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1. Introduction. If £ is a subset of the real line of positive measure, then the associated
Hilbert transform H = HE,

(H*)(0 = (m)-1f (s-ty1x(s)ds, (1)
JE

where the integral is a Cauchy principal value, is a bounded self-adjoint operator on L2(E)
(cf. Muskhelishvili [4]). In case E= (— oo, oo) the transformation is also unitary with a
spectrum consisting of 1 and —1, each of infinite multiplicity (Titchmarsh [10]). If E is a
finite interval the spectral representation of H has been given by Koppelman and Pincus [3];
see also Putnam [6]. In particular the spectrum of H is in this case the closed interval
[—1, 1]. Moreover, according to Widom [11], the spectrum of H is [—1, 1] whenever
E 4= (— oo, oo), that is, whenever

( — oo, oo)—E has positive measure. (2)

= \

said to be absolutely continuous if || Ekx ||2 is an absolutely continuous function of X for all
elements x in the space. Similarly one can define an absolutely continuous unitary operator.

It was shown in Putnam [6] that H of (1) is always absolutely continuous if the closure
of E is not (—oo, oo), that is, if there exists some interval J such that

En J is empty. (3)

The question as to whether H is absolutely continuous if the assumption (3) is weakened to
(2) apparently remains open.J

Let o(X) denote a distribution function, so that

da(X)^0 and P° da{k) = 1, (4)
J - o o

and let k(t) denote its Fourier-Stieltjes transform

(5)

A self-adjoint operator ^ o n a Hilbert space with the spectral resolution A = \k dEk is

For any set E of positive measure, define the bounded self-adjoint operator A = AE on
L\E) by

(Ax)(t) = (iny1 ! k(s-t)(s-ty1x(s)ds, (6)= (iny1 ! k(s-t)(s-ty1x(s)ds,
JE

t This work was supported by a National Science Foundation research grant.
t Added Jan. 12, 1967: The question can now be answered affirmatively in view of recent results of M.

Rosenblum (Amer. J. Math. 88 (1966), 314-328).
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where, as before, the integral is interpreted as a Cauchy principal value. In case a(A) is the
Dirac distribution (o-(A) = 0 for A < 0 and a(X) = 1 for X ̂  0) it is seen that A = H.

An investigation of the operator A will be made below. The principal results are contained
in the following theorem.

THEOREM 1. (i)IfE satisfies (3) for some intervaU, then A of (6) is absolutely continuous.
(ii) If, in addition to (3), it is also assumed that

meas£ < oo, (7)

then the spectrum of A is the interval [— 1, 1]. (iii) If(3), (7) and

IA | da(X) < oo (8)
o

are assumed, then in fact A and H are unitarily equivalent; thus

A = UHU*, (9)

for some unitary operator U.
Whether conditions (3) and (7) alone, without the assumption (8), are sufficient to imply

(9) will remain undecided.

2. Proof of (i). Let a denote any interior point of the interval J satisfying (3) and let B
denote the bounded multiplication operator (t—a)~l on L2(E). Then AB—BA = iC, where
C is the integral operator defined by

Cx = Jt"1 k(s-t)(s — a)~l(t-aYlx{s)ds.
JE

It is seen that

(Cx, x) = 7i f - a ) - 1 eiXsds MQ,

so that C ^ 0. (What is really involved here is the fact that (5) implies the non-negative
definite character of the function k(t) on (—oo, oo). The essential converse is more difficult
and is due to Bochner. See Hopf [1, pp. 11-12], also Riesz and Sz.-Nagy [7, pp. 385 if.].)

The results of Putnam [6] can now be applied to prove part (i) of Theorem 1. Thus the
absolute continuity of A will be established if it is shown that k(s—t) = 0 almost everywhere
on ExF, where F is a measurable subset of E, implies that m e a s / r = 0 . But k(s—t) is
clearly a continuous function of s and /, and hence, if meas F > 0, then k(s—t) = 0 almost
everywhere on E x F implies that

a contradiction to (4). This proves (i).
Part (ii) will be established as a consequence of part (iii) which will be proved next.
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3. Proof of (iii). If g(t) is defined (for t * 0) by k(t) - k(O) + tg(t), so that

