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TherInal behaviour of glacier and laboratory ice 
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ABSTRACT. Water is present in glaciers in the form of veins at the three
grain junctions. This water remains unfrozen even many degrees below the normal 
freezing point, mainly because it contains much of the soluble impurity content of 
a glacier, but also because of the microscopic curvature of the ice- water interfaces. 
As the temperature is lowered and the veins shrink, the concentration of impurities 
in them increases, and the curvature effect also increases. The predicted relation 
between vein size and temperature has now been verified by laboratory experiments. 

Because of the latent heat of the vein water, the ice behaves macroscopically as 
a continuum with an anomalous specific heat capacity that depends strongly on 
temperature. From this point of view, a poly thermal glacier is a single medium 
with continuously varying properties, rather than consisting of distinct cold and 
temperate phases with sharp boundaries between them. The paper sets up dif
ferential equations for heat diffusion in such a continuum. To explain the local 
uniformity of the vein system seen under the microscope, it is found necessary to 
include the effect of diffusion of solutes along the veins. 

Solutions are presented for a model in which two semi-infinit.e slabs, initially 
having different temperatures, impurity concentrations and vein sizes, are instan
taneously brought into contact. In this way, transition thicknesses between cold 
and temperate ice are estimated, and also the velocities of various kinds of waves 
that are generated from the original discontinuity at the interface. 

1. INTRO DUCTIO N 

One approach to the problem of a poly thermal glacier 
(Fowler and Larson, 1978; Hutter, 1982; Fowler, 1984; 
Hutter and others, 1988) is to model it as consisting of 
two distinct continuous phases, namely, temperate and 
cold (or polar) ice. Temperate ice is at the melting point 
and contains moisture, while cold ice is below the melt
ing point and is dry. Appropriate differential equations 
are formulated for the two different phases, and jump 
conditions are defined for the interface between them. 

i ce 

ze e 

Fig. 1. Cross-section of a water 'Vein at a 
three-grain junction in polycrystalline ice. 

We adopt here the different point of view that poly
crystalline ice can be modelled as a single medium, but 
with smoothly varying thermal properties. Of course, 
this is not necessarily in conflict with the two-phase 
model, which may still be appropriate if the transition 
layer between the cold and temperate phases turns out to 
be sufficiently thin. The view of ice as a single medium 
with smoothly varying properties is based on observ
ations in the laboratory of the behaviour of single veins of 
water in polycrystalline ice at the three-grain junctions 
(Mader, 1990, in press a, b). At temperatures within 
the range 0° to about -1°C, change of temperature is 
observed to be accompanied by a change in the size of 
the veins. This results from two effects (Lliboutry, 1971; 
Harrison, 1972; Nye and Frank, 1973; Raymond and Har
rison, 1975; Harrison and Raymond, 1976) . 

present dissolved in the vein water. Because the ice 
phase tends to reject impurities, the shrinking of a vein 
by freezing concentrates the salt solution it contains, and 
so lowers the equilibrium temperature. The second effect 
arises because the vein walls are highly curved. The nar
rower the vein, the greater is the curvature and, because 
the vein walls are concave inwards (Fig. 1), the narrower 
the vein the lower is its equilibrium temperature. Thus, 
both effects work in the same direction. 

The first arises from the impurities that are always 
Lowering the temperature does not freeze all the vein 

water; rather it progressively reduces its amount. The 
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latent heat of the vein water means that, viewed as a 
continuum, the ice appears to have an anomalous specific 
heat capacity, which becomes large as the veins become 
large. The anomalous specific heat capacity gives rise to 
an anomalous thermal diffusivity, which determines how 
long an inhomogeneity of temperature of given spatial 
scale can persist. 

The concentration of impurities within the veins 
changes not only because of changes in the vein size, 
but also by virtue of diffusion of impurities along the 
vein network, in response to gradients of concentration. 
Although this diffusion process is slower by a factor of 
103 than the unmodified thermal diffusion, it has to be 
considered if we are to account for the local uniformity in 
vein size that is observed, as we shall see in detail later. 

How all these processes interact together is not at first 
obvious. Therefore, the primary purpose of the paper is 
to study the continuum thermal behaviour implied by the 
observed vein structure within the ice. To this end, we 
first formulate the appropriate partial differential equat
ions for the ice viewed as a continuum, and then use them 
to study how uniformity (of temperature, concentration 
and vein size) is reached from given starting conditions. 
In particular, we calculate the time-scales and length
scales that are involved. There are some similarities with 
the solidification problem in alloys (Worster, 1986). 

[Since the submission of this paper the same contin
uum model has been used to study the slow coarsening 
of the veins that takes place in ice near its melting point 
when stored in the laboratory (Nye, 1991b).] 

Before applying the results directly to glaciers, several 
further points would need to be considered. For example, 
glacier ice may contain some proportion of water that is 
not at the veins, in the form of lenses at grain boundaries 
and in irregular shapes (Raymond and Harrison, 1975). 
This will contribute to the specific heat anomaly; how
ever, the fact that the veins are the sites where the water 
is in thermodynamic equilibrium suggests that they may 
often contain most of it. 

Another effect to consider (in laboratory experiments 
as well as in glaciers) is the movement of water along 
the veins. This could occur in at least three ways. (1) 
In a glacier, water, being the heavier phase, will tend to 
flow downwards under gravity. (2) The change of specific 
volume of ice on melting or freezing of veins can cause 
pressure gradients and consequent flow of water. (3) Vein 
water will also flow under the influence of other pressure 
gradients, generated, for example, by the hydraulic sys
tem in a glacier or by ice movement. 

