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Abstract

In this article we study the parabolic system of equations which is closely related to
a multitype branching Brownian motion. Particular attention is paid to the monotone
traveling wave solutions of this system. Provided with some moment conditions, we
show the existence, uniqueness, and asymptotic behaviors of such waves with speed
greater than or equal to a critical value c and nonexistence of such waves with speed
smaller than c.
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1. Introduction and main results

We consider a branching particle system in which there are d (2 ≤ d < +∞) different types
of particles. Let S = {1, 2, . . . , d} be the set of types. A type i particle splits into offspring
particles of all possible types according to a distribution {pk(i) : k ∈ Z

d+} after a lifetime
which is exponentially distributed with parameter ai > 0. All particles engender independent
lines of descent. In addition, each particle, when it is alive, diffuses in space R independently
according to a Brownian motion starting from its point of creation. This system is called a
multitype branching Brownian motion (MBBM). For more precise configuration of MBBM,
see Section 2.

In this article, we assume that each particle reproduces at least one child, which guarantees
that the process survives forever with probability one. Suppose that mij := ∑

k∈Z
d+ pk(i)kj <+∞, and that the mean matrix M = (mij)i,j∈S is irreducible, i.e. there exists no permutation

matrix S such that S−1MS is block triangular. We study the following parabolic system of
equations which is strongly related to MBBM:

∂u

∂t
= 1

2

∂2u

∂x2 +�(ψ(u)− u). (1)
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218 Y.-X. REN AND T. YANG

Here, u(t, x) = (u1(t, x), u2(t, x), . . . , ud(t, x))
�,� is a diagonal matrix with diagonal entries

{ai : i = 1, . . . , d}, and ψ(u) = (ψ1(u), ψ2(u), . . . , ψd(u))
� with

ψi(z1, . . . , zd) =
∑
k∈Z

d+

pk(i)

d∏
j=1

z
kj
j

being the generating function of offspring split by a type i particle. Our primary concern in
this article is the solutions satisfying u(t, x) = w(x − ct) where w is a monotone function
connecting 0 at −∞ to 1 at +∞. Such solutions are called traveling waves. The analogous
object to (1) for a single-type branching Brownian motion is called the Fisher–Kolmogorov–
Petrovski–Piscounov (FKPP) equation. FKPP equation has been studied extensively using
both analytic and probabilistic methods (see, for example, [3], [4], [8], [11], and [14]). Among
these works, [8] and [11] give proofs for the existence, uniqueness, and asymptotic of trav-
eling wave solutions to the FKPP equation through purely probabilistic arguments. Recently,
Kyprianou et al. [12] extended the probabilistic arguments to the traveling wave equations
associated to super-Brownian motions with a general branching mechanism.

In this article we outline a probabilistic study on traveling waves of system (1). Our work
is strongly guided by the probabilistic arguments in [11] with respect to single-type branching
Brownian motions. An important tool of our probabilistic arguments is a representation of
the family tree in terms of a suitable size-biased tree with spine. This representation is the
continuous-time analogue of the size-biased tree representation introduced by [10]. This
continuous-time version is also used in [6] to investigate the evolution of the ancestral types of
typical particles for multitype Markov branching processes.

We call u a traveling wave solution with speed c if u(t, x) satisfies (1) and u can be written
as u(t, x) = w(x − ct) = (w1(x − ct), . . . , wd(x − ct))� where wi(·) is a twice continuously
differentiable, strictly monotone function increasing from 0 at −∞ to 1 at +∞. For simplicity,
w is also called a traveling wave with speed c. Obviously,w provides a traveling wave solution
to (1) if and only if

1

2

∂2w

∂x2 + c
∂w

∂x
+�(ψ(w)− w) = 0. (2)

Sometimes, we write ui(t, x) and wi(x) as u(t, x, i) and w(x, i), respectively.
Let N(t) := (N1(t), N2(t), . . . , Nd(t))

� be the vector denoting the population sizes of
different types at time t . Suppose that mij(t) := Ei(Nj (t)) < +∞ for every i, j ∈ S. It is
known that the mean matrix M(t) = (mij(t))i,j∈S can be written as

M(t) = exp(At) =
+∞∑
n=0

An

n! t
n, where A = (aij)i,j∈S, aij = ai(mij − δij).

It follows from the irreducibility of M that M(t) has positive entries for some t > 0 (this
property is also called ‘positive regularity’by [2]). According to the Perron–Frobenius theorem
(see [16, Theorem 2.5]),A admits a real eigenvalue λ∗ > 0 larger than the real part of any other
eigenvalue. The so-called Perron’s root λ∗ is simple, with a one-dimensional eigenspace,
and there are corresponding left and right eigenvectors with positive coordinates. In the
following we denote by π (respectively h) the associated left (respectively right) eigenvector
with normalization 〈π, h〉 = 〈π, 1〉 = 1 (here, 〈·, ·〉 denotes the Euclidean inner product).

For λ 	= 0, define

cλ := λ

2
+ λ∗

λ
,
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Multitype branching Brownian motion and traveling waves 219

which will serve as the speeds of traveling waves. In the following, we deal only with the case
cλ ≥ 0. Traveling waves with negative speeds can be analyzed by simple considerations of
symmetry. Let λ := √

2λ∗. It is easy to see that cλ attains a local minimum c = cλ = √
2λ∗

at λ. We call (2) subcritical, critical, or supercritical according to whether c is less than, equal
to, or greater than c.

Let the configuration of this MBBM at time t be given by the R × S-valued point process
{(Xv(t), Yv) : v ∈ Z(t)}, where Z(t) is the set of particles alive at time t , Xv(t) is the spatial
location of v, and Yv is its type. For any x ∈ R and y ∈ S, let Pxy be the law of the process
starting from a single particle of type y at spatial position x. Let Exy be the expectation
corresponding to Pxy . To state our main results, we introduce two types of additive martingales
which will play an important role in this paper. For any λ 	= 0, define

Wλ(t) :=
∑
v∈Z(t)

hYve
−λ(Xv(t)+cλt).

From the many-to-one formula (see Proposition 1, below), it is easy to see that {Wλ(t), t ≥ 0}
is a positive martingale under Pxy and, consequently, the almost sure limit ofWλ(t) exists. Set
W(λ) := limt→+∞Wλ(t). Now we define another type of additive martingale:

Mλ(t) :=
∑
v∈Z(t)

hYv (Xv(t)+ λt)e−λ(Xv(t)+cλt). (3)

Here, {Mλ(t), t ≥ 0} is a martingale which may take both positive and negative values. We
will prove that M(λ) := limt→+∞Mλ(t) exists for every λ ≥ λ (see Lemma 10, below).

For every i ∈ S, suppose that (ξi1, . . . , ξid)
� is a random vector with the law {pk(i) : k ∈

Z
d+}. Now we are ready to state the main results of this paper.

Theorem 1. Suppose that E(ξij log+ ξij) < +∞ for all i, j ∈ S.

