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Let M denote the centered Hardy—Littlewood operator on R. We prove that

Var(M ) < Var(f) = 3]1(0)| = |f(—o0),

for piecewise constant functions f with nonzero and zero values alternating. The
above inequality strengthens a recent result of Bilz and Weigt [3] proved for indicator
functions of bounded variation vanishing at +oco. We conjecture that the inequality
holds for all functions of bounded variation, representing a stronger version of the
existing conjecture Var(M f) < Var(f). We also obtain the discrete counterpart of
our theorem, moreover proving a transference result on equivalency between both
settings that is of independent interest.
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1. Introduction

Regularity properties of maximal operators have been investigated in numerous
papers and various frameworks. Kinnunen [10] initiated the study of boundedness
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of the Hardy-Littlewood maximal operator on the Sobolev spaces WP (R") for
p € (1,00). Subsequently, [10] was complemented by Kinnunen and Lindqvist [11]
to the setting of open subsets of R™. See also Tanaka [17] for the case p = 1 and
n = 1. Starting from the Euclidean setting and the Hardy-Littlewood maximal
operators, both centered and uncentered, the study then encompassed their variants
such as fractional maximal operators or maximal operators of convolution type; see
[6, 7, 13, 14], and references therein. Also discrete analogues of these operators were
considered, and related questions in both settings have been recently studied; see
[2, 5, 8,9, 15].

It was an important observation of Aldaz and Pérez Lazaro [1] that maximal
operators can actually improve the regularity of involved functions rather than
simply preserve it. They also pointed out the role to be played by the variation
when measuring the regularity. In particular, it was proved in [1] that if f € BV(R),

then for the uncentered Hardy—Littlewood maximal operator M the function M f

is absolutely continuous on R and Var(M f) < Var(f). For the centered operator
M, on the other hand, Kurka [12] proved

Var(M f) < CVar(f), f € BV(R),

with some, quite large, C' > 0. It was conjectured that also in this case C' = 1
is enough, see e.g. [12, Section 1]. In the discrete case, i.e., for f € BV(Z) and
the discrete counterpart of M, the same was conjectured, see [4, Question B]. It
is worth recalling the common truth that the uncentered maximal operator has
better regularity behavior than its centered counterpart. Furthermore, the proofs
of analogous results are usually much subtler in the centered setting.

It seems that both conjectures, although reasonable and expected to be
true, do not take the full advantage of how the limits f(doo0) or F(£oo) for
f € BV(R) or ' € BV(Z), respectively, determine the limits M f(+o0) or
M F(+00); see Section 3. We thus propose the following strengthening, which would
complement analogous inequalities for other maximal operators; see Remark 4.1.

Conjecture 1. Suppose f € BV (R). Then

Var(M ) < Vax(f) - 3] f(0)] ~ [f(~o0)]| (11)

Our first main result, Theorem 1.1, supports this conjecture. We mention that
there is no need to formulate separately the discrete counterpart of Conjecture 1,
since by our second main result, Theorem 2.2, inequality (1.1) and its discrete
analogue are equivalent. Clearly, verification of either version of the conjecture,
continuous or discrete, reduces to the consideration of nonnegative functions. We
shall prove that a certain further reduction to nonnegative simple functions is avail-
able; see Proposition 2.3. Finally, we show that the constants 1 and % in (1.1) are
optimal; see Section 4.

Let N := {1,2,...}. Let K be either R or Z. For g: K — C and any nonempty
FE C K define

Varg(g) := sup Z |9(¢(m + 1)) — g(6(m))].

monotone ¢: Z—FE meZ
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which we call the variation of g over E. We write g € BV(K) when the total varia-
tion Var(g) := Vark(g) is finite. For each such g the limits g(+00) := lim,_, £ 00 g(2)
exist and, when K = R, for each 2 € R the one-sided limits g(z%) := lim,_,,+ g(y)
exist as well.

Recall the definition of the centered Hardy—Littlewood maximal operator M. We

set
1 xT+T 1 n+m
M = — d MG = G
gl@):=supz | gl an (n) sup o +1y:;m| 0]

for any locally integrable g: R — C and x € R, and for any G: Z — C and n € Z.
Of course, if g € BV(R), then ¢ is bounded, and hence so is Mg. The same is true

for MG when G € BV(Z).
Our first main result says that (1.1) holds for a certain special class of functions.

