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Abstract This paper is concerned with the critical nonlinear Gross–Pitaevskii equation, which describes
the attractive Bose–Einstein condensate under a magnetic trap. We derive a sharp threshold between the
global existence and the blowing-up of the system. Furthermore, we answer the question: how small are
the initial data, such that the system has global solutions for the nonlinear critical power p = 1+(4/N)?
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1. Introduction

In this paper we consider the nonlinear Gross–Pitaevskii equation

iϕt = −∆ϕ + |x|2ϕ − |ϕ|p−1ϕ, ϕ(x, 0) = ϕ0. (1.1)

Here ϕ : R
N × [0,∞) → C is a complex-valued function, 1 < p < ∞ when N = 1, 2

and 1 < p < (N + 2)/(N − 2) when N � 3. Equation (1.1) models the Bose–Einstein
condensate with attractive interparticle interactions under a magnetic trap [2,8,13,19].

Meanwhile, as a class of nonlinear Schrödinger equation with potentials, equation (1.1)
has a special mathematical significance. For equation (1.1) with a general real-valued
potential function V (x), when |DαV (x)| is bounded for all α � 2, Fujiwara [9] proved
that the smoothness of the time 0 of Schrödinger kernel for potentials of quadratic growth.
And Yajima [21] showed that, for superquadratic potentials, the Schrödinger kernel is
nowhere C1. It is shown in [16] that quadratic potentials are the highest order of potential
for local well-posedness of the equation. Then V (x) = |x|2 is the critical potential for the
local existence of the Cauchy problem.

In the case of equation (1.1), Oh [16] and Cazenave [5] established the local existence
of the Cauchy problem in the natural energy space. Zhang [24] proved that, when p <

1 + (4/N), global solutions of the Cauchy problem (1.1) exist for any initial data in the
energy space. On the other hand, when p � 1 + (4/N), Cazenave [5], Carles [3,4] and
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Zhang [23] showed that the solutions of the Cauchy problem (1.1) blow up in a finite
time for some initial data, especially for a class of sufficiently large data; but the solutions
of the Cauchy problem (1.1) exist globally for other initial data, especially for a class of
sufficiently small data [3,4,24]. So the problem of finding the sharp threshold between
the global solutions and the blowing-up solutions for the Cauchy problem (1.1) arises
for p � 1 + (4/N). Owing to the fact that equation (1.1) plays an important role in
Bose–Einstein condensates, this problem has also been pursued strongly from a physics
point of view [2,6,8,10,12–14,17–19,22].

Chen and Zhang [7] obtained a sharp threshold between the global solutions and the
blowing-up solutions of the Cauchy problem (1.1), but this result holds only for the
case of supercritical power, p > 1 + (4/N). On the other hand, for the critical power,
p = 1 + (4/N), Zhang [23] obtained a sharp condition of global existence for the Cauchy
problem (1.1) that was similar to that in Weinstein [20]. However, the result in [23] does
not solve the problem of finding the sharp threshold between the global solutions and
the blowing-up solutions, because Zhang’s result shows that when the initial values ϕ0

are less than Nc, only global solutions appear; however, when the initial values ϕ0 are
greater than or equal to Nc, there exist not only blowing-up solutions, but also global
solutions such as large standing-wave solutions. Here Nc is a number that depends only
on the dimension. Therefore, for the critical power, p = 1+(4/N), the problem of finding
the sharp threshold between the global solutions and the blowing-up solutions for the
Cauchy problem (1.1) is still open. In this paper, we shall solve this problem.

In this paper we fix p = 1 + (4/N). In the next section, we give some preliminaries. In
§ 3, we construct some proper functionals, and pose a constrained variational problem,
which we then solve. In § 4, by combining the variational character with the invariant
properties of the local semi-flows of the evolution system, we get a sharp threshold
between the global existence and blowing-up. These arguments originate in [1,25] and in
Levine’s concavity method [15]. Furthermore, we answer the question: how small are the
initial data, such that the Cauchy problem (1.1) has global solutions for p = 1 + (4/N)?

2. Preliminaries

Firstly, we naturally set

H :=
{

u ∈ H1(RN ) :
∫

|x|2|u|2 dx < ∞
}

, (2.1)

where H1(RN ) = {u : u ∈ L2(RN ) and ∂xiu ∈ L2(RN ), i = 1, 2, . . . , N}. Henceforth,
for simplicity, we denote

∫
RN · dx by

∫
· dx. H becomes a Hilbert space, continuously

embedded in H1(RN ), when endowed with the inner product

〈ϕ, ψ〉H =
∫

[∇ϕ∇ψ̄ + ϕψ̄ + |x|2ϕψ̄] dx, (2.2)

whose associated norm we denote by ‖ · ‖H . In addition, we use ‖ · ‖p to denote the norm
of Lp(RN ).
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Lemma 2.1 (Zhang [24]). Let 1 � p < ∞. Then the embedding H ↪→ Lp+1(RN ) is
compact.

