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CONSTANT MEAN CURVATURE SURFACES IN
HOMOGENEOUSLY REGULAR 3-MANIFOLDS

HAROLD ROSENBERG

We establish several theorems concerning properly embedded constant mean curva-
ture surfaces (cmc-surfaces) in homogeneously regular 3-manifolds, when the mean
curvature H is large.

1. INTRODUCTION

Henceforth TV will denote an orientable homogeneously regular 3-manifold. This
means there is some positive R so that the geodesic balls of N of radius R, centred at
any point of N, are embedded, and in these balls, all the sectional curvatures are bounded
by some constant; the constant independent of the point of N where the balls are centred.

We shall first prove a diameter estimate for complete immersed (strongly) stable
cmc-surfaces E in N, provided H is large (depending only on N). Here E may have
boundary and our result says there are positive constants C\,Ci such that whenever E
is a stable complete cmc-surface in N with H > d, then the intrinsic distance of any
point of E to 5E, is at most C-x- In particular, when 3E = 0, then such a E must be
compact. The idea behind the proof of this theorem originates in Doris Fisher-Colbries
theorem on stable minimal surfaces [1]. For cmc surfaces in R3, it is implicit in Lopez
and Ros [3], and in R3, for any H ^ 0, it is proved in [5]. Also see [4], where it is proved
in H2 x R, when H > l / \ /3 .

We shall use the diameter estimate theorem to prove a maximum principle at infinity
for properly embedded if-surfaces in N, provided H is large. The proof is inspired by
the authors' proof, with Antonio Ros, in R3 for H ^ 0. The important difference is the
compact case. In R3, one can not have an i/-surface inside the mean convex component
determined by another H-surface. One can translate one surface until it touches the
other and the usual maximum principle shows this is not possible. In N, one must do
something else.

Notice the maximum principle is certainly not true for H small, even in the compact
case. For example, consider a surface of revolution M as in Figure 1.

Received 10th April, 2006

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 IA2.00+0.00.

227

https://doi.org/10.1017/S000497270003567X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003567X


228 H. Rosenberg [2]

Figure 1

Here C\ and C3 are disjoint geodesies and Ci,Ci are curves of the same geodesic
curvature. C4 is in the component determined by C2 whose boundary is mean convex
(C?2)- This gives counterexamples in dimension two, both for curvature zero and curvature
non-zero. One can take N = M x Sl to obtain counterexamples in dimension 3.

We shall also prove that a closed (weakly) stable H-surface in N has genus at most
3 when H is large

2. THE DIAMETER ESTIMATE THEOREM FOR STABLE H-SURFACES IN N

THEOREM 1. Let N be a complete Riemannian 3-manifold with uniformly bounded
scalar curvature 5(x). Let H and c > 0, satisfy

3H2 + S(x) ^ c, for xeN.

Then if E is a stable H-surface immersed in N, one has, for x € E:

Here d% is the intrinsic distance in E.

PROOF: The stability operator L of E is:

L = A + \A\2 + Ric(n),

where A is the second fundamental form of E and n a unit normal vector field along E.
We say that M is stable if

- / uLu ^ 0
JM

for any smooth function u with compact support on M. This type of stability is often
called strong stability. We rewrite L, introducing the exterior curvature Ke of E, the
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intrinsic curvature K-E of E, the sectional curvature Ks of iV* of the tangent plane to E,
and the scalar curvature S of N. We have

L = A + |A|2 + Ric(n)

= A + (AH2 - 2Ke) + (5 - AT,)

= A + {AH2 - 2Ke) + S-(KZ- Ke)

= A + 3/f2 + (H2 -Ke) + S- Ks.

Since H2 — Ke^ 0, we have:

L - A + Kx > 3H2 + S.

Hence if u is a positive function on E, we have:

L{u) - A(u) + Kxu > (3H2 + S)u > cu.