The relative importance of these processes will depend 
on the precise physical conditions. Process (1), with the 
water conveying heat, is usually considered to be the 
principal mechanism by which a glacier becomes "tem
perate" despite being cold in its higher reaches. This 
effect will depend on the direction of the temperature 
gradient with respect to the vertical. As another ex
ample, process (1) would not operate in an experiment 
where a block of polycrystalline ice in the laboratory is 
held totally immersed under water, so that the vein water 
is simply in hydrostatic equilibrium. However, such a 
block will be subject to process (2) if its temperature 
is lowered so that the veins begin to freeze; the expan
sion would be expected to drive water along them out to 
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the surfaces, and this process has been observed (Mader, 
1990, in press b). Process (2) may not occur so readily 
within a much larger body of ice such as a glacier, where 
there will usually be no nearby free surfaces to which 
the expansion water may flow. If water flows, there will 
also be dispersion of the solute in addition to diffusion 
(Bear, 1979). Thus, so far as water flow along the veins 
is concerned, it would appear that each physical appli
cation has to be considered on its merits. It is for this 
reason that we confine ourselves here to the well-defined 
problem where water flow along the veins is not allowed. 

Our model also neglects the effect of bulk strain rate, 
although Robin (1955) has shown that this can be an 
essential element in maintaining a steady distribution of 
temperature within an ice sheet. For all these reasons, 
one should be cautious in drawing firm conclusions about 
glaciers from this simple model. Its purpose is to deal 
precisely with one aspect of a complex problem. 

2. CONTINUUM MODEL 

2.1. The relation between temperature and vein 
size 

Consider a single vein containing a concentration c (mass 
per unit volume of liquid) of soluble impurities. Let the 
radius of curvature of its cylindrical faces be Tv (Fig. 1). 
In equilibrium, the vein and the surrounding ice will be 
at the melting point, which is depressed by 

u= 
1 

.-+Kc 
Sw - Si Tv 

(1) 

where Vi is the specific volume of ice, Sw and Si are the 
specific entropies of water and ice, I is the ice- water 
surface energy and K is a positive constant that depends 
on the impurity composition (Schwerdtfeger, 1963). It 
is convenient to define an equivalent vein radius T such 
that a vein of circular section and radius T would have 
the same cross-sectional area: 7rr2 = aTv 2 

The value of a depends on the dihedral angles at 
the vein edges, that is, the angles <p of the curvilinear 
triangular cross-section of the vein. Measurements by 
Walford and others (1987) of the focal lengths of wa
ter lenses at grain boundaries gave <p = 33.6 ± 0.7°. 
This deduction used simple lens theory based on ge
ometrical optics. However, more accurate diffraction 
theory (Nye, 1991a) has revealed a systematic error in 
the method arising from diffraction, and new measure
ments of the diffraction pattern (Walford and Nye, 1991) 
have given <p = 25.0 ± 1.0° for a supposedly typical grain 
boundary. At the same time, there is evidence (Morris, 
1972; Mader, 1990, in press a) that <p can vary consid
erably with the relative crystal orientation at the grain 
boundary. We shall provisionally take for calculations 
<p = 25.0°, which corresponds by the formula (1) in Nye 
and Mae (1972) to a = 0.1007. 

Equation (1) may now be written, using T, as 

where 

A 
u = - + Kc 

T 

A = ViI (~) ~ 
Sw - Si 7r 

(2) 
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With Vi = 1.09 m3 Mg-l, I = 34 mJ m-2, Sw - Si = 
1.22 kJ kg-1 deg- 1, we find A = 5.44 X 10-9 m deg. 
Equation (2) expresses the depression of the melting 
point u in terms of vein size r and impurity concentration 
c. 

2.2. Conservation of energy 

We consider a polycrystalline sample of ice containing a 
vein density>., in units of vein length per unit volume. 
In order of magnitude, >. will be related to the grain-size 
b by >. ~ 3b-2• The veins have equivalent radius rand 
the temperature depression is u. If rand u now change 
by dr and du, we write the heat required per unit volume 
of the composite as 

(3) 

the first term arising from the latent heat of the vein 
water (L per unit mass) and the second from the spec
ific heat capacity of the ice (a per unit mass). Consistent 
with our assumption of no water flow along the veins, we 
neglect the volume change on melting and use a common 
density p throughout. In expression (3) we are taking the 
relative volume of the veins to be small, and we are neg
lecting the contribution from the specific heat capacity of 
the vein water, in comparison with its latent heat. The 
former assumption is well satisfied in practical cases, and 
the latter is valid provided the total temperature change 
considered is much less than L / a = 160 deg, which IS 

adequate for our purposes. 
Expression (3) leads to the energy equation 

au a(71"7"2) 2 
pa- - >.pL-- = kV u 

at at 

where k is the thermal conductivity of ice, essentially 
unchanged by the presence of the veins, or 
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We generalize this for veins distributed isotropically 
to 

(6) 

where the factor 1/3 arises because individual veins are 
more or less favourably oriented with respect to grad c. 
To justify the factor, first note that the flow of solute, 
mass per unit time, along a vein inclined at an angle () 
to grad c is proportional to cos (). If the density of veins 
at angles between () and () + d() (length per unit volume 
of continuum) is d>., the number of such veins crossing 
unit area normal to grad c is cos () d>.. Hence, the flow 
across unit area of continuum due to this class of veins is 
proportional to cos2 () d>.. Since the factor cos2 () averages 
to 1/3, the result follows. 

The implicit assumption in Equations (5) and (6) is 
that, when a vein freezes, all the impurities remain in 
the liquid phase; no salt from the vein is trapped, for 
example, in the three grain boundaries as they extend. 
This is an essential feature of the present formulation. It 
was originally adopted as a plausible working hypothesis, 
but the experimental work of Mader (in press b), which 
was specifically undertaken to test it, has now given it a 
firm empirical basis. 

The three Equations (2), (4) and (6) determine the 
space and time behaviour of the three fields u, rand c. 

2.4. The anomalous specific heat capacity 

The idea of an anomalous specific heat capacity is ap
propriate when solute is not allowed to diffuse along the 
veins; for, if it were allowed, the input of heat would not 
be the only factor that determines temperature change. 
Therefore, to see how it is included in the equations we 
put Dc = O. 

Then Equation (6) gives 

r2c = constant, 

(4) and, if we denote by m the mass of solute per unit length 
of vein (m = constant), we have 

where Dlh = k/ pa, the thermal diffusivity of ice. This is 
the standard heat-diffusion equation, but with the add
ition of the second term, which is due to the veins. To 
see its physical significance, consider the case when no 
heat flows in. The righthand side is then zero and the 
two terms on the left balance. Thus, to increase the 
radius by melting requires heat, which leads to a fall of 
temperature (an increase in u). 