Proposition 2.2 (Cazenave [5], Glassey [11], Oh [16]). Assume that 1 < p < ∞
when N = 1, 2, 1 < p < (N + 2)/(N − 2) when N � 3 and ϕ0 ∈ H. There then exists
a unique solution ϕ of the Cauchy problem (1.1) in C([0, T ); H) for some T ∈ [0,∞)
(maximal existence time), and ϕ satisfies the following two mass- and energy-conservation
laws:

M(ϕ) :=
∫

|ϕ|2 dx = M(ϕ0), (2.3)

E(ϕ) :=
∫ [

|∇ϕ|2 + |x|2|ϕ|2 − 2
p + 1

|ϕ|p+1
]

dx = E(ϕ0), (2.4)

for all t ∈ [0, T ). Furthermore, we have the following alternatives: T = ∞ or else T < ∞
and limt→T ‖ϕ‖H = ∞ (blow-up).

Proposition 2.3 (Cazenave [5]). Let ϕ0 ∈ H. Then for 1 < p < 1 + (4/N), the
Cauchy problem (1.1) has a unique bounded global solution ϕ on t ∈ [0,∞) in H. For
p � 1 + (4/N), when ‖ϕ0‖H is sufficiently small, the Cauchy problem (1.1) has a unique
bounded global solution in H; when ‖ϕ0‖H is sufficiently large, the Cauchy problem (1.1)
has a unique solution blowing up in a finite time in H.

Proposition 2.4 (Cazenave [5]). For p � 1+(4/N), when E(ϕ0) < 0, the solution ϕ

of the Cauchy problem (1.1) blows up in a finite time in H.

Proposition 2.5 (Cazenave [5]). Let ϕ0 ∈ H and let ϕ be a solution of the Cauchy
problem (1.1) on [0, T ). Set

J(t) =
∫

|x|2|ϕ|2 dx.

Then one has

d2

dt2
J(t) = 8

∫ [
|∇ϕ|2 − |x|2|ϕ|2 − N(p − 1)

2(p + 1)
|ϕ|p+1

]
dx. (2.5)

Lemma 2.6 (Weinstein [20]). Let ϕ ∈ H. Then we have∫
|ϕ|2 dx � 2

N

(∫
|∇ϕ|2 dx

)1/2(∫
|x|2|ϕ|2 dx

)1/2

. (2.6)

3. A variational problem

We define two functionals on H as follows

S(u) = 1
2

∫
[|∇u|2 + |x|2|u|2] dx (3.1)

and

R(u) = 1
2

∫ [
|u|2 − 2

p + 1
|u|p+1

]
dx. (3.2)
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Then set
d = inf

u∈Σ
S(u),

Σ = {u ∈ H \ {0} : R(u) = 0}.

⎫⎬
⎭ (3.3)

Theorem 3.1. Let p = 1 + (4/N). There then exists a u ∈ Σ such that

d = min
u∈Σ

S(u). (3.4)

Furthermore, d > 0.

Proof. Choose a minimizing sequence {un}n∈N, so we have un ∈ Σ and

lim
n→∞

1
2

∫
[|∇un|2 + |x|2|un|2] dx = d. (3.5)

By the Gagliardo–Nirenberg inequality and un ∈ Σ, we have

0 <

∫
|un|2 dx =

2
p + 1

∫
|un|p+1 dx � C‖∇un‖p−1

2 ‖un‖2
2. (3.6)

Henceforth, for simplicity, we use C to denote various positive constants. Therefore, there
exists a positive constant C such that∫

|∇un|2 dx � C > 0,

which implies that
1
2

∫
[|∇un|2 + |x|2|un|2] dx � C > 0. (3.7)

Hence, d > 0.
In addition, it follows from (3.5), Lemma 2.6 and the Cauchy inequality that

∫
|un|2 dx � 2

N

(∫
|∇un|2 dx

)1/2(∫
|x|2|un|2 dx

)1/2

� 1
N

(∫
|∇un|2 dx +

∫
|x|2|un|2 dx

)
< C. (3.8)

By (3.5) and (3.8), one finds that {un}n∈N is bounded in H. Therefore, there exists u ∈ H

such that a subsequence of {un}n∈N (which we still denote by {un}n∈N) satisfies

un ⇀ u weakly in H. (3.9)

By Lemma 2.1 we have
un → u in L2(RN ),

un → u in Lp+1(RN ).

