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Introduction. Let G be a group and let ^(G) be the set of all conjugacy classes [H]
of subgroups H of G, where a partial order < is defined by [//,] < [H2] if and only if //, is
contained in some conjugate of H2.

A number of papers (see for example [1] and the references mentioned there) deal
with the question of characterizing groups G by the poset ^(G). For example, in [1] it
was shown that if ^(G) and ^(H) are order-isomorphic and G is a noncyclic p-group
then \G\ = \H\. Moreover, if G is abelian, then G = H, and if G is metacyclic then H is
metacyclic.

In this paper we improve upon the latter result. Indeed we have:

THEOREM. Let G and H be finite groups and assume that <#(G) and <£(//) are
order-isomorphic. If H is a noncyclic, metacyclic p-group, then G = H.

Clearly, the above result is not true if H is cyclic. If G is assumed to be finite, then G
is cyclic of prime power order, but the primes occurring may be different. Also, for
infinite G, it does not seem to be clear, whether there is an analogue to the theorem,
even in the case where H = Z4.

To prove the theorem we note first that, by the above, G is a metacyclic p-group
having the same order as H. The presentations of metacyclic p-groups given by B. W.
King [5] will be used frequently in the sequel. Indeed, for the remainder of this paper, let
G = (a, b\ ap'" = 1, bp" = ap'" '', ab = ae+p' ' ) , and similarly for H with parameters m', n',
s', c', e'. These parameters satisfy various arithmetic conditions, which can be found in
[5, Theorem 3.2] (see also Lemma 2.1 below). In particular, e, e' = ±1, and we speak
about groups of type + if e = +1 and of type — if e = — 1. Also, the notion of ordinary and
exceptional metacyclic groups will be used (see [5, p. 110]). Moreover, if (C, <) is a poset
and a,b e C, a<b, then [a, b] = {x e C \ a < x <b) denotes the closed interval with
end-points a, b.

All groups in this paper are finite.

1. The derived subgroup. In this section, we prove that the derived subgroup G'
and the structure of GIG' can be read off from ^(G) in the case where G is a metacyclic
p-group. Indeed, the following shows that normal subgroups with noncyclic factor group
are determined by the structure of certain intervals in

LEMMA 1.1. Let G be a metacyclic p-group and let /? < G. Assume that the interval
[[/?], [G]] of 'S(G) is order-isomorphic to ^(X), where X is a noncyclic, abelian p-group.
Then R is normal in G and G/R=X.

Proof. Proceed by induction on [G:R] = \X\. If [G:R]=p2, then [[/?], [G]] is
isomorphic to the modular lattice Mp+i. An inspection of [Nc(/?)] shows R<1G. So,
assume [G:R] >p3. Then there exists Y<X, \Y\ =/?, such that X/Y is noncyclic. If [5]
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corresponds to Y via the assumed order-isomorphism, then by induction, we have 5<3G
and G/S = X/Y is abelian (and clearly metacyclic). Then Q,(X/Y) = Zpx Zp, and we see
that G contains a subgroup Tsuch that the interval [[R], [T]] is isomorphic to Jip+l. Since
G/S is abelian, T is normal in G. Moreover, T contains (at least) p + 1 conjugacy classes
[Mi],. . . , [Mp+i] of maximal subgroups. Now, G is metacyclic and so T is 2-generated.
Thus, Mu . . . , Mp+I are all the maximal subgroups of T and all of them are normal in G
(note that T<\G).

Now R < M*' D A/22 for some xx, x2 e G and by the above, we have /? < M, n M2 =
), and [T:R]=p2 implies fl = $(7) . Hence fl<G, as claimed.

The following consequence of Lemma 1.1 will be crucial for the proof of our main
theorem.

PROPOSITION 1.2. Let G and H be metacyclic p-groups and assume that cp: 'S(G) —*
is an order-isomorphism. Then <p([G']) = [H']. In particular, G/G' = H/H' and

Proof. The first part follows from Lemma 1.1. Finally, G' and H' are cyclic groups
of the same order and the result is proved.