THEOREM 1.1. Let —00 < A < B < +00, a,b € C, K € N, and {a;} C C such
that apapr1 =0, 1 < k < K — 1, be given. For a system —oco < A =1ty < t; <
... <tg = B < 400 define

K
F@) = al(—ooa)(@) + > ol ) (@) + bl(p,00) ()
k=1

for all x € R. Then
1
Var(M f) < Var(f) — 5\|a\ — []]. (1.2)

Similarly, replacing the system of real numbers {ti Yt by a system of integers
—0 < A=ny<n <..<mng =B < +oo, and assuming arary; = 0,
1<k<K-—1, define

K
F(n) = al(—con)(n) + > @kl 00 (1) + bl[5 o) (n)
k=1

for alln € Z. Then
1
Var(MF) < Var(F) — 5||a| — 18] (1.3)

Theorem 1.1 implies (1.2) or (1.3) for all indicator functions of bounded vari-
ation, f: R — {0,1} or F: Z — {0,1}, respectively, thus strengthening [3,
Theorems 1.1 and 1.3]. On the other hand, Theorem 1.1 does not recover [3,
Theorem 1.2], which asserts that Var(M f) < Var(f) holds for every f: R — [0, 00)
satisfying f(z) =0 or f(z) = M f(z) for almost every z € R.

Notice the separation condition apogy1 = 0 encoded in the systems {tk}é( and
{ni}. In fact, our techniques allow us to skip this condition at the expense of
using |ag| + |ags1], not |agr1 — ag|, on the right-hand side of (1.2) or (1.3). For
example, if K = Z and @ = b = 0, then (1.3) would take the form Var(MF) <
2(Joa] + -+ + |ak|). Building on this, one can recover [14, Theorem 1.1], which
asserts that Var(MF) < 2||F||s(z) holds for all F' € ¢*(Z).
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Moreover, by combining Theorem 1.1 with [16, Subsection 5.3], we obtain a vari-
ant of (1.2) with M replaced by M? for any § > 0, where M? is the nontangential
maximal operator studied in [16].

Lastly, our methods differ from [3] and align more closely with [14]. In particular,
the approach in Lemma 3.2 resembles [14, Section 2], though it gains additional
efficiency through Lemma 3.1.

Throughout the paper, I with possible subscripts and/or superscripts affixed will
denote an open bounded subinterval of R. Then ¢(I),l(I),r(I) will be the center
and the left/right endpoint of I, respectively. As already mentioned, Var with no
subscripts, R or Z, will denote the total variation; it will be clear from the context
to which situation this symbol refers to. Appearance of a subscript will indicate
that the variation is related to a subset represented by this subscript.

2. Transference

The main goal of this section is to prove a transference result, Theorem 2.2, which
seems to be of independent interest. We begin with a simple result that exhibits
a substantial improvement of regularity of M. Namely, given g € BV(R), not only
does Mg have one-sided limits at every x € R but it is one-sided continuous as
well. Of course, the first claim follows, since Mg € BV(R), cf. [12], but we decided
to provide a short proof of this fact to make the whole argument self-contained.

LEMMA 2.1. For a generic function g € BV(R) and x € R the limits Mg(x*) exist
and we have

Mg(x) = min{Mg(a"~), Mg(a*)}. (2.1)

Proof. We can assume g > 0. Regarding the existence of the limits, fix € > 0 and
take § > 0 such that |g(y) — g(z7)| < e for y € (x — 25,x) and |g(y) — g(zT)| < ¢
for y € (x,x + 26). Let g(y) be g(x™), g(xz™), or g(y), if y belongs to (z — 24, z),
[z, +20), or R\ (z— 20, x+20), respectively. Then |Mg(y) —Mg(y)| < € fory € R.
Note that Mg = max{M5g, M>s§}, where M5 and M>; allow only the centered
intervals I with |I| < 26 and |I| > 20, respectively. If y € (z,z + ), then

Mc5g(y) = max {g(z"), (20) " (6 —y +2)g(z™) + (6 +y —x)g(z™)) },
whereas if r <y < z < x + 4, then
|M>5G(2) — M>53(y)| < (26)"" (2 — y)Var(g),

since for r > § we have

Ry /“’“ st) 5t 20)

DVirlg) _ (= p)Narly)