2.3. Conservation of mass of solute 

Let us first imagine for simplicity that all the veins are 
parallel and run in the x-direction. The flux of solute 
along a vein by virtue of the concentration gradient is 
-Dcac/ax, where Dc is the diffusivity of salt in water. 
This is per unit area of vein. The volume of vein per 
unit volume of continuum is 7rr2 >.. So the flux per unit 
area of continuum is -Dc7r1·2>.ac/ax. Since the mass of 
solute per unit volume of continuum is 7rr2 >.c, this leads 
to the conservation equation 

(5) 

m 
c = 7rr2 . (7) 

Equation (2) is now 

A B 
u= -+-r r2 

(8) 

where the constant B = Km/7r. 
Since u is now a function only of r, and vice versa, 

the second term in Equation (4) involving a(r2 )/at can 
be expressed in terms of au/ at like the first one. Thus, 

and Equation (4) can then be written simply as 

au 2 
at = Derr'il u, 

with an effective diffusivity Derr which is in turn related 
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inversely to an effective specific heat capacity a eff. Thus, 

or 

Dth a eff 2r4 L-rr >.. 
- = - = 1+ (9) 
D eff a a(Ar + 2B) , 

2r4L7r>" 
a eff = a + AB ' r+2 

(10) 

The last term is the anomaly. 
Equations (8) and (10), with r as a parameter, det

ermine the effective specific heat capacity as a function 
of temperature depression u. As u ~ 0, r ----> 00 and 
the anomaly becomes infinite. For a given impurity con
tent m and small enough vein radius r, the first term in 
Equation (8) , arising from curvature, becomes negligible 
compared with the second, arising from impurities. In 
that case, putting A = 0, we can eliminate r between 
Equations (8) and (10), and obtain explicitly 

(
Ut 2) 

a eff = a 1 + ~ (ll) 

where 

in agreement with Harrison (1972, p. 26) . Ut is a trans
ition temperature depression. When u falls to Ut, the 
specific heat capacity becomes twice its normal value. 
This simplified formula is valid when u » A2 I B or 
u»7rA2 /Km . 

The behaviour of the effective diffusivity Deff as a 
function of temperature depression U is sketched in Fig
ure 2. It falls to zero as u ~ O. Therefore, there comes a 
point where it falls below (1/3)De, which, from Equation 
(6), is the diffusivity that governs the movement of im
purities along the veins. For lower values of u, the notion 
of the anomalous specific heat capacity as governing the 

c .1 .. TTD.T.-
- - - - L - - - - - 1 

D'II I I 
I I 

r - - - 0·5 

I 
I 

_f~ I 
3><10-4 

r I' 
I I 

"-

- Ut 0 temperature 
u 

Fig. 2. Showing diagrammaticaLly the depen
dence of the effective thermal diffusivity D eff 

on t emperature. Th e temperature depression 
ut below the normal melting point (the origin) 
marks the cold- t emperate (C- T) boundary. 
Where D eff < Del3 the ice is deeply t emper
ate (D. T.). Note the highly non-linear scale 
of diffusivity, which is in units of Dth. 
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diffusion of heat breaks down; it is in fact Dc rather than 
Deff that then controls the approach to equilibrium, as 
we shall show by numerical solutions in section 6. We 
shall call such ice "deeply temperate". 

2.5. Numerical examples 

Throughout this paper we shall use two numerical exam
ples, chosen to typify laboratory ice and glacier ice. In 
example (1), a vein in a laboratory specimen of ice, grown 
from singly distilled water and purified by an additional 
factor of about ten during freezing (Mader, in press a, b), 
was observed to have r = 6 f.Lm at a temperature depres
sion U = 0.10 deg. In example (2), from Raymond and 
Harrison (1975), a specimen of fine-grained glacier ice 
was inferred to have, when in the glacier, r = 14jJ.m at 
at a temperature depression of 0.006 deg (point P3 in 
their figure 9). (This does not include the temperature 
depression due to pressure.) 

So the curvature term in Equation (8) is Air = 9.1 x 
10-4 deg for example (1) and 3.9 x 10-4 deg for example 
(2), which we neglect in comparison with the measured 
u. Then B = ur2 = 3.6 x 10-12 degm2 for (1), and 
1.2 x 10-12 degm2 for (2). Taking>.. = 5 x 104 m-2 for 
(1) and 1 x 106 m-2 for (2) and Lla = 160 deg, gives 
Ut = 0.0093deg for (1) and 0.024deg for (2). 

If these specimens were heated up so that the veins 
grew to a size where the curvature term in Equation 
(8) equalled the impurity term, the temperature depres
sions would be u = 2A2 I B = 1.6 X 10-5 deg for example 
(1) and 5.0 x 1O-5 deg for example (2). The vein radius 
would be 660 f.Lm for (1) and 220 jJ.m for (2). Thus, for 
these specimens, the simplified formula (11), which neg
lects curvature, is applicable at least up to temperatures 
where U ~ Ut. Ut, which may be regarded as marking 
the transition temperature from cold to temperate, cor
responds to a vein radius r = 20jJ.m for (1) and 7.0jJ.m 

for (2). Veins even as small as this soak up enough heat 
to generate a 100% anomaly in the specific heat capacity. 

The temperature at which Deff falls to (1/3)Dc (Fig. 
2) can be estimated from Equations (8) and (9). For the 
fine-grained glacier ice of example (2), we find u = 5.4 X 

10-4 deg, which corresponds to a vein size r = 52 jJ.m. 

For higher temperatures and larger veins than this the 
ice is deeply temperate. 

3. DIFFERENTIAL EQUATIONS 

We shall be concerned with one-dimensional solutions 
and therefore we write the governing Equations (2), (4) 
and (6) as 

(2) 

(4') 

(6') 

the dependent variables being u, rand c. 
To express them in dimensionless form, take the unit 

of temperature depression as L I a = 160 deg, the unit of 
length as >.. -! , which is of the order of the grain-size, and 
the unit of time as (>"Dth )-I. It is now more convenient 
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to work in terms of the area rather than the radius of the 
vein cross-section. Denoting dimensionless temperature 
depression, distance, time and area by U, X, T and S, 
we have 

a 1 2 
U = r;u, X = A'X, T = (ADth)t, S = hr ; 

S is then the fractional vein volume. Further, we define 
dimensionless concentration C by 

Ka 
C=1:c . 