(a) When c > c, there is a unique traveling wave at speed c given by

w(x, y) = Exy[exp{−W(λ)}] = E0y[exp{−e−λxW(λ)}], for all (x, y) ∈ R × S,

where 0 < λ < λ is the root of the equation cλ = c. Further, for every y ∈ S, 1−w(x, y)
∼ hye−λx as x → +∞.

(b) When c < c, there is no nontrivial traveling wave solution to (1) with speed c.

Theorem 2. When c = c andEξij(log+ ξij)
2 < +∞ for all i, j ∈ S, there is a unique traveling

wave at speed c given by

w(x, y) = Exy[exp{−M(λ)}] = E0y[exp{−e−λxM(λ)}], for all (x, y) ∈ R × S.

Further, for every y ∈ S, 1 − w(x, y) ∼ xhye−λx as x → +∞.

Comparing the above theorems with the corresponding results for the FKPP equation (see,
for example, [8] and [11]), we see that λ∗ plays the role of β(m − 1) in the case of a single-
type branching Brownian motion, where β is the branching rate and m is the mean number of
particles split by one particle.

The remainder of this article is structured as follows. In Section 2, we recall the basic
setting of family trees and the size-biased trees with spine. We also introduce some known
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220 Y.-X. REN AND T. YANG

results for MBBM, including the so-called many-to-one formula, and McKean representation
of traveling wave solutions, which are necessary in the arguments afterwards. In the remaining
two sections we concentrate on proofs of Theorem 1 and Theorem 2. To prove that, under some
moment conditions, the traveling wave solution can be given in terms of the martingale limit
W(λ) or M(λ), we first answer when W(λ) (in supercritical case) and M(λ) (in critical case)
are nondegenerate (see Theorems 3 and 5, respectively).

2. MBBM and basic facts

It is known that the family structure of the individuals in a branching process is well expressed
by Galton–Watson trees (see, for example, [7]). Each Galton–Watson tree has a single initial
ancestor ∅ and contains all ancestors as well as children of any of its individuals. In order to
give other features of our MBBM, we need to introduce the concept of marked Galton–Watson
trees. Let T be the collection of Galton–Watson trees. For each i ∈ N where N = {1, 2, . . .},
we write ui for the ith child of u. We use the notation v ≺ u to mean that v is an ancestor of u
and u ∈ Z(t) when u is alive at time t . For every τ ∈ T, we assume that each particle u ∈ τ
has a mark (Xu, Yu, σu,Au), where

1. σu is the life time of u, which determines the fission time or the death time of particle u
as ζu = ∑

v≺u σv + σu (ζ∅ = σ∅) and the birth time of u as bu = ∑
v≺u σv (b∅ = 0),

2. Yu gives the type of u, while Xu : [bu, ζu) → R gives the spatial location of u at time
t ∈ [bu, ζu); we also interpret the notation Xu(t) as the spatial location of the unique
ancestor of u that was alive at time t ≤ ζu,

3. Au = (Au(1), Au(2), . . . , Au(d))� gives the vector of offspring size split by u when it
dies.

We use (τ,X, Y, σ,A) or simply (τ,M) to denote a marked Galton–Watson tree. Let T :=
{(τ,M) : τ ∈ T}. Define

F t := σ {[u, Yu, σu,Au, (Xu(s), s ∈ [bu, ζu)) : u ∈ τ ∈ T with ζu ≤ t] and

[u, Yu, (Xu(s), s ∈ [bu, t)) : u ∈ τ ∈ T with t ∈ [bu, ζu)]}.
Set F = ⋃

t≥0 F t . There is a unique probability measure P on (T ,F ) such that the system is
initiated by a single ancestor and evolves as a MBBM defined in Section 1.

Now we extend the probability space (T ,F , P ) to (T̃ , F̃ , P̃ ) defined below. For any τ ∈ T,
we can select an infinite line of descent ε = {ε0 = ∅, ε1, ε2, . . .}, where εn+1 ∈ τ is a child
of εn ∈ τ for n ∈ {0, 1, 2, . . .}. Such a genealogical line is called a spine. We write u ∈ ε to
mean that u = εk for some k ∈ Z+. We use T̃ = {(τ,M, ε) : ε ⊂ τ ∈ T} to denote the set of
all marked trees with distinguished spines.

We use Ỹ = (Ỹt , t ≥ 0) to denote the type process of the spine, X̃ = (X̃t , t ≥ 0) to denote
the spatial movement of the spine, and n = (nt , t ≥ 0) to denote the counting process of fission
times along the spine. Let nodet (ε) := u if u ∈ ε is the node in the spine that is alive at time t .
Note that, for u ∈ ε, Yu = Ỹbu = Ỹζu−.

If u ∈ ε, then at the fission time ζu, it gives birth to 〈Au, 1〉 offspring, one of which
continuing the spine (we write this node simply as u + 1) while the others going on to create
independent subtrees. Let Ou be the set of u’s children except the one in the spine. For any
j ∈ {1, 2, . . . , 〈Au, 1〉} such that uj ∈ Ou, we use (τ,M)uj to denote the marked tree rooted
at uj.
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Now we introduce some filtrations on T̃ that we shall use later. First note that {F t , t ≥ 0}
is also a filtration on T̃ . Define

F̃ t := σ {F t , (nodes(ε), s ≤ t)},
Gt := σ {Ỹs , X̃s : 0 ≤ s ≤ t}, GỸt := σ {Ỹs : 0 ≤ s ≤ t}, GX̃t := σ {X̃s : 0 ≤ s ≤ t},

Ĝt := σ {Gt , (nodes(ε), s ≤ t), (ζu, u ≺ nodet (ε))},
G̃t := σ {Ĝt , (Au, u ≺ nodet (ε))}.

Set F̃ = ⋃
t≥0 F̃ t , G = ⋃

t≥0 Gt , Ĝ = ⋃
t≥0 Ĝt , and G̃ = ⋃

t≥0 G̃t .
Now we shall extend the probability measure P on (T ,F ) to a probability measure P̃ on

(T̃ , F̃ ) such that the spine is a single genealogical line of descent chosen from the underlying
tree. Enlightened by [13], when a spine node u of type i dies, we pick one of its children at
random to be the successor on the spine. Specifically, children are picked with probabilities
proportional to hj when their type is j . This means, when u ∈ τ , we have

Prob(u ∈ ε | F t ) =
∏
v≺u

hYv+1

〈Av, h〉 .

To define P̃ we recall the following representation from [13].

Lemma 1. Every F̃t -measurable function f can be written as

f =
∑
u∈Z(t)

fu1{u∈ε}, (4)

where fu is Ft -measurable.

Definition 1. We define the probability measure P̃ on (T̃ , F̃ ) by∫
T̃
f dP̃ =

∫
T̃

∑
u∈Z(t)

fu
∏
v≺u

hYv+1

〈Av, h〉 dP,

for each f ∈ F̃t with representation (4).

