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COMPLETIONS OF RANK RINGS

BY
DAVID HANDELMAN

In this note, we prove three results on regular rings possessing a rank
function: (a) the completion of a *-regular rank ring is a regular Baer *-ring;
(b) (a) is used to construct regular Baer * factors of type II; with centre any
complex subfield closed under conjugation; (c) the units of a unit-regular rank
ring form a dense topological subgroup of the units of the completion. We also
outline a proof that for suitable simple regular rings, all proper normal
subgroups of the commutator subgroup of the group of units are central.

DeriniTIONs. All rings are associative, with 1 and are usually denoted R. A
ring R is regular if for all r in R, there exists ¢ in R (called a quasi-inverse for
r) such that rir=r. A rank function N on the regular ring R is a function
N:R — [0, 1] satisfying:

(i) N(r)=0 if and only if r=0
(i) N(1)=1
(iii) N(rs)=<N(r), N(s)
(iv) if e=e” f=f?, ef=fe=0 then N(e+f)=N(e)+N(f).

For more details, see [4, 11, 5, 2, 3].

A regular ring possessing a rank function is called a rank ring. It follows
from the above definitions that N(r+s)=< N(r)+ N(s); if rRNsR =(0), then
N(r)+ N(s) = N(e) where eR =rR +sR. In particular the function dy defined
by dn(x, y) = N(x—y) is a metric on R, called the rank-metric associated with
N. In the dy-metric topology, R becomes a topological ring, and N is
uniformly continuous ([11; Cap. 18]).

A ring is *-regular if it possesses an involution * such that every principal
right ideal is generated by a projection (an element p = p* = p?). From ([10;
Ex. p. 38]) a ring is *-regular if and only if

(A) it is regular and possesses an involution * such that rr* =0 implies r=0.
A Baer (*) ring is a ring (with involution *) such that the right annihilator of

any set is generated by an idempotent (projection). By ([10; Ex. p. 39]), a
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regular ring is a Baer *-ring if and only if
(B) it is a *-regular Baer ring.

Following the theory of types in [10], we say a Baer *-ring R is a factor of
type II; if xx*=1 implies x*x =1, R has no minimal right annihilator ideals,
and the centre of R is a domain. With regularity added, the collection of
principal right ideals of R becomes an orthocomplemented modular irreducible
complete lattice, hence ([9]) a continuous geometry, so by [11], R is a
non-artinian right and left self-injective simple regular ring.

ProposiTioN 1. If R is a *-regular rank ring, then the completion of R with
respect to any rank-metric is a Baer *-ring.

Proof. Let R denote the completion of R with respect to dy. R is right and
left self-injective regular (e.g. [2; Theorem 14]), so Ris a regular Baer ring.
Choose r non-zero in R. If r*rt=0 for some t in R, then 0= t*r*rt = (rt)*nt,
whence rt =0. Thus the right annihilator of r*r equals that of r, so r*rR =rR
(as right R-modules; in fact one has Rr*r=Rr), so that N(r*r)= N(r). But
N(r*r)= N(r*¥), so N(r*)=N(r). By symmetry N(r)=N(r*), and thus N(r)=
N(r*)= N(r*r). Hence if (r,) is a Cauchy sequence (with respect to dy), then
(r¥) is also Cauchy and this defines the extension of * to R. Suppose ") is
zero in R, then lim; .. N(r?‘r,-)=0, so lim N(r;)=0 and hence (r;) is a null
sequence (i.e. equals zero in R). Thus R satisfies (A), so is a *-regular Baer
ring and from (B), it is a Baer *-ring.

M,R will denote the ring of n X n matrices with entries from R.

Let F be a field. Consider the maps M,-F — M,-+F given by

A 0
A .
~ [0 A]
Suppose F has an involution #. Then # induces an involution * on the ring
R =lim M,-F; set A*= A*" (* of course indicates transpose) if A is a matrix. *

is easily seen to be invariant under the diagonal maps, so R becomes a *-ring.
R, being a union of regular rings is regular, but need not be *-regular.

Lemma 2 ([9]). Let F be a field with an involution * such that for all integers
n, for all subsets {s;};-=1 of F,

Z sis¥=0 implies all the s; are 0.

Then R =lim M,-F is a *-regular ring.

Proof. The * is as defined above. Since R is regular, we need only verify
condition (A). If B =(b;) is a non-zero matrix in M,-F, then trace (BB*)=
Y byb% #0, so BB* is not zero.
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Now R =lim M,-F is a rank ring (N(x)=rank x/2" if x belongs to M,-F).
According to [5; p. 718], Alexander has shown that the centre of the comple-
tion R, is F. We prove this result for all fields of characteristic 0, and thereby
obtain type II; Baer *-regular factors with centre the rationals or the rationals
with /-1 adjoined.