P

IN

Thus, M g(x™) exists and so lim sup,_, .+ Mg(t) — liminf, ,,+ Mg(t) < 2e. Letting
€ — 0, we obtain that Mg(z™) exists as well. Analogously we verify that Mg(z™)
exists.
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Regarding (2.1), we have Mg(z) < min{Mg(x~), Mg(z™)} by lower semicon-
tinuity of Mg. To prove the opposite inequality, it suffices to consider the case
min{Mg(z~), Mg(z*)} > %‘Q(ﬁ) because Mg(z) > %‘fm. Assume
g(xz™) < g(at) (the case g(x~) > g(z') is symmetric). Now Mg(z~) >
max{g(x_),%m} and so Mg(y) = M>sg(y) for some 6 > 0 and all
y € (z — 6, z). Since, as before, |M>sg(z) — M>59(y)| < (26)~!(z — y)Var(g) for all
such y, the proof is complete. O

Now, for K=R or K =7, and a,b € C, define
BV, (K) := {g € BV(K) : g(—00) = a, g(++00) = b}.
By C(K) we denote the smallest value C € (0, co] such that
Var(Mg) < CVar(g), g€ BV(K),
and by c2(K) we denote the largest value ¢ € [0, 00) such that
Var(Mg) < C(K)Var(g) —c, g € BVy(K),

with the convention ¢’ (K) = 0 if C(K) = oc.

The transference result that follows complements [3, Proposition 1.4]. We include
the potential case C'(K) = oo to emphasize that the proof works independently of
whether C(K) is finite or not. Nonetheless, in [12] it was shown that C(R) < oo, thus
Theorem 2.2, even in the weaker form with the additional assumption C(K) < oo,
immediately gives C(Z) < oo.

THEOREM 2.2. We have C(Z) = C(R) and %(Z) = c%(R) for all a,b € C.

Proof. We first show C(Z) < C(R) and c2(Z) > %(R) by using a natural extension
procedure, cf. [3, Lemma 4.1]. If C(R) = oo, then c?(R) = 0 and there is nothing
to show. Assume therefore that C(R) < co. Given G € BV?(Z), consider

g:= Z G(n)]l[n—l/Q,n+1/2)~

neZ

Then Var(g) = Var(G) and so g € BV2(R). Note that Mg(n) = MG(n), n € Z,
since, for m € N, one of the averages of |g| over the centered intervals I of lengths
|I| = 2m £+ 1 dominates those with |I| € [2m — 1,2m + 1]. Thus, Var(MG) =
Varz(Mg) < Var(Mg), and the claimed inequalities hold.

In the opposite direction, we claim that C(Z) > C(R) and ¢%(Z) < c%(R), and use
a convenient variant of a sampling procedure. Obviously, we can assume C(Z) < oo.
Given g € BV2(R) and ¢ > 0, in view of (2.1), there is N, = N, (g) € N such that
for Ey, =277 N [-2N 2N] we have

Varg, (Mg) > Var(Mg) —e or Varg, (Mg) > el (2.2)

depending on whether Var(Mg) is finite or not, respectively. For N € N, let My
be the variant of M allowing only the centered intervals I with |I| € (2N —1)/2V.
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We have limpy_,.o Myg = Mg pointwise, since for x € R and § > 0 there are
0 < p1 < p2 < oo such that ﬁ ffjpp lg| > Mg — 6 for all p € [p1, p2]. Thus, there
exists Ny € N such that Varg, (Myg) > VarEN (Mg)—e, for all N > Ny. Consider

~ n+1/2)/2 (n+1/2)/2
Gn(n) =2V f((n 1//2)//2N lg| and Gy (n) := 2an 1//2))//2N . Then
R 1/2
max{Var(Gy), Var(Gn)} < Var(z4)/2v (9) dt < Var(g), (2.3)
~1/2

so that Gy € BVlb‘( Z) and Gy € BVY(Z). Also, MGy(n) < MGy(n) =

Mpyg(n/2N) fornEN ~

Now, we show that MGy (n) > MGy(n) — /22N for all n € EY_ = {2VQ:
Q € En,} C N, provided that N > max{N,, Ny} is large enough. Given Q € Ey,,
we have

Ig| ! / 9l > MGn(2¥Q) — /2845,
Q

for some Iy centered at ). For each N large enough, let Ig be the longest
interval centered at @, contained in Ig, with [IJ] € (2N — 1)/2". Denoting
gN ‘= ZnGZ GN(TL)]l[(n,1/2)/2N7(n+1/2)/2N), we see that limNﬁoo ‘Ig|_1 fIg |gN| =
o=t [ Io |g| by the dominated convergence theorem on Ig, because g is continuous
almost everywhere and bounded. Since MGy (2VQ) > |Ig|f1 flg lgn| and Ey, is

finite, MG n(n) > MGy (n) — /22N for some N > max{N,, No}, as desired.
Thus,

Varg, (Mg) — e < Varg, (Myg) = Vargy (MGy) < Vargy (MGy) +¢
< Var(MGn) +e. (2.4)