Intuitively, following the above method of choosing spine nodes, the type process of the
spine Ỹ is a continuous-time Markov process valued in S, which stays at any state i ∈ S for
an exponential time with parameter ai , and then transits to state j with probability P(i, j) :=∑
k∈Z

d+ pk(i) kjhj /〈k, h〉. Given Ĝt , the trajectory of Ỹ , the node of the spine and the birth
time of each spine node before time t are determined. Then we have

P̃ (Av = kv, for all v ≺ εnt | Ĝt ) =
∏
v≺εnt

pkv (Yv)

P (Yv, Yv+1)

kv(Yv+1)hYv+1

〈kv, h〉 ,

where kv = (kv(1), kv(2), . . . , kv(d))� ∈ Z
d+. Now we construct a probability measure P̃ on

F̃t by

dP̃ (τ,M, ε)|F̃t = dP(Ỹ ) dB(X̃)
∏
v≺εnt

pAv (Yv)

P (Yv, Yv+1)

Av(Yv+1)hYv+1

〈Av, h〉

×
∏
v≺εnt

[
1

Av(Yv+1)

∏
j : vj∈Ov

dP t−ζv
X̃ζv Yvj

((τ,M)vj )

]
. (5)
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Here, B(X̃) is the law of a standard Brownian motion and P(Ỹ ) is the law of the type process Ỹ .
The decomposition of P̃ suggests the following intuitive description of the system under the
measure P̃ .

1. The spine’s type process Ỹ moves as a continuous-time Markov process taking values
in S according to the measure P. The generator G = (gij)i,j∈S of Ỹ is given by gij =
ai (P (i, j)− δij). The spine’s spatial movement X̃ is a standard Brownian motion.

2. The fission time ζv of node v in the spine is exactly the jumping time of the spine’s
type process Ỹ , i.e. the life time σv of v is exponentially distributed with parameter aỸbv .
(Here, Ỹ may jump from i to itself at jumping time according to generator G.)

3. At the fission time of node v in the spine, the single spine particle is replaced by a random
vector Av of offspring with Av being distributed according to the law (pk(Ỹζv−))k∈Z

d+ ,
and a type j child is picked to be the next spine node with probability hj/〈Av, h〉.

4. The remaining 〈Av, 1〉−1 nonspine children ofv give rise to independent subtrees (τ,M)vj
for vj ∈ Ov , each evolving as an independent subtree determined by the probability
PX̃ζv Yvj

shifted to the time of creation.

Note that {N(t), t ≥ 0} is a multitype branching process, whereN(t) denotes the population
size vector at time t . We have the following lemma.

Lemma 2. (Athreya [1, Proposition 2].) The martingale

{
w(t) := e−λ∗t 〈N(t), h〉

〈N(0), h〉 : t ≥ 0

}

is a nonnegative martingale with respect to {Ft : t ≥ 0}.
In order to make the principles of the measure change method clear, we introduce a technical

lemma which follows from an elementary argument.

Lemma 3. Suppose that μ̃1 and μ̃2 are two probability measures defined on the same space
(�, F̃ ) with Radon–Nikodym derivative g such that dμ̃2 = g dμ̃1. If F is a sub-σ -field of F̃ ,
then the two measures μ1 := μ̃1|F and μ2 := μ̃2|F on (�,F ) are related by the conditional
expectation operation dμ2 = μ̃1(g | F ) dμ1.

Noting that w(t) is a nonnegative mean-one martingale, we can define a probability mea-
sureQ on (T ,F ) by

dQ|Ft = w(t) dP |Ft . (6)

Lemma 3 implies that, if we want to extend Q defined by (6) to a probability measure Q̃
on (T̃ , F̃ ), we need to construct a nonnegative martingale w̃(t) with respect to {F̃t : t ≥ 0}
satisfying

dQ̃|F̃t = w̃(t) dP̃ |F̃t (7)

and
P̃ (w̃(t) | Ft ) = w(t). (8)

According to Lemma 1, w̃(t) can be written as w̃(t) = ∑
v∈Z(t) wv1{v∈ε}, where wv is

Ft -measurable. Immediately we have P̃ (w̃(t) | Ft ) = ∑
v∈Z(t) wv

∏
u≺v hYu+1/〈Au, h〉 by
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Definition 1. Since w(t) = ∑
v∈Z(t) e−λ∗t hYv /〈N(0), h〉, (8) implies that

wv = hYv

eλ∗t 〈N(0), h〉
(∏
u≺v

hYu+1

〈Au, h〉
)−1

= e−λ∗t ∏
u≺v

〈Au, h〉
hYu

,

and, consequently,

w̃(t) = e−λ∗t ∏
v≺εnt

〈Av, h〉
hỸζv

.

Next we will prove that {w̃(t) : t ≥ 0} is indeed a martingale with respect to {F̃t : t ≥ 0}. First
of all, for each type i ∈ S, we introduce the size-biased distribution

p̂k(i) := pk(i)〈k, h〉
(1 + λ∗/ai)hi

. (9)

It is a probability distribution since
∑
k∈Z

d+ pk(i)〈k, h〉 = ∑d
j=1mijhj = (1 + λ∗/ai)hi for

every i ∈ S (the last equality follows from the fact that h is the right eigenvector of A with
respect to λ∗). For any i, j ∈ S, define

P̂ (i, j) :=
∑
k∈Z

d+

p̂k(i)
kjhj

〈k, h〉 = mijhj

(1 + λ∗/ai)hi
.

It is easy to see that {P̂ (i, j) : i, j ∈ S} is a family of transition probabilities.

Lemma 4. Suppose that (Ỹ ,P) is defined as before. Define

mt := e−λ∗t ∏
v≺εnt

(
1 + λ∗

aYv

)
P̂ (Yv, Yv+1)

P (Yv, Yv+1)
, t ≥ 0.

Then {mt, t ≥ 0} is a nonnegative mean-one martingale with respect to {Ĝt , t ≥ 0}. We define
another probability measure P̂ by

dP̂|Ĝt = mt dP|Ĝt . (10)

Then, under P̂, Ỹ moves as a continuous-time Markov process with generator ĝij := (ai +
λ∗)(P̂ (i, j)− δij) for i, j ∈ S.

Proof. Suppose that f : S → R is a bounded measurable function. For every i ∈ S, define
u(t, i) := E

i[f (Ỹt )mt ] where P
i (·) := P(· | Ỹ0 = i) with associated expectation operator E

i .
We use τ to denote the first jumping time of Ỹ . Then, by the strong Markov property, u(t, i)
can be written as

u(t, i) = E
i[f (Ỹt )mt1{t<τ }] + E

i[f (Ỹt )mt1{t≥τ }]
= f (i)e−(ai+λ∗)t +

∫ t

0
e−(ai+λ∗)s(ai + λ∗)

∑
j∈S

P̂ (i, j)u(t − s, j) ds

= f (i)e−(ai+λ∗)t +
∫ t

0
e−(ai+λ∗)(t−s)(ai + λ∗)

∑
j∈S

P̂ (i, j)u(s, j) ds.
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Therefore, u(t, i) satisfies

∂u

∂t
= (ai + λ∗)

∑
j∈S
(P̂ (i, j)− δij)u(t, j), (11)

with u(0, i) = f (i). In particular, if we pick f ≡ 1, from the uniqueness of the bounded
solution to (11), we obtain that E

imt ≡ 1, which together with the Markov property of Ỹ under
P implies that mt is a martingale. Thus, the measure P̂ is well defined. From (11) we see that,
under P̂, Ỹ is a Markov process with generator ĝij. In other words, under probability measure P̂,
Ỹ can be interpreted as a Markov process which stays at each state i ∈ S for an exponential time
with parameter ai + λ∗, and then transits to state j with probability P̂ (i, j). This completes
the proof.

