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Let M denote the centered Hardy–Littlewood operator on R. We prove that

Var(Mf) ≤ Var(f)−
1

2

∣∣|f(∞)| − |f(−∞)|
∣∣,

for piecewise constant functions f with nonzero and zero values alternating. The
above inequality strengthens a recent result of Bilz and Weigt [3] proved for indicator
functions of bounded variation vanishing at ±∞. We conjecture that the inequality
holds for all functions of bounded variation, representing a stronger version of the
existing conjecture Var(Mf) ≤ Var(f). We also obtain the discrete counterpart of
our theorem, moreover proving a transference result on equivalency between both
settings that is of independent interest.
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1. Introduction

Regularity properties of maximal operators have been investigated in numerous
papers and various frameworks. Kinnunen [10] initiated the study of boundedness
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of the Hardy–Littlewood maximal operator on the Sobolev spaces W 1,p(Rn) for
p ∈ (1,∞). Subsequently, [10] was complemented by Kinnunen and Lindqvist [11]
to the setting of open subsets of Rn. See also Tanaka [17] for the case p = 1 and
n = 1. Starting from the Euclidean setting and the Hardy–Littlewood maximal
operators, both centered and uncentered, the study then encompassed their variants
such as fractional maximal operators or maximal operators of convolution type; see
[6, 7, 13, 14], and references therein. Also discrete analogues of these operators were
considered, and related questions in both settings have been recently studied; see
[2, 5, 8, 9, 15].

It was an important observation of Aldaz and Pérez Lázaro [1] that maximal
operators can actually improve the regularity of involved functions rather than
simply preserve it. They also pointed out the role to be played by the variation
when measuring the regularity. In particular, it was proved in [1] that if f ∈ BV(R),
then for the uncentered Hardy–Littlewood maximal operator M̃ the function M̃f

is absolutely continuous on R and Var(M̃f) ≤ Var(f). For the centered operator
M , on the other hand, Kurka [12] proved

Var(Mf) ≤ CVar(f), f ∈ BV(R),

with some, quite large, C > 0. It was conjectured that also in this case C = 1
is enough, see e.g. [12, Section 1]. In the discrete case, i.e., for f ∈ BV(Z) and
the discrete counterpart of M , the same was conjectured, see [4, Question B]. It
is worth recalling the common truth that the uncentered maximal operator has
better regularity behavior than its centered counterpart. Furthermore, the proofs
of analogous results are usually much subtler in the centered setting.

It seems that both conjectures, although reasonable and expected to be
true, do not take the full advantage of how the limits f(±∞) or F (±∞) for
f ∈ BV(R) or F ∈ BV(Z), respectively, determine the limits Mf(±∞) or
MF (±∞); see Section 3. We thus propose the following strengthening, which would
complement analogous inequalities for other maximal operators; see Remark 4.1.

Conjecture 1. Suppose f ∈ BV (R). Then

Var(Mf) ≤ Var(f)− 1

2

∣∣|f(∞)| − |f(−∞)|
∣∣. (1.1)

Our first main result, Theorem 1.1, supports this conjecture. We mention that
there is no need to formulate separately the discrete counterpart of Conjecture 1,
since by our second main result, Theorem 2.2, inequality (1.1) and its discrete
analogue are equivalent. Clearly, verification of either version of the conjecture,
continuous or discrete, reduces to the consideration of nonnegative functions. We
shall prove that a certain further reduction to nonnegative simple functions is avail-
able; see Proposition 2.3. Finally, we show that the constants 1 and 1

2 in (1.1) are
optimal; see Section 4.

Let N := {1, 2, . . . }. Let K be either R or Z. For g : K → C and any nonempty
E ⊆ K define

VarE(g) := sup
monotone φ : Z→E

∑
m∈Z

∣∣g(φ(m+ 1)
)
− g

(
φ(m)

)∣∣,
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Variation of the centered maximal operator 3

which we call the variation of g over E. We write g ∈ BV(K) when the total varia-
tion Var(g) := VarK(g) is finite. For each such g the limits g(±∞) := limx→±∞ g(x)
exist and, when K = R, for each x ∈ R the one-sided limits g(x±) := limy→x± g(y)
exist as well.

Recall the definition of the centered Hardy–Littlewood maximal operator M . We
set

Mg(x) := sup
r>0

1

2r

∫ x+r

x−r

|g| and MG(n) := sup
m≥0

1

2m+ 1

n+m∑
y=n−m

|G(y)|

for any locally integrable g : R → C and x ∈ R, and for any G : Z → C and n ∈ Z.
Of course, if g ∈ BV(R), then g is bounded, and hence so is Mg. The same is true
for MG when G ∈ BV(Z).