Then the equations for the fields U(X, T), S(X, T) and 
C(X, T) reduce to 

a 
U=-l+ C , S, 

au as a2u 
aT - aT aX2' 

a a ( ac) aT(SC) = dax S ax 

(13) 

(14) 

(15) 

where just two dimensionless constants remain, namely, 

a ( 1 Dc a = - 7r A)' A and d = -D . 
L 3 th 

With Dc = 1.3 X 10-9 m 2 S-1 and Dlh = 1.2 X 10-6 m2 S-I, 

their values are 

_ {1.3 X 10-8 

a - 6.0 x 10-8 

d = 3.6 X 10-4 
. 

for example (1) 
for example (2) 

(A further scaling which has the effect of removing a 
altogether could be accomplished by defining new vari
ables obtained by multiplying U, Sand C all by a-2j3 . 

However, we prefer to work with dimensionless variables 
whose physical meanings are more apparent.) 

4. THE TWO-SLAB MODEL 

A simple model, designed to show the thermal behaviour, 
and particularly the time and space scales, implied by 
Equations (13), (14) and (15), is the following. Two 
semi-infinite slabs of ice, with a common interface X = 0, 
each of them initially uniform but having different tem
peratures, vein sizes and impurity concentrations, are 
suddenly brought together at T = 0 and allowed to equi
librate. This problem allows a similarity solution. 

Define the new variable 

Z=~ 
(T)~ 

((T)1 positive), (16) 

and hypothesize that, for our initial value problem, U, S 
and C are functions not of X and T separately, but solely 
of Z. We shall write them as U(Z), S(Z) and C(Z). 
Then the partial differential equations become the ord
inaryones 

a 
U = S! + C (melting point) (17) 

Nye: Thermal behaviour of glacier and laboratory ice 

-ZU' + ZS' = 2U" 

-Z(SC' + S'C) = 2d(S'C' + SC") 

(energy) (18) 

(mass) (19) 

where primes denote differentiations with respect to Z. 
The boundary conditions in (X, T) can also be ex

pressed in terms of Z, namely, that U (00), U ( -00), 
C(oo) and C(-oo) should have prescribed values. These 
boundary conditions are appropriate to the two-slab 
problem because, at T = 0 and for all X > 0, Z = 00, 
and at T = 0 and for all X < 0, Z = -00. Thus, 
U(oo), U(-oo), C(oo) and C(-oo) are the initial (T = 
0) uniform temperature depressions and concentrations 
in the two semi-infinite slabs. Figure 3, which is a key 
to interpreting all the graphs that follow, illustrates this. 
Having fixed these values, the initial values of S in the 
two slabs are determined by Equation (17). 

It is useful to take, as a subsidiary dependent variable, 
the mass m of solute per unit length of vein, which was 
defined in Equation (7) but there held constant. If we 
define the dimensionless mass per unit length by 

(
AKa) M= -y;- rn, (20) 

Equation (7) is simply 

S(Z)C(Z) = M(Z). (21 ) 

In this model, M can only be changed by diffusion of 
solute. Any pair of the variables U, S, C, M (or u, r, c, m) 
suffices to determine the state of the ice. 

It is an immediate and interesting consequence of the 

v(z) 

v(o) 

U(-oO) 

~ o 
X --T 

~ 

X 

v(oo) 

z 

Fig. 3. A sketch graph to illustrate the trans
formation Z = X/T1. The curve shown for 
U(Z) may be read in two ways. (1) For fixed 
T it shows the spatiaL distribution aLong X of 
temperature depression U. As T increases, the 
curve becomes uniformLy stretched out, by a 
factor T1. (2) For fixed position X the curve 
shows how U changes with time. For X > a, 
time runs from Z = 00 to Z = a, and for 
Z < a time runs fTom Z = -00 to Z = a. 
Thus, for X > a, U relaxes fTom U(oo) to 
U(a), and, for' X < a, U relaxes fT'om U( -00) 
to U(a). 
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transformation from (X, T) to Z that, after the first in
stant (T = 0), the common interface X = ° remains 
fixed in temperature throughout the diffusion process. 

The limit T -; 00 merits further comment. T = 00 

corresponds to Z = ° for all finite X, but not necessar
ily for X = ±oo. There are two limits involved here, 
T -; 00 and also the fact that the slabs are semi-infinite, 
and the order in which they are taken is important. If 
the thickness of the slabs is allowed to be infinite first, 
the temperature distribution always has the form calcul
ated in our model; for fixed T, however large, there are 
sufficiently distant parts of the slabs that retain their 
original temperatures. If, on the other hand, we started 
with slabs of finite thickness and let T -; 00, the develop
ment of the temperature distribution would be different, 
because ultimately the distant faces would have an in
fluence. If the distant faces were insulated, the uniform 
temperature ultimately attained would depend on the 
relative thicknesses of the slabs, and would not in general 
be U(O). This would continue to be so even if the thick
nesses were then allowed to become infinite. However, 
for finite slabs, the temperature depression at the inter
face for T small (but not zero) would be U(O), because 
in this case they would act as if they were semi-infinite. 
In practice, it need hardly be said, the sizes of blocks 
of ice are finite, and so are their lifetimes. For a glacier, 
the space and time scales make the model of semi-infinite 
slabs an appropriate one. In the laboratory, on the other 
hand, experiments could be devised to suit either model. 

5. BEHAVIOUR OF THE EQUATIONS IN 
THE LIMITS Dc -; 0, A -; ° 
At temperature depressions greater than 0.1 deg, the 
contribution to temperature depression made by curv
ature is less than a few per cent, and so one might be 
inclined to neglect it for many purposes, retaining only 
the contribution from salinity. One would put A = ° in 
Equation (2), which is equivalent to setting a = ° in the 
dimensionless Equation (17). Also, because the diffusiv
ity for salt in water Dc is some 103 times smaller than the 
diffusivity for heat in ice, one might be inclined to put 
Dc = 0, which is equivalent to setting d = ° in Equation 
(19). 