Just as we did before, we can construct a probability measure Q̃ on (T̃ , F̃ ) by

dQ̃(τ,M, ε)|F̃t = dP̂(Ỹ ) dB(X̃)
∏
v≺εnt

p̂Av (Yv)

P̂ (Yv, Yv+1)

Av(Yv+1)hYv+1

〈Av, h〉

×
∏
v≺εnt

[
1

Av(Yv+1)

∏
j : vj∈Ov

dP t−ζv
X̃ζv Yvj

((τ,M)vj )

]
, (12)

under which the system can be described as follows.

1. The spine’s type process Ỹ moves as a continuous-time Markov process valued on S
according to the measure P̂. The generator of Ỹ is given by ĝij = (ai+λ∗) (P̂ (i, j)−δij).
The spine’s spatial movement X̃ is a standard Brownian motion.

2. The fission time ζv of node v in the spine is exactly the jumping time of the spine’s type
process Ỹ , i.e. σv has an exponential distribution with parameter aỸbv + λ∗.

3. At the fission time of node v in the spine, the single spine particle is replaced by a random
vector Av of offspring with Av being distributed according to the law (p̂k(Ỹζv−))k∈Z

d+ ,
and a type j particle from the offspring of v will be picked to be the next spine node with
probability hj/〈Av, h〉.

4. The remaining 〈Av, 1〉−1 nonspine children ofv give rise to independent subtrees (τ,M)vj
for vj ∈ Ov , each evolving as an independent subtree determined by the probability
PX̃ζv Yvj

shifted to the time of creation.

Applying (9), (10), and (5) to (12), we can easily get (7). Therefore, {w̃(t) : t ≥ 0} is a
nonnegative martingale with respect to {F̃t : t ≥ 0}. The following result is a byproduct of
the above spine construction. The proof is much the same as [6, Theorem 4.1] in the case of
multitype Markov branching processes. We omit the details here.

Proposition 1. (Many-to-one formula for MBBM.) For any measurable function f : R×S →
R, we have

Exy

( ∑
u∈Z(t)

f (Xu(t), Yu)

)
= Êxy

(
f (X̃t , Ỹt )

hỸ0

hỸt

eλ
∗t

)
.
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Here, Êxy denotes the law of one particle motion where the type process Ỹ moves as a Markov
process starting from y with generator

ĝij := (ai + λ∗)(P̂ (i, j)− δij),

for i, j ∈ S, while the spatial location process X̃ moves as a Brownian motion starting from x

and is independent of Ỹ .

Lemma 5. (McKean representation.) If u(t, x, y) ∈ [0, 1] is twice continuously differentiable
in x and satisfies the parabolic system of equations (1) with initial condition u(0, x, y) =
f (x, y), then u has a McKean representation

u(t, x, y) = Exy

( ∏
u∈Z(t)

f (Xu(t), Yu)

)
.

The proof is similar to that of [3, Theorem 1.36]. We omit the details here.

Lemma 6. Suppose that c ∈ R and w(x, y) is a bounded function satisfying 0 ≤ w(x, y) ≤ 1
for any (x, y) ∈ R × S. Let u(t, x, y) := w(x − ct, y). Then u satisfies (1) if and only if

w(x, y) = Exy

[ ∏
u∈Z(t)

w(Xu(t)+ ct, Yu)

]
.

Proof. By Lemma 5, we only need to show the sufficiency. Let Tt denote the semi-group
of one-dimensional Brownian motion and τ the split time of the root. We have

u(t, x, y) = E(x−ct) y

( ∏
u∈Z(t)

w(Xu(t)+ ct, Yu)

)

= Exy

( ∏
u∈Z(t)

w(Xu(t), Yu)

)

= Exy

( ∏
u∈Z(t)

w(Xu(t), Yu) 1{τ≤t}
)

+ Ex y

( ∏
u∈Z(t)

w(Xu(t), Yu) 1{τ>t}
)

=
∫ t

0
aye−aysTsψy(ut−s)(x) ds + e−ay tTtwy(x),

where, for each s ≥ 0, us is a function from R to R
d defined by us(x) := u(s, x) =

(u(s, x, 1), . . . , u(s, x, d))�. Therefore, u(t, x, y) solves (1).

3. Proof of Theorem 1

Recall that, for any λ 	= 0,

Wλ(t) :=
∑
u∈Z(t)

hYue−λ(Xu(t)+cλt).

It follows from Proposition 1 that {Wλ(t), t ≥ 0} is a positive martingale and thus has an almost
sure limit denoted by W(λ). The following theorem answers when W(λ) is nondegenerate,
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which will be used to give explicit expressions of traveling wave solutions in the supercritical
case.

Theorem 3. (a) If |λ| ≥ λ, then W(λ) = 0Pxy-almost surely.

(b) Suppose that 0 < |λ| < λ. If E(ξij log+ ξij) < +∞ for all i, j ∈ S, then Wλ(t) converges
to W(λ) in L1(Pxy), and Pxy(W(λ) = 0) = 0. Otherwise, if E(ξij log+ ξij) = +∞ for some
i, j ∈ S, then W(λ) = 0 Pxy-almost surely.

Remark 1. It suffices to prove the claims for P0y . In this article, we only deal with the case
λ > 0. The case λ < 0 can be analyzed by simple considerations of symmetry.

For anyλ > 0, through similar techniques as used in Section 2, we can construct a probability
measure Q̃λ

0y on (T̃ , F̃ ) such that

dQλ
0y |Ft = Wλ(t)

Wλ(0)
dP0y |Ft ,

where Qλ
0y := Q̃λ

0y |F . In fact, Q̃λ
0y has the following decomposition:

dQ̃λ
0y(τ,M, ε)|F̃t = dP̂y(Ỹ ) dB

−λ(X̃)
∏
v≺εnt

p̂Av (Yv)

P̂ (Yv, Yv+1)

Av(Yv+1)hYv+1

〈Av, h〉

×
∏
v≺εnt

[
1

Av(Yv+1)

∏
j : vj∈Ov

dP t−ζv
X̃ζv Yvj

((τ,M)vj )

]
.

Here, (X̃,B−λ) is a standard Brownian motion with drift −λ, and (Ỹ , P̂y) is a continuous-time
Markov chain starting from y with generator ĝij = (ai + λ∗)(P̂ (i, j)− δij). For each vj ∈ Ov ,
(τ,M)vj evolves as an independent subtree determined by the probability PX̃ζv Yvj shifted to the
time of creation.