Our first main result says that (1.1) holds for a certain special class of functions.

Theorem 1.1. Let −∞ < A < B < +∞, a, b ∈ C, K ∈ N, and {αk}K1 ⊂ C such
that αkαk+1 = 0, 1 ≤ k ≤ K − 1, be given. For a system −∞ < A = t0 < t1 <
. . . < tK = B < +∞ define

f(x) := a1(−∞,A)(x) +
K∑

k=1

αk1[tk−1,tk)(x) + b1[B,∞)(x)

for all x ∈ R. Then

Var(Mf) ≤ Var(f)− 1

2

∣∣|a| − |b|
∣∣. (1.2)

Similarly, replacing the system of real numbers {tk}K0 by a system of integers
−∞ < A = n0 < n1 < . . . < nK = B < +∞, and assuming αkαk+1 = 0,
1 ≤ k ≤ K − 1, define

F (n) := a1(−∞,A)(n) +
K∑

k=1

αk1[nk−1,nk)(n) + b1[B,∞)(n)

for all n ∈ Z. Then

Var(MF ) ≤ Var(F )− 1

2

∣∣|a| − |b|
∣∣. (1.3)

Theorem 1.1 implies (1.2) or (1.3) for all indicator functions of bounded vari-
ation, f : R → {0, 1} or F : Z → {0, 1}, respectively, thus strengthening [3,
Theorems 1.1 and 1.3]. On the other hand, Theorem 1.1 does not recover [3,
Theorem 1.2], which asserts that Var(Mf) ≤ Var(f) holds for every f : R → [0,∞)
satisfying f(x) = 0 or f(x) = Mf(x) for almost every x ∈ R.

Notice the separation condition αkαk+1 = 0 encoded in the systems {tk}K0 and
{nk}K0 . In fact, our techniques allow us to skip this condition at the expense of
using |αk| + |αk+1|, not |αk+1 − αk|, on the right-hand side of (1.2) or (1.3). For
example, if K = Z and a = b = 0, then (1.3) would take the form Var(MF ) ≤
2(|α1| + · · · + |αK |). Building on this, one can recover [14, Theorem 1.1], which
asserts that Var(MF ) ≤ 2‖F‖`1(Z) holds for all F ∈ `1(Z).

https://doi.org/10.1017/prm.2025.10036 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2025.10036


4 P. Hagelstein, D. Kosz and K. Stempak

Moreover, by combining Theorem 1.1 with [16, Subsection 5.3], we obtain a vari-
ant of (1.2) with M replaced by Mθ for any θ > 0, where Mθ is the nontangential
maximal operator studied in [16].

Lastly, our methods differ from [3] and align more closely with [14]. In particular,
the approach in Lemma 3.2 resembles [14, Section 2], though it gains additional
efficiency through Lemma 3.1.

Throughout the paper, I with possible subscripts and/or superscripts affixed will
denote an open bounded subinterval of R. Then c(I), l(I), r(I) will be the center
and the left/right endpoint of I, respectively. As already mentioned, Var with no
subscripts, R or Z, will denote the total variation; it will be clear from the context
to which situation this symbol refers to. Appearance of a subscript will indicate
that the variation is related to a subset represented by this subscript.

2. Transference

The main goal of this section is to prove a transference result, Theorem 2.2, which
seems to be of independent interest. We begin with a simple result that exhibits
a substantial improvement of regularity of M . Namely, given g ∈ BV(R), not only
does Mg have one-sided limits at every x ∈ R but it is one-sided continuous as
well. Of course, the first claim follows, since Mg ∈ BV(R), cf. [12], but we decided
to provide a short proof of this fact to make the whole argument self-contained.

Lemma 2.1. For a generic function g ∈ BV(R) and x ∈ R the limits Mg(x±) exist
and we have

Mg(x) = min{Mg(x−),Mg(x+)}. (2.1)

Proof. We can assume g ≥ 0. Regarding the existence of the limits, fix ε > 0 and
take δ > 0 such that |g(y) − g(x−)| < ε for y ∈ (x − 2δ, x) and |g(y) − g(x+)| < ε
for y ∈ (x, x + 2δ). Let g̃(y) be g(x−), g(x+), or g(y), if y belongs to (x − 2δ, x),
[x, x+2δ), or R\(x−2δ, x+2δ), respectively. Then |Mg(y)−Mg̃(y)| ≤ ε for y ∈ R.
Note that Mg̃ = max{M<δ g̃,M≥δ g̃}, where M<δ and M≥δ allow only the centered
intervals I with |I| < 2δ and |I| ≥ 2δ, respectively. If y ∈ (x, x+ δ), then