Since S is stable, there is a smooth positive u on E with L(u) = 0, ([1]). Thus, by
the previous inequality:

-Au + K^u ^ cu.

Let BR(p) = {q G E | dE(p, q) ^ R), and let ds denote the metric of E.

Make a conformal change of the metric on BR(P), ds = uds, and let 7 be a minimising

geodesic for the ds metric from p to 9 B R ( P ) .

Let o = I ds ^ R, and R= I ds. Since 7 is a minimising geodesic one has

for all <f> defined on [0, R], <f>(0) = <S>{R) = 0.
We have

K = ^(Kx - Ainu), A = A(t,,

Hence

AU +

u
|Vu|
^

u
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In particular K > 0.
Rewriting the stability inequality:

[a(—\2—
~ Jo \ds) u

We know

Jo u
Now replace <j> by <j>\/u:

Denote . = d/(ds). (^^h2
 = uj,

u) = {d<t>)y/u + <!>—= du
lJU

= uj,2

(here we used | Vu|2 = v? + u2. ^ ti2). Let

then

Integration by parts (u = $, v = <f>),

Choose <j> = sin(7rsa~1), s € [0,a],

J [c - g^ ] sin^TTsa"1) ds < 0,
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47T2

c ^ j-j- and O R, so

Hence dE(p,5E) ^ (27r)/-y/3c, and Theorem 1 is proved. D

3. L A R G E MEAN CURVATURE

In this section we shall discuss several properties of cmc-surfaces in N, for H suffi-

ciently large.

PROPERTY 1. There is a c > 0, such that whenever E is a connected cmc embedded
compact surface in N , with H ^ c, then E separates N into 2 components.

P R O O F : Let i g S and consider the geodesic 7 starting at x, normal to E at x, and
going into the mean convex side of M at x (locally). Let E(i) denote the parallel surfaces
to E, starting at E(0) = E (in a neighbourhood of x) and going into the mean convex
side of E for t > 0. These local surfaces are defined for t small, and they are orthogonal
to 7 where they are defined. The first variation formula for the mean curvature yields:

Ht(x)\ts0

L the stability operator. We have

= A(l) + (\A\2(x) + Ric(n(z)))

= AH(x)2 - 2Ke(x) + (S(x) - K.{x))

Since N is homogeneously regular, |S(z)-K,{x)\ is bounded (independent of x), so there
exist S > 0, c > 0, such that 2H{x)2 + (S(x) - K,(x)) ^ 6, whenever H = H{x) ^ c.

Hence the parallel surfaces to E along 7 at x have strictly increasing mean curvature.
This remains true along 7, as long as the parallel surfaces are non-singular along 7; for
example, if 7 has no focal points of E at x. We refer the reader to the paper by Galloway
and Rodriguez [2] where this type of argument is used.

We claim that this c works in property 1. Suppose not, so E is compact, embedded,
and H ^ c. Clearly E has a trivial normal bundle in ./V, E has a mean convex side (where
the mean curvature vector points) and a concave side (the other side).

Consider all paths 13 in N starting at a point x of E, entering the mean convex side
of E near x, and meeting E again for the first time, at a point i /SE , coming from the
concave side of E when arriving at y; see Figure 2.
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Figure 2

Since E is compact and embedded, (and E does not separate), the infimum of the
lengths of all such paths /? is strictly positive. So there exists such a path /3 that minimises
the length of all such paths, going from some point x of E to a point y of E. Clearly /?
is a geodesic of N which is orthogonal to E at x and y, and /? meets E exactly at {x, y}.
Also, the fact that 0 minimises length among such paths implies there are no focal points
of E at x along /?. Thus the parallel surfaces to E at z, are defined at every point of
/?. By our choice of c, their mean curvature is strictly increasing along /3, when one goes
from x to y.