Lemma 7. We have the following spine decomposition for the martingale Wλ(t):

Q̃λ
0y(Wλ(t) | G̃) = hỸt e

−λ(X̃(t)+cλt) +
∑
j∈S

∑
v≺εnt

(Av(j)− δYv+1j )hj e−λ(X̃(ζv)+cλζv). (13)

Proof. Here, Wλ(t) can be written as

Wλ(t) = hỸt e
−λ(X̃(t)+cλt) +

∑
u∈Z(t), u	∈ε

hYue−λ(Xu(t)+cλt)

= hỸt e
−λ(X̃(t)+cλt) +

∑
v≺εnt

∑
j : vj∈Ov

∑
u∈Z(t), u∈(τ,M)vj

hYue−λ(Xu(t)+cλt).

The first equality is clearly true since one of the particles u ∈ Z(t) must stay in the spine. The
second follows from partitioning the particles into distinct subtrees that were born by the spine
nodes before time t . Recall that G̃ contains all information about the spine nodes; by taking
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the Q̃λ
0y conditional expectation of Wλ(t), we have

Q̃λ
0y(Wλ(t) | G̃)

= hỸt e
−λ(X̃(t)+cλt) + Q̃λ

0y

( ∑
v≺εnt

∑
j : vj∈Ov

∑
u∈Z(t), u∈(τ,M)vj

hYue−λ(Xu(t)+cλt)
∣∣∣∣ G̃

)

= hỸt e
−λ(X̃(t)+cλt) +

∑
v≺εnt

∑
j : vj∈Ov

hYvj e−λ(X̃(ζv)+cλζv)

× Q̃λ
0y

( ∑
u∈Z(t), u∈(τ,M)vj

hYu

hYvj
e−λ(Xu(t)−X̃(ζv)+cλ(t−ζv))

∣∣∣∣ G̃

)
.

From the decomposition of dQ̃λ
0y , we observe that, under Q̃λ

0y , the subtrees coming off the
spine evolves as if under the measure P0y . Therefore,

Q̃λ
0y

( ∑
u∈Z(t), u∈(τ,M)vj

hYu

hYvj
e−λ(Xu(t)−X̃(ζv)+cλ(t−ζv))

∣∣∣∣ G̃

)
= 1.

This equality is true because the additive expression being evaluated on the subtrees is just a
shifted form of the martingale Wλ(t). We complete the proof.

Lemma 8. (Durret [5, p. 241].) Suppose that μ and ν are two probability measures on a
measurable space (�,F ) with filtration (Ft )t≥0, such that dμ|Ft = M(t) dν|Ft for all t ≥ 0.
Let M∞ := lim supt→+∞M(t). Then ν(M∞ = 0) = 1 if and only if μ(M∞ = +∞) = 1,
and

∫
�
M∞ dν = 1 if and only if μ(M∞ < +∞) = 1.

Proof of Theorem 3. (a) If λ ≥ λ > 0, then λ ≥ cλ. Obviously we have

Wλ(t) ≥ hỸt e
−λX̃(t)−(λ2/2+λ∗)t ≥ C0e−λt (X̃(t)/t+cλ),

for some constant C0 > 0. Note that limt→+∞ X̃(t)/t = −λ and lim inf t→+∞ X̃(t) +
λt = −∞, since X̃ moves as a Brownian motion with drift −λ under Q̃λ

0y . Thus, we have
Q̃λ

0y(lim supt→+∞Wλ(t) = +∞) = 1. In view of Lemma 8, we have P0y(W(λ) = 0) = 1.

(b) If 0 < λ < λ, then λ < cλ. Suppose that E(ξij log+ ξij) = +∞ for some i, j ∈
S. First note that at each fission time of the spine, we have the lower bound Wλ(ζεn) ≥
〈Aεn, h〉e−λ(X̃(ζεn )+cλζεn ); thus, by Lemma 8, it suffices to show

Q̃λ
0y

(
lim sup
n→+∞

〈Aεn, h〉 e−λ(X̃(ζεn )+cλζεn ) = +∞
)

= 1. (14)

Obviously we have

〈Aεn, h〉e−λ(X̃(ζεn )+cλζεn ) = exp

{
n

[
log〈Aεn, h〉

n
− λ

ζεn

n

(
X̃(ζεn)

ζεn
+ cλ

)]}
.

Note that Q̃λ
0y(limt→+∞ X̃(t)/t+cλ = cλ−λ > 0) = 1, since X̃moves as a Brownian motion

with drift −λ under Q̃λ
0y . In addition, by the strong law of large numbers we have

Q̃λ
0y

(
lim sup
n→+∞

ζεn

n
≤

∑
k∈S
(ak + λ∗) < +∞

)
= 1.
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Therefore, to prove (14), we only need to prove

Q̃λ
0y

(
lim sup
n→+∞

log〈Aεn, h〉
n

= +∞
)

= 1. (15)

Let Ni(n) denote the total number of jumps of Ỹ before it hits state i for the nth time.
Since Ỹ moves as an irreducible Markov chain under Q̃λ

0y , n/Ni(n) converges to a posi-
tive constant with probability one. Note that {AεNi (n) : n ≥ 0} is a sequence of independent
random vectors with the same distribution law {p̂k(i) : k ∈ Z

d+}. The moment condition
on ξij implies that Q̃λ

0y log〈AεNi (n) , h〉 = +∞. It follows from the Borel–Cantelli lemma that
Q̃λ

0y(lim supn→+∞ log〈AεNi (n) , h〉/n = +∞) = 1 and, consequently,

Q̃λ
0y

(
lim sup
n→+∞

log〈AεNi (n) , h〉
Ni(n)

= +∞
)

= 1,

which implies (15).
Now we suppose that E(ξij log+ ξij) < +∞ for all i, j ∈ S. Then, for every i ∈ S we have

Q̃λ
0y(lim supn→+∞ log〈AεNi (n) , h〉/Ni(n) = 0) = 1 and, consequently,

Q̃λ
0y

(+∞∑
n=1

〈Aεn, h〉e−λ(X̃(ζεn )+cλζεn ) < +∞
)

= Q̃λ
0y

(∑
i∈S

+∞∑
n=1

〈AεNi (n) , h〉e
−λ(X̃(ζεNi (n) )+cλζεNi (n) ) < +∞

)

= Q̃λ
0y

(∑
i∈S

+∞∑
n=1

exp

{
Ni(n)

( log〈AεNi (n) , h〉
Ni(n)

− λ
ζεNi (n)

Ni(n)

(
X̃(ζεNi (n)

)

ζεNi (n)
+ cλ

))}
< +∞

)

= 1,

where in the last equality we used the fact that X̃(ζεn)/ζεn → −λ > −cλ as n → +∞.
Therefore, the second term in (13) is bounded from above for all t > 0. In addition, under
Q̃λ

0y , −λ(X̃(t)+ cλt) = −λt (X̃(t)/t + cλ) → −∞ as t → +∞. Thus, the first term in (13)
is also bounded from above. So we have Q̃λ

0y(lim supt→+∞ Q̃λ
0y(Wλ(t) | G̃) < +∞) = 1, and

then Q̃λ
0y(lim supt→+∞Wλ(t) < +∞) = 1 by Fatou’s lemma. Therefore, by Lemma 8,Wλ(t)

converges to W(λ) in L1(P0y) which implies that W(λ) is nondegenerate.
Let qy := P0y(W(λ) = 0) < 1. For any t > s ≥ 0, we have

Wλ(t) =
∑
v∈Z(s)

e−λ(Xv(s)+cλs)Wλ(t − s, v),

where {Wλ(t − s, v), v ∈ Z(s)} are independent copies of Wλ(t − s) initiated by v ∈ Z(s).
We use �A to denote the cardinal of a finite set A. It follows that

qy = E0y

( ∏
v∈Z(s)

qYv

)
≤ E0y

((
max
j∈S qj

)�Z(s))
.

