms, which learn a surrogate model of the system dynamics, allowing the agent to train on an
approximation of the environment and thus requiring fewer data.

A general scheme of the RL cycle we used for training, including a Dyna-style surrogate dynamics
model of the environment is shown in Figure 1. Since this work focuses onDyna-style RL algorithmswith
the surrogate model being the center of this work, we use the proximal policy optimization (PPO)
algorithm (Schulman et al., 2017) as a state-of-the-art actor-critic algorithm. Actor-critic methods learn
both the value-function, that is, the critic, and the policy, that is, the actor, at the same time and have shown
very promising results in the last years.

2.3. SINDy: Sparse Identification of Nonlinear Dynamics

We briefly review two versions of Sparse Identification of Nonlinear Dynamics (SINDy) used in the
SINDy-RL (Zolman et al., n.d.) and AE+SINDy (Champion et al., 2019) frameworks. SINDy (Brunton
et al., 2016) is an extremely versatile and popular dictionary learning method, that is, a data-driven
algorithm aiming at approximating a nonlinear function through a dictionary of user-defined functions. In
particular, SINDy assumes that this approximation takes the form of a sparse linear combination of
(potentially nonlinear) candidate functions, such as polynomials or trigonometric functions.

In its general formulation, given a set of N data points x1,y1ð Þ,…, xN ,yNð Þ with xk ∈ℝm and
yk = f xkð Þ∈ℝn, k = 1,…,N, and collected as

X= x1,…,xN½ �⊤ ∈ℝN ×m, Y= y1,…,yN½ �⊤ ∈ℝN × n,

and a set of d candidate functionsΘ Xð Þ= θ1 xð Þ,…,θd xð Þ½ �∈ℝN × d, we aim to find a representation of the
form

Y =Θ Xð Þ �Ξ, (2.2)

where Ξ∈ℝd × n is the coefficients to be fit. These are usually trained in a Lasso-style optimization
(Tibshirani, 2018) since we assume sparsity, that is, the system dynamics can be sufficiently represented
by a small subset of terms in the library. Overall, we optimize (a variation of) the following loss:

Ξ= argminbΞ Y�Θ Xð ÞbΞ��� ���
F
+L bΞ� �

, (2.3)

with a regularization termL promoting sparsity, that is, usuallyL Ξð Þ= Ξk k1, and �k kF is the Frobenius
norm defined as Ak kF =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i = 1

Pn
j = 1a

2
ij

q
for a matrix A∈ℝm× n. While in Champion et al. (2019)) and

Zolman et al. (n.d.)), the loss eq. (2.3) is an �k k2-penalty with sequential thresholding least squares
(STLS), we use PyTorch’s automatic differentiation framework (Paszke et al., 2017) and optimize the
�k k1-loss as in (Brunton et al., 2016).
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2.3.1. SINDy-RL
SINDy-RL is a very recent extension of SINDy that combines SINDy with an RL algorithm for Dyna-
style RL (Zolman et al., n.d.; Arora et al., 2022). This approach involves using SINDy to learn a surrogate
model of the environment and then train the RL agent using this approximation of the full-order model.
This method results in a drastically-reduced number of necessary full-order interactions and very fast
convergence. Specifically, Zolman et al. (Zolman et al., n.d.) work with the discrete SINDy-C formula-
tion, that is, including controls, for the discovery task xk + 1 = f xk,ukð Þ, whereX= x tkð Þ,u tkð Þð Þk = 1,…,N and
Y = x tk + 1ð Þð Þk = 1,…,N in the notation of eq. (2.2). Note that since in our workwe focus on enabling efficient
surrogate representations for controlling distributed systems, we do not further review the reward
approximation nor the policy approximation aspects addressed in Zolman et al. (n.d.)).

Despite significantly reducing the number of full-order interactions, not requiring derivatives of
(potentially noisy) measurements, and incorporating controls in the surrogate model, so far SINDy-RL
lacks the scalability to high-dimensional systems (see Zolman et al., n.d., section 6). While it shows

Figure 1. Overview of the RL training loop. In Dyna-style algorithms, we choose if the agent interacts
with the full-order model, requiring (expensive) environment rollouts or the learned surrogate, that is
reduced order, model, providing fast approximated rollouts. In this work, we focus on the setting where the
full-order reward is (analytically) known and only the dynamics are approximated. In general, the

observed state is computed byℝNObs
x ∋xObst + 1 =C �xt + 1. In the partially observable (PO) case, the projection

matrix C∈ 0,1f gNx ×NObs
x is structured with a single 1 per row and zero elsewhere, that is, NObs

x ≪Nx. In
the fully observable case C� IdℝNx , that is, NObs

x =Nx.
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convincing results for state spaces with up to eight dimensions and action spaces with up to two
dimensions, controlling distributed systems require much larger state and action spaces to be solved
and controlled accurately.

2.3.2. AE+SINDy: Autoencoder framework for data-driven discovery in high-dimensional spaces
In their work, Champion et al. (2019)) rely on the classical SINDy formulation for the discovery task in the
latent space. Indeed, they generalize the concept of data-driven dynamics discovery to high-dimensional
dynamical systems by combining the classical SINDy formulation with an AE framework (Hinton and
Salakhutdinov, 2006; Bengio et al., 2012; Goodfellow et al., 2016) to allow for nonlinear dimensionality
reduction. Hence, instead of directly working with high-dimensional systems, the SINDy algorithm is
applied to the compressed, lower-dimensional representation of the system with NLat

x ≪Nx.
Given the encoder φ �,Wφ

� �
:ℝNx !ℝNLat

x and the decoder network ψ �,Wψ

� �
:ℝNLat

x !ℝNx , as well as
the latent representation z tð Þ= φ x tð Þð Þ∈ℝNLat

x , the following loss is minimized:

min
Wφ,Wψ,Ξ

x�ψ zð Þk k22|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
reconstruction loss

+ λ1 _x� ∇zψ zð Þð Þ Θ z⊤
� �

Ξ
� ��� ��2

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
SINDy loss in _x

+ λ2 _z�Θ z⊤
� �

Ξ
�� ��2

2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
SINDy loss in the latent space

+ λ3 Ξk k1|fflfflffl{zfflfflffl}
sparse regularization

,
(2.4)

with _z= ∇xzð Þ _x. The SINDy loss in _x, that is, the consistency loss, ensures that the time derivatives of the
prediction matches the input time derivative _x; we refer to figure 1 in Champion et al. (2019)) for more
details (the AE+SINDy algorithm could be seen as the upper half of Figure 2 with a different loss). As
described in the supplementary material of Champion et al. (2019)), due to its nonconvexity and to obtain
a parsimonious dynamical model, the loss in eq. (2.4) is optimized via STLS.

AE+SINDy provides very promising results for (re-)discovering the underlying true low-dimensional
dynamics representation of high-dimensional dynamical systems. Further extensions of the AE+SINDy
framework have been recently proposed in Conti et al. (2023)) and Bakarji et al. (2023)). However, to be
applicable in a control setting with (potentially noisy) data, AE+SINDy suffers from the necessity of
requiring derivatives of the observed data and the inability to include controls in the SINDy framework. In
the next section, wewill combine and generalize the approaches of SINDy-RL andAE+SINDy to develop
AE+SINDy-C within an RL setting.

