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Abstract. The Legendre manifolds are the maximal integral submanifolds of a contact
manifold. The shortest path problem on_a manifold with boundary leads to Legendre
varieties. We find normal forms of their generic singularities in terms of binary forms
invariants theory.

The fronts are the hypersurfaces, equidistant from a given one. We consider fronts
in. a medium containing an obstacle (i.e. in a manifold with a boundary). For
instance, if the obstacle is bounded by a plane curve, the fronts are its evolvents.

The Legendre manifold of a front is the set of all its tangent planes. A smooth
front may acquire singularities while travelling through a smooth medium, but its
Legendre manifold remains non-singular. At an obstacle, however, even the
Legendre manifold may become singular. In this paper we classify generic sing-
ularities of Legendre varieties thus defined. We will describe below the normal
forms for the singularities in terms of irreducible SL (2, R )-modules. More precisely,
we define natural contact structures in the manifolds of odd degree 0-dimensional
projective hypersurfaces and in some manifolds of polynomials in one variable.
We will prove that the singularities of the Legendre varieties at generic obstacles
are diffeomorphic to those of the varieties of polynomials admitting high multiplicity
roots.

The simplicity of the final results is rather misleading; the polynomials, and even
their degrees, are hidden. Even though they are known to exist it is still difficult
to find them from geometrical considerations.

The relation of the obstacle problem to SL (2, R)-modules was discovered as a
result of a series of works [1-5] featuring geometrical observations based on the
resemblance of bifurcation diagrams occurring in different theories, strange cancel-
lations of many terms in long calculations due to some properties of the varieties
of polynomials with multiple roots, which seem to be new for the algebraists and
new concepts in symplectic and contact geometry, namely the 'triads' of Guivental,
describing families of rays and of fronts at obstacle points.
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The future general theory of the singularities for Legendre varieties seems to be
an extension of the classification of the triads presented below, rather than a theory
of Legendre ideals or of the generating families hierarchy (both of which are
drastically different from the triad classification).

1. The obstacle problem
Let F be a smooth hypersurf ace in Euclidean space R ". Let us consider the length
S of the shortest path from a fixed set to a variable end point, avoiding the obstacle
bounded by F. The study of the singularities of 5 as a function of the end point
leads to the following problem. Let us consider a family of geodesies on F orthogonal
to some hypersurface on F. The straight lines, tangent to these geodesies, define
an (n -1)-parameter family of rays in Rn, namely the family of all normals to some
front hypersurf aces in R ". The problem is to study the singularities of these fronts.

Example 1. Let the obstacle be bounded by a generic plane curve F (n =2). The
fronts are the evolvents of F. They have singularities of order 3/2 at generic points
of F (Huyghens). A generic curve may have some inflection points. A calculation
shows that the fronts have singularities of order 5/2 at inflectional tangent points.

Example 2. Let the obstacle be bounded by a generic surface F in the 3-space
(n = 3). The fronts are surfaces with cuspidal edges. These edges are of order 3/2
at generic points of F. Our one-parameter family of geodesies covers a domain in
F. The geodesic direction may become asymptotic along some curve in this domain.
The rays tangent to the geodesies at the points of this curve have asymptotic
directions. The fronts' singularities at the points of an asymptotic ray are edges of
order 5/2 (see [1], [2]), unless the ray is 'bi-asymptotic' (this may happen at some
points of our curve) in which case the singularity is more complicated. The main
object of our study is the contact geometry of these complicated singularities and
of their higher dimensional counterparts.

2. The contact geometry
We describe here some basic notions we need from contact geometry. For the
proofs and for more details see [6], [71.

DEFINITION. A contact structure on a manifold is a field of tangent hyperplanes
(called contact planes), which is 'maximally non-integrable' that is, if the field of
contact planes is locally defined as the zeros of an l-form a, then the 2-form da
is non-degenerate on each contact plane.

Example 1. A contact element with contact point P on a manifold is a linear
hyperplane in the tangent space at P. Let us consider the manifold of all contact
elements on V. We denote it by PT*V (the projectivized cotangent bundle of V).

Let us define a field of tangent hyperplanes on PT*V; the element velocity
belongs to the field hyperplane if and only if its contact point velocity belongs to
the element.

This field is a contact structure on PT* V, called the natural contact structure of
the contact elements bundle.
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Example 2. Now let us consider a hypersurface in a contact manifold, transversal
to the contact planes so that the intersections of tangent planes to the hypersurface
with contact ones have codimension one in both. The da form defines a symplectic
structure in the contact plane a = 0 which is unique up to a non-zero multiple, as
is a itself. The da- skeworthocomplement to the intersection with the tangent space
does not depend on this multiple; it is called the hypersurface characteristic direction.