Assuming Var(Mg) = oo gives
! < Varp, (Mg) < Var(MGy) + 2¢ < C(Z)Var(g) — %(Z) + 2,

which contradicts our assumption C(Z) < oco. Consequently, Var(Mg) < oo (this

includes the case C(R) < oo). Applying successively the first part of (2.2), (2.4),
the definitions of C(Z) and ¢%(Z) in the context of Gy € BVY(Z), and (2.3) for
G, and then letting e — 0, we verify the claim. 0

Later on, we shall refer to the two methods from the proof of Theorem 2.2 as to
the extension procedure and the sampling procedure, respectively.

Below we show that proving Conjecture 1 reduces to consideration of nonneg-
ative simple functions. We call G € BV(Z) simple, abusing slightly the common
terminology, if there exist a,b € C and N € N such that G(—n) = a and G(n) = b
when n > N. Similarly, ¢ € BV(R) is simple if G(—z) = a and G(z) = b when
x > N, and g is constant on the intervals [n — %,n + %), n € Z.

PROPOSITION 2.3. Conjecture 1 is true if (1.1) is satisfied by nonnegative simple
functions.
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Proof. 1t is convenient to prove a version of the above for the discrete case, K = Z,
and then apply Theorem 2.2 and the extension procedure to obtain the result for
K=R.

Given nonnegative G € BV(Z) and ¢ > 0, we have Var_y, n,nz(MG) >
Var(MG) — ¢ for some N, = N,(¢) € N. Note that G € BVZ(Z) for some
a,b € [0,00). We choose N = N(e,N,) € N such that |G(—n) — a|] < ¢/(5N,)
and |G(n) —b| < ¢/(5N,) if n > N. Let Gx(n) be equal to a, G(n), or b, for
n < N, n € [-N,N], or n > N, respectively. Then

Vari_n, n,jnz(MGn) > Var_y, n.jnz(MG) — € > Var(MG) — 2e,

because |M Gy (n) — MG(n)| < e/(5N,). Since Var(Gy) < Var(G), we are done. [J

3. Proof of Theorem 1.1

For a generic function g € BV(K) one has

Mg > 9+ lg(0))

|9(=00)| + |g(c0)|
> el 1

and Mg(+o0) = 1rnaux{|g(:|:oo)\7 5

We say that Mg has a local mazimum at x € K if there exist 3/,3” € K such that
y <x <y and

max{Mg(y'), Mg(y")} <sup{Mg(y) :y e KN[y',y"]} = Mg(x); (3.1)

a local minimum of Mg at x is defined analogously.

We are ready to prove Theorem 1.1. By the extension procedure it suffices to deal
with K = R. Indeed, given F' € BVZ (Z) as in Theorem 1.1 with the corresponding
system {n,}{, define f € BV?(R) with the corresponding system {t }{, t;, = ny, —
%, by f =3, cz F(n)15_1/2,nt1/2). By using the separation condition aag 1 = 0
for F', we verify that f has the form as in Theorem 1.1. Moreover, Var(f) = Var(F)
and Var(M f) > Var(MF). Then (1.3) for F follows from (1.2) for f.

Until the end of this section we fix f as in Theorem 1.1 and denote I :=
(tk—1,tk), k = 1,..., K, the interiors of the corresponding intervals. Without any
loss of generality we may consider only nonnegative f. Hence, from now on, we

assume a,b > 0and o >0,k =1,..., K. Clearly, M f may not have local maxima
at all. However, if M f has a local maximum at z, then the following two cases may
occur:

(1) Mf is constant on some interval J 3 z, i.e., M f has a local maximum at
each point of J;
(2) there is no J with this property, i.e., = is isolated.

In the first case, considering J as the longest interval with the declared property,
we shall choose exactly one element z, € J as a representative. In addition every
isolated point x from the second case, if any, will also be called a representative. It
follows from Lemma 3.1 that the number of representatives is finite and does not
exceed K2.
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LEMMA 3.1. Let M f have a local mazimum at x. Then there exists x, (either equal
to x or such that M f is constant on the closed interval connecting x and x,) with
the property that M f(x.) is attained for some interval I,, which is centered at x,
and such that 1(I;,) = l(Ixr) and r(I;,) = r(Ixr) hold for some 1 < k' < k" < K
satisfying M f(x.) < min{og, agr }.