3. AE+SINDy-C: Low-dimensional sparse dictionary learning for simultaneous discovery and
control of distributed systems

3.1. Latent model discovery

To efficiently scale SINDy to high-dimensional state spaces, incorporate controls, and eliminate reliance
on derivatives, we introduce AE+SINDy-C. This approach aims to accelerate DRL for control tasks
involving distributed—potentially large-scale—systems, by combining the derivative-free Dyna-style
DRL training in the SINDy-C case, as demonstrated by (Zolman et al., n.d.; Arora et al., 2022), with the
scalable approach to high-dimensional state- and action-spaces from (Champion et al., 2019).

Our method approximates the environment dynamics to speed up computationally-expensive simu-
lations, significantly reducing the need for interactions with the full-order model. Additionally, it yields an
interpretable and parsimonious dynamics model within a low-dimensional surrogate space. When setting
the dimensions of the latent spaces, NLat

x and NLat
u , representing the reduced-order state and control,

respectively, we distinguish between two scenarios:

• Intrinsic dimension known a priori. In some applications, domain knowledge or prior analysis
provides insight into the intrinsic dimension of the system’s solution manifold. For example, in
Section 4.1, Burgers’ equation evolves over a one-dimensional spatial domain and time, suggesting
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a low-dimensional solution manifold of intrinsic dimension two. Accordingly, we choose NLat
x = 2

and setNLat
u = 2 for reasons of symmetry. This choice is validated by themodel’s ability to accurately

reconstruct the dynamics.
• Intrinsic dimension unknown. In the absence of prior information, NLat

x and NLat
u are treated as

hyperparameters to be inferred from data. In this setting, we adopt a data-driven strategy to explore
and tune these dimensions, aiming to approximate the minimal latent space that captures the
essential dynamics and control dependencies. For example, in Section 4.2, we experiment with
multiple choices of latent dimensions to estimate a lower bound on the dimensionality of the
surrogate representation. This tuning process enables the discovery of a compact latent model solely
from observational data.

In support of this approach, our results in Section 4 show that AE+SINDy-C is capable of identifying
latent dimensions that are consistent with the underlying structure of the control space, evenwhen no prior
information is used.

We operate in the (discrete-time) SINDy-C setting (see Section 2.3.1) with xk = x tkð Þ,u tkð Þð Þ and
yk = x tk + 1ð Þ. Here, x tkð Þ∈ℝNObs

x , where NObs
x =Nx in the fully observable case, and NObs

x ≪Nx in the
partially observable case (compared to Figure 1, we simplify the xObst notation by omitting the super-
script), respectively, and u tkð Þ∈ℝNu . Overall, we are interested in the discovery task xk + 1 = f xk,ukð Þ.

Figure 2. AE architecture and loss function used during the training stage. Trainable parameters are
highlighted in red. The different stages of the training scheme can be listed as follows. (1) the current state
xt, applied control ut, and the next state xt + 1 are provided as input data. (2) After compressing both the
current state and the control vector, the SINDy-C algorithm is applied in the latent space, yielding a low-
dimensional representation of the prediction for the next state. (3) The latent space representations of the
current state, the control, and the next state prediction are decoded. (4) The classical AE loss is computed.
(5) The SINDy-C loss and a regularization term to promote sparsity are computed. Figure inspired by

Conti et al. (2023, figure 1).
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Instead of applying SINDy-C directly on our measurements, we follow the idea of Champion et al.
(Champion et al., 2019) to first compress the states and actions using the encoder, then apply SINDy-C in
the low-dimensional latent space, predict the next state, and subsequently decompress the obtained
prediction back to the observation space using the decoder.

3.1.1. Offline training
As already described in the previous section, the overall framework is shown in Figure 2 and can be
divided into three steps:

(i) Encoding: The observed state xt ∈ℝNObs
x and the current control ut ∈ℝNu are indi-

vidually compressed by two separated encoder networks φx �;Wφx

� �
:ℝNObs

x !ℝNLat
x and

φu �;Wφu

� �
:ℝNu !ℝNLat

u , yielding their low-dimensional latent-space equivalent zx tð Þ∈ℝNLat
x

and zu tð Þ∈ℝNLat
u , respectively.

(ii) Discrete SINDy-C in the latent space:Given a set of d dictionary functions (e.g., polynomials,
trigonometric functions) the dictionary Θ zx tð Þ,zu tð Þð Þ=Θ φx xt;Wφx

� �
,φu ut;Wφu

� �� �
∈ℝd

is evaluated and multiplied by Ξ∈ℝd ×NLat
x , that is, the coefficients to be fit.

(iii) Decoding: The result zx t + 1ð Þ=Θ zx tð Þ,zu tð Þð ÞΞ∈ℝNLat
x is then decoded to obtain a prediction

for the next state of the high-dimensional system by using the state-decoder
ψx �;Wψx

� �
:ℝNLat

x !ℝNObs
x . To train the AE, the compressed state and action are also decoded

and fed into the loss function by using the state-decoder and the control-decoder
ψu �;Wψu

� �
:ℝNLat

u !ℝNu .

Overall, we obtain the following loss function:

min
Wφx ,Wφu ,Wψx ,Wψu ,Ξ

xt + 1�ψx Θ φx xt;Wφx

� ��
,φu utð ;WφuÞÞ �Ξ;Wψx

� ��� ��2
2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

forward  SINDy‐C prediction loss

+ λ1 xt�ψx φx xt;Wφx

� ��
;Wψx

Þ�� ��2
2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

autoencoder loss state

+ λ2 ut�ψu φu ut;Wφu

� ��
;Wψu

Þ�� ��2
2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

autoencoder loss control

+ λ3 Ξk k1|ffl{zffl}
sparsity regularization

,

(3.1)

representing the loss of the decoded forward prediction in the SINDy-C latent space formulation, that is,
parts (ii) and (iii), the classical AE loss and also the regularization loss to promote sparsity in the SINDy-
coefficients. Since our entire pipeline is implemented in thePyTorch library (Paszke et al., 2017), we train
eq. (3.1) by using the automatic differentiation framework and thus do not rely on STLS. We use
Kaptanoglu et al. (2021)) to create the set of d dictionary functions once in the beginning of the pipeline.
The parameters λ1,λ2 ∈ℝ> 0 are hyperparameters to individually weight the contribution of each term.

3.1.2. Online deployment
Following the training stage, where the parameters Wφx , Wφu ,Wψx

,Wψu
, and Ξ are learned, the trained

network can be deployed as a Dyna-style environment approximation to train the DRL agent. The
surrogate environment enables extremely fast inferences and, if well-trained, provides accurate predic-
tions of the system dynamics. Given a current state xt ∈ℝNObs

x (either observed or simulated) and a control
ut � π �jxtð Þ, the prediction of the next state is computed as follows:bxt + 1 =ψx Θ φx xt;Wφx

� ��
,φu utð ;WφuÞÞ �Ξ;Wψx

� �
≈ f xt,utð Þ,
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which involves only one matrix multiplication, the evaluation of d dictionary functions, and three neural
network forward passes, resulting in exceptionally low inference times.