The Kesten–Stigum theorem for multitype Markov branching processes (see, for example, [1])
confirms that the total population size �Z(s) goes to infinity almost surely on the nonextinction
set; thus, we have qy = 0 by the dominated convergence theorem. Hence, we complete the
proof.
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Define L(t) := inf{Xu(t) : u ∈ Z(t)}, i.e. L(t) denotes the position of the leftmost particle
at time t . Then we have the following result.

Theorem 4. For any (x, y) ∈ R × S, Pxy(limt→+∞ L(t) + ct = +∞) = 1. Moreover, if
E(ξij log+ ξij) < +∞ for all i, j ∈ S, then Pxy(limt→+∞ L(t)/t = −c) = 1.

Proof. It is sufficient to prove the conclusion under measure P0y . Note that

Wλ(t) ≥ C1e−λ(L(t)+cλt) = C1e−λt (L(t)/t+cλ), (16)

for some constant C1 > 0. Since limt→+∞Wλ(t) = 0, it follows from (16) that

P0y

(
lim

t→+∞L(t)+ ct = +∞
)

= 1 and P0y

(
lim inf
t→+∞

L(t)

t
≥ −c

)
= 1.

Recall that the spine moves as a Brownian motion with drift −λ under the measure Q̃λ
0y , so we

have Q̃λ
0y(limt→+∞ X̃(t)/t = −λ) = 1.The proof of Theorem 3 shows that ifE(ξij log+ ξij) <

+∞ for all i, j ∈ S, then dQλ
0y = W(λ)/hy dP0y and P0y(W(λ) > 0) = 1 for any λ ∈ (0, λ).

This implies that Qλ
0y(W(λ) > 0) = 1 and P0y is absolutely continuous with respect to Qλ

0y .
Hence, for any 0 < λ < λ,

P0y

(
lim sup
t→+∞

L(t)

t
≤ −λ

)
≥ P0y

(
lim

t→+∞
X̃(t)

t
= −λ

)
= 1.

Thus, P0y(lim supt→+∞ L(t)/t ≤ −λ = −c) = 1. We complete the proof.

Proof of Theorem 1(a). It follows from Theorem 3 that w(x, y) is nontrivial and limx→−∞
w(x, y) = 0 since P0y(W(λ) = 0) = 0. By definition, it is clear that limx→+∞w(x, y) = 1,
and that x �→ w(x, y) is monotone for every y ∈ S. In addition,

w(x, y) = Exy

[
exp

{
−

∑
v∈Z(s)

lim
t→+∞

∑
u∈Z(t)
v≺u

hYue−λ(Xu(t)+ct)
}]

= Exy

[ ∏
v∈Z(s)

EXv(s)Yv

(
exp

{
−e−λcs lim

t→+∞
∑

u∈Z(t−s)
hYue−λ(Xu(t−s)+c(t−s))

})]

= Exy

[ ∏
v∈Z(s)

w(Xv(s)+ cs, Yv)

]
.

Thus, it follows from Lemma 6 that u(t, x, y) := w(x − ct, y) is a traveling wave solution to
(1) with wave speed c. Since limx→+∞w(x, y) = 1 and E0yW(λ) = E0yWλ(0) = hy ,

1 − w(x, y)

hye−λx = 1 − E0y[exp{−e−λxW(λ)}]
E0y[e−λxW(λ)] → 1 as x → +∞.

The rest of this proof is dedicated to the uniqueness. We consider the space–time barrier
�(x,cλ) := {(y, t) ∈ R × R

+ : y + cλt = x} for x ≥ 0. By arresting lines of descendants
the first time they hit this barrier, we produce a random collection of particles C(x, cλ) =⋃
i∈S Ci(x, cλ), whereCi(x, cλ) denotes the subset of type i particles. Here, {C(x, cλ) : x ≥ 0}

is a family of stopping lines. We say that {C(x, cλ) : x ≥ 0} is dissecting in the sense that all lines
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of descendants will hit �(x,cλ) with probability one for all x > 0 because limt→+∞ L(t)+ct =
+∞ for c ≥ c. We also observe that {C(x, cλ) : x ≥ 0} is tending to infinity in the sense that, for
each n ∈ N, we can choose x sufficiently large such that particles in C(x, cλ) are descendants
of the nth generation. (For more information on general stopping lines and properties of them,
we refer to [4] and [9].) Let F�(x,cλ) be the natural filtration generated by ancestral type and
spatial paths receding from particles at the moment they hit �(x,cλ). Let �cλ be an arbitrary
traveling wave at speed cλ. Then

Mx(z, cλ) :=
∏

u∈C(x,cλ)
�cλ(z+Xu(t)+ cλt, Yu)

= exp

{∑
i∈S

�Ci(x, cλ) log�cλ(z+ x, i)

}

is a P0y-martingale with respect to {F�(x,cλ) : x ≥ 0}. It converges to �cλ(z, λ) almost surely
and in L1(P0y) (by boundedness), and then it follows that

lim
x→+∞ −

∑
i∈S

�Ci(x, cλ) log�cλ(z+ x, i) (17)

exists and is positive with positive probability.
Obviously, for any x2 > x1 ≥ 0 and any v ∈ C(x2, cλ), there exists a unique

u ∈ C(x1, cλ) such that u ≺ v. In fact, {(�C1(x, cλ), . . . , �Cd(x, cλ))
� : x ≥ 0} forms

a continuous-time multitype Markov branching process (x plays the role of time). This
follows from the strong Markov branching property (see, for example, [9]). Moreover, it
follows from the fact P0y(limt→+∞ X̃(t) + cλt = +∞) and the irreducibility of Ỹ that
{(�C1(x, cλ), . . . , �Cd(x, cλ))

� : x ≥ 0} is nonextinct and positive regular. Let Mcλ(x) =
(m

cλ
ij (x))i,j∈S where mcij(x) = E0i�Cj (x, cλ), and let Acλ be the matrix such that Mcλ(x) =

eAcλx . By the Perron–Frobenius theorem, we can find a simple positive eigenvalue λ∗
cλ

of
Acλ , and corresponding positive left and right eigenvectors πcλ = (π1

cλ
, . . . , πdcλ)

� and hcλ =
(h1
cλ
, . . . , hdcλ)

� such that 〈πcλ, hcλ〉 = 〈πcλ, 1〉 = 1. Immediately,∑
j∈S

m
cλ
ij (x)h

j
cλe−λ∗

cλ
x = hicλ, for all i ∈ S. (18)

For x ≥ 0, define

W�(x,cλ) (λ) :=
∑

u∈C(x,cλ)
hYue−λ(Xu(t)+cλt) =

∑
i∈S

�Ci(x, cλ)hie
−λx.