M<δ g̃(y) = max
{
g(x+), (2δ)−1

(
(δ − y + x)g(x−) + (δ + y − x)g(x+)

)}
,

whereas if x < y < z < x+ δ, then

|M≥δ g̃(z)−M≥δ g̃(y)| ≤ (2δ)−1(z − y)Var(g),

since for r ≥ δ we have∣∣∣ 1
2r

∫ z+r

z−r

g̃ − 1

2r

∫ y+r

y−r

g̃
∣∣∣ = ∫ z+r

y+r

|g̃(t)− g̃(t− 2r)|
2r

dt

≤ (z − y)Var(g)

2r
≤ (z − y)Var(g)

2δ
.

Thus, Mg̃(x+) exists and so lim supt→x+ Mg(t)− lim inft→x+ Mg(t) ≤ 2ε. Letting
ε → 0, we obtain that Mg(x+) exists as well. Analogously we verify that Mg(x−)
exists.
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Regarding (2.1), we have Mg(x) ≤ min{Mg(x−),Mg(x+)} by lower semicon-
tinuity of Mg. To prove the opposite inequality, it suffices to consider the case

min{Mg(x−),Mg(x+)} > g(x−)+g(x+)
2 because Mg(x) ≥ g(x−)+g(x+)

2 . Assume
g(x−) ≤ g(x+) (the case g(x−) ≥ g(x+) is symmetric). Now Mg(x−) >

max{g(x−), g(x−)+g(x+)
2 } and so Mg(y) = M≥δg(y) for some δ > 0 and all

y ∈ (x− δ, x). Since, as before, |M≥δg(x)−M≥δg(y)| ≤ (2δ)−1(x− y)Var(g) for all
such y, the proof is complete. �

Now, for K = R or K = Z, and a, b ∈ C, define

BVb
a(K) := {g ∈ BV(K) : g(−∞) = a, g(+∞) = b}.

By C(K) we denote the smallest value C ∈ (0,∞] such that

Var(Mg) ≤ CVar(g), g ∈ BV(K),

and by cba(K) we denote the largest value c ∈ [0,∞) such that

Var(Mg) ≤ C(K)Var(g)− c, g ∈ BVb
a(K),

with the convention cba(K) = 0 if C(K) = ∞.
The transference result that follows complements [3, Proposition 1.4]. We include

the potential case C(K) = ∞ to emphasize that the proof works independently of
whether C(K) is finite or not. Nonetheless, in [12] it was shown that C(R) < ∞, thus
Theorem 2.2, even in the weaker form with the additional assumption C(K) < ∞,
immediately gives C(Z) < ∞.

Theorem 2.2. We have C(Z) = C(R) and cba(Z) = cba(R) for all a, b ∈ C.

Proof. We first show C(Z) ≤ C(R) and cba(Z) ≥ cba(R) by using a natural extension
procedure, cf. [3, Lemma 4.1]. If C(R) = ∞, then cba(R) = 0 and there is nothing
to show. Assume therefore that C(R) < ∞. Given G ∈ BVb

a(Z), consider

g :=
∑
n∈Z

G(n)1[n−1/2,n+1/2).

Then Var(g) = Var(G) and so g ∈ BVb
a(R). Note that Mg(n) = MG(n), n ∈ Z,

since, for m ∈ N, one of the averages of |g| over the centered intervals I of lengths
|I| = 2m ± 1 dominates those with |I| ∈ [2m − 1, 2m + 1]. Thus, Var(MG) =
VarZ(Mg) ≤ Var(Mg), and the claimed inequalities hold.

In the opposite direction, we claim that C(Z) ≥ C(R) and cba(Z) ≤ cba(R), and use
a convenient variant of a sampling procedure. Obviously, we can assume C(Z) < ∞.
Given g ∈ BVb

a(R) and ε > 0, in view of (2.1), there is N∗ = N∗(ε) ∈ N such that
for EN∗ := 2−N∗Z ∩ [−2N∗ , 2N∗ ] we have

VarEN∗
(Mg) ≥ Var(Mg)− ε or VarEN∗

(Mg) ≥ ε−1, (2.2)

depending on whether Var(Mg) is finite or not, respectively. For N ∈ N, let MN

be the variant of M allowing only the centered intervals I with |I| ∈ (2N− 1)/2N .
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We have limN→∞ MNg = Mg pointwise, since for x ∈ R and δ > 0 there are
0 < ρ1 < ρ2 < ∞ such that 1