3.2. DRL training procedure

We describe the usage of AE+SINDy-C in a Dyna-style MBRL in Algorithm 1. A key hyperparameter in
this approach is kdyn (line 7), which controls how many times the agent is trained on the surrogate model
before collecting new data from the full-order environment. Specifically, the agent is trained kdyn�1
times per iteration on the surrogate. Choosing kdyn involves a trade-off: a larger kdyn increases sample
efficiency bymaximizing learning from the surrogate but may lead to instability or degraded performance
if the surrogate model is imperfect. Conversely, a smaller kdyn reduces this risk at the price of more
frequent interactions with the environment, increasing computational cost and data requirements. In our
experiments, kdyn was selected via preliminary tuning to achieve a balance between stable convergence,
learning speed, and efficient data usage. Future work could explore adaptive strategies that adjust kdyn
dynamically based on surrogate model accuracy or policy performance metrics to optimize training. We
use the PPO algorithm (Schulman et al., 2017) as a state-of-the-art actor-critic policy. As in Zolman et al.
(n.d.)), we also use the PPO gradients to update the parameters of the autoencoder surrogate model.

To also correctly emulate the partial observability, that is,NObs
x <Nx, in the reward function, we project

the target state into the lower-dimensional observation space and compute the projected reward. Namely,
for Burgers’ equation, we compute xObst �C �xref

� �⊤
QProj xObst �C �xref

� �
, whereQProj is a scaled identity

matrix in the lower-dimensional observation space. This procedure makes the training more challenging
since we only obtain partial information via the reward function. In the case of NObs

x =Nx and for the
evaluation of all final models, we use the closed form of the full-order reward function.

1: Algorithm 1 Dyna-style MBRL using AE+SINDy-C.
Require:E full‐order env: FOEð Þ,π0 init:policy,Θ,Noff ,Ncollect,nbatch,kdyn.
2: Doff = CollectData E,π0,Noffð Þ // Off-policy data using FOE
3: D= InitializeDatastore Doffð Þ
4: Ê=AE+SINDy‐C D,Θð Þ // Fit surrogate env.
5: π = InitializePolicyðÞ
6: while not done do
7: for kdyn�1 steps do

8: π =PPO:update Ê,π,nbatch
� �

// Train agent with surrogate env.
9: end for
10: Don =CollectData E,π,Ncollectð Þ // Collect on-policy data
11: D=UpdateStore D,Donð Þ
12: Ê =AE+SINDy‐C D,Θð Þ // Update surrogate env.
13: end while
14: return π

4. Numerical experiments

To validate our approach, we study Burgers’ equation and the Navier–Stokes equations on two test
benchmark implementations provided by the well-establishedControlGym library (Zhang et al., n.d.) and
the PDEControlGym library (Bhan et al., 2024), respectively. In both cases, we compare our Dyna-style
MBRL Algorithm 1 with the model-free PPO baseline which only interacts with the full-order environ-
ment. Burgers’ equation serves as an initial example to highlight the data efficiency of the algorithm,
explore both partially and fully observable cases, examine robustness to noisy observations, and
experiment with discovering control dimensions in the latent space. While the model-free PPO baseline
achieves slightly better final performance (cf. Table 1), AE+SINDy-C reaches competitive results using

e51-10 Florian Wolf et al.

https://doi.org/10.1017/dce.2025.10027 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.10027


significantly fewer full-order interactions, demonstrating its advantage in terms of sample efficiency.
Additionally, we emphasize the method’s strengths in out-of-distribution generalization for the initial
condition, interpretability of the learned surrogate dynamics, and details about the AE’s training, which
are covered in Section 4.1. In contrast, the Navier–Stokes equations offer a more challenging example,
with only boundary controls and a much higher-dimensional state space, underscoring AE+SINDy-C’s
scalability. This case will showcase how the method can be applied to complex, high-dimensional
systems, discussed in Section 4.2.

Since AE+SINDy-C serves as a Dyna-style MBRL algorithm, we analyze the efficiency of the
proposed framework with respect to the number of full-order model interactions. For all our experiments,
we use the Ray RLLib package (Liang et al., 2017); AE+SINDy-C is implemented in PyTorch (Paszke
et al., 2017). All details about the PDE environments parameters are available in Appendix B. For further
details on the DRL training, we refer to Appendix C; specific details about the AE training can be found in
Appendix D.

4.1. Burgers’ equation (ControlGym)

The viscous Burgers’ equation can be interpreted as a one-dimensional, simplified version of the Navier–
Stokes equations, describing fluid dynamics and capturing key phenomena such as shock formations in
water waves and gas dynamics. Solving Burgers’ equation is particularly challenging for RL and other
numerical methods due to its nonlinearity and the presence of sharp gradients and discontinuities. Given a
spatial domain Ω= 0,L½ �⊂ℝ and a time horizon T , we consider the evolution of continuous fields
x x, tð Þ :Ω× 0,T½ �!ℝ under a the temporal dynamics:

Table 1. Performance comparison of the Dyna-style AE+SINDy-C method for Burgers’ equation

Baseline AE+SINDy-C,kdyn = 5 AE+SINDy-C,kdyn = 10

PO48 × 8 FO256 × 8 PO48 × 8 FO256 × 8 PO48 × 8 FO256 × 8

#FOM interactions 12,000 12,000 2400 2400 1200 1200
Off-policy - - 200 200 200 200
On-poliy 12,000 12,000 2200 2200 100 1000
Reward R
Random Init (μ ± σ2)

t∈ 0s,1s½ � �85:42 �8:52 �51:95 �17:24 �82:52 �17:22
± 37:13 ± 3:47 ± 25:03 ± 12:81 ± 24:77 ± 12:39

t∈ 1s,5sð � �14:52 �2:61 �6:50 �10:62 �10:39 �45:29
± 8:09 ± 1:51 ± 4:54 ± 3:86 ± 8:22 ± 7:65

Bell Function Init (μ ± σ2)
t∈ 1s,2s½ � �31,551:70 �32,817:89 �44,054:61 �42,032:25 �47,417:93 �45,027:72

± 10,772:44 ± 11,513:03 ± 13,382:10 ± 13,418:30 ± 14,071:58 ± 13,936:04
t∈ 2s,6sð � �2642:00 �2778:67 �23165:13 �15,335:65 �35,431:61 �25,302:46

± 1055:71 ± 1313:07 ± 8099:89 ± 5967:48 ± 10,610:13 ± 8719:55
Total #parameters 13,705 66,953 14,905 78,727 14,905 78,727
AE+SINDy‐C - - 1200 11,774 1200 11,774