However the parallel surface to E at y, is tangent to E at y, locally on the concave
side of E at y, has mean curvature vector pointing in the same direction as the mean
curvature vector of E at y, but this parallel surface at y has strictly bigger mean curvature
than H. This is a contradiction, and proves property 1. D

PROPERTY 2. Let 5 > 0 be less than the injectivity radius of N. There is a constant c
(greater than the constant of property 1) such that whenever E is a properly embedded
.ff-surface in N with H ^ c, then

for all y in the mean convex component of N - E. In particular, this component W is
compact when E is compact.

P R O O F : Let c\ be greater that the mean curvature of each geodesic sphere of radius
5, centred at any point of N. N is homogeneously regular so such a Cy exists. Also choose
ci larger than the constant of property 1.

Let W be the mean convex component of N — E, and let y G W. If the distance
from y to E were greater than 6 then the geodesic sphere 5, of radius 6, centred at y,
would be contained in W.

Let 0 be a path minimising the distance between E and 5 in W. Then 0 is a geodesic
of N, orthogonal to E and S at the points I E E and y E S, which are the endpoints of 0.
Since 0 is minimising, there are no focal points of E at x on /?. Then the parallel surfaces
to E along 0, exist from i to y. But, as in the proof of property 1, the parallel surface of
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[7] Constant mean curvature surfaces 233

E at y has mean curvature strictly bigger than H, hence bigger than 6; a contradiction.
This proves the property 2.

R E M A R K . It is interesting to understand the geometry of such W. It is not hard to
see that W is a handlebody of a geodesic graph in N. What type of geodesic graphs
are possible? Where are the vertices of such a graph in N? What sort of "balancing"
formulas exist? Can the geodesic graph be a triangle? More precisely, can a sequence of
H — tori converge to a geodesic triangle as H diverges?

4. T H E MAXIMUM PRINCIPLE AT INFINITY

THEOREM 2 . Let N be a orientable homogeneously regular 3-manifold. There is
a constant c > 0, such that whenever H ~£ c, and M\,M2 are properly embedded H-
surfaces in N which bound a connected domain W, then the mean curvature vector points
out ofW along the boundary ofW.

PROOF: Choose c so that the diameter stability estimate holds for H ^ c (that
is, 3H2 + S(x) ^ c), and c also large enough so that the parallel surfaces, on the mean
convex side, have larger mean curvature (that is, choose x such that H ^ c implies
2H2 + (S(x) - K.(x)) > 0).

Let Mi, M2 and W satisfy the hypothesis of Theorem 2. Suppose the mean curvature
vector of Mi points into W. We shall show this is impossible.

First suppose Mi is compact. Since M2 is proper, there is a minimising geodesic /?
in W from x € Mi, to y € M2, @ minimises the length of all paths joining a point of M\
to a point of M2, in W.

Clearly 0 is orthogonal to Mi and M2 at x and y respectively, and /3 has no focal
points of Mi at x. Thus the parallel surfaces to Mi at x, exist along P until y. Since their
mean curvature is strictly increasing along /?, from x to y, this gives a contradiction, as
in the proof of property 1.

Thus we may assume Mi is not compact. Now the proof proceeds as in the proof
of the maximum principle at infinity for H-surfaces in S3, due to the author and Ros
[5]. Since this paper is not yet published, we reproduce the proof here (with minor
modifications).

Let X\ E Mi, X2 G M2, and 7 be a path in W joining xi to x2. Let R > 0 and 5
be the geodesic disk of Mi centred at xi of radius R, T = dS smooth. Since Mi is non
compact and properly embedded, dS = T leaves any compact set of N for R sufficiently
large. Thus d i s ta l , O —> 00, as R —> 00. In particular, for R large, 5 is not (strongly)
stable since the stability diameter estimate fails. So assume R chosen so that 5 is not
stable.