2ρ

∫ x+ρ

x−ρ
|g| ≥ Mg − δ for all ρ ∈ [ρ1, ρ2]. Thus, there

exists N0 ∈ N such that VarEN∗
(MNg) ≥ VarEN∗

(Mg)−ε, for all N ≥ N0. Consider

G̃N (n) := 2N
∫ (n+1/2)/2N

(n−1/2)/2N
|g| and GN (n) := 2N

∫ (n+1/2)/2N

(n−1/2)/2N
g. Then

max{Var(G̃N ),Var(GN )} ≤
∫ 1/2

−1/2

Var(Z+t)/2N (g) dt ≤ Var(g), (2.3)

so that G̃N ∈ BV
|b|
|a|(Z) and GN ∈ BVb

a(Z). Also, MGN (n) ≤ MG̃N (n) =

MNg(n/2N ) for n ∈ N.
Now, we show that MGN (n) ≥ MG̃N (n)− ε/22N∗+4 for all n ∈ EN

N∗
:= {2NQ :

Q ∈ EN∗} ⊂ N, provided that N ≥ max{N∗, N0} is large enough. Given Q ∈ EN∗ ,
we have

|IQ|−1

∫
IQ

|g| ≥ MG̃N (2NQ)− ε/22N∗+5,

for some IQ centered at Q. For each N large enough, let INQ be the longest

interval centered at Q, contained in IQ, with |INQ | ∈ (2N − 1)/2N . Denoting

gN :=
∑

n∈Z GN (n)1[(n−1/2)/2N ,(n+1/2)/2N ), we see that limN→∞ |INQ |−1
∫
IN
Q
|gN | =

|IQ|−1
∫
IQ

|g| by the dominated convergence theorem on IQ, because g is continuous

almost everywhere and bounded. Since MGN (2NQ) ≥ |INQ |−1
∫
IN
Q
|gN | and EN∗ is

finite, MGN (n) ≥ MG̃N (n) − ε/22N∗+4 for some N ≥ max{N∗, N0}, as desired.
Thus,

VarEN∗
(Mg)− ε ≤ VarEN∗

(MNg) = VarEN
N∗

(MG̃N ) ≤ VarEN
N∗

(MGN ) + ε

≤ Var(MGN ) + ε. (2.4)

Assuming Var(Mg) = ∞ gives

ε−1 ≤ VarEN∗
(Mg) ≤ Var(MGN ) + 2ε ≤ C(Z)Var(g)− cba(Z) + 2ε,

which contradicts our assumption C(Z) < ∞. Consequently, Var(Mg) < ∞ (this
includes the case C(R) < ∞). Applying successively the first part of (2.2), (2.4),
the definitions of C(Z) and cba(Z) in the context of GN ∈ BVb

a(Z), and (2.3) for
GN , and then letting ε → 0, we verify the claim. �

Later on, we shall refer to the two methods from the proof of Theorem 2.2 as to
the extension procedure and the sampling procedure, respectively.

Below we show that proving Conjecture 1 reduces to consideration of nonneg-
ative simple functions. We call G ∈ BV(Z) simple, abusing slightly the common
terminology, if there exist a, b ∈ C and N ∈ N such that G(−n) = a and G(n) = b
when n > N . Similarly, g ∈ BV(R) is simple if G(−x) = a and G(x) = b when
x > N , and g is constant on the intervals [n− 1

2 , n+ 1
2 ), n ∈ Z.

Proposition 2.3. Conjecture 1 is true if (1.1) is satisfied by nonnegative simple
functions.
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Proof. It is convenient to prove a version of the above for the discrete case, K = Z,
and then apply Theorem 2.2 and the extension procedure to obtain the result for
K = R.

Given nonnegative G ∈ BV(Z) and ε > 0, we have Var[−N∗,N∗]∩Z(MG) ≥
Var(MG) − ε for some N∗ = N∗(ε) ∈ N. Note that G ∈ BVb

a(Z) for some
a, b ∈ [0,∞). We choose N = N(ε,N∗) ∈ N such that |G(−n) − a| < ε/(5N∗)
and |G(n) − b| < ε/(5N∗) if n > N . Let GN (n) be equal to a, G(n), or b, for
n < N , n ∈ [−N,N ], or n > N , respectively. Then

Var[−N∗,N∗]∩Z(MGN ) ≥ Var[−N∗,N∗]∩Z(MG)− ε ≥ Var(MG)− 2ε,

because |MGN (n)−MG(n)| ≤ ε/(5N∗). Since Var(GN ) ≤ Var(G), we are done. �

3. Proof of Theorem 1.1

For a generic function g ∈ BV(K) one has

Mg ≥ |g(−∞)|+ |g(∞)|
2

and Mg(±∞) = max
{
|g(±∞)|, |g(−∞)|+ |g(∞)|

2

}
.