}
(3.10)
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Hence,

R(u) = 1
2

∫ [
|u|2 − 2

p + 1
|u|p+1

]
dx = 0, (3.11)

and u ∈ Σ, so we have S(u) � d. On the other hand, since S(un) is coercive and convex,
one has

S(u) � lim inf
n→∞

S(un). (3.12)

Therefore, from (3.5) and (3.12), we have

d � S(u) � lim inf
n→∞

S(un) � lim
n→∞

S(un) = d, (3.13)

which implies that S(u) = d. Therefore, Theorem 3.1 is true. �

4. Threshold of global existence

In this section, we shall give the main results and the proofs. First, we define another
functional in H as

I(u) = 1
2

∫ [
|∇u|2 + |u|2 + |x|2|u|2 − 2

p + 1
|u|p+1

]
dx. (4.1)

Hence, we can obtain the invariant properties of the local semi-flows of the Cauchy
problem (1.1).

Proposition 4.1. Let p = 1 + (4/N) and

K+ = {u ∈ H : R(u) > 0, I(u) < d},

K− = {u ∈ H : R(u) < 0, I(u) < d}.

}
(4.2)

Then K+ and K− are invariant under the local semi-flow generated by the Cauchy
problem (1.1).

Proof. Let ϕ0 ∈ K+ and let ϕ be the unique solution of (1.1) with the initial
datum ϕ0. Therefore, it follows easily from Proposition 2.2 that I(ϕ) = 1

2 [M(ϕ)+E(ϕ)] =
1
2 [M(ϕ0) + E(ϕ0)] = I(ϕ0), t ∈ [0, T ). Thus, from I(ϕ0) < d, it follows that

I(ϕ) < d, t ∈ [0, T ). (4.3)

To check that ϕ ∈ K+, we need to prove that

R(ϕ) > 0, t ∈ [0, T ). (4.4)

If it were not, because of R(ϕ0) > 0, there would exist, by continuity, a t1 ∈ (0, T )
such that R(ϕ(t1)) = 0. Then ϕ(t1) ∈ Σ. Hence, S(ϕ(t1)) � d. From (3.1), (3.2) and
(4.1), I(ϕ(t1)) = S(ϕ(t1)) + R(ϕ(t1)). It follows from (4.3) that S(ϕ(t1)) < d, violating
Theorem 3.1. Therefore, (4.4) holds. Hence, K+ is invariant under the local semi-flow
generated by the Cauchy problem (1.1).

By the same argument as that above, we can show that K− is invariant. �
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Theorem 4.2. For p = 1+(4/N) and N � 2, let ϕ0 ∈ H. We then have the following.

(i) If ϕ0 ∈ K+, the solution ϕ of the Cauchy problem (1.1) exists globally on t ∈ [0,∞)
in H.

(ii) If ϕ0 ∈ K−, the solution ϕ of the Cauchy problem (1.1) blows up at a finite time
in H.

Proof. (i) Let ϕ0 ∈ K+ and let ϕ be the solution of (1.1) with the initial datum ϕ0.
It follows from Proposition 4.1 that ϕ ∈ K+, i.e.

I(ϕ) = 1
2

∫ [
|∇ϕ|2 + |ϕ|2 + |x|2|ϕ|2 − 2

p + 1
|ϕ|p+1

]
dx < d,

R(ϕ) = 1
2

∫ [
|ϕ|2 − 2

p + 1
|ϕ|p+1

]
dx > 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.5)

which implies that
1
2

∫
[|∇ϕ|2 + |x|2|ϕ|2] dx

is bounded. Furthermore, since ∫
|ϕ|2 dx =

∫
|ϕ0|2 dx,

we then find that ‖ϕ‖H is bounded. Therefore, it follows from Proposition 2.2 that the
solution ϕ of the Cauchy problem (1.1) exists globally on t ∈ [0,∞) in H.

(ii) Let ϕ0 ∈ K− and let ϕ be the solution of (1.1) with the initial datum ϕ0. It follows
from Proposition 4.1 that ϕ ∈ K−, i.e.

I(ϕ) = 1
2

∫ [
|∇ϕ|2 + |ϕ|2 + |x|2|ϕ|2 − 2

p + 1
|ϕ|p+1

]
dx < d, (4.6)

and

R(ϕ) = 1
2

∫ [
|ϕ|2 − 2

p + 1
|ϕ|p+1

]
dx < 0. (4.7)

Therefore, there must exist a λ ∈ (0, 1) such that R(λϕ) = 0, which implies that λϕ ∈ Σ.
So, S(λϕ) � d > I(ϕ), i.e.

λ2
∫

[|∇ϕ|2 + |x|2|ϕ|2] dx >

∫ [
|∇ϕ|2 + |ϕ|2 + |x|2|ϕ|2 − 2

p + 1
|ϕ|p+1

]
dx. (4.8)

When N = 2 and p = 3, it follows from R(λϕ) = 0 and (4.8) that

(λ2 − 1)
∫

[|∇ϕ|2 + |x|2|ϕ|2 − 1
2 |ϕ|4] dx > 0. (4.9)
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At the same time, noting that λ ∈ (0, 1), we have

E(ϕ) =
∫

[|∇ϕ|2 + |x|2|ϕ|2 − 1
2 |ϕ|4] dx < 0.