At this point, we pause and discuss the question whether or not Proposition 1.2 could
be true for arbitrary p-groups. The reader who may be interested in metacyclic p-groups
only, is advised to continue with Section 2. Indeed, for the remainder of this section, let
G and H be finite p-groups and assume that cp: ^(G)—»^(H) is an isomorphism of
posets. Clearly, ^(G) contains the lattice -A"(G) of all normal subgroups of G, and we
conjecture that cp(Jf(G)) = Jf(H), that is <p maps normal subgroups of G onto normal
subgroups of H. Indeed Proposition 3.4 below and the subsequent remark provide an
affirmative answer in a special case. The conjecture would easily imply that, if G is of
maximal class or thin (see [2]), then H has the analogous property. We do not have a
counterexample to this, but the following shows that G and H may be of different
nilpotency class and <p([Z(G)]) * [Z(H)].

EXAMPLE 1.3. Let G = (x,y, z | x9 = y9 = zy = [x, 2] = [y, z] = 1, [x,y] = z) and

H = ( a , b , c \ a 9 = b 9 = c 9 = [b,c] = l , [ a , b ] = c , [ a , c ] = c 3 ) . T h e n G a n d H h a v e o r d e r
3A, G is of class 2 and H is of class 3 and [3] implies that M(G) is order-isomorphic to
Jf(H). Moreover, using "CAYLEY" and some straightforward, if tedious, computations
done by hand, one can show that there is an order-isomorphism cp from 'S(G) onto ^(H).
Here, we have <p([G']) = [//'], however, <p([Z(G)])=£[Z(//)], and q> maps some abelian
subgroups of G onto non-abelian subgroups of H.

2. The ordinary case. We now return to the proof of the Theorem. For this, the
following characterization will be useful.

LEMMA 2.1. (See [5, Theorem 3.2]). Every metacyclic p-group G has a presentation
G = (a,b\ a""' = l,b"" = a"""\ ab = aE+p'""), where e = ±1. Let r = e + pm~c. The follow-
ing types arise:
Ordinary metacyclic groups. p>3 or p =2, 4 | r — 1 and c<m-\ ifm^.2.

(i) Split: 0 = s<c<m\n{n + l,m};
(ii) Non-split: max{l, m — n + 1} ^s <min{c, m — c + 1}.
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Exceptional metacydic groups, p = 2, 4 | r + 1 and c <m — 1.
(i) S p t o : 0 = s < c < m i n { / i + 1,/w - 1 } ;

(ii) Non-split: l = s , m a x { l , w — n + 1} < c < m i n { / z , m — 1 } , or l=s, c = 0 , 1 =
n<m {generalized quaternion).

Throughout this section, we assume that both G and H are metacydic /7-groups of
ordinary type. As, in particular, all metacydic p-groups of odd order are ordinary, our
theorem will follow from the result given here in the case where p =£2.

We first collect some information on the parameters related to the presentations of G
and H.

LEMMA 2.2. / / ^(G) and ^(H) are order-isomorphic then
(a) m + n = m' + n',
(b) max{/n, n + s} = max{/n', n' + s'},
(c) {m-c,n} = {m'-c',n'},
(d) c = c'.

Proof. By [5, p. 119], we have \G\ =p"l+", exp(G) = pmaM"+sm), G/G' = !„,„- x 2,,.
and G' = (ap' ') =Zp.. By Proposition 1.2 and [1, Theorem A], the result follows.

PROPOSITION 2.3. Let <£(G) and ^(H) be order-isomorphic and assume that both G
and H are of ordinary type. Then G = H.

Proof. According to [5, p. 110], we have to distinguish the cases when G (resp. H) is
split or non-split, respectively. For simplicity, we shall only consider the case where G is
split (s - 0) and H is non-split (s' > 1), the other ones being similar (see also [5, p. 130]).

In addition to the information given in Lemma 2.1, we also have:

max{l,m' - n' + 1} <s' <min{c, m' - c + 1}. (*)

By Lemma 2.2(c), we either have n = n' or n = m' — c.
Case 1. n=n'. Then 2.2(a) implies m=m' and 2.2(b) yields max{m,«} = max{/n,n +
s'}. If « a / n , then this implies n = max{m, n} = n + s', so s'=0, a contradiction. If
n <m, then m = max{m, n +s'} and s o n > n + i ' . Using (*), this yields max{l, m — n +
l } < j ' , s o m - n + l s j ' and m + l^n +s' <m, a contradiction.
Case 2. n=m' — c. Then m — c = n', so

m' = n+c, n' = m-c. (**)

Using Lemma 2.2(b), we have max{m, n) = max{« + c,m — c + s'}.
(i) If m s « and « + c > m — c + s', then, by (**), m = n + c = m', and we are in

Case 1.
(ii) If m > n and n +c <m — c + s', then An=/n-c + s', so c=51', but (*) implies

s'<c, a contradiction.
(iii) If /n < n and /z + c S m - c + s', then n = n + c and c = 0. Hence G is abelian.