We say that Mg has a local maximum at x ∈ K if there exist y′, y′′ ∈ K such that
y′ < x < y′′ and

max{Mg(y′),Mg(y′′)} < sup{Mg(y) : y ∈ K ∩ [y′, y′′]} = Mg(x); (3.1)

a local minimum of Mg at x is defined analogously.
We are ready to prove Theorem 1.1. By the extension procedure it suffices to deal

with K = R. Indeed, given F ∈ BVb
a(Z) as in Theorem 1.1 with the corresponding

system {nk}K0 , define f ∈ BVb
a(R) with the corresponding system {tk}K0 , tk = nk−

1
2 , by f :=

∑
n∈Z F (n)1[n−1/2,n+1/2). By using the separation condition αkαk+1 = 0

for F , we verify that f has the form as in Theorem 1.1. Moreover, Var(f) = Var(F )
and Var(Mf) ≥ Var(MF ). Then (1.3) for F follows from (1.2) for f .

Until the end of this section we fix f as in Theorem 1.1 and denote Ik :=
(tk−1, tk), k = 1, . . . ,K, the interiors of the corresponding intervals. Without any
loss of generality we may consider only nonnegative f . Hence, from now on, we
assume a, b ≥ 0 and αk ≥ 0, k = 1, . . . ,K. Clearly, Mf may not have local maxima
at all. However, if Mf has a local maximum at x, then the following two cases may
occur:

(1) Mf is constant on some interval J 3 x, i.e., Mf has a local maximum at
each point of J ;

(2) there is no J with this property, i.e., x is isolated.

In the first case, considering J as the longest interval with the declared property,
we shall choose exactly one element x∗ ∈ J as a representative. In addition every
isolated point x from the second case, if any, will also be called a representative. It
follows from Lemma 3.1 that the number of representatives is finite and does not
exceed K2.
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Lemma 3.1. Let Mf have a local maximum at x. Then there exists x∗ (either equal
to x or such that Mf is constant on the closed interval connecting x and x∗) with
the property that Mf(x∗) is attained for some interval Ix∗ which is centered at x∗
and such that l(Ix∗) = l(Ik′) and r(Ix∗) = r(Ik′′) hold for some 1 ≤ k′ ≤ k′′ ≤ K
satisfying Mf(x∗) ≤ min{αk′ , αk′′}.

Proof. Take any sequence {ρn} ⊂ (0,∞) such that Mf(x) = limn→∞
1

2ρn

∫ x+ρn

x−ρn
f .

Clearly, if {ρn} has a subsequence diverging to ∞, then Mf(y) ≥ Mf(x) for all
y ∈ R. Thus, {ρn} is bounded.

Assume {ρn} has a subsequence converging to 0. Then Mf(x) = f(x−)+f(x+)
2

and so f(x−) = f(x+) = Mf(x) by Mf(x) ≥ Mf(x±) ≥ f(x±), where the
first inequality holds because Mf has a local maximum at x. If x ≤ A, then

Mf(x) = f(x−) = a = f(y−)+f(y+)
2 ≤ Mf(y) for all y < x, contradicting (3.1).

Similarly, x ≥ B is impossible. Thus, x ∈ Ik and Mf(x) = αk for some k. We can
replace x by c(Ik), since Mf(y) ≥ Mf(x) for all y ∈ Ik so that Mf is constant
on Ik because Mf has a local maximum at x. Taking x∗ = c(Ik) and Ix∗ = Ik, we
obtain the claimed property.

If {ρn} is separated from 0, then it contains a subsequence converging to a
positive number. Consequently, Mf(x) = 1

|Ix|
∫
Ix

f for some Ix centered at x. Note

that f
(
l(Ix)

+
)
≥ Mf(x), since otherwise we could show Mf(y) > Mf(x) for

some δ > 0 and all y ∈ (x, x + δ) by taking Iy with r(Iy) = r(Ix). In particular,
l(Ix) ≥ A because otherwise we would have Mf(y) ≥ Mf(x) for all y ≤ x, again
by taking Iy with r(Iy) = r(Ix). Thus, l(Ix) ∈

[
l(Ik′), r(Ik′)

)
for some k′ such

that αk′ ≥ Mf(x). Similarly, f
(
r(Ix)

−) ≥ Mf(x) and r(Ix) ∈
(
l(Ik′′), r(Ik′′)

]
for

some k′′ ≥ k′ such that αk′′ ≥ Mf(x). Let x∗ = l(Ik′ )+r(Ik′′ )
2 . If x = x∗, then

Mf(x) is attained for
(
l(Ik′), r(Ik′′)