If one tries to simplify and solve the two-slab problem 
in this way, there is no difficulty, except that S and M 
are, in general, discontinuous at Z = 0. The temperature 
depression U is always continuous, and so is the concen
tration C, because in this case U = C. This means 
physically that, even at t = 00, the vein size is discontin
uous across x = 0, the concentration is continuous, but 
the mass per unit length is discontinuous. Thus, putting 
a = 0, d = ° leads to no mathematical inconsistency. 

Suppose now that we try to relax this approximation 
by putting a -=1= 0, d = 0, that is, allow for a curvature 
effect but continue to neglect diffusion of solute. There 
will now be, in general, discontinuities at Z = ° not only 
in S and M but also in C. This again is quite consistent 
(and we show numerical results in section 6). 

It might be supposed that all these discontinuities 
would be removed if d -=1= 0, to allow diffusion of solute, 
and indeed they are. However, it is perhaps surpris
ing that they are not removed if we deal with the case 
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Fig. 4. An idealized longitudinaL section of a 
vein in equilibrium in a model where the curv
ature of the vein walls has no effect on melt
ing point (a = 0), and where the diffusivity of 
solute is non-zero (d f= 0). There can be dis
continuities in cross-section S and in mass M 
of solute per unit vein length, but the temper
ature depression U and concentration Care 
both uniform. 

a = 0, d i= 0. A physical argument is best for explaining 
why this is so. In Figure 4, where a = 0, d -=1= 0, a vein 
has discontinuities in cross-section and in mass of solute 
per unit length, but the temperature depression and the 
concentration are both uniform. All the equations are 
satisfied and there is equilibrium. The non-zero value 
of d does not suffice to smooth the discontinuity in the 
vein because the concentration, which alone controls the 
temperature (a being zero), is uniform. However, if we 
now suddenly allow a -=1= 0, we generate a temperature 
difference, heat will flow and the vein becomes uniform. 
Thus, in summary, the case a -=1= 0, d = ° and the case 
a = 0, d i= 0 both allow discontinuities. Therefore, both 
diffusion of impurities and the effect of vein-wall curv
ature, small though it may be, are essential for attaining 
the local uniformity of the veins that is seen under the 
microscope. 

6. SOLUTIONS OF THE EQUATIONS 

We note from the definition Z = Xj(T)! that, for all 
finite X, Z = ° corresponds to T = 00. Thus, the 
final uniform values of U and C are given by U(O) and 
C(O). To integrate Equations (17), (18) and (19) numer
ically, the procedure adopted was to set values for U(O), 
C(O) and also for U'(O) and C'(O), and to integrate out
wards for positive and negative Z until asymptotic values 
U(oo), U(-oo), G(oo) and C(-oo) were reached. 

In practice, it was hard to find a method of numer
ical integration that was always stable. Because of the 
small value of d (3.6 x 10-4), there can be fine de
tail in the functions for comparably small values of Z. 
Physically, this reflects the two widely different diffu
sivities involved. In many cases the thermal diffusivity 
Dth dominates when IZI ~ 1, while Dc is effective when 
IZI ~ 10-3 . The numerical schemes adopted are dis
cussed in Appendix A. 

To illustrate the role of Dc, computations were also 
made (Appendix B) with the same asymptotic values as 
before, but setting Dc = 0 or equivalently d = O. 

If we choose G'(O) = U'(O), it follows from the govern
ing Equations (17), (18) and (19) that S', S", C", U", M" 
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Table 1. Temperature depressions, vein sizes and impurity contents 

Fig. u(-co ) u(O) u(co) r(-oo ) reO) r( (0) M(-co) M(O) M(oo) 
No. 

mdeg mdeg mdeg Jlm Jlm Jlm X 108 
X 108 

X 108 

5 106 160 214 3.3 2.7 2.3 2.30 2.30 2.30 
(24.3) (24.3) (24.3) 

6 0.105 0.160 0.216 106 104 102 1.18 2.30 3.35 
( 17.3) (24.3) (29.3) 

7 0.165 112 1040 97 3.1 1.1 2.02 2.30 2.30 
(22.7) (24.3) (24.3) 

8 2.16 2.26 2.83 37 24 6.4 5.48 2.30 0.156 
(37.4) (24.3) (6.32) 

9 0.536 2.26 3.66 15 24 24 0.0785 2.30 3.96 
(4.48) (24.3) (31.8) 

In columns 2, 3 and 4, values in parentheses are Ut in mdeg. 

Entries for (-co) and (co) are initial values (t = 

values (t = (0). 

are all zero at Z = O. Thus, this choice will correspond to 
solutions that are rather smooth at Z = O. By contrast , 
if we choose C' (0) =I u' (0), we can expect more detail at 
Z = 0, which will correspond to slow diffusion processes. 
This distinction makes it convenient to divide the exam
ple solutions into two groups: (A) with C'(O) = U'(O) 
and (B) with C'(O) =I U'(O). Numerical values for the 
five examples are collected in Table 1. 

(A) Solutions with C'(O) = U'(O) 
We choose the value of M(O) (mass of solute per unit 
vein length at T = 00) and the constant a to be those 
corresponding to the impurity content and grain-size of 
example (2) of section 2.5, which was fine-grained glacier 
ice. Thus M(O) = 2.30 X 10-8 , a = 6.0 x 10-8 • Then, 
from Equatio"iIs (21) arid (17) 

M(O) a M(O) 
C(O) = 8(0) and U(O) = 8(0)4 + 8(0) . 

Choosing U(O) now fixes 8(0) and hence C(O). Thus, 
since C'(O) = U'(O), we are free now to choose as bound
ary conditions only U(O) and U'(O). 