The integral curves of the characteristic directions field are called the hypersurface
characteristics. Thus a hypersurface in a contact space transversal to the contact
planes is locally fibred in characteristics.

The base space of this fibration has a natural contact structure. This structure is
given by the projections to the base along the characteristics of the intersections
of the contact planes with tangent planes (use the Stokes formula).

Thus the characteristics space of a hypersurface in a contact manifold inherits
its contact structure from the latter.

Example 3. Let us consider the pseudo-Euclidean space-time bundle of contact
elements and the hypersurface formed by all light elements. The characteristics
space is well defined globally in this case. One may identify it with the bundle of
all transversally oriented contact elements over the physical space (the isochrone).

Indeed, a characteristic is defined by a light velocity motion. So it is defined by
its point of intersection with one of the isochrones (say, t = 0) and by its physical
space velocity vector. The length of the latter vector is fixed, and the vector is
defined by the isochrone contact element transversally oriented, orthogonal to this
vector.

PROPOSITION. The identification thus defined identifies the contact structure of the
space of characteristics {inherited from the space-time contact elements bundle) with
the natural contact structure of the isochrone contact elements bundle.

Proof. The space-time contact element at an isochrone's point is generated by the
corresponding isochrone's contact element and by the direction of the projection
of the characteristics line in the space-time. The isochrone's contact element velocity
lies in the contact plane of the contact structure inherited from the space-time's
contact structure, if and only if its contact point moves along the isochrone, being
tangent to the contact element in the space-time. This occurs exactly when the
contact point velocity belongs to a contact element of the isochrone. This means
that both contact structures coincide.
Remark. The same reasoning works in a more general setting; we may substitute
for the space-time isochrone any hypersurface in a manifold M, transversal to the
projections of the characteristics of a fixed hypersurface in its contact elements
bundle PT*M (for instance the result is still true in the pseudo-Riemannian case);
we also may substitute for PT*M the bundle of transversally oriented contact
elements (the spheres bundle, ST*M).

DEFINITION. A Legendre manifold in a contact manifold is an integral manifold of
the contact planes field having maximal dimension (that is dimension n -1 in a
contact manifold of dimension 2n — 1).

https://doi.org/10.1017/S0143385700001620 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001620


304 V. I. ArnoVd

Example. The set of all contact elements, tangent to a given submanifold (of
arbitrary dimension) is a Legendre submanifold of the contact elements bundle of
the ambient manifold.

For instance, fibres of the projective cotangent bundle are Legendre manifolds.
The Legendre fibrations are fibrations of contact manifolds into Legendre fibres.

The front variety of a Legendre submanifold in a contact manifold with a Legendre
fibration is its image under the projection to the base space of the fibration. Isotopies
of a Legendre manifold generate motions and even metamorphoses of its front
variety. These singularities of the fronts come from the projection. They are present
even on the fronts travelling through smooth media. But if the medium contains
an obstacle the Legendre submanifold itself may acquire singularities.

Example. Let us assume that the obstacle is bounded by a plane curve with a simple
inflection point. The corresponding front (the curve evolvent) acquires a singularity
of order 5/2. Thus the corresponding variety of plane contact elements, i.e. the
Legendre variety, consisting of all plane contact elements tangent to the front, is
singular with a singularity of order 3/2. In other words, the Legendre variety is
locally diffeomorphic to a semicubical parabola in the 3-space.

3. The contact triads
The obstacle problem leads to the following definition motivated by the examples
and theorems below.

DEFINITION. A contact triad (H, L, I) consists of
(1) a hypersurface H in a contact manifold transversal to the contact planes;
(2) a Legendre manifold L in the same contact manifold;
(3) a smooth hypersurface I in L,

such that the hypersurface H is tangent to the Legendre manifold L with first order
of tangency at every point of I.

We shall study the germ of a triad at a point 0 of /.

DEFINITION. The Legendre variety, generated by the triad (H, L, I) at 0, is the image
of the germ of I at 0 by the projection of H onto its space of characteristics.

Example 1. Let us extend the Euclidean space R n to the space-time R " x R = {q, t}.
We call a space-time contact element non-vertical, if it may be defined by dt = p dq,
and we call it a light contact element, if p2 = 1. All light contact elements form a
hypersurface H in the bundle of contact elements over the space-time. This
hypersurface H is the first element in a triad defined by the family of geodesies
on a hypersurface TcR", consisting of all geodesies, normal to a surface of
codimension 1 in F.

Let s:F-»J? be the time function, defining the family of geodesies on F (the
geodesies are orthogonal to the surfaces s = const, and (Vs)2 = 1 on F). The graph
of s is a codimension-2 submanifold of space-time. Let us consider the set of all
space-time contact elements, tangent to this graph. This set is a Legendre manifold,
and it will serve as L of the triad.
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PROPOSITION 1. The hypersurface H is {first order) tangent to the Legendre manifold
L along a submanifold I of codimension 1 in L, consisting of all contact elements,
belonging to L, which contain the normal to Txt in Rn xt.