Proof. Take any sequence {p,} C (0,00) such that M f(z) = lim, o 5,- f;jpp" f.

Clearly, if {p,} has a subsequence diverging to oo, then M f(y) > M f(x) for all
y € R. Thus, {p,} is bounded.

Assume {p,} has a subsequence converging to 0. Then M f(z) = CaL S {CaD]

and so f(z7) = f(at) = Mf(z) by Mf(z) > Mf(zt) > f(aF), wheie the
first inequality holds because M f has a local maximum at z. If z < A, then
Mf(z) = f(z7) =a = w < M f(y) for all y < x, contradicting (3.1).
Similarly, @ > B is impossible. Thus, « € I} and M f(z) = oy, for some k. We can
replace x by ¢(Iy), since M f(y) > M f(z) for all y € I, so that M f is constant
on I, because M f has a local maximum at z. Taking z, = ¢(I) and I, = I}, we
obtain the claimed property.

If {p,} is separated from 0, then it contains a subsequence converging to a
positive number. Consequently, M f(x) = ﬁ / I, f for some I, centered at z. Note

that f(I(I;)") > Mf(z), since otherwise we could show Mf(y) > M f(z) for
some 6 > 0 and all y € (z,x + 0) by taking I, with r(I,) = r(I;). In particular,
I(I;) > A because otherwise we would have M f(y) > M f(z) for all y < z, again
by taking I, with r(I,) = r(I,). Thus, {(I;) € [I(Ix),7(Ir)) for some k' such
that oy > M f(x). Similarly, f(r(I;)7) > M f(z) and r(I,) € ({(I),r(I)] for
some k" > k' such that apr > M f(x). Let x, = % If x = z,, then
M f(z) is attained for (I(I),r(Ix~)). If not, then we can show M f(y) > M f(x)
for all y in the closed interval connecting x and x, by taking xg = (1 — )z + Oz,
and Ix Q Ixe Q (l([k/),r(fk//)) with Z(Iacg) = (1 - G)Z(Ix) + Ql(Ik/) and T(ng) =
(1 —=0)r(Iy) + Or(I-) for all 0 € [0,1]. Since M f has a local maximum at z, it is
constant on this closed interval and so M f(z.) is attained for (I(Zx),7(Ix)), as

desired.
From the reasoning above, it follows that M f(z.) < min{ay,ax-} in each
case. O

From now on, we take each representative x to be of the form W) trlpn) go,
1 < K < k" < K such that Mf(m) = ﬁfh f, where Ix = (l([k/),’l”(fk»//)).
Furthermore, if M f has local maxima and there are N > 1 representatives, say
1 < T3 < ... < xn, then for N > 2 and each 2 < n < N, we choose y, €
(n—1,%y), where M f has a local minimum. Then

N
Var(Mf) = Var(,oo,ml](Mf) + (Z Mf(xn—l) —2M f(yn) + Mf(xn)>
n=2
+ Val“[zNyoo) (Mf) (32)
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Let T7(x) := ‘Jl (l y for all z € R, where Jr(z) is the smallest interval J 2 I with

¢(J) = x. The next result says that the variation of M f is controlled locally by the
variations of 77, , 1 < k < K.

LEMMA 3.2. Suppose M f has N > 1 representatives x1 < ... < xy. Then

K
Mf(rp_1) = Mf(yn) < Z akvar[:xn,flvyn](TIk) and
k=1

Mf(xn) — Mf(yn) < kVarymxn (T1,)

HMN

forall2<n <N andzi <y <xza<...<xny_1<yYn <znN. Similarly,

K

K
ZakVar[mN o) (Tn,) and M f(z1) < ZakVar(,oo’wl](TIk).
k=1 k=1

If ay < a, then the first summand in each of the four sums above may be omitted.