Let us agree to call ice temperate or cold, as suggested 
by Harrison (1972), according to whether its temperature 
depression is below or above the transition temperature 
depression Ut defined by Equation (12). In other words, 
ice is temperate if it is above the temperature at which 
the direct and phase-change contributions to the effective 
heat capacity are equal. By Equation (12), Ut depends 
on the mass m of solute per unit length of vein. If we 
denote by Ut the dimensionless temperature depression 

0) in the two slabs, while entries for (0) are final 

corresponding to Ut, so that 

Equation (12) is simply, in view of Equation (20), 

Thus, in terms of dimensionless variables, the definition 
IS: 

temperate, 

cold. 

In broad terms there are three interesting cases ac
cording to the initial temperatures of the two slabs, and 
these translate into conditions on U(O) and U'(O). 

(i) Cold: cold. Here U(O) is large, so that the contrib
ution from curvature is insignificant, and, because of the 
smoothness at Z = 0 (T = 00), it turns out that Dc 
has negligible effect. We are in the region where it is 
a valid approximation to put a = 0, d = 0, so that 
U(Z) = C(Z). Equations (17), (18) and (19) then re
duce to the single equation 

U" + 1 Z (1 + Ut 2) U' = 0 
2 U2 . 

This is what would be obtained from the ordinary heat
diffusion equation, but with an anomalous diffusivity as 
discussed in section 2.4. 
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Fig. 5. U: Z for the two-slab model with 
both slabs initially cold. The curve of C : 
Z would be almost indistinguisltable from the 
curve drawn for U : Z. The asymptotic 
temperature depressions are indicated; these 
are the initial values for the two semi-infinite 
slabs. 

3 

If, in addition, U > > Ut, the anomaly term is negligi
ble and we recover the standard diffusion equation with 
constant diffusivity, 

U"+ !ZU' = 0 
2 ' 

which has solution 

U - U(O) = {U(oo) - U(O)}erf(~Z). 

This is symmetric in the sense that U(O) = HU(oo)+ 
U(-oo)}; the final temperature depression is the mean 
of the two initial temperature depressions. 

A typical solution of the full Equations (17), (18) and 
(19), without approximation, for this cold- cold trans
ition is shown in Figure 5. The transition width, suitably 
defined as 

~Z = {U(oo) - U( -oo)}/U'(O), 

has the value 3.3. In terms of physical variables this is a 
width ~x = 3.3(Dth t)!, which is 200m at t = 100year 
and 640 m at t = 1000 year. For a laboratory-scale ex
periment we find ~x = 22 cm at t = 1 h. 

(ii) Deeply temperate: deeply temperate. We have 
chosen for this case the opposite extreme where the in
itial temperatures of both slabs are in the deeply temper
ate range; the effective thermal diffusivity D eff is smaller 
than Dc /3 so that the latter dominates. In Figure 6, 
which illustrates this, separate full curves are shown for 
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Fig. 6. Curves of U, C and af st for the two
slab model with both slabs initially deeply tem
perate. Broken curves are for Dc = o. 

U, C and a/ sL According to Equation (17), the dimen
sionless quantities C and a/ S! may be regarded as the 
contributions to U made by concentration and curvature, 
respectively. 

The transition width for U is now much smaller than 
in the cold- cold example (note the different Z scale), 
being ~Z = 0.068, which is 4.2 m at t = 100 year, 13 m 
at t = 1000 year and 4.5 mm at t = 1 h . The smallness of 
~Z is due to the small value of Dc; the ice takes longer to 
attain equilibrium and the U curve leaves the asymptotes 
only at small values of IZI. A notable and unexpected 
feature is that the vein cross-section S is almost constant, 
with the temperature closely following the concentration. 
(Putting S' == 0 in the governing Equations (17), (18) 
and (19) leads to inconsistency. In fact, a small non
zero value of S', barely visible on the graph of a/ S!, is 
essential for satisfying the equations.) 

If we had assumed Dc = 0, the curves for U, C and 
af S~ would have been those shown by the broken lines. 
The transition width is even smaller, a consequence of 
the very small value of Deff . The broken curves are 
discontinuous at Z = O. With Dc = 0 there would 
be discontinuities in C and S at the interface, even at 
T = 00, as noted in section 5. The temperature would 
ultimately be uniform and continuous, but there would 
be no physical process to make the concentration and 
vein size continuous. In this model (which ignores any 
water flow through the veins), diffusion of impurities is 
essential if the vein size is to vary smoothly without dis
continuity. In fact, in this example, as noted above, . the 
whole process is dominated by Dc because both slabs 
remain deeply temperate. 

(iii) Deeply temperate: cold. This is the most inter
esting of these three cases and is illustrated in Figure 
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Fig . 7. Initially, the lefthand slab is deeply 
temperate and the righthand slab is cold. (a), 
(b) and (c) are at successively higher magnific
ations. B roken curves in (c) are for Dc = O. 

Nye: Thermal behaviour of glacier and laboratory ice 

7a, band c. We have chosen to have the righthand 
slab initially at - 1.04°C (U(oo) = 6.5 x 10-3

). The 
left hand slab is deeply temperate with initial temper
ature depression U(-oo) = 1.03 X 10-6 • This temper
ature depression corresponds, with our standard value 
of impurity level M, to a vein radius of r = 97 p,m. The 
target values of U( 00), U'( -00) having been set, the val
ues of U(O) and U' (0) necessary for starting the integ
ration were adjusted accordingly (U(O) = 7.00 X 10-4

, 

U'(O) = 3.40 x 10-3
). 

The great range of scales makes it necessary to dis
play the results on three graphs at successively higher 
magnifications. Figure 7a shows that on the cold side 
the behaviour is like one-half of Figure 5, with a Z scale 
of order 1. With our standard value of M(O) , the trans
ition temperature depression Ut, calculated from Equat
ion (22) as {M(O)}-!, is 4.6 times less than U(O). So 
the common boundary in this example is cold. Figure 
7b shows that the temperate-cold boundary U = Ut lies 
at Z = Zt = -0. 16; that is, its equation of motion is 
X = -0.16T!,. or, in terms of physical variables, 

x = -0.16(Dtht)~ . 

The boundary moves from x = 0 to x = -9.8 m after 
100 year and to x = -31 m after 1000 year. In 1 h the 
movement is 11 mm. 