Then {W�(x,cλ)(λ) : x ≥ 0} is a P0y-martingale with respect to {F�(x,cλ) : x ≥ 0} and, conse-
quently, ∑

j∈S
m
cλ
ij (x)hj e−λx = hi, for all i ∈ S; (19)

in other words, eλx is an eigenvalue of Mcλ(x) with corresponding right eigenvector h. Using
similar arguments as in [11, Theorem 8], we can show that

lim
x→+∞

∑
i∈S

�Ci(x, cλ)hie
−λx = W(λ), P0y-almost surely and in L1(P0y). (20)
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On the other hand, by the Kensten–Stigum theorem (see, for example, [6, Theorem 2.1]) we
have, for any i ∈ S,

lim
x→+∞ �Ci(x, cλ)e

−λ∗
cλ
x = πicλWcλ, P0y-almost surely, (21)

where Wcλ = limx→+∞
∑
i∈S �Ci(x, cλ)πicλe−λ∗

cλ
x
< +∞. Combining (20) and (21), we

conclude that λ∗
cλ

= λ and P0y(Wcλ = αW(λ)) = 1 for some constant α > 0. Using (18) and
(19), we get hcλ = αh. Thus, by (21) we have, for any i ∈ S,

lim
x→+∞ �Ci(x, cλ)e

−λx = απicλW(λ), P0y-almost surely. (22)

It follows from (17) and (22) that β := limx→+∞ −α∑
i∈S πicλeλx log�cλ(x, i) exists and is

positive. Uniqueness (up to a multiplicative constant) is now immediate since

�cλ(z, y) = E0y

(
lim

x→+∞Mx(z, cλ)
)

= E0y

(
exp

{
lim

x→+∞
∑
i∈S

�Ci(x, cλ) log�cλ(z+ x, i)

})

= E0y

(
exp

{
lim

x→+∞α
∑
i∈S

πicλeλxW(λ) log�cλ(z+ x, i)

})

= E0y(exp{−β W(λ)e−λz}).
Hence, we complete the proof.

Proof of Theorem 1(b). We assume that w(x, y) provides a monotone traveling wave solu-
tion to (1) with speed c < c. Then, by Lemma 6,

∏
u∈Z(t) w(Xu(t)+ x + ct, Yu) is a bounded

martingale under P0y . It converges almost surely and in L1(P0y) to some random variable. On
the other hand, since 0 ≤ w(x, y) ≤ 1 and limt→∞ L(t)+ ct = −∞, we have∏

u∈Z(t)
w(Xu(t)+ x + ct, Yu) ≤ w(L(t)+ ct, YL(t)) → 0,

where YL(t) denotes the type of leftmost particle at time t . Thus,w(x, y) ≡ 0 which contradicts
the assumption.

4. Proof of Theorem 2

Note that Mt(λ) defined in (3) is a signed martingale and therefore it does not necessarily
converge almost surely. A technique used by Kyprianou [11] to get round this problem in the
case of a single-type branching Brownian motion is to consider a truncated form of the derivative
martingale which turns out to be a positive martingale. In order to describe the aforementioned
martingale for MBBM we need more notation and lemmas.

Lemma 9. (Kyprianou [11, Section 5].) Suppose thatB = {Bt : t ≥ 0} is a standard Brownian
motion on R with law B and natural filtration {Lt , t ≥ 0}. For any z > 0, define τλ := inf{t >
0 : z+ Bt + λt ≤ 0}, then

mλ(t) := z+ Bt + λt

z
e−λ(Bt+λt/2) 1{t<τλ}
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is a positive mean-one martingale. Define another probability measure B̂
λ
z by dB̂

λ
z |Lt =

mλ(t) dB|Lt . Then, under measure B̂
λ
z , {z+ Bt + λt : t ≥ 0} is a standard Bessel-3 process

starting from z.

Define the space–time barrier �(−z,λ) := {(y, t) ∈ R × R
+ : y + λt = −z} for z ≥ 0.

Here, Z̃(t) denotes the subset of Z(t) consisting of all particles which are alive at t and have
ancestry (including themselves) whose spatial paths have not met �(−z,λ) by time t . From the
many-to-one formula, we see that

Vλ(t) :=
∑
u∈Z̃(t)

hYu(z+Xu(t)+ λt)e−λ(Xu(t)+cλt)

is a nonnegative martingale. We want to define a new probability measure R̃λ0y such that, if
Rλ0y := R̃λ0y |F , then

dRλ0y |Ft = Vλ(t)

Vλ(0)
dP0y |Ft , for all t > 0.

To this end, R̃λ0y should have the following decomposition:

dR̃λ0y(τ,M, ε)|F̃t = dP̂y(Ỹ ) dB̂
λ
z (X̃)

∏
v≺εnt

p̂Av (Yv)

P̂ (Yv, Yv+1)

Av(Yv+1)hYv+1

〈Av, h〉

×
∏
v≺εnt

[
1

Av(Yv+1)

∏
j : vj∈Ov

dP t−ζv
X̃ζv Yvj

((τ,M)vj )

]
.

Remark 2. Under R̃λ0y , the spine’s spatial process X̃ satisfies that {z+ X̃(t)+ λt : t ≥ 0} is a
Bessel-3 process starting from z. Therefore, it never meets the barrier �(−z,λ).

Put
Mλ(t) :=

∑
u∈Z(t)

hYu(z+Xu(t)+ λt)e−λ(Xu(t)+cλt).

If we can prove that Mλ(t) converges to a nondegenerate limit, similar analysis as in the
supercritical case can be carried out to obtain traveling wave solutions of (1). For this purpose,
we need the following lemma.

Lemma 10. Let V (λ) = limt→+∞ Vλ(t). For any λ ≥ λ, limt→+∞Mλ(t) exists and is
equivalent to V (λ) almost surely under P0y . In addition, M(λ) := limt→+∞Mλ(t) does not
depend on z.

Proof. Recall that Vλ(t) is a nonnegative martingale, its limit V (λ) exists almost surely. Let
γ (−z,λ) denote the event that the MBBM remains entirely to the right of �(−z,λ), then

lim
t→+∞Mλ(t) = lim

t→+∞Vλ(t), on γ (−z,λ), P0y-almost surely.

Since P0y(limt→+∞ L(t)+ ct = +∞) = 1, we have P0y(inf t≥0{L(t)+ λt} > −∞) = 1 for
all λ ≥ λ. Thus, P0y(γ

(−z,λ)) = P0y(inf t≥0{L(t) + λt} > −z) ↑ 1 as z ↑ +∞. Therefore,
we have P0y(limt→+∞Mλ(t) = limt→+∞ Vλ(t)) = 1, which implies that, for every λ ≥ λ,
limt→+∞Mλ(t) exists and is equal to V (λ) P0y-almost surely. Note that

Mλ(t) =
∑
u∈Z(t)

hYu(Xu(t)+ λt)e−λ(Xu(t)+cλt) + zWλ(t).
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By Theorem 3, the second term of the right-hand side converges to 0 for λ ≥ λ; hence, the limit
M(λ) does not depend on z. Hence, we complete the proof.