0(0 = l"1 [" (ea'-l)da(A),
J —oo

then
A = H+G, (10)

where (Gx)(t) = (in)~1 \ g(s-t)x(s)ds. In addition,
JE

(Gx, x) = 2 I I y(n) |2 d\i da(k), (11)
J -oojo

where y(n) = (27t)~* x(s)elliSds is the conjugate of the Fourier transform of x(s). (The
JE

necessary interchanges of orders of integration needed to establish (11) are certainly justified
if x(s) has compact support. The general case can be handled by approximations involving
such elements.) Even if (3), (7) and (8) are not assumed, it is clear that (11) holds and that,
further, in view of the Parseval relation

f
Je

\y(n)\2da,
! E

(11) implies that
| |G| |=2*(0) (=2). (12)

(It may be noted that (12) is clearly necessary for the validity of (9). whether or not (3), (7)
and (8) are assumed.)

However, if (8) is assumed and if one puts

0(0) = i f " kda{X)t
J - 0 0

then

0(0 =

which is continuous and satisfies

= f° (i[ e""d^da{X),
J-oo\ Jo /

= r ui</a(A).
J - 0 0

Thus relations (7) and (8) together imply that g(s-t) belongs to L2(ExE), and hence that
G is completely continuous.

If A:(/) = fc,(0 + A:2(0, where
foo

kl(t)= eiXt da(X)
Jo

and

= f
J -

ea'
oo

k2{t)= f ea'da{X),
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and if one defines the associated operators Gx and G2 corresponding to G, then it is seen from
relations similar to (11) that Gt ^ 0 and G2 ^ 0. Further (cf., e.g., Riesz and Sz.-Nagy [7,
p. 245]), it is clear, in virtue of (7) and (8), that Gx and G2 have the finite traces

foo /»0

n'1 (meas E) X da{X) and %~1 (meas E) X do{X),
J

respectively. Therefore Gx and G2, and hence also G = Gx + G2, are trace class operators. (For
a discussion of such operators, see, e.g., Schatten [9].) Since, as has been seen above, both
A and H are absolutely continuous, the assertion (9) is now a consequence of the Rosenblum-
Kato theory; see Rosenblum [8], Kato [2].

4. Proof of (ii). Let

eat da(X)

for n = 1, 2,..., and let An, Gn correspond to kn as A, G do to k. Then

A-An = (k(0)-kM)H+(G-Gn).
Since, by (12),

||G-Gn||g2(k(0)-/cn(0))

and since A:n(0) -»k(0) (= 1) as n -> oo, it is clear that || A-An \\ -> 0. It follows from (iii)
of Theorem 1 that An is unitarily equivalent to kn(Q)H and hence has spectrum [—kn(0), fcD(0)].
Since An and A are self-adjoint, the relation || A—An || ->0 now implies that the spectrum of
A is [— 1,1], as was to be shown.

5. Remarks. It was shown above that (3), (7) and (8) imply (9) for some unitary operator
U. Suppose that, in addition, the spectrum of the function a{X) is contained either in [0, oo)
or in (—oo, 0]; thus

<j(X) = constant either for X < 0 or for X > 0. (13)

Then it is seen from (11) that G is semi-definite. According to Putnam [5], it follows from
(10) that, in this case, any unitary operator U satisfying (9) is certainly absolutely continuous
provided that 0 is not in the point spectrum of G. But if 0 is in the point spectrum of G,
then there exists a unit element x in L2(E) such that Gx = 0 and hence, by (11), if one also
assumes G 4= 0, the identity

I'x(s)eif>sds = 0 (14)

holds on some closed ^-interval having 0 as an end-point. In case the hypotheses (3) and (7)
are strengthened to

E is bounded, (15)
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then (14) implies that x(s) = 0 almost everywhere, a contradiction. This can be seen by differen-

tiating (14) with respect to n and then setting \i = 0; thus x(s)s"ds = 0 for n = 0, 1, 2, ...,

from which the assertion follows.

The above results can be summarized in the following theorem.

THEOREM 2. Let (15) and (8) hold,sothat (9) holds for some unitary operator U. In addition,
assume that (13) holds and that A 4= H {that is, G 4= 0). Then any unitary operator U satisfying
(9) is absolutely continuous.
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