Actor + Critic 13,705 66,953 13,705 66,953 13,705 66,953

Note: We test kdyn = 5,10 against the full-order baseline for the partially observable (PO) and FO case. The models correspond to the dashed vertical
lines in Figure 3 and represent all models after 100 epochs. We compare the number of full-order model (FOM) interactions, the performance for a
random initialization (cf. Appendix A.1), the bell-shape initialization and ν= 0:01 (cf. Section 4.1.2), and the total number of parameters. Best
performances (bold) are highlighted row-wise. For the evaluation the performance over five fixed random seeds is used.
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∂tx x, tð Þ+ x x, tð Þ∂xx x, tð Þ� ν∂2xxx x, tð Þ = u x, tð Þ
x x,0ð Þ = xinit xð Þ , (4.1)

given an initial state xinit :Ω!ℝ, a constant diffusivity ν> 0, a source term (also called forcing function)
u x, tð Þ :Ω× 0,T½ �!ℝ, and periodic boundary conditions. Internally, ControlGym discretizes the PDE in
space and time, assuming uniformly spatially distributed control inputs ut, which are piecewise constant
over time. This results in a discrete-time finite-dimensional nonlinear system of the form:

xt + 1 = f xt,ut;wkð Þ, (4.2)

including (optional) Gaussian noise wk (to be precise, the discrete dynamics f also depend on the mesh
size of the discretization). In this work, the internally used solution parameters are set to their default and
for more details we refer to Zhang et al. (n.d.), p. 6) and Appendix B. As previously mentioned, since our
new encoding-decoding scheme does not rely on derivatives, we explicitly want to test the robustness
of AE+SINDy-C with respect to observation noise. Thus, we follow the observation process by Con-
trolGym given by

xObst =C �xt + vt,
where the matrix C∈ℝNObs

x ×Nx is as described in Figure 1 and vt �N 0,Σvð Þ is zero-mean Gaussian noise
with symmetric positive definite covariance matrix Σv = σ2 � IdNObs

x
∈ℝNObs

x ×NObs
x ,σ2 > 0. For both prob-

lems, we define a target state xref and use the following objective function to be maximized:

J xt,utð Þ= �E
XK�1

t = 0

xObst �xref
� �⊤

Q xObst �xref
� �

+ u⊤t Rut
h i( )

,

with positive definite matrices Q∈ℝNObs
x ×NObs

x and R∈ℝNu ×Nu balancing the control effort and the
tracking performance, and K ∈ℕ denotes the number of discrete time steps. As reference state and
controls, we both use the zero-vector. The inherent solution manifold of eq. (4.1) is two-dimensional,
representing both space and time.

In this work, the diffusivity constant ν= 1:0 is fixed and we chooseΩ= 0,1ð Þ as spatial domain, that is,
we selectL = 1. In this example, we set the reduced dimension toNLat

x = 2, as Burgers’ equation depends on
both space and time and is known to exhibit a solution manifold of (approximately) intrinsic dimension
two. For symmetry, we choose NLat

u = 2. In cases where such prior information is not available, these
dimensions can be treated as tunable parameters and inferred from data, as discussed in Section 3.1.

The target state of xref � 0∈ℝNObs
x is used. In Section 4.1.3, we will see how AE+SINDy-C is

independently able to compress the controls even further.
For Burgers’ equation, we trained AE+SINDy-C with different full-order model update frequencies

kdyn = 5,10,15 to analyze the sample efficiency and the sensitivity of the surrogate model. In the case
kdyn = 15, the internal modeling bias was too big for a successful DRL training, which is the reason why
this case is excluded from the analysis. This appears to be a natural limitation since the number of full-
order interactions was too low and thus not sufficient to adequately model the system dynamics under
investigation.

4.1.1. Sample efficiency and speed-ups
As in the training, the initial condition is given by a uniform U �1,1½ �Nx

� �
distribution; for more details,

we refer to Appendix A.1. We use an evaluation time horizon of Teval = 1s and let the agent extrapolate
over time for four more seconds, that is, Textrap = 4s, resulting in T = 5s, four times more than the training
horizon. Figure 3 shows the average reward ( ± one standard deviation) given the number of full-order
interactions each model has observed. For a quantitative overview, we refer to Table 1, where we display
the results with further detail. We separately illustrate the performance on the evaluation horizon
0s,1s½ �, that is, the time horizon the agent interacts for during the training, and the extrapolation
horizon 1s,5sð �. The vertical dashed lines in Figure 3 represent the models after 100 epochs and are
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deployed to evaluate the agent’s performance, that is, Table 1. We save all intermediate models and
stop the training for all models after exactly 100 epochs, which is approximately the point where the
extrapolation performance drops, that is, performing early stopping. In the case of the AE+SINDy-C
algorithm, this performance drop is also evident in the evaluation data, caused by the high sensitivity of
the online training of the AE.

In general, we can see that all of the models overfit the dynamics. While the performance on the
evaluation time interval still improves, themodel becomes very unstablewhen extrapolating in time and at
the end of the training interval almost all model solutions diverge. As expected, generally the model fully
observing the PDE outperforms the model that only observes partial measurements. Additionally, the
partially observable cases exhibit a higher standard deviation and thus higher variability in their
performance.

Partially observable. Generally, the models only partially observing the system exhibit worse
performances and suffer under higher variability. At the end of the training horizon, in both cases, the
AE+SINDy-C method overfits the dynamics model, resulting in divergent solutions when extrapolating
in time. The highest performance for each of the PO cases is almost similar, although AE+SINDy-C with
kdyn = 10 requires nearly 10 times less data compared to the full-ordermodel, andwith kdyn = 5 close to five
times less data, respectively (cf. Table 1)—matching the intuition of sample efficiency of Algorithm
1 based on kdyn.

Fully observable. As already mentioned, a direct comparison all of the trained models in the FO case
outperforms their PO counterparts, quantitatively and qualitatively. As visualized in Table 1, and similarly
to the PO case, we achieve nearly the same level of performance with 10 times, respectively, five times,
less data.

Figure 3. Sample efficiency of the Dyna-style AE+SINDy-C method for Burgers’ equation. We test
kdyn = 5,10 against the full-order baseline for the fully observable (solid line) and partially observable
(dashed line). The dashed vertical lines indicate the point of early stopping for each of the model classes
(FO + PO) after 100 epochs and represent the models which are evaluated in detail in Appendix A.1. For

the evaluation, the performance over five fixed random seeds is used.
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4.1.2. Generalization: Variation of initial condition and diffusivity constant
Compared to the U �1,1½ �Nx

� �
distribution, we used during the training phase and the detailed analysis in

Appendix A.1, we are also interested in the generalization capabilities of the agents trained with AE
+SINDy-C on out-of-distribution initial conditions with more regularity. Given Nspatial discretization
points in space, we modify the default initial condition of the ControlGym library and define the initial
state

xinitð Þi = 5 �
1

cosh 10 Δi�αð Þð Þ ∈ 0,5½ �, Δi =
i

Nspatial
, i= 0,…,Nspatial, (4.3)

for our second test case, exhibiting a higher degree of regularity. The term α�U 0:25,0:75½ � randomly
moves the peak of the curve, enabling the ablation studies presented in Table 1. For the plots reported in
Figures 4 and 5, we centered the function in the domain by taking α= 0:5. With a nonnegative domain of
0,5½ �, this initial state clearly exceed the training domain of �1,1½ �. To make the test case more interesting
and more realistic, we also change the diffusivity constant to ν= 0:01, that is, two orders of magnitude
smaller than on the training data, andwe let the PDE evolve uncontrolled for 1 s before the controller starts
actuating for five more seconds, that is, a delayed start and a total observation horizon of T = 6s of which
the controller is activated in 1s,6s½ �.