It then follows from this result and Proposition 2.2 that E(ϕ0) < 0. Thus, ϕ blows up,
by Proposition 2.4.

When N � 3 and p = 1 + (4/N), from Proposition 2.5, (4.8), R(λϕ) = 0 and (2.3), we
have

d2

dt2

∫
|x|2|ϕ|2 dx

= 8
∫

|∇ϕ|2 dx − 8
∫ [

|x|2|ϕ|2 +
N(p − 1)
2(p + 1)

|ϕ|p+1
]

dx

< −8
∫ [

|x|2|ϕ|2 +
1

1 − λ2 |ϕ|2 − 2
(1 − λ2)(p + 1)

|ϕ|p+1
]

dx

− 8
∫ [

|x|2|ϕ|2 +
N(p − 1)
2(p + 1)

|ϕ|p+1
]

dx

< −16
∫

|x|2|ϕ|2 dx +
8

λp−1(1 − λ2)

[
−λp−1 + 1 − (1 − λ2)(p − 1)N

4

] ∫
|ϕ|2 dx

<
8

λp−1(1 − λ2)

[
−λp−1 + 1 − (1 − λ2)(p − 1)N

4

] ∫
|ϕ|2 dx

=
8

λp−1(1 − λ2)
[−λ4/N + λ2]

∫
|ϕ|2 dx

=
8

λp−1(1 − λ2)
[−λ4/N + λ2]

∫
|ϕ0|2 dx. (4.10)

Set f(λ) = −λ4/N + λ2, where λ ∈ (0, 1). When N � 3, we obtain 0 < 4/N < 2.
Therefore, λ4/N > λ2, where λ ∈ (0, 1). Then f(λ) < 0. Therefore, it follows that

d2

dt2

∫
|x|2|ϕ|2 dx < −C < 0,

which yields that the solution ϕ of the Cauchy problem (1.1) blows up in a finite time
in H. �

Remark 4.3. When N = 1, we unfortunately cannot find the sharp threshold between
the global solutions and the blowing-up solutions of the Cauchy problem (1.1) for the
critical power, p = 5.

The following theorem answers the question: how small are the initial data, such that
the Cauchy probelm (1.1) has global solutions for p = 1 + (4/N)?

https://doi.org/10.1017/S0013091505000921 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000921


70 G. Chen and J. Zhang

Theorem 4.4. Let p = 1 + (4/N) and N � 2. If ϕ0 ∈ H and satisfies

1
2‖ϕ0‖2

H = 1
2

∫
[|∇ϕ0|2 + |ϕ0|2 + |x|2|ϕ0|2] dx < d, (4.11)

then the solution ϕ of (1.1) with the initial datum ϕ0 exists globally on t ∈ [0,∞).

Proof. Let ϕ0 �= 0 and let it satisfy (4.11). Then obviously I(ϕ0) < d. Now we show
that ϕ0 also satisfies R(ϕ0) > 0. Firstly, we prove that

R(ϕ0) = 1
2

∫ [
|ϕ0|2 − 2

p + 1
|ϕ0|p+1

]
dx �= 0. (4.12)

Otherwise, ϕ0 ∈ Σ. It follows that I(ϕ0) = R(ϕ0) + S(ϕ0) = S(ϕ0) < d, which is
contradictory to Theorem 3.1. Therefore, if R(ϕ0) > 0 were not true, we would have

R(ϕ0) = 1
2

∫ [
|ϕ0|2 − 2

p + 1
|ϕ0|p+1

]
dx < 0. (4.13)

Thus, there exists a µ ∈ (0, 1) such that

R(µϕ0) = 1
2

∫ [
µ2|ϕ0|2 − 2µp+1

p + 1
|ϕ0|p+1

]
dx = 0, (4.14)

which means that µϕ0 ∈ Σ. But, by (4.11), we have

S(µϕ0) = 1
2µ2

∫
[|∇ϕ0|2 + |x|2|ϕ0|2] dx

<
1
2

∫
[|∇ϕ0|2 + |x|2|ϕ0|2] dx

<
1
2

∫
[|∇ϕ0|2 + |x|2|ϕ0|2 + |ϕ0|2] dx

< d, (4.15)

which contradicts Theorem 3.1. These contradictions yield ϕ0 ∈ K+. By using Theo-
rem 4.2, we find that the solution ϕ of (1.1) with the initial datum ϕ0 exists globally on
t ∈ [0,∞). �
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