The curve of U(Z) in Figure 7b is remarkably linear, 
although, if one thinks in terms of a Taylor expansion 
about Z = 0, this is perhaps not so surprising in view 
of the small values of IZI. However, U cannot become 
negative. This conflict results in a very sharp change in 
slope as U approaches zero, of which the detail is shown 
in Figure 7c. 

Physically, the curves of Figure 7a, b and c may be 
interpreted as showing that the cold side succeeds even
tually in making the whole composite slab cold. It does 
this by moving the temperate-cold boundary into the 
temperate side at a decelerating rate, with x ex d. At 
any given time there is a wide range of x, above and be
low the transition temperature, where the temperature 
gradient is uniform. The sharp change of slope in the 
temperature curve lies at a temperature depression well 
below Ut; at low resolution in temperature it is as if a 
freezing front were driving into an ice- water composite 
at O°C. Since the corner occurs at Z = -0.22, the equat
ion of motion of the freezing front is x = -0.22(Dtht} !. 
The front moves from x = 0 to x = -14 m in 100 year 
and to x = -43 m in 1000 year. In the first hour it moves 
14mm. 

Two transit ion widths could be defined. The first, 
which we shall denote ,1jZ, is defined as ,1jZ = 
Ut/U'(Zd and measures the range of Z in which the 
temperature changes by Ut, that is, the range in which 
the temperate- cold transition takes place. In our exam
ple 

which means 2.8 m after 100 year and 8.7 m after 
1000 year. After 1 h this width is 3 mm. The second 
transit ion width, denoted by ,12Z, measures the width 
of the sharp break in slope seen in the U(Z) curve. This 
is suitably defined as ,12Z = U(-oo)/U~, where U~ is 
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Fig. 8. Temperate: temperate transition with 
the initial values of C about the same in the 
two slabs. The detail near Z = 0 in (a) is re
solved on a l.urger scale in (b). Broken curves 
are for Dc = o. 

the slope at U = 2U( -(0); physically, it is the width 
in the temperate slab of the freezing front . In this ex
ample .12Z = 0.003, which means 0.2 m after 100 year 
and 0.6 m after 1000 year. After 1 h this width is only 
0.2 mm, which is less than the grain-size (about 2 mm). 

The diffusivity of solute makes an insignificant differ
ence for Z > O. However, the freezing front is sufficiently 
sharp and travels sufficiently slowly for diffusivity of sol
ute to have a marked effect on its width. The broken 
curves in Figure 7c are for Dc = O. As we show analyt
ically in Appendix C, the violent behaviour over a small 
range of Z is the result of a logarithmic dependence of 
X upon U. 

(B) Solutions with G'(O) =1= U'(O). Temperate: 
temperate 

This class of solutions differs from those just considered 
by being less smooth at Z = o. Recalling that small Z 
corresponds to large t, we see that these solutions will 
tend to possess detail at large t resulting from diffusion 
processes slower than normal thermal diffusion, either 
anomalous thermal diffusion or diffusivity of solute. 

A typical result is shown in Figure 8a. In this and 
the following graphs we again choose the impurity con
tent at t = 00 and the value of >. to be those of ex
ample (2) in section 2.5 (fine-grained glacier ice). Thus 
M(O) = 2.3 X 10-8 and a = 6.0 x 10-8 . At Z = 0 (T = 
00) the relative values of U and C have been chosen so 
that nine-tenths of the temperature depression is due to 
concentration. This determines the temperature depres
sion to be u = 2.3 X 10-3 deg with r = 24 j.Lm. Thus 
U(O) = 1.41 X 10-5 , C(O) = 1.27 X 10-5. This is well into 
the temperate range (Ut = 1.52 x 10-4

) . The value of 
C' (0) has been deliberately chosen negative in contrast 
with the positive value of U'(O), and adjusted so that 
C( 00) ~ C( -00). Thus, the initial concentrations are 
about the same in the two slabs, but the temperatures 
and vein sizes are different. The curve for U is asym
metric and approaches U( -(0) faster than it approaches 
U (00), because the effective thermal diffusivity is smaller 
on the low U (lefthand) side. 

There is no perceptible detail in U near to Z = 0, 
but this is in contrast to the curves for C and aj 5~, 
which, although continuous, show rapid changes. These 
are better resolved in Figure 8b, which shows the same 
data at a larger scale. The interpretation is that, as 
already noted, there are two time-scales involved. 

The corresponding curves for C and a/S~ when Dc = 
o are shown broken in Figure 8b. The curve for U is not 
shown because it is not perceptibly different from the full 
curve. The broken curves follow the full curves except 
near Z = 0, and at Z = 0 there are discontinuities in 
both G and S. This illustrates that, in the process with 
Dc =1= 0, the mass of solute per unit length of vein in each 
slab remains nearly constant until the effect of Dc is felt 
at small Z. 

As another example, Figure 9 has C'(O) > U'(O). Here 
the ·initial vein size is larger on the colder side (Z > 0). 
This is achieved because initially the mass of solute per 
unit length of vein is 50 times larger on the cold side 
(Table 1). The non-uniformity seen in the full curve of 
aj 51 has the form of a hump which is not centred on 
Z = O. This indicates a travelling wave where the vein 
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Fig. 9. Temperate: temperate transition with 
a traveLLing wave of pinched cross-section S on 
the warmer (lefthand) side. Broken curves are 
for Dc = O. 

cross-section is constricted. (We recall that the graph 
represents aj S~ as a function of X at fixed T, and to 
visualize the development as T increases the whole graph 
is simply stretched uniformly, keeping the point at Z = 0 
fixed, the stretching factor being Tt.) Since the maxi
mum of the hump is at Z = -0.038, its equation of mot
ion is x = -0.038(Dlht)~. The wave moves from x = 0 
to x = -2.3m after 100year and to x = -7.4m after 
1000 year. In the first hour it moves to x = -2.5 mm. It 
starts as very sharp and grows wider as it travels, but 
its peak amplitude remains constant. The existence of 
this wave is rather surprising; it simply emerges from the 
initial discontinuity between the slabs. 

In Figure 8, maxima and minima, not centred on 
Z = 0, appear in the curves for C; these represent trav
elling peaks and troughs of concentration, growing more 
diffuse as they travel but retaining their amplitudes. It is 
interesting that, if Dc = 0, the phenomenon of travelling 
peaks and troughs disappears. 