Clearly, this task is much more challenging than the one previously considered, As in the first test
setting, the fully observable case seems to be overall easier for all of the models, although the differences
between the fully and partially observable case are more significant. Most importantly, as discussed in
Appendix A.1, working with a regular initial state, the agent also generates regular control trajectories.
Although we did not apply actuation bounds, the order of magnitude of the controls is almost the same as
in the previous test case, indicating a very robust generalization of the policy.

Figure 4. State and control trajectories for Burgers’ equation in the PO case. The initial condition is a
bell-shaped hyperbolic cosine (eq. [4.3] with α= 0:5 fixed), we use ν= 0:01 (two orders of magnitude
smaller compared to the training phase), and the black solid line indicates the timestep t when the
controller is activated. (a) FOM states. (b) AE + SINDy-C states, kdyn = 5. (c) AE + SINDy-C states,

kdyn = 10. (d) FOM controls. (e) AE + SINDy-C controls, kdyn = 5. (f) AE + SINDy-C controls, kdyn = 10.
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Partially observable. In the PO case (cf. Figure 4), the baseline model clearly outperforms the AE
+SINDy-C method. While, for both values of kdyn = 5,10, the agent is able to stabilize the PDE toward a
steady state and slowly decreases it is constant, only the baseline agent fully converges toward to the
desired zero-state. Interestingly, the AE+SINDy-C controllers seem to focus on channel-wise high and
low control values, while the full-order baseline agents exhibit a switching behavior after circa 3 s for
seven out of eight actuators. Similar to the case of the uniform initial condition, the AE+SINDy-C with
kdyn = 10 does not seem to rely on actuator two.

Fully observable.As in the PO case, the FO test case (cf. Figure 5) shows a similar pattern. The baseline
model outperforms both the AE+SINDy-C agents. In contrast to the PO case, now also the two agents
trained with the surrogate model are close to the zero-state target, with kdyn = 5 slightly outperforming the
kdyn = 10 agent. Notably, parts of the controls in all models exhibit zero-like actuators, the baseline model
again showing a switching behavior after circa three and a half seconds. It seems like having access to
more state measurements requires the usage of less actuators, resulting in a higher reward, as displayed in
Table 1. For real-world applications, this can be really useful when designing position and size of
controllers for an actual system.

4.1.3. Dynamics in the latent space
A relevant aspect of AE+SINDy-C is the compression of high-dimensional PDE discretization into a low-
dimensional surrogate space, resulting in a closed-form and interpretable representation and the potential
to discover unknown system dynamics. The coefficient matrices Ξ∈ℝd ×NObs

x are visualized in Figure 6
for Burgers’ case, highlighting the coefficients as a heatmap as well as some key points of interests (e.g.,
sparsity).

Figure 5. State and control trajectories for Burgers’ equation in the FO case. The initial condition is a
bell-shaped hyperbolic cosine (eq. [4.3] with α= 0:5 fixed), we use ν= 0:01 (two orders of magnitude
smaller compared to the training phase), and the black solid line indicates the timestep t when the
controller is activated. (a) FOM states. (b) AE + SINDy-C states, kdyn = 5. (c) AE + SINDy-C states,

kdyn = 10. (d) FOM controls. (e) AE + SINDy-C controls, kdyn = 5. (f) AE + SINDy-C controls, kdyn = 10.
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Based on the coefficients Ξ, one can compute the closed-form representation of the SINDy-C
dynamics model in the surrogate space. Since our algorithm is not trained with sequential thresholding,
we chose a threshold of 0:15 to cutoff nonsignificant contributions and improve readability. Exemplarily,
we obtain the following surrogate space dynamics for kdyn = 5:

• PO, kdyn = 5:

zx,1 t + 1ð Þ = �0:688 � zx,1 tð Þzx,2 tð Þ+ 0:497 � zx,1 tð Þ3
�0:195 � zx,1 tð Þ2zx,2 tð Þ+ 0:288 � zu,1 tð Þ

zx,2 t + 1ð Þ = + 0:297 � zx,2 tð Þ�0:180 � zx,1 tð Þ2�0:245 � zx,1 tð Þzx,2 tð Þ
�0:381 � zx,2 tð Þ2 + 0:304 � zx,1 tð Þ2zx,2 tð Þ+ 0:487 � zu,1 tð Þ:

Figure 6. Analysis of the coefficient matrix Ξ∈ℝd ×NObs
x for Burgers’ equation. (a) Partially observable

case, kdyn = 5. (b) Fully observable case, kdyn = 5. (c) Partially observable case, kdyn = 10. (d) Fully
observable case, kdyn = 10.
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• FO, kdyn = 5:

zx,1 t + 1ð Þ = + 0:795 � zx,1 tð Þ2 + 0:420 � zx,1 tð Þzx,2 tð Þ�0:676 � zx,1 tð Þ3
+ 0:224 � zx,1 tð Þ2zx,2 tð Þ+ 0:159 � zu,2 tð Þ

zx,2 t + 1ð Þ = + 0:310 � zx,1 tð Þ3�0:454 � zx,1 tð Þ2zx,2 tð Þ
+ 0:655 � zx,1 tð Þzx,2 tð Þ2 + 0:426 � zx,2 tð Þ3:

Denoting by zx,i and zu,i the ith component of the state and the control in the latent space, respectively,
SINDy individually compressed both state and action into a two-dimensional latent space representation.
While for the state the corresponding AE requires both dimensions, the control AE correctly compressed
the control into a one-dimensional representation. Overall, each of the representations is different, which
can be explained by (a) a different training procedure, (b) different full-order interactions observed by the
models, and (c) the nonuniqueness of the representation.

4.1.4. Training of AE+SINDy-C
To analyze the goodness of fit of the internal surrogate model, we provide in Table 2 the average training
and validation error, that is, eq. (3.1), of the last iteration of each surrogate model update, that is, step 12.
We clearly see that keeping the training epochs of AE+SINDy-C low helps to reduce overfitting, and for
each of the four methods the order of magnitude of the training and validation loss is the same (internally,
we use an 80/20 splitting for training and validation and train for 100 epochs. Debugging plots show that
in all cases an upper bound of 30 epochs would be enough to train the AE+SINDy-C representation).
Additionally, Table 2 also displays the average duration of a surrogate model update, that is, step
12, which is due to the small number of parameters.