We shall find a smooth stable H-surface E C W, 3E = T and E homologous to 5,
relF, in W. Then E satisfies the stability estimate. But Eri7 ^ 0, since S is homologous
to 5 apd 5 0 7 = {x\}. This contradicts the fact that dist^(7, T) —> 00 as R —> 00.
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We now show how to find E.
Consider bounded open subsets Q of W of finite perimeter, and with 5 C dQ,

dQnMi = S. Let E be the free boundary of Q, that is, dQ = S U E, 5E = T = dS. Let
>1(E) be the area of E (the 2-mass of E) and V(Q) denote the volume of Q.

Define the functional F on such Q's of finite perimeter by

F{Q) = A{I) + 2HV(Q).

A minimum (Q, E) of F yields a stable S as desired (assuming E smooth, E - 9E
C interior W, #E = T).

Observe first that the mean curvature vector of S points out of Q. Suppose not, let
x S E be a point where H(x) points into Q, and let B be a small ball of N centred at x
such that Hz points into Q along E n B .

We can assume dB is mean convex so the domain of B bounded by E U (dB n Q)
is a good barrier for solving the Plateau problem. Let D be a least area surface in this
domain with dD = S n dB.

Q dB f lQ

Figure 3

Denote by Q the domain Q with the domain Q removed; Q the domain in B bounded
by ( E n B ) U D . Clearly F(Q) < F(Q), which contradicts that Q is a minimum of F.

Next we show E is stable for the functional G (see below for the definition of G).
Suppose E were not stable. Then there is a Jacobi function / on E, / > 0 on int E,
f/dE = 0, and there exists A < 0, such that (here L is the stability operator)

L(f) + Xf = 0 on E.

So for x in the interior of E, L(/)(i) > 0. Let E(t), t > 0, t small, be a variation of E
with compact support whose variation field is the normal field defined by / . Then

cPG(t) = - [ fL(f) < 0,
'=0 J-Edt2

and for t small, t > 0,

G(t) = A(E(t)) + 2HVQ(t) < A(E).
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Here V(Q(t)) is the algebraic volume between E(t) and E. Since / > 0 on interior E,
and E(t) is in the mean convex side of E (outside Q), the algebraic volume equals the
volume of the domain Q{t). Thus

F(QuQ(t))<F(Q),

which contradicts that Q minimises F.
It remains to prove a minimum Q of F exists in W as desired.
The minimum of F will be in a compact region of N we now define. Let Emin be an

embedded minimal surface in W, dE,™,, = F, Emjn minimises area in the homology class
of 5 rel F. Let Qwin denote the domain in W bounded by 5 U Emjn.

Observe that for any domain Q in the class we are considering:

So a minimum of F is contained in

Figure 4

Recall that S is unstable. The same argument we used before with an eigenfunction
/ > 0 on interior E, with negative eigenvalue A, applies to 5. This produces a variation
Eunst C W, dEunst = F, int Eunat C int W, and 5 U Eunst bounds a domain Qua* C W,
with FiQwt) < A(S).

S

M,

Figure 5

Qvaisi is foliated by surfaces E(T), E(0) = 5, E(l) = Em^. The foliation is obtained
from the first eigenfunction / of L on S, using the normal variations (in the direction
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of HMI) as follows. We can assume 0 is not an eigenvalue of L on 5 , by perturbing S

slightly. Then there is a smooth function v on 5 satisfying L(v) = 1, v = 0 on F. By the

boundary maximum principle, the gradient of / does not vanish on F. So, for a small

a > 0, the function u = f + av satisfies L{u) ^ a > 0 on 5, u = 0 on F. Now 2unst is the

graph of u in Q, and Eunst U 5 = SQunst, Qunst foliated by the surfaces E(r) , the graphs

of TU, 0 ̂  r < 1.

Hence Hr = /f (S(r)) is strictly increasing on i n t 5 for r near 0. So we can assume

£u n s t chosen close enough to 5 so that HT > H in QUnst-

Let X be the unit normal vector field to the foliation E(r), oriented by H. We have

d ivX = -2HT in QUnst, hence d ivX < -2H for r > 0.