1. FINAL REMARKS 

For simplicity, our computations were for uniform ,X 

(length of vein per unit volume), although it would have 
been easy to allow two different values in the two slabs. 
Uniform grain-size is certainly never attained in glaciers 
and regions of different grain-size (different ,X) may con
stitute one of the sharpest inhomogeneities that can per
sist. 

To apply the results to glaciers, as was explained in 
section 1, it has to be remembered that the present model 
leaves out water flow along the veins (and along larger 
channels) and also the motion and deformation of the ice. 

Nye: Thermal behaviour of glacier and laboratory ice 

Therefore, conclusions about glaciers must be tentative. 
Whether a given transition thickness should be consid
ered as sharp or broad depends, of course, on the context. 
The transition thickness of 200 m after 100 year for the 
cold- cold example can be a significant fraction of the 
depth of a glacier and in that case the transition could 
not be modelled as sharp. On the other hand, some of 
the other transition thicknesses calculated, such as 2.8 m 
after 100 year for the deeply temperate: cold boundary, 
suggest that there are situations where a glacier model 
with an infinitely sharp boundary would be a useful 
approximation. 
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APPENDIX A 

NUMERICAL METHODS 

To integrate Equations (17), (18) and (19) outwards from 
Z = 0, two different schemes were used. The first was 
suitable for small IZI, where a finer interval was often 
needed. However, for larger Z this scheme was some
times unstable and then the technique used was to switch 
over to the second scheme. 

The first scheme was as follows. Differentiating 
Equation (17) and using the new variable E(Z) = U'(Z), 
the Equations (17), (18) and (19) become 

2S3/ 2 

S' = --(E - C'), (AI) 
a 

E' = -!ZE + !ZS' (A2) 22' 

C" = _~ (c' + S'C) _ S'C'. (A3) 
2d S S 

The starting values at Z = 0 for U, U', C, C' yield cor
responding starting values for E, E' , C, C', S, S'. Then 
Equations (AI), (A2) and (A3) are used to integrate for
ward for S(Z), E(Z) and C(Z). 

For larger Z, Equations (17), (18) and (19) were used 
directly. Equation (19) was solved for S': 

, S(ZC' + 2dC") 
S = - Z C + 2dC' . (A4) 

Equation (18) is 

U" = ~Z(S' - U') (A5) 
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and Equation (17) is 

(A6) 

Knowing U, C, S at two successive points labelled i -
1 and i, Ui+1 is obtained from Equation (A5), CHI is 
computed from Equation (A6) in the form 

a 
Ci +1 = Ui+1 - -S 1 

i 2 

and Si+1 is obtained from Equation (A4). 

APPENDIX B 

SOLUTIONS WITH Dc = 0 

We consider here the solution of Equations (17)-(19) in 
the approximation Dc = 0, or equivalently d = O. Equat
ion (19) then integrates, with Equation (21), to give 

S(Z)C(Z) = M = constant. (B1) 

Thus M, the mass of solute per unit vein length, which is 
initially uniform in the two slabs, now remains uniform 
and constant and so independent of Z. However, in gen
eral, it will have different values in the two slabs and we 
call these M+ and M_. Equation (17) now becomes 

(B2) 

where M now stands for M+ or M_. 
To integrate the remaining Equation (18) we need S'. 

The relation 

dS dU/dU 
dZ = dZ dS' 

combined with dU /dS from Equation (B2), converts 
Equation (18) to 

11 1, 1 a M { ( )-I} 
U = - '2 ZU 1 + '2 S3/2 + S2 . (B3) 

Equation (B2) may be solved as a quadratic for S in 
terms of U, and hence Equation (B3) has the form 

U" = -~ZU'f(U) . 

This is solved by outward integration from Z = 0 with 
trial values U(O) and U'(O), the appropriate values of 
M+ and M_ having been computed in advance from 
Equation (Bl) using prescribed values of C and S at 
Z = ±oo. This trial integration will result in asymptotic 
values U(oo), U( -00) which are different from those re
quired. Therefore U(O) and U'(O) are now adjusted, by 
trial and error, until the correct asymptotes are obtained. 
We now have curves for Dc = 0, and for Dc set at its 
correct value, which have the same asymptotes; that is, 
they refer to the same initial temperatures and impurity 
contents in the slabs. Note that the final temperature 
depression U(O) is different according to whether solute 
diffusion is allowed or not. 
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APPENDIX C 

LOGARITHMIC SOLUTION 

Figure 7 c shows extremely sharp corners in the broken 
curves for Dc = 0, the transitions occurring over a Z in
terval of order 10-3

. We examine this behaviour analyt
ically. 

The graphs show that, in the region concerned, the 
major contribution to the temperature depression is 
made by the solute concentration. So, as an approxim
ation, place a = 0 in Equation (23) to give 

U=MIS (M = constant), , 

and then Equation (B3) reduces to 

U" = _lZU' (1 + M) 
2 U2 ' (Cl) 

a differential equation for U. Since we are well into the 
temperate region, for which the transition temperature 
depression is M!, by Equation (22), the first term in 
parentheses in small. Furthermore, as a local approxim
ation we may put Z as constant, Z = -Zo say (Zo > 0) . 
Then Equation (Cl) becomes 

U" I U
I 

= 2" ZoM. U2 . 

Jfye: Thermal behaviour of glacier and laboratory ice 

Introducing a rescaled temperature depression 

red uces this to 

V" = VI 
V2 ' 

which is readily integrated, first to give 

I 1 
V =--+p 

V 

and then again to give 

V 1 
Z = - + 2"ln(pV - 1) - constant 

p p 

1 
(V> -), 

p 

where p is a constant. As Z --t -00, V --t lip from 
above. The other constant simply represents an arbitrary 
translation in Z and, because the solution is only valid 
near Z = -Zo, we place it equal to Zo o The asymptote is 
low down on the V -axis for large values of p, and this is 
the case we want. As V increases by lip, Z changes by 
order 1 I p2 . Thus, the lower is the asymptote the sharper 
is the corner. In our example P = 40. 
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