4.2. Incompressible Navier–Stokes Equations (PDEControlGym)

This second example focuses on a much more challenging equation and control setting. The temporal
dynamics of the 2D velocity field x y1,y2, tð Þ :Ω× 0,T½ �!ℝ2

, and the pressure field p y1,y2, tð Þ :
Ω× 0,T½ �!ℝ is given by

∇ �x= 0,
∂tx + x �∇x= �1

ρ
∇p+ ν∇2x,

(4.4)

Table 2. Training time and overview of the loss distribution of eq. (3.1) during the training phase of
the Dyna-style AE+SINDy-C method for Burgers’ equation

AE+SINDy-C, kdyn = 5 AE+SINDy-C, kdyn = 10

PO 48 × 8 FO 256 × 8 PO 48 × 8 FO 256 × 8

Training Time s½ � μ ± σ2ð Þ 3:80 ± 1:21 3:80 ± 2:55 4:55 ± 0:71 4:11 ± 0:41
Loss eq. (3.1) μ ± σ2ð Þ
Training 7:53 �10�3 7:27 �10�3 8:01 �10�3 7:81 �10�3

± 1:01 �10�4 ± 1:33 �10�4 ± 3:21 �10�4 ± 1:34 �10�4

Validation 8:43 �10�3 7:44 �10�3 7:94 �10�3 9:33 �10�3

± 2:88 �10�4 ± 1:64 �10�4 ± 6:24 �10�4 ± 5:22 �10�4

Note: Mean and variance are computed over all training epochs. The training was performed on a MacBook M1 (2021, 16GB RAM).
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in Ω× 0,T½ �, denoting the kinematic viscosity of the fluid by ν, and its density by ρ. For the
experiments, the equation is fully observable, we consider Dirichlet boundary conditions with
velocities set to 0, and we control along the top boundary ut = ut y1ð Þ= x y1,1, tð Þ, for y1 ∈Ω, that is,
y2 = 1 is fixed. Following the benchmark of Bhan et al. (2024, section 5.3), the domainΩ = 0,1ð Þ2 and
the time interval T = 0:2s are used, parameters for the solution procedure are kept. The equation is
noise-free fully observed. The DRL agents are trained with a discretized version of the following
objective function:

J ut,xð Þ = �1
2

Z T

0

Z
Ω

x y1,y2, tð Þ�xref y1ð ,y2, tÞk k2d y1,y2ð Þdt

+
γ
2

Z T

0
ut�ureft

�� ��2dt,
where the reference solution xref is given by the resulting velocity field when applying the controls
u : 0,T½ �!ℝ, t↦3�5t. For the reference controls in the objective function, ureft � 2:0 is used.

Based on the superior results from Burgers’ equation example, we initially explored larger values
of kdyn for the Navier–Stokes case. However, for kdyn = 10, training stability deteriorated and policy
performance declined, likely due to the increased complexity of the dynamics and accumulation of
surrogate model errors. Consequently, we focus on kdyn = 5 for the Navier–Stokes experiments,
which achieves a favorable balance between sample efficiency and training stability. We then
compare the Dyna-style MBRL scheme at this setting with the model-free benchmark. To investigate
the sensitivity of AE+SINDy-C to the choice of latent dimensions and to estimate a lower bound on
the intrinsic dimensionality of the solution manifold, we conduct experiments with varying latent
space sizes. Specifically, we train models with three different latent architectures:

• 882,84,6ð Þ× 1,4,2ð Þ, corresponding to a six-dimensional state and two-dimensional control repre-
sentation, that is, an eight-dimensional latent space;

• 882,52,3ð Þ× 1,4,1ð Þ, corresponding to a three-dimensional state and one-dimensional control
representation, that is, a four-dimensional latent space; and

• 882,30,1ð Þ× 1,4,1ð Þ, corresponding to a one-dimensional state and one-dimensional control repre-
sentation, that is, a two-dimensional latent space.

As expected, reducing the number of degrees of freedom in the latent space negatively impacts the
surrogate model’s expressiveness and fidelity. In particular, with only two latent state dimensions, the
learned representation failed to capture sufficient dynamics for the agent to effectively learn a control
policy. As a result, this configuration is excluded from the analysis. These experiments demonstrate how
latent space dimensionality can be treated as a tunable parameter, enabling a data-driven estimation of the
minimal dimensionality required for successful policy learning.

4.2.1. Sample efficiency and scalability
Figure 7 and Table 3 clearly highlights the sample efficiency of AE+SINDy-C compared to the model-
free baseline in the case of an eight-dimensional surrogate space. Not only does AE+SINDy-C need
approximately five times less data but simultaneously outperforms the baseline—a clear indication
that the internal dynamics model in the latent space helps the agent to understand the underlying
system dynamics. The bumps in performances of AE+SINDy-C at approximately 12 k and 20 k FOM
interactions represent the point where the dynamics model correctly represents the directions of the
flow. Before that, AE+SINDy-C was able to correctly control the magnitude of the flow field and
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adjust the controls, but the orientation of the vector field was reversed. The four-dimensional version
is not outperforming the baseline and the final model exhibits high uncertainty, also suffering under
very fuzzy controls (cf. Figure 8f). Since the corresponding velocity-field cannot be considered a
valid solution (cf. Figure 8e), it is thus excluded from the following analysis. The plateau at around
15 k interactions corresponds to very fuzzy controls and only with a big delay the baseline model can
stabilize the controls, missing at the end the correct magnitude of the flow field (cf. Figure 8a).
Interestingly, the fuzzy overfitting at the end of the training procedure for Burgers’ equation does not
appear, which is most probably due to simpler initial conditions and thus more regular systems
dynamics, although the dynamics in general are harder to capture, that is, more full-order interactions
are needed.

Figure 7. Sample efficiency of the Dyna-style AE+SINDy-C method for the Navier–Stokes equations.
We test kdyn = 5 against the full-order model-free baseline. The dashed vertical lines indicate the
point of early stopping for each of the model after 750 epochs and represent the models which are
evaluated in detail in Section 4.2.2. For the evaluation, the performance over five fixed random

seeds is used.

Table 3. Performance comparison of the Dyna-style AE+SINDy-C method for the Navier–Stokes
equations

Surrogate Space Dim Baseline 882 × 1ð Þ
AE+SINDy‐C,kdyn = 5, 882 × 1ð Þ
8 4

# FOM interactions 97,280 19,456 19,456
Off-policy - 2000 2000
On-policy 97,280 17,456 17,456

Reward R μ ± σ2ð Þ �24:88 ± 5:77 �3:61 ± 1:64 �60:09 ± 12:11
Total # parameters 226,306 377,601 319,421
AE+SINDy-C - 151,295 93,115
Actor + Critic 226,306 226,306 226,306

Note: We test kdyn = 5 against the full-order baseline (both NObs
x ×Nu = 882× 1). The models correspond to the dashed vertical lines in Figure 7 and

represent all models after 750 epochs. We compare the number of FOM interactions, the reward using five fixed random seeds and the total number of
parameters. Best performances (bold) are highlighted row-wise.
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4.2.2. Velocity field and control analysis
In Figure 8 the resulting velocity fields at the end of the observation horizon are visualized (Bhan et al.,
2024, cf. figure 4]. It is evident that AE+SINDy-C nearly perfectly matches the desired flow and
clearly outperforms the model-free baseline which has difficulties finding the correct magnitude of
the velocity field, although the general directions are correct (since we use with Ray RLLib (Liang
et al., 2017) instead of Stable-Baselines3 (Raffin et al., 2021) a different RL-engine and we run PPO

(a) (b)

(d)(c)

(e) (f)

Figure 8. Velocity field and control trajectories for the model-free baseline and AE+SINDy-C for the
Navier–Stokes equations. Black arrows represent the velocity fields and the background color the

magnitude of the velocity vector. (a) Full-order baseline model, Velocity field at t = 0.2. (b) Full-order
baselinemodel, control trajectory. (c) AE+SINDy-Cwith kdyn =5 and an eight-dimensional latent space,
velocity field at ? = 0.2. (d) AE + SINDy-C with kdyn = 5 and an eight-dimensional latent space, control
trajectory. (e) AE + SINDy-C with kdyn = 5 and a four-dimensional latent space, velocity field at t = 0.2.