Proof. We shall estimate M f(z,) — M f(yn) and for M f(zn—1) — M f(y,) the
proof is analogous. Given z,,, we take I, as in the conclusions of Lemma 3.1 with
accompanying 1 < k' < k” < K. Then, for I, centered at y, and such that
r(Iy,) =r(l,), we have I, C I, and so

s -ttt < g [ 1= [ r< (g ),

ol e oIy
/= Z(Ix 1,1 )

k=k’

Note that if a; < a and k' = 1, then oy > M f(z,,) by Lemma 3.1, contradicting
(3.1). Indeed, we can show M f(y) > M f(z,) for all y < x, by taking I, with
r(Iy) = (I, ). This explains the final sentence of the statement. Next, we notice
that the numerical inequality p% -1 <Ll holds for pg, p1, p2 € (0,00)

p2tpo — p1 p1+p
when p; < pa. Thus, if either z,, < ¢(Ix) or ¢(Ix) < yn, then

ag Ly oLk » L
|z, | [y, | ~ ()l | Jr, (yn)]
= a|Tr, (wn) — T, (yn)| = cxVary, .. (T1,).

In the remaining case, y, < ¢(Ix) < x,, we add and subtract a""II,I‘kI with I’ such
that c(I') = ¢(Ix) and r(I') = r(1,, ) = r(I;, ). This gives

el el | el k] >
ak + o
(|Izn 740 I A0 R V P
| 1| |1 | ‘ ‘ || | 11| D
< Oék( — +
| (@) [Tr (e(Tk))] [T1 (cTe)l 11, (yn)]
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and the last quantity does not exceed ay (2717, (c(I)) — Tr, (zn) — T, (yn)) =
akVar[ymrn] (T[k).

Similarly, taking y; — —oo and I, centered at y and such that (1) = r(I,),
we obtain

. 1 1
Mf(x1) = yll—l)Hjoo (|I.L T |> /1 < yllimooZakVar w2 (T1)

x
K

= Z akVar(_ooxl](TIk),
k=1

with the first summand omitted if a3 < a. As before, for M f(zx) the proof is
analogous. O

Proof of Theorem 1.1. For simplicity, we assume a > b. If M f has no local maxima,
then

120 = (F(hoo) — f(-o0)) — L5 < Var() - 450,

Assume therefore that N > 1 and x1 < ... < xy are all representatives. Since
a > b, we obtain M f(x) > M f(oo) for all z € R and so M f decreases on [z, 00).
Therefore, Lemma 3.2 gives

Var(Mf) =

a+b
2

a+b

K
Var[mN’oo) (Mf) = Mf(a:N) — < Z akVar[xN,m)(TIk) —
k=1

with the first summand omitted if ay < a. If M f is nondecreasing on (—oo, 1],
then similarly

K

Var(_ oo ) (Mf) = Mf(z1) —a < Z apVar( oo ,1(T1,.) —
k=1

In this case, combining (3.2) with the two estimates above and Lemma 3.2 gives
(1.2), since

K

:Z2ak—a—b—a77b < Var(f) —

k=1

a+b
2

a—>b

K
Var(M f) < Z ayVar(Ty, ) — 5
k=1

If M f is not nondecreasing on (—oo,x1], then M f has a local minimum at y; €
[A, x1) such that

Var(_ oo o) (M f) = a—2M f(y1) + M f(z1)

. at+b &
< mll’l{Mf(l'l) _bva_ 2 +Zakvar[y1,z1](le)}’
k=1

The above inequality, which splits into two parts, follows from (a+b)/2 < M f (first
part) and the estimate for M f(x1) from Lemma 3.2 with the additional nonnegative
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term 2M f(y1) — (a+b)/2 added (second part). Again the first summand is not used
if a1 < a. Now, if a3 < a, then choosing the second term from the above minimum
and applying (3.2) and Lemma 3.2, we obtain

K-1

K
Var(M f) < ZQak—b— a— al)—i—(al—i—z 2ak+aK)+(aK—b)—aSVar(f)—a
k=2 k=2

by the separation condition agpag+; = 0. Finally, if oy > a, then we choose the
first term from the relevant minimum. Now x; > r(I;), since otherwise we would
have M f(y1) > a by taking I, with r(I,,) = r(I1). Also, M f(z1) < «; cannot
occur because M f(r(I1)) > ag > M f(—o0), while x; is the leftmost representative.
Similarly, M f(z1) = a1 would imply M f(y) = aq for all y € [c¢(I1),z1] due to x;
being the leftmost representative, leading to the contradiction M f(y;) > a. Thus,
I(Iz,) = l(I) for some k' with o > a1 > a and ¢(I}r) < z1 by Lemma 3.1. We
then obtain

K
b
Var(Mf) < agr — b+ ZakVar[m’oo)(Tjk) - % < (a—ay)
k=1
a+b a—b

+Var(f)—T < Var(f) — 5

since by x1 > ¢(I}r) > ¢(I1) the sum above does not exceed 2(a; + -+ + k) —
Q] — Q. O

4. Further comments

Here we collect several thoughts that complement our main results. We verify opti-
mality of the constants in Conjecture 1, discuss variants of (1.2) and (1.3) for
other operators, comment on the special case of indicator functions, and point out
limitations of our proof method.