This last inequality implies that a minimum Q for F , necessarily contains Qunst-

More precisely we have that if for some admissible Q, Qunst <£ Q, then F(Q U Qunst)

< W)-
To see this, since divJf < — 2H on Qumrt, one has:

-2HV(QuaBt-Q)> f divX=f

On

f f [
JQun.t-Q J0(Qum-Q) JSaan-Q "/EnQuM,

—Q,v = X and {X, v) ^ — 1 on the other points of the boundary, so

Hence

F{Q U Qu

2HV(Qunst - Q]

= 2H(V(Q) + I

<2HV(Q) + A

) + A(SUBat - i

^(Qunst-Q))
>(E n Qunst) +

D Qun8t).

A(SUBSi - Q) - Qanst)

Flgnr«6

Next consider M2. Let T be an e-tubular neighbourhood of M2 in W such that the

parallel surfaces Mi{t) in W, 0 ^ t ^ e, are smooth and embedded in T D Qrain = E.

Choose Qunst and e sufficiently small, so that E H Qunst = 0.

https://doi.org/10.1017/S000497270003567X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003567X


[11] Constant mean curvature surfaces 237

We claim that if Q is an admissable domain for F then if Q n E ^ 0, we have

F(Q -E)< F(Q).
There are two cases to consider: the mean curvature vector of M2 points into W or

it points out of W. We shall check the later case and leave the first case to the reader.
By our choice of c and if > c, we know that H(t) = H(M2{i)) < H for 0 < t < e. Let

Y be the unit normal vector field to the foliation M2(t), oriented by the mean curvature
vector, so that divY = -2Ht > -2H, for t > 0.

Let Q{+) = Q n E. By Stokes:

(Y,u)=f (Y,u)+f[
JQ(+)

where v is the outer conormal to the boundary.

On M2(e), v = -Y, and (Y,i/)<lonEn£. Hence

-2HV{Q(+j) + A{M2(e) n Q) < A(L n E),

and

F(Q -E) = 2H(V{Q) - V(Q n E)) + A(E - E) + A(Q n M2(e))

< 2HV{Q) + A(E n E) + >l(E - £;)

= F(Q).

Thus F(Q - S) < F(Q) whenever Q D £ # 0.
Denote by V the closure of the complement in Qnw, of Qunst and 2?. We now show

a minimum Q of F exists with the free boundary £ of Q, contained in V, int E C int W,
<9E = F, and S a smooth stable //-surface; stable surfaces are smooth.

Let Qn be a minimising sequence for F. One can approximate Qn so that (calling
the approximation Qn as well) dQn is smooth and transverse to the smooth boundary
components of V. Then we can construct another minimising sequence Qn such that
Qn C Qmin, Qn n E = 0, and Qunst C Qn, for all n. Then geometric measure theory
gives a minimum Q of F in V with the free boundary E of Q the desired surface. This
completes the proof. D

THEOREM 3 . Let E be a closed immersed (weakly) stable H-surface in N. Assume
H large so that

AH2 + S{x) + K^ix) > 0,

for ail x. Then E has genus g at most three.

PROOF: The idea of this proof goes back to Lopez and Ros [3], and perhaps earlier.
Our point is that the proof works in homogeneously regular 3-manifolds N provided H
is large. Now we give the proof.
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Let <j>: E —> S2 be a meromorphic map such that deg <f> ^ 1+ [(g + l ) /2] , where the

bracket denotes the greatest integer function. Composing with a Mobius transformation

of S2, one can suppose / <j> = 0.

Then apply the stability inequality to the three coordinate functions of <j> to conclude:

we have |V</>|2 = 2 Jac(<£), and

\A\2 + Ric(n) = 4H2-Ke

= 4H2 + S

> -2K.

Hence

0<87rdeg(^)+ f 2K

Thus 0 < 2 + [{g + l)/2] - g, and this implies 5 ^ 3. D
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