(f) AE + SINDy-C with kdyn = 5 and a four-dimensional latent space, control trajectory.
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with different settings, we are not slightly able to achieve the performance presented in (Bhan et al.,
2024, table 3) with our baseline model. But, our AE+SINDy-C outperforms the presented baseline
algorithms). Thus, imposing a Dyna-style dynamics model does not only significantly decrease
reducing the number of full-order model interactions, however it helps the agent to grasp the general
dynamics faster. While the controls of the agent AE+SINDy-C stay close to the reference value, the
baseline algorithm has difficulties in smoothly increasing the controls (previous epochs exhibit
strongly oscillating behavior, similar to bang-bang controls) (Table 3).

4.2.3. Dynamics in the latent space
As in Burgers’ equation example, we visualize the coefficient matrix Ξ∈ℝd ×NLat

x for the eight-
dimensional latent space version. Figure 9 shows the sparse nature of the dynamics model. Interestingly,
with 29, and respectively 27, coefficients with absolute values above the threshold of 0.15, both
representations need almost the same amount of basis functions, indicating the amount of information
carried by the state and action of the PDE.

(a) (b)

Figure 9. Analysis of the coefficient matrix Ξ∈ℝd ×NObs
x for the Navier–Stokes equations. (a) Eight-

dimensional latent space. (b) Four-dimensional latent space.

Table 4. Analysis of the internal loss distribution for the training and validation data during the AE
training as well as the training time for the Navier–Stokes equations, trained on a MacBook M1 (2021,

16GB RAM)

Surrogate Dimension

AE+SINDy-C, kdyn = 5, 882 × 1ð Þ
8 4

Training Time s½ � μ ± σ2ð Þ 12:65 ± 5:23 9:81 ± 2:92
Loss eq. (3.1) μ ± σ2ð Þ
Training 1:53 �10�4 ± 3:01 �10�4 7:57 �10�3 ± 3:36 �10�4

Validation 9:33 �10�4 ± 3:82 �10�4 9:11 �10�3 ± 8:43 �10�4
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We obtain the following dynamics equations for the eight-dimensional latent space:

zx,1 t + 1ð Þ = + 0:960 � zx,2 tð Þ+ 0:165 � zx,4 tð Þ+ 0:251 � zx,6 tð Þ
+ 0:228 � zx,1 tð Þzx,4 tð Þ+ 0:981 � zu,1 tð Þ

zx,2 t + 1ð Þ = + 0:631 � zx,2 tð Þ�0:308 � zx,4 tð Þ�0:245 � zx,6 tð Þ�0:652 � zu,1 tð Þ
zx,3 t + 1ð Þ = + 0:941 � zx,3 tð Þ+ 0:166 � zx,3 tð Þ2 + 0:265 � zx,3 tð Þzx,6 tð Þ

+ 0:190 � zx,3 tð Þzx,4 tð Þ2 + 0:286 � zx,3 tð Þzx,4 tð Þzx,6 tð Þ
zx,4 t + 1ð Þ = + 0:208 � zx,1 tð Þ�0:828 � zx,2 tð Þ�0:158 � zx,4 tð Þ

+ 0:216 � zx,1 tð Þ2�0:235 � zx,2 tð Þzx,4 tð Þ
+ 0:175 � zx,1 tð Þzx,6 tð Þ2�0:464 � zu,2 tð Þ

zx,5 t + 1ð Þ = + 0:949 � zx,5 tð Þ�0:290 � zx,6 tð Þ�0:177 � zu,1 tð Þ+ 0:310 � zu,2 tð Þ
zx,6 t + 1ð Þ = �0:396 � zx,5 tð Þ + 0:314 � zx,6 tð Þ�0:695 � zu,1 tð Þ+ 1:451 � zu,2 tð Þ

4.2.4. Training of AE+SINDy-C
For the sake of completeness, the goodness of fit in terms of the average training and validation error are
provided in Table 4 for the Navier–Stokes case. Compared to Burgers’ equation, the training and
validation loss are of the same order of magnitude. Since the AE+SINDy-C model is much larger in this
case, the training takes longer. Interestingly, while in Burgers’ equation case our internal logging metrics
show that usually even 20–30 epochs would be enough, in the more complex Navier–Stokes equations
case on average at least 70–80 epochs are needed before the loss converges.

5. Discussion and conclusion

We propose a data-efficient and interpretable Dyna-style MBRL framework for controlling distributed
systems, such as those governed by PDEs. Combining SINDy-Cwith an AE framework not only scales to
high-dimensional systems but also provides a low-dimensional learned representation as a dynamical
system in the latent space. The proposed controllers have proven to be effective and robust in both PO and
FO cases. Additionally, we showed how the proposed framework can be used to estimate an approximate
lower bound for a low-dimensional surrogate representation of the dynamics.

A limitation of our method is the training of an AE online. Problems such as overfitting (Goodfellow
et al., 2016; Zhang et al., 2021) and catastrophic forgetting (McCloskey andCohen, 1989; Kirkpatrick et al.,
2017) lead to decreasing performance if theAE is trained for too long and on too little data. Potential options
to overcome this issue could include the usage of shorter roll-outs (Janner et al., 2019), ensemble methods
(Zolman et al., n.d.), or training the AE using sequential thresholding to enforce zero-valued coefficients.
Burgers’ PDE example demonstrated that, provided the initial condition is sufficiently regular, the
complexity of learning a reduced representation can be significantly mitigated. In contrast, the Navier–
Stokes equation example highlights the critical importance of selecting an appropriate latent space
dimensionality. These experiments underscore the need to actively explore different surrogate space
configurations in order to avoid inadequatemodel expressiveness and reduced policy learning performance.

Further research should address these limitations to enhance the robustness and generalizability of our
framework across diverse PDE scenarios. Beyond the current improvements, integrating SINDy-C with
AEs opens new avenues in multiple fields. In future work, we plan to extend the latent space represen-
tation to include parameter dependencies, as seen in (Conti et al., 2023), enabling more effective learning
of parametric systems, such as parameterized PDEs.

Data availability statement. The code for AE+SINDy-C is publicly available under https://doi.org/10.5281/zenodo.17098125
(Wolf, 2025).
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A. Burgers’ equation: Additional evaluation

A.1. Random initial condition: State and control trajectories
We analyze themodels indicated by the dashed line in Figure 3with the same fixed random seed for one specific initial condition. As
in the training, the initial condition is drawn from a uniform U �1,1½ �Nx

� �
distribution. The idea of training the agent in this way

might seem counterintuitive at first due to the non-regularity of the initial state, but turns out to be a very effective strategy, as wewill
see in Section 4.1.2. We impose low penalties on the controls (cf. Appendix B), resulting in very aggressive control strategies.
Figures A1 and A2 visualize the results for the partially respectively fully observable case. Both of them confirm the results we have
already seen from Figure 3. Overall, the controls show a very chaotic behavior and are not regular. This can clearly be explained by
the nonregularity of the initial state distribution and the resulting state trajectories, as well as the low penalty on the control itself. The
issue of regularity has been discussed in detail in Section 4.1.2, when we consider regular, but out-of-distribution, initial conditions.
With a regular initial condition, the problem of chaotic controls does not appear. In a model-by-model comparison, the FO case is
overall solved more effectively and with less variation between different random seeds—confirming the intuition that, in general,
more measurement points increase the performance of the agent.