But [1] implies G = H, a contradiction, since G splits and / / does not split (see also [5, p.
110]).

(iv) If m<n and n + c<m — c + s', then n = m — c+s', so n + c = m +s'. But
n + c < / w - c + s':</n+.s', a contradiction.
Thus, in this case ^(G) cannot be order-isomorphic to
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3. The case p = 2. In this case let G = (a, b \ a2'" = l,b2n = a2'"", a" = a
±l+2""r) be

a metacyclic 2-group and set A = (a). The following criterion shows that it can be read
off from the poset ^(G) whether or not Z(G) is cyclic:

LEMMA 3.1. Let G be a metacyclic 2-group and let K < G be a Klein group. The
following are equivalent:

(i) V<Z(G).
00 [[1]' [^]] & a modular lattice with three atoms.

Proof. Clearly (i) implies (ii). For the converse, assume by way of contradiction that
V^Z{G). As G/A is cyclic we must have VDA¥=1, so that K n Z ( G ) # l . Let
V n Z(G) = {z) and let veV\(z) be an involution.

If Q,(G)<V then clearly veZ(G) and V<Z(G), a contradiction. Hence there
exists an involution u e G\V. Let D = (u, v), so D is a dihedral group. As above, we
have D HA^l, so that z e D. This implies V = (z,v) <D. Moreover, v e D\V, so that
|D| > 8. By the structure of D, we see that v and vz are conjugate in D, hence in G, but
this contradicts (ii).

COROLLARY 3.2. Let G and H be metacyclic 2-groups and assume ^(G) = ^(H). If
Z(G) is noncyclic then Z(H) is noncyclic.

It may be noted that two most natural generalizations of Lemma 3.1 are not true.
Indeed, part (a) of the following example shows that the hypothesis of G being metacyclic
cannot be dispensed with. Moreover, %(G), in general, is not a lattice, even forp-groups.
Part (b) shows that V, in general, cannot be replaced by an arbitrary noncyclic, abelian
group.

EXAMPLE 3.3. (a) Let G = Z2wrZ4. Then G is a split extension of an elementary
abelian 2-group B of order 16 by a group C = (g) of order 4. Let A = {(*,,. . . ,x4) e
B|A:, + - - - + J C 4 = 0} . Let M = (1,0, 0,0), v = (1,1,1,0) and w = vK = (0,1,1,1). We
claim that the Klein groups Kt = (u,v) and K2= (u, w) are not conjugate in G. Thus
[Ki] and [K2] are distinct least upper bounds for [(«)] and [(v)] = [{vg)] in ^(G) and
hence ^(G) is not a lattice. Indeed, assume K2 = K* for some x e G. If ux = u then
x e Cc(u) = B and K\ = K2, a contradiction. If ux = uw then w = [u,x]e[B,G]=A,
another contradiction. If ux = w = vs then u and v would be conjugate, a contradiction.
So ^(G) is not a lattice. Finally, Kt ^Z(G), but its three subgroups of order 2 are not
conjugate in G.

(b) Let G = {a,b\a9 = b9=l,ah = a4) and let S=(a,b3}. T h e n 5 = Z 3 x Z 9 and
the interval [[1], [5]] of ^(G) is order-isomorphic to the lattice of all subgroups of 5. But

PROPOSITION 3.4. Let G and H be metacyclic 2-groups and let cp: ^(G)—* ^(H) be an
order-isomorphism. Let N<G and let (p([N]) = [/?]. Then R<3H.

Proof. By [1], the result is true if G is abelian. Moreover, by Proposition 1.2, we
have <p([G']) = [//']. We proceed by induction on \G\.

First, we prove the result in the case \N\ =2. Here we have N ^Z(G). If Z(G) is
cyclic then N is its unique subgroup of order 2 and we have N <G', because G' is cyclic.
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By the above remark, we have [R] = <p([N])< <p([G']) = [//'], and so / ? < / / ' , which is
cyclic, and therefore R<1H, as desired. If Z(G) is noncyclic, then Corollary 3.2 implies
that Z(H) is noncyclic. As H is metacyclic, Z(H) contains every element of order 2, so
that /?<Z(/ / ) and R<H.