)
. If not, then we can show Mf(y) ≥ Mf(x)

for all y in the closed interval connecting x and x∗ by taking xθ = (1 − θ)x + θx∗
and Ix ⊆ Ixθ

⊆
(
l(Ik′), r(Ik′′)

)
with l(Ixθ

) = (1 − θ)l(Ix) + θl(Ik′) and r(Ixθ
) =

(1 − θ)r(Ix) + θr(Ik′′) for all θ ∈ [0, 1]. Since Mf has a local maximum at x, it is
constant on this closed interval and so Mf(x∗) is attained for

(
l(Ik′), r(Ik′′)

)
, as

desired.
From the reasoning above, it follows that Mf(x∗) ≤ min{αk′ , αk′′} in each

case. �

From now on, we take each representative x to be of the form l(Ik′ )+r(Ik′′ )
2 for

1 ≤ k′ ≤ k′′ ≤ K such that Mf(x) = 1
|Ix|

∫
Ix

f , where Ix =
(
l(Ik′), r(Ik′′)

)
.

Furthermore, if Mf has local maxima and there are N ≥ 1 representatives, say
x1 < x2 < . . . < xN , then for N ≥ 2 and each 2 ≤ n ≤ N , we choose yn ∈
(xn−1, xn), where Mf has a local minimum. Then

Var(Mf) = Var(−∞,x1](Mf) +
( N∑

n=2

Mf(xn−1)− 2Mf(yn) +Mf(xn)
)

+Var[xN ,∞)(Mf). (3.2)
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Let TI(x) :=
|I|

|JI(x)| for all x ∈ R, where JI(x) is the smallest interval J ⊇ I with

c(J) = x. The next result says that the variation of Mf is controlled locally by the
variations of TIk , 1 ≤ k ≤ K.

Lemma 3.2. Suppose Mf has N ≥ 1 representatives x1 < . . . < xN . Then

Mf(xn−1)−Mf(yn) ≤
K∑

k=1

αkVar[xn−1,yn](TIk) and

Mf(xn)−Mf(yn) ≤
K∑

k=1

αkVar[yn,xn](TIk)

for all 2 ≤ n ≤ N and x1 < y2 < x2 < . . . < xN−1 < yN < xN . Similarly,

Mf(xN ) ≤
K∑

k=1

αkVar[xN ,∞)(TIk) and Mf(x1) ≤
K∑

k=1

αkVar(−∞,x1](TIk).

If α1 ≤ a, then the first summand in each of the four sums above may be omitted.

Proof. We shall estimate Mf(xn) − Mf(yn) and for Mf(xn−1) − Mf(yn) the
proof is analogous. Given xn, we take Ixn

as in the conclusions of Lemma 3.1 with
accompanying 1 ≤ k′ ≤ k′′ ≤ K. Then, for Iyn

centered at yn and such that
r(Iyn

) = r(Ixn
), we have Ixn

⊆ Iyn
and so

Mf(xn)−Mf(yn) ≤
1

|Ixn
|

∫
Ixn

f − 1

|Iyn
|

∫
Iyn

f ≤
(

1

|Ixn
|
− 1

|Iyn
|

)∫
Ixn

f =
k′′∑

k=k′

(
αk|Ik|
|Ixn

|
− αk|Ik|

|Iyn
|

)
.

Note that if α1 ≤ a and k′ = 1, then α1 ≥ Mf(xn) by Lemma 3.1, contradicting
(3.1). Indeed, we can show Mf(y) ≥ Mf(xn) for all y < xn by taking Iy with
r(Iy) = r(Ixn

). This explains the final sentence of the statement. Next, we notice
that the numerical inequality 1

ρ2
− 1

ρ2+ρ0
≤ 1

ρ1
− 1

ρ1+ρ0
holds for ρ0, ρ1, ρ2 ∈ (0,∞)

when ρ1 ≤ ρ2. Thus, if either xn ≤ c(Ik) or c(Ik) ≤ yn, then

αk|Ik|
|Ixn |

− αk|Ik|
|Iyn |

≤ αk

∣∣∣∣ |Ik|
|JIk(xn)|

− |Ik|
|JIk(yn)|

∣∣∣∣
= αk|TIk(xn)− TIk(yn)| = αkVar[yn,xn](TIk).