Partially observable. Compared to the FO case, the PO case (cf. Figure A1) is as expected more challenging for all of the
methods. All three controllers struggle to correctly capture the system dynamics and effectively regulate the system—represented by
lower rewards in general and higher standard deviations (cf. Table 1). In the PO case, the baseline model is outperformed by the AE
+SINDy-C method, although taking into account the standard deviation, the difference is not significant. Interestingly, while the
baseline model seems to rely on all of the controls, both, the kdyn = 5 and kdyn = 10 exhibit one ui with close to zero controls over the
entire time horizon (cf. Figure A1e index one and Figure A2f index two). Overall, the PDE is aggressively controlled and
successfully regulated toward the zero-state.

Fully observable. In the FO case (cf. Figure A2), the baseline model outperforms the AE+SINDy-C method. Nevertheless,
Table 1 highlights that the differences between the models are marginal although the baseline model specifically stands out by a
much lower standard deviation and thus can be trustedmore. The performance ofAE+SINDy-C for kdyn = 5 and kdyn = 10 are similar,
also regarding their standard deviations, even though at the end of the extrapolation horizon in the case of kdyn = 5 the DRL agent
seems to slightly overshoot the target while in the case of kdyn = 10 the agent undershoots the target (see Figure A2b and c,
respectively).
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(a) (b) (c)

(d) (e) (f)

Figure A1. State and control trajectories for Burgers’ equation in the partially observable (PO) case with
U �1,1½ �Nx
� �

as initial distribution. The black dashed line indicates the timestep t of extrapolation in time.
(a) FOM: states. (b) AE + SINDy-C with kdyn = 5. (c) AE + SINDy-C with kdyn = 10. (d) FOM: controls.

(e) AE + SINDy-C with kdyn = 5. (f) AE + SINDy-C with kdyn = 5.

(a) (b) (c)

(d) (e) (f)

Figure A2. State and control trajectories for Burgers’ equation in the fully observable (FO) case with
U �1,1½ �Nx
� �

as initial distribution. The black dashed line indicates the timestep t of extrapolation in time.
a) FOM: states. (b) AE + SINDy-C with kdyn = 5. (c) AE + SINDy-C with kdyn = 10. (d) FOM: controls.

(e) AE + SINDy-C with kdyn = 5. (f) AE + SINDy-C with kdyn = 10.
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B. Environments: Hyperparameters

C. Deep RL: Hyperparameters

Table C1. DRL algorithm configuration details for Burgers’ equation experiment

Partially observable Fully observable

Network class PPO PPO
Batch size 256 256
Hidden layer size 128 128
Learning rate 3:0 �10�4 3:0 �10�4

GAE λ 0.95 0.95
Discount factor γ 0.99 0.99
Gradient clipping 0.5 0.5

Note: We use Ray RLLib (Liang et al., 2017) to train our models. The PPO (Schulman et al., 2017) policy is trained by using the Adam algorithm
(Kingma and Ba, 2015).

Table B2. Environment details for PDEControlGym’s implemention of the Navier–Stokes equations

Fully observable

Spatial domain 0,1½ �2
Spatial discretization step Δx 0.05
Spatial discretization step Δy 0.05
Time discretization step Δt 0.001
Time: train + extrapolation 0.2 s
Penalty γ controls 0.1

Table B1. Environment details for ControlGym’s implemention of Burgers’ equation, the diffusivity
constant ν = 1:0 is fixed

Partially observable Fully observable

Domain size 1.0 1.0
Spatial discretization 256 256
Observable states Ns 48 256
Time: train + extrapolation 1 s + 4 s 1 s + 4 s
Control discretization Nu 8 8
Control support width 0.125 0.125
Additive Gaussian noise (FOM) σ 0.25 0.25
Penalty state Qw 100.0 100.0
Penalty control Rw 0.01 0.01
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D. Autoencoder: Hyperparameters and training details
Internally, an 80=20 splitting is used for training and validation, and once new data are available, the surrogate model is trained for
100 epochs. In all of the cases, we computed the number of neurons of the hidden layer such that the ratio between the size of the
input and the hidden layer is the same as the ratio between the size of the hidden and the output layer. Only for the controls of the
Navier–Stokes equations we went for an increase in neurons to find an effective latent space representation (cf. Table D2).

Table D1. Details of the AE+SINDy-C surrogate model for Burgers’ equation

Partially observable Fully observable

Layer shapes (state, control) 48,8ð Þ× 10,4ð Þ× 2,2ð Þ 256,8ð Þ× 22,4ð Þ× 2,2ð Þ
#Parameters: AE + Ξ-matrix 1178 + 22 11,752 + 22
Off-policy buffer size 200 200
On-policy buffer size 2400 2400
SINDy Polynomial degrees (state, control) (3, 1) (3, 1)
SINDy dictionary size d 11 11
FOM data update frequency 5 and 10 5 and 10
Internal epochs 100 100
Adam learning rate 10�3 10�3

Batch size 64 64
Activation function Softmax Softmax
Loss function λi = 1:0, i= 1,2 λi = 1:0, i= 1,2
Clip gradient norm 1:0 1:0

Note: We use PySINDy (Kaptanoglu et al., 2021) to generate the set of dictionary functions.

Table C2. DRL algorithm configuration details for the Navier–Stokes equations experiment

Partially observable

Network class PPO
Batch size 128
Hidden layer size 128
Learning rate 3:0 �10�4

GAE λ 0.95
Discount factor γ 0.99
Gradient clipping 0.5

Note: We use Ray RLLib (Liang et al., 2017) to train our models. The PPO (Schulman et al., 2017) policy is trained by using the Adam algorithm
(Kingma and Ba, 2015).
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Table D2. Details of the AE+SINDy-C surrogate model for the Navier–Stokes equations

8-dim Latent space 4-dim Latent space

Layer shapes (state, control) 882,1ð Þ× 84,4ð Þ× 6,2ð Þ 882,1ð Þ× 52,4ð Þ× 3,1ð Þ
#Parameters: AE + Ξ-matrix 150,785 + 510 93,055 + 60
Off-policy buffer size 200 200
On-policy buffer size 2400 2400
SINDy polynomial degrees (state, control) (3,1) (3,1)
SINDy dictionary size d 85 20
FOM data update frequency 5 5
Internal epochs 100 100
Adam learning rate 10�3 10�3

Batch size 64 64
Activation function Softmax Softmax
Loss function λi = 1:0, i= 1,2 λi = 1:0, i= 1,2
Clip gradient norm 1:0 1:0

Note: We use PySINDy (Kaptanoglu et al., 2021) to generate the set of dictionary functions.
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