In the general case, let li±K<G and choose N<iG, \N\ =2, such that N < K. By
the above, if [R] = <p([N]), then R<\H and there exists an order-isomorphism
^^(G/AO—•<#(///#) which, by induction, maps [K/N] onto the class consisting of a
normal subgroup L/R of H/R. Thus <p([K]) = [L] and L<H.

REMARK. An analogous argument to the one used above, in conjunction with our
main theorem, proves that Lemma 3.4 holds for every prime p.

We now characterize exceptional 2-groups, so let G be of type — and let H be an
exceptional 2-group with parameters m', n', s', c', —. We now show that m — c can be
read off from

LEMMA 3.5. Let G and H be exceptional 2-groups and assume that ^ ( G ) and
are order-isomorphic. Then m — c = m' — c'.

Proof. Let q> be an isomorphism from ^(G) to ^(H). Let GD be the intersection of
all normal subgroups X of G such that G/X is a dihedral group. Define HD similarly. By
[5, Theorem 4.9], either G is isomorphic to the generalized quaternion group of order
2"I+I or G/GD is a dihedral group of order 2m~c+x. In the first case, by [1, Corollary 2] we
have G = H. In the second case, let q>([GD]) = [/?]. Then Proposition 3.4 implies that
R<W and clearly <<?(G/GD) and ^(H/R) are order-isomorphic. Thus [1, Corollary 2]
implies that H/R is a dihedral group, so that HD < R. An analogous argument applies to
q>~x and we arrive at HD = R. The result follows from the aforementioned result of King.

The following shows that we need to consider the splitting type of exceptional
2-groups.

LEMMA 3.6. Let G and H be exceptional metacyclic 2-groups and assume that
and ^(H) are order-isomorphic. Then m = m', n = n' and c = c'.

Proof. By [5, Proposition 4.10], we have m + n = m' + n' and ma\{n+s,m} =
max{n' +s',m'}. Moreover, [5, p. 120] implies G /G '=Z 2 » x Z2, H/H' = Z2«- x Z2, and
son = n'. It follows that m = m'. Finally, by Lemma 3.5 we have m — c = m' — c', hence
c = c'.

LEMMA 3.7. Let G and H be exceptional metacyclic 2-groups and assume that ^ ( G )
and ^(H) are order-isomorphic. If G splits, also H splits.

Proof. By [5, p. 110], a metacyclic group either splits or never splits. Suppose that G
splits. Then (a) n (b) = 1. Let cp: <g(G)-* <<?(//) be the order-isomorphism and let
[R] = (p([{a)]), [S] = <p([(b)]). Then R and 5 are cyclic, by [1, Proposition 3] and
Proposition 3.4 implies R<]H. Moreover, [1] = [(a) D (b)] is the greatest lower bound of
| ( a ) | and [</>)] in <€(C), so RHS = l. Finally, we have \R\ = \{a)\, |5 | = J<6>| and
\H\ = \G\, hence H = RS is a split extension of R by 5, which means that H splits.

PROPOSITION 3.8. Let G and H be metacyclic 2-groups of type —, and assume that
and <#(//) are order-isomorphic. Then G = H.
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Proof. By Lemma 3.6 we have m = m', n = n' and c = c'. Lemma 3.7 implies
S = S' = Q or s, s' =£0, but in this case by Lemma 2.1 we must have s=s' = l. The
conclusion now holds again by Lemma 2.1.

Finally, we deal with the case where G is an ordinary and H an exceptional 2-group.
In fact, we prove a slightly more general result.

PROPOSITION 3.9. Let G and H be metacyclic 2-groups and assume that G is of type +
and H of type -. Then ^(G) is not order-isomorphic to ^(H).

Proof By Lemma 2.1, G is not isomorphic to H. By [5, p. 120], we have
G/G ' = Z2,..-.xZ2. and H/H' = Z2. x Z2. So G/G'=H/H; implies {m - c, n} = {n', 1}.
If m = \, then G would be abelian and so C s W by [1], a contradiction. So assume
m>2. If m - c = 1 then c = m - 1, but this contradicts [5, p. 110]. Hence n = 1 and G
has a cyclic normal subgroup of index 2. Again by GIG' = H/H', an analogous property
holds for H. Now, [4, p. 91] implies that H (of type - ) is of maximal class. But then by
[1, Corollary 2] we have C = H, a contradiction, because G is of type + .

This also completes the proof of our main theorem.
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