ProrosiTiON 3. Let F be a field of characteristic 0, and let A be an nXn
matrix with entries in F, satisfying

(1) Inf rank(A — BI) = n/2.
BeF

Then there exists B in M,.F such that
(2) rank(AB — BA) = n/4.

Proof. The n” entries of A generate a finitely generated field over Q, so we
may assume F is a subfield of the complex numbers, C.

Case 1. F=C. Obviously, (1) and (2) are invariant under change of base, so
we may assume A is in Jordan Normal form,

% Al

0 A,

where A, is diagonal of size n,, and A, is of size n, and a (matrix) direct sum
of blocks of the form (a):

A 1 ]
A1 0

(a):
0 1

For each block of the form (a), of size m, pick m—1 distinct, non-zero
complex numbers a;, as, . . ., am—1. Denoting CD — DC by |C, D|,

Al 0
A 1. a, 0 0
E= A R
, @ 9%
1 . 0
0 A 0 . 0

is diagonal and all its non-zero entries are a;, a,—a;, as—a,, etc., so the
commutant E is invertible. Taking a direct sum of suitable size matrices with
{a;} below the diagonal, we obtain a matrix B, of size n, such that
rank (A,B,— B,A,) = n,.

4
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Now by (1), the multiplicity of any eigen value of A; must be not greater
than n/2. Hence there exist at least t = (3)(n; —(n/2)) pairs of eigen values of
A,, each pair consisting of two distinct eigen values. (If n, <n/2, the statement
is meaningless but true). Now consider, if A# u, A, p € F,

[o w}0 all-Lo ]

By rearranging the eigen values of A, into pairs of distinct elements, and

0 1 .
taking B; to be a suitable direct sum of copies of [ 1 0] and [0], we obtain a
B, e M, F such that
rank(A;B; — B1A,) =max{0, 2(G)(n: — (n/2)))}.

B,

0 BJ , We see

IfB=[

rank(AB — BA) =max{0, n, —(n/2)} + n,
=max{n,, n—(n/2)} (as n,+n,=n)

=max{n,, (n/2)}=n/2.

Now let F be any subfield of C. We show A satisfies (1) as an element of
M,C. Let F denote the algebraic closure of F in C. If 8 € C—F, rank(A — I) =
n, since the eigen values of A lie in F. Suppose Be F—F; then F[B] is
finite-dimensional over F, and there exists an automorphism of F fixing F and
sending B to a distinct root of the same polynomial that B satisfies, 1.
Obviously rank(A — BI) =rank(A — yI). If rank(A —BI) < n/2, then B8 and thus
v are both eigen values of A of multiplicity greater than n/2; so A would have
too many eigen values! So A satisfies (1) as an element of M, C. Similarly, if
Fc R, then A satisfies (1) as a matrix in M, R.

Case 2. F=R. As A satisfies (1) as an element of M,C (by the preceding
paragraph), there exists B=C+iD, C,DeM,R such that AB—BA=
AC—CA +i(AD—DA) has rank not less than n/2, hence either AC — CA, or
AD — DA has rank not less than n/4.

Case 3. Any Fc C. Either F is dense in R or C, so with the Euclidean
metric, M,F is dense in the corresponding matrix ring. By the paragraph
preceding Case 2, and Case 1 or Case 2, there exists B in M,C or M,R such
that t=rank(AB—BA)=n/4. Let J denote the matrix with 1’s in the (i, i)
position for i=n—t, and 0’s elsewhere. There exist matrices U, Ve M, C or
M,R such that U(AB—-BA)V+J=1 By the density, there exist sequences
{U,}, {B,}, {V,} of matrices over F converging to U, B, V respectively, so
{U,(AB, —B,A)V,+J} converges to I. As the determinant is continuous, there
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exists an integer q such that U,(AB,—B,A)V,+/J is invertible. Then
rank(AB, — B,A) =rank(U,(AB,—B,A)V,)=n-rank J=n—(n—t)=t=n/4.

So B, € M, F is the desired B.
A slight adjustment to the proof of Case 1 above shows, if F< C but FZ R,
then there exists B in M,F such that AB— BA is invertible.

THEOREM 4. Let F be a field of characteristic 0, and define R =Lim M,-F;
then the centre of the completion of R in its rank metric is F.