Proof. The elements of L at a point of the graph form a linear (one-parameter)
family. Let us consider an element of L defined by

dt = p dx.

By the definition of L, the restriction of pdx to Tx T is ds. But

(Vs)2 = l.

Hence the function p2, restricted to the above-defined one-parameter family, has
a non-degenerate minimum, equal to 1; it is attained for such a p, that

pdx=0

for all the vectors normal to F in R ".
Proposition 1 is proved: (H, L, I) is a triad. •

PROPOSITION 2. The Legendre variety generated by the triad constructed above, is
the Legendre variety formed by those contact elements of R" which are tangent to
the same front for the obstacle problem with boundary T.

Proof. The manifold of //-characteristics was identified in § 2 with the bundle of
transversally oriented contact elements of an isochrone t = c, that is with ST*Rn.
The characteristics intersecting / are identified with those elements, normal to the
tangent rays of geodesies of the family on T, which correspond to the isochrone
t = c. An element corresponds to t = c, if and only if the oriented distance along
the ray, from the point x of contact of the ray with a geodesic to the contact point
of the element, is equal to c-s(x). These elements are precisely all elements
tangent to the level variety t = c of the (multi-valued) time function in R ", defined
by the family of geodesies on the obstacle surface. This proves proposition 2. •

We will now construct a series of triads examples, providing normal forms for
the germs of generic triads at all their points. This implies, for instance, normal
forms of singularities of the Legendre varieties, consisting of all contact elements
tangent to a front for a generic obstacle in an Euclidean or Riemannian space.

4. Contact structures on polynomials spaces
Let V ={aox

d + - • •+ady
d} be the linear space of all real binary forms of degree

d. The group SL (2, R) of linear unimodular transformations of the (x, y)-plane
acts on V. If d is odd, the dimension of V, which is equal to d +1, is even and (as
A. B. Guivental has remarked) V carries a linear symplectic structure (a non-
degenerate skew symmetrical bilinear form), invariant under the SL (2, R) action;
this form fi is unique up to a non-zero multiple. The form Cl defines on V a
differential 2-form <o with 'constant coefficients' which is a symplectic structure.
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This structure may be written as £ dpt A dqt using suitable 'Darboux coordinates'
in which the binary form <p eV with coordinates (pit qt) is defined by

where J = 2n - 1 and the signs before the pk 's alternate.
Let v = X a,- d/da, be the Euler vector field on V. It is SL (2, /?)-invariant (every

linear transformation sends v to v). The interior product of v with <o defines on
V an SL (2,/?)-invariant differential 1-form i^u>. This 1-form is equal to zero on
v. Hence it defines an SL (2, /?)-invariant hyperplane field in the projective space
RPd of dimension 0 hypersurfaces of degree d = 2n -1. We obtain:

PROPOSITION 1. The hyperplane field defined above is an SL (2, R)-invariant contact
structure on RPd.

For instance, in the domain consisting of those polynomials <p(x, 1) with q\ = 1;

the contact structure on the projective space is represented by the following 1-form

a=p'dq'-q'dp'-dp1,

w h e r e q ' = ( q 2 , . • • , q n ) , p ' = ( p i , • • - , p n ) -

Let us consider a one-parameter group of contact diffeomorphisms. Points, where
the velocity field vector lies in the contact plane, form a hypersurface given by the
equation a\$ = 0 if the velocity field is £ and the contact structure is a = 0. We will
call this hypersurface the neutral surface of the group. Let us suppose, that the
neutral hypersurface is transversal to the contact planes.

PROPOSITION 2. The orbits of the group on the neutral surface are its characteristics.

Proof. By the homotopy formula,

igda + diga = Lga.

The field f being contact,

Lgx =0 if a = 0.

On the neutral surface

i,a = 0.

Hence

diea = 0

on its tangent vectors. Thus

ifda = 0

on the intersection of the contact plane with the tangent plane to the neutral surface,
as required.
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The group of translations of polynomials along the x-axis acts on the space of
polynomials of the form (*), and preserves its contact structure:

PROPOSITION 3. The neutral surface is defined by K = 0, where

K=p2+p3q2 + - • •+pnqn-i+qll2.

Indeed, the velocity field is

£ = I4k-id/dqk -pk+id/dpk (pn+1 = qn, qx = 1).

PROPOSITION 4. The triple H(K = 0); L(p = 0), l(p =qn = 0) is a contact triad.

This follows directly from the formula for K.

DFINITION. We call the standard variety of dimension m and denote Sm the Legendre
variety generated by the triad of proposition 4 {here m = n - 2).