First, we note that the constants 1 and % in (1.1) are optimal. Indeed, for a,b €
[0,00) with @ > b and N € N, take gn € BVZ(R) defined by gy := al(_o,—1) +
NT_1,1)+bl[ o). Then for N > a, a simple calculation shows Var(gy) = 2N —a—b
and Var(Mgy) = 2N —a — b, Letting N — oo, we obtain C(R) > 1 and
A(R) < 23,

Next, we show that certain variants of Conjecture 1 hold for other maximal
operators. Set

— 1 =t 1 =
Mgty =sup [ gl and FG(o) = sup —2p S 1G]
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and, similarly,

. 1 x+1r2
Mg(z) := su / and
9(x) r1, r2p>o r1+ 7o r 91

N 1 n+mso
MG(n):= sup ——— Z 1G(y)l-

mi,mz>0 my + mo + ]- y=n—m1

We call ]\_4> and M the one-sided and uncentered maximal operators, respectively.
When K = Z, one can instead consider a variant of M allowing only my,mo > 0
with m; +mo + 1 € 2N — 1 so that the corresponding intervals are balls in Z. This
does not change the conclusion below.

Since the sampling procedure works in the context of M or M with only minor

= ~
adjustments, for all a,b € C the associated constants H(R) & (R),C(R), CZ(R) are

’a

not worse than their discrete counterparts. Furthermore, W_l>1en K =7Z and a,b €
[0,00), it is natural to conjecture that 8 =C(Z) =1, &(Z) = max{0,b — a},
and 07’( Z) = |b — a|. Indeed, a sultable varlant of (1.3) follows because for each
nonnegative G € BVb( ) one has Ma > max{G,b} and MG > max{G,a, b}
while the equality MG( ) = G(n) or MG( ) = G(n) holds whenever MG or MG
has a local maximum at n. Considering Gy € BV®(Z) given by Gy := al_y +

Nlypy + bly and gy € BVZ(R) given by gn = >, s GN(M)1_1/2,n41/2), We
verify that the postulated constants are optimal.

REMARK 4.1. For all a,b € [0,00) we have

(1) CR) = C(2) =1 and &(R) = & (Z) = max{0,b - a},

(2) C(R) = C(Z) = 1 and & (R) = () = b al.

In the case of indicator functions our proof of (1.2) and (1.3) is simpler. Indeed,
let f € BV(R) be as in Theorem 1.1 with a, b, a, € {0,1}. Now, if M f has a local
maximum at z, then either f(x) = 0 or z can be adjusted to z. = ¢(I}) for some
k. Moreover, if M f has a local minimum at y, then f(y) = 0. Thus, we can replace
Ty, by M1y, , since both functions coincide on {c(I)} U (R \ Ij). In particular, if
M f is monotone on the closed interval J with endpoints z,y as before, then

1 1 K
Vary (M) = Mf(a) = M) < / - / 1= Y anVars (V1)

Using this and relevant estimates at +oo yields (1.2), and (1.3) follows by the
extension procedure.

Finally, notice that the method presented in the proof of Theorem 1.1 has some
natural limitations. Indeed, during the proof we always choose I, to be the small-
est interval centered at y which contains I,. This choice is sometimes very far
from optimal. To illustrate this obstacle, let us take g € BVS(R) given by g =

Ti_2,—1yup,2) + Cli_z ) with C' = 109, say. Then Mg has local maxima at —%, 0, %
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with the related values being C'+1, C—i—%, C+1, and local minima at —%, % with the
related values being C'+ &, C'+ 3. Thus, Var(Mg) = 2C+4— § < 2C+4 = Var(g),
as desired. However, for x = 0 we have I, = (—2,2) so that for y = % we should take
I, = (—2,3) in Theorem 1.1. Unfortunately, the difference between the correspond-
ing averages is much larger than Mg(0) — Mg(3), therefore Var(Mg) < Var(g)

cannot be verified this way.
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