Proof. The completion, R, is simple [3; Theorem 4.5], so the centre of R is
a field containing F. Let t be central, but not in F. We may find r in R such that
N(t—r)<s. For all B in F, t— is central and non-zero, whence is a unit, so
N(t—B)=1. Now t—B=(t—r)+(r—B). We thus have N(r—B)>7 for all 8 in
F. Regarded as a matrix in some M,F, r satisfies (1) of the preceding
proposition, so there exists s in R with N(rs—sr)=3. But

(t—=r)s—s(t—r)=—(rs—sr)
as t is central, so
N(rs—sr)=N((t—r)s—s(t—r)<2N(t—r) <%,
a contradiction.

COROLLARY 5. Let F be a field that is either formally real or is a subfield of the
complex numbers closed under complex conjugation. Then the completion of
Lim M,-F is a regular Baer * factor of type II; with centre F.

The method of proof of Theorem 4 suggests the following invariant for R.
Let R be a regular ring with a rank function N, whose centre is a field F. R

satisfies property psi (0<8=3; 0<k=1)if
(a) R is simple
(b) for all £ >0, for all r in R satisfying

1) grelf:N(r—ﬁ)zl—S

there exists a in R, depending on & such that
2) N(ar—ra)>k—e.

PROPOSITION 6. Let R be a regular ring with a rank function N, and centre F, a
field. If R satisfies ps for some (8, k), then the centre of R is F and R satisfies
Ps.x. Conversely, if the centre of R is F and R satisfies ps x, then R satisfies ps .

Proof. Suppose R satisfies ps . To prove the centre of R is F, simply mimic
the proof of Theorem 4. Given 7 in R with

Inf N(F—A)>1-38,
AeF
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we may find r in R with N(r—7)<¢/3 and Inf,c.r N(r—A)>1- 8. There exists
a in R such that N(ar—ra)>k —¢/3. Then

N(af—7a)>k —¢.

Conversely, if the centre of R is F and in R, r satisfies (1), then in satisfies it
in R, and we may approximate the ‘a’ in (2) by an element of R.

We obtain a curious result on the density of the units of R in those of R.

A ring is unit-regular ([1]) if for all x in R there exists a unit u such that
xux = x. Unit-regularity is equivalent to the cancellation law for finitely gener-
ated projective modules, over regular rings ([6]). It is conjectured that all rank
rings are unit-regular. If F is a field, lim M,-F is easily seen to be unit-regular.

ProrositioN 7 ([8; Proposition 8]). A regular ring R is unit-regular if and
only if

for all a, b in R satisfying aR+bR =R,
there exists t in R such that a + bt in a unit.

For the ring R, we denote the group of units by R".

ProposITION 8. Let R be a rank ring. Then the units of R form a topological
group (in the relative rank-metric topology), and if R is unit-regular, the group of
units of R is dense in that of R.
Proof. If u, v are units, then u '—v '=u (v—u)v ™", so Nu'—-v )=
N(u—1v) (since N(u)=N(v)=1). Thus u+~ u~"' is continuous. Now R is a
topological ring, so multiplication is continuous; thus R * is a topological group.

Now suppose R is unit-regular. Choose a unit u in R. Given & >0, there
exists r in R such that N(r—u)<e. Let s be any element such that rR @ sR =
R. Then N(r)+N(s)=1, so N(s)<e. By unit-regularity, there exists ¢ in R
such that r+st is a unit; as N(r+st—r)<N(s)<e, we have N(r+st—u)<2e.
Thus any unit in R can be approximated by units of R.

If R =Lim M,-F or its completion, the commutator subgroup is dense in R".
Presumably, this phenomenon holds for any simple right and left self-injective
ring.

For R =Lim M,-F, the only closed normal subgroups of R" and the only
normal subgroups of the commutator are central. These results can be ex-
tended by following the first part of the proof of Theorem D of [10; p. 137]:

THEOREM. Let R be a simple regular ring satisfying
(i) the comparability axiom [3]
(ii) there exist integers n=2m =6 such that R =M, S = M, T for some rings S
and T
(iii) xy =1 implies yx =1.
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Then all proper normal subgroups of the commutator subgroup of R’ are
central.

Outline of proof. By [3, Corollary 3.15], (i) and (iii) guarantee the existence
of a unique rank function on R and (ii) is used as in [10; p. 137-140] to show
the prospective normal subgroup contains all transvections with respect to a
specific set of n> matrix units. Then [7, Theorem I1.4] guarantees the normal
subgroup contains all of the commutator.

In particular, this applies to all simple right and left self-injective rings that
are not artinian.

I would like to thank the referee for his useful suggestions.
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