COROLLARY. The standard Legendre variety 2"~2 consists of those polynomials of
the form:

where p2 means -(p4q3 + - • •+pM^n-i+<?n/2), which have a root of multiplicity
greater than n; the contact structure is defined by the 1-form

a=p"dq"-q"dp"-dpu

where q" = (q3,..., qn), p" = (p3,..., pn).

From this corollary and from [5] follows:

COROLLARY. The standard Legendre variety Sm is diffeomorphic to the open swallow -
tail of dimension m, that is to the variety of all polynomials:

X
2m+1+A1x

2m-1 + ---+A2m (***)

which have a root of multiplicity at least m + 1.

Example. Let n = 3. Formula (**) implies

, x5 x3 x2 ql

a = p3 dq3-q3 dp3-dpi.

The polynomials which have roots of multiplicity greater than 3 form a Legendre
curve

2 1 = {/ = (JC-04U+4r)/120},

that is

q3 = -t2/2, p3 = -t3/3, Pl = ~t5/30.

This curve is diffeomorphic to a cubic parabola. Its singularity is responsible for
the singulariites of order 5/2 of evolvents at the inflections tangent.
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Remark. One sees from (**), that the variety S""2 is quasi-homogeneous, for the
coordinates weights

deg<fr = / - l , degp,=2n-r

(degK = 2n-2, d e g a = 2 n - l ) .

The standard variety S"~2 is the image of a space with coordinates of weights
( 1 , . . . , n -2) under a quasi-homogeneous mapping.

Example. For n =4 the coordinates (q3, q*,p*, Pi, Pi) have weights (2,3,4,5,7).
The Legendre variety I2 is the image of a plane (t, r), where deg t = \, deg r = 2:

5. Contact triads normal forms
Let us consider the space R2k+1 equipped with the contact structure a = 0,

a=p'dq'-q' dp'-dpu

w h e r e p ' = (p2,.. . , p k ) \ q' = (qi, • • • <?*)•

DEFINITION. The standard contact triad rk,n (n<k) is the triad (H, L, I) in this space,
defined by the equations

H:
L: p=0; I: p=Q,qn=0.

Remark. The triad rk,n is a trivial extension (by addition of new p's and q's) of rn,n,
the triad studied in § 4.

THEOREM 1. The germs at 0 of the standard triads Tfc>n are stable, as germs of contact
triads considered up to the contact equivalence.

THEOREM 2. The germs of generic contact triad at all points are contact equivalent
to the germs of standard triads at 0.

COROLLARY. The germs of the Legendre variety, formed by the contact elements
tangent to a front in the generic obstacle problem (see §§3 and 4) are contact stable
and contact equivalent to the germs of standard Legendre varieties (may be multiplied
by the linear spaces) — and hence are diffeomorphic to the germs of open swallowtails.

Proof. We need a simple lemma:

LEMMA 1. In a neighbourhood of a point, where a hypersurface in a contact space
is transversal to the contact plane, one may choose an equation a =0 for the contact
planes in such a way, that the kernel of the 2-form da is tangent to the hypersurface.

Proof. One may reduce the equation of the hypersurface germ to the form P2 = 0,
the contact structure being P' dQ' - dP\. This follows, for instance, from the Guiven-
tal-Darboux theorem [2], which says that in contact geometry there is no extrinsic
curvatures: the traces of the contact planes on the germ of a submanifold define
the germ up to a contact equivalence, and define the restriction of a contact form
up to a contact form preserving equivalence.
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We apply the lemma to the H of a contact triad. The field of kernels of da
defines (locally) a fibration of the contact space into curves (in terms of the above
coordinates: (P1, Q',Px)^*{P', <?'))• The base B of this fibration v has a natural
symplectic structure defined by the projection of the 2-form da along its kernels'
integral curves. The hypersurface H is fibred into these integral curves. Hence this
hypersurface is projected onto a hypersurface ITH in B.

The kernel of the 2-form da is not tangent to the Legendre manifold L, because
its tangent plane belongs to the contact plane a = 0, which is transversal to the
kernel of da by the definition of a contact structure.

Hence the projection of the triad (H, L, I) to the symplectic manifold B defined
above is the triple {irH, TTL, irl), where H is a hypersurface in B, first order tangent
to the submanifold ITL along its hypersurface vl. Note, that germs of L and of /
are projected diffeomorphically.

irL is a Lagrange manifold because L is a Legendre manifold. Thus the triple is
a symplectic triad in B and the symplectic case of our theorem is known (A. B.
Guivental). Thus we obtain normal forms of the projections of our triads to the
(P't Q') space.

The normal form for a contact triad follows because Pi = J P' dQ' (integrals along
paths on the Lagrange manifold TTL, starting at 0). So we have derived the
classification of the contact triads from that of symplectic triads.
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