In the remaining case, yn < c(Ik) < xn, we add and subtract αk|Ik|
|I′| with I ′ such

that c(I ′) = c(Ik) and r(I ′) = r(Iyn) = r(Ixn). This gives

αk

(
|Ik|
|Ixn |

− |Ik|
|I ′|

+
|Ik|
|I ′|

− |Ik|
|Iyn |

)
≤ αk

( ∣∣∣∣ |Ik|
|JIk(xn)|

− |Ik|
|JIk(c(Ik))|

∣∣∣∣+ ∣∣∣∣ |Ik|
|JIk(c(Ik))|

− |Ik|
|JIk(yn)|

∣∣∣∣ )
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and the last quantity does not exceed αk

(
2TIk(c(Ik)) − TIk(xn) − TIk(yn)

)
=

αkVar[yn,xn](TIk).
Similarly, taking y1 → −∞ and Iy1

centered at y and such that r(Iy) = r(Ix1
),

we obtain

Mf(x1) = lim
y1→−∞

(
1

|Ix1 |
− 1

|Iy1 |

)∫
Ix1

f ≤ lim
y1→−∞

K∑
k=1

αkVar[y1,x1](TIk)

=
K∑

k=1

αkVar(−∞,x1](TIk),

with the first summand omitted if α1 ≤ a. As before, for Mf(xN ) the proof is
analogous. �

Proof of Theorem 1.1. For simplicity, we assume a ≥ b. If Mf has no local maxima,
then

Var(Mf) =
a− b

2
=

(
f(+∞)− f(−∞)

)
− a− b

2
≤ Var(f)− a− b

2
.

Assume therefore that N ≥ 1 and x1 < . . . < xN are all representatives. Since
a ≥ b, we obtain Mf(x) ≥ Mf(∞) for all x ∈ R and so Mf decreases on [xN ,∞).
Therefore, Lemma 3.2 gives

Var[xN ,∞)(Mf) = Mf(xN )− a+ b

2
≤

K∑
k=1

αkVar[xN ,∞)(TIk)−
a+ b

2

with the first summand omitted if α1 ≤ a. If Mf is nondecreasing on (−∞, x1],
then similarly

Var(−∞,x1](Mf) = Mf(x1)− a ≤
K∑

k=1

αkVar(−∞,x1](TIk)− a.

In this case, combining (3.2) with the two estimates above and Lemma 3.2 gives
(1.2), since

Var(Mf) ≤
K∑

k=1

αkVar(TIk)−a− a+ b

2
=

K∑
k=1

2αk−a−b− a− b

2
≤ Var(f)− a− b

2
.

If Mf is not nondecreasing on (−∞, x1], then Mf has a local minimum at y1 ∈
[A, x1) such that

Var(−∞,x1](Mf) = a− 2Mf(y1) +Mf(x1)

≤ min
{
Mf(x1)− b, a− a+ b

2
+

K∑
k=1

αkVar[y1,x1](TIk)
}
.

The above inequality, which splits into two parts, follows from (a+b)/2 ≤ Mf (first
part) and the estimate forMf(x1) from Lemma 3.2 with the additional nonnegative
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term 2Mf(y1)−(a+b)/2 added (second part). Again the first summand is not used
if α1 ≤ a. Now, if α1 ≤ a, then choosing the second term from the above minimum
and applying (3.2) and Lemma 3.2, we obtain

Var(Mf) ≤
K∑

k=2

2αk−b = (a−α1)+
(
α1+

K−1∑
k=2

2αk+αK

)
+(αK−b)−a ≤ Var(f)−a

by the separation condition αkαk+1 = 0. Finally, if α1 > a, then we choose the
first term from the relevant minimum. Now x1 > r(I1), since otherwise we would
have Mf(y1) > a by taking Iy1

with r(Iy1
) = r(I1). Also, Mf(x1) < α1 cannot

occur because Mf(r(I1)) ≥ α1 > Mf(−∞), while x1 is the leftmost representative.
Similarly, Mf(x1) = α1 would imply Mf(y) = α1 for all y ∈ [c(I1), x1] due to x1

being the leftmost representative, leading to the contradiction Mf(y1) > a. Thus,
l(Ix1

) = l(Ik′) for some k′ with αk′ > α1 > a and c(Ik′) ≤ x1 by Lemma 3.1. We
then obtain

Var(Mf) ≤ αk′ − b+
K∑

k=1

αkVar[x1,∞)(TIk)−
a+ b

2
≤ (a− α1)

+ Var(f)− a+ b

2
< Var(f)− a− b

2
,

since by x1 ≥ c(Ik′) > c(I1) the sum above does not exceed 2(α1 + · · · + αK) −
α1 − αk′ . �

4. Further comments

Here we collect several thoughts that complement our main results. We verify opti-
mality of the constants in Conjecture 1, discuss variants of (1.2) and (1.3) for
other operators, comment on the special case of indicator functions, and point out
limitations of our proof method.

First, we note that the constants 1 and 1
2 in (1.1) are optimal. Indeed, for a, b ∈

[0,∞) with a ≥ b and N ∈ N, take gN ∈ BVb
a(R) defined by gN := a1(−∞,−1) +

N1[−1,1)+b1[1,∞). Then forN ≥ a, a simple calculation shows Var(gN ) = 2N−a−b

and Var(MgN ) = 2N − a − a+b
2 . Letting N → ∞, we obtain C(R) ≥ 1 and

cba(R) ≤ a−b
2 .

Next, we show that certain variants of Conjecture 1 hold for other maximal
operators. Set

−→
Mg(x) := sup

r>0

1

r

∫ x+r

x

|g| and
−→
MG(n) := sup

m≥0

1

m+ 1

n+m∑
y=n

|G(y)|,
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and, similarly,

M̃g(x) := sup
r1,r2>0

1

r1 + r2

∫ x+r2

x−r1

|g| and

M̃G(n) := sup
m1,m2≥0

1

m1 +m2 + 1

n+m2∑
y=n−m1

|G(y)|.

We call
−→
M and M̃ the one-sided and uncentered maximal operators, respectively.

When K = Z, one can instead consider a variant of M̃ allowing only m1,m2 ≥ 0
with m1 +m2 +1 ∈ 2N− 1 so that the corresponding intervals are balls in Z. This
does not change the conclusion below.

Since the sampling procedure works in the context of
−→
M or M̃ with only minor

adjustments, for all a, b ∈ C the associated constants
−→
C (R),

−→
cba(R), C̃(R), c̃ba(R) are

not worse than their discrete counterparts. Furthermore, when K = Z and a, b ∈
[0,∞), it is natural to conjecture that

−→
C (Z) = C̃(Z) = 1,

−→
cba(Z) = max{0, b − a},

and c̃ba(Z) = |b − a|. Indeed, a suitable variant of (1.3) follows because for each

nonnegative G ∈ BVb
a(Z) one has

−→
MG ≥ max{G, b} and M̃G ≥ max{G, a, b},

while the equality
−→
MG(n) = G(n) or M̃G(n) = G(n) holds whenever

−→
MG or M̃G

has a local maximum at n. Considering GN ∈ BVb
a(Z) given by GN := a1−N +

N1{0} + b1N and gN ∈ BVb
a(R) given by gN :=

∑
n∈Z GN (n)1[n−1/2,n+1/2), we

verify that the postulated constants are optimal.

Remark 4.1. For all a, b ∈ [0,∞) we have

(1)
−→
C (R) =

−→
C (Z) = 1 and

−→
cba(R) =

−→
cba(Z) = max{0, b− a},

(2) C̃(R) = C̃(Z) = 1 and c̃ba(R) = c̃ba(Z) = |b− a|.

In the case of indicator functions our proof of (1.2) and (1.3) is simpler. Indeed,
let f ∈ BV(R) be as in Theorem 1.1 with a, b, αk ∈ {0, 1}. Now, if Mf has a local
maximum at x, then either f(x) = 0 or x can be adjusted to x∗ = c(Ik) for some
k. Moreover, if Mf has a local minimum at y, then f(y) = 0. Thus, we can replace
TIk by M1Ik , since both functions coincide on {c(Ik)} ∪ (R \ Ik). In particular, if
Mf is monotone on the closed interval J with endpoints x, y as before, then

VarJ(Mf) = Mf(x)−Mf(y) ≤ 1

|Ix|

∫
Ix

|f | − 1

|Iy|

∫
Iy

|f | ≤
K∑

k=1

αkVarJ(M1Ik).

Using this and relevant estimates at ±∞ yields (1.2), and (1.3) follows by the
extension procedure.

Finally, notice that the method presented in the proof of Theorem 1.1 has some
natural limitations. Indeed, during the proof we always choose Iy to be the small-
est interval centered at y which contains Ix. This choice is sometimes very far
from optimal. To illustrate this obstacle, let us take g ∈ BV0

0(R) given by g :=
1[−2,−1)∪[1,2) +C1[−2,2) with C = 106, say. Then Mg has local maxima at −3

2 , 0,
3
2
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with the related values being C+1, C+ 1
2 , C+1, and local minima at −1

2 ,
1
2 with the

related values being C+ 1
3 , C+ 1

3 . Thus, Var(Mg) = 2C+4− 1
3 ≤ 2C+4 = Var(g),

as desired. However, for x = 0 we have Ix = (−2, 2) so that for y = 1
2 we should take

Iy = (−2, 3) in Theorem 1.1. Unfortunately, the difference between the correspond-
ing averages is much larger than Mg(0) − Mg(12 ), therefore Var(Mg) ≤ Var(g)
cannot be verified this way.
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