Next,we focus on the limit theorem for the martingale Vλ(t). Hereafter, we simply write
R̃
λ

0y as R̃0y .

Theorem 5. Suppose that λ = λ.

1. If Eξij(log+ ξij)
2 = +∞ for some i, j ∈ S, then V (λ) = 0 Pxy-almost surely.

2. If Eξij(log+ ξij)
2 < +∞ for all i, j ∈ S, then Vλ(t) converges to V (λ) in L1(Pxy) and

Pxy(V (λ) = 0) = 0.

To prove Theorem 5, we first prove some lemmas.

Lemma 11. We have the following spine decomposition for Vλ(t):

R̃0y(Vλ(t) | G̃) = hỸt (z+ X̃(t)+ λ)e−λ(X̃(t)+ct)

+
∑
j∈S

∑
v≺εnt

(Av(j)− δYv+1j )hj (z+ X̃(ζv)+ λt)e−λ(X̃(ζv)+cζv).

Lemma 12. (a) If Eξij(log+ ξij)
2 = +∞ for some i, j ∈ S, then

lim sup
n→+∞

〈Aεn, h〉(z+ X̃(ζεn)+ λζεn)e
−λ(X̃(ζεn )+cζεn ) = +∞, R̃0y-almost surely.

(b) If Eξij(log+ ξij)
2 < +∞ for all i, j ∈ S, then

+∞∑
n=0

〈Aεn, h〉(z+ X̃(ζεn)+ λζεn)e
−λ(X̃(ζεn )+cζεn ) < +∞, R̃0y-almost surely.

Proof. (a) We want to show that, for any M ∈ (0,+∞),

+∞∑
n=0

1{〈Aεn ,h〉(z+X̃(ζεn )+λζεn )e−λ(X̃(ζεn )+cζεn )≥M} = +∞, R̃0y-almost surely. (23)

For any set B ∈ B[0,∞) × B(Zd+), define φ(B) = #{n ≥ 0 : (ζεn, Aεn) ∈ B}. Then,
conditioned on GỸ , φ is a Poisson random measure on [0,∞)×Z

d+ with intensity (aỸt + λ∗) dt
× ∑

k∈Z
d+ p̂k(Ỹt )δk(dy) (here, δ denotes the delta function). Thus, for any T ∈ (0,∞), given

GỸ , #{n ≥ 0 : ζεn ≤ T , 〈Aεn, h〉(z+ X̃(ζεn)+λζεn)e−λ(X̃(ζεn )+cζεn ) ≥ M} is a Poisson random
variable with parameter

∫ T

0
(aỸt + λ∗)

∑
k∈Z

d+

p̂k(Ỹt ) 1{〈k,h〉(z+X̃(t)+λt)e−λ(X̃(t)+ct)≥M} dt.
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Hence, to prove (23), we only need to show that

∫ +∞

0
(aỸt + λ∗)

∑
k∈Z

d+

p̂k(Ỹt ) 1{〈k,h〉(z+X̃(t)+λt)e−λ(X̃(t)+ct)≥M} dt = +∞, R̃0y-almost surely.

Since min{al : l ∈ S} > 0, it is sufficient to prove that

R̃0y

(∫ +∞

0

∑
k∈Z

d+

p̂k(Ỹt ) 1{〈k,h〉(z+X̃(t)+λt)e−λ(X̃(t)+ct)≥M} dt < +∞
)

= 0.

For any constant c ∈ (0,+∞), put

Ec :=
{∫ +∞

0

∑
k∈Z

d+

p̂k(Ỹt ) 1{〈k,h〉(z+X̃(t)+λt)e−λ(X̃(t)+ct)≥M} dt < c

}
.

It suffices to show that R̃0y(Ec) = 0. In fact, we have

c ≥ R̃0y

(
1Ec

∫ +∞

0

∑
k∈Z

d+

p̂k(Ỹt ) 1{〈k,h〉(z+X̃(t)+λt)e−λ(X̃(t)+ct)≥M} dt

)

=
∫ +∞

0

∑
l∈S

P̂y(Ỹt = l)
∑
k∈Z

d+

p̂k(l)R̃0y(1Ec 1{Bes(t)e−λBes(t)≥M〈k,h〉−1e−λz}) dt

≥
∫ +∞

0
P̂y(Ỹt = i)

∑
k∈Z

d+

p̂k(i)R̃0y(1Ec 1{Bes(t)e−λBes(t)≥M〈k,h〉−1e−λz}) dt,

where Bes(t) := z + X̃(t)+ λt . It is known that, under P̂y , Ỹ moves as a Q-process with the
invariant distribution π̃l = hlπl for every l ∈ S. Consequently, there exists some T > 0 such
that, for any t ≥ T , P̂y(Ỹt = i) ≥ 1

2 π̃i > 0. We continue the above domination:

c ≥ 1
2 π̃i

∑
k∈Z

d+

p̂k(i)

∫ +∞

T

R̃0y(1Ec 1{Bes(t)e−λBes(t)≥M〈k,h〉−1e−λz}) dt

≥ 1
2 π̃i

( ∑
k∈Z

d+

p̂k(i)

∫ +∞

0
R̃0y(1Ec 1{Bes(t)e−λBes(t)≥M〈k,h〉−1e−λz}) dt − T

)
. (24)

We consider a process ((Qt ,Wt ),P) such that {Qt, t ≥ 0} and {Wt, t ≥ 0} are independent,
(Qt ,P) is identically distributed as (Ỹt , R̃0y), and (Wt ,P) is a standard Brownian motion on
R

3 starting from 0. Suppose that ẑ is a point in R
3 with norm z. It is known that (Bes(t), R̃0y)

is a Bessel-3 process starting from z, which is identically distributed as (|Wt + ẑ|,P), here | · |
denotes the Euclidean norm. We still use Ec to denote the counterpart set of Ec with respect to
((Qt ,Wt ),P). Immediately, we have

R̃0y(1Ec 1{Bes(t)e−λBes(t)≥M〈k,h〉−1e−λz}) = P(1Ec 1{|Wt+ẑ|e−λ|Wt+ẑ|≥M〈k,h〉−1e−λz})
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and R̃0y(Ec) = P(Ec). We claim that there exists K∗ > 0 such that, when |k| ≥ K∗,

{
y ∈ R

3 : 1 + z ≤ |y| ≤ log+〈k, h〉
2λ

}
⊂ {y ∈ R

3 : |y + ẑ|e−λ|y+ẑ| ≥ M〈k, h〉−1e−λz},

which can be proved using basic analysis. Now we continue the estimation of (24) as follows:

c ≥ 1
2 π̃i

( ∑
k∈Z

d+

p̂k(i)

∫ +∞

0
P(1Ec 1{|Wt+ẑ|e−λ|Wt+ẑ|≥M〈k,h〉−1e−λz}) dt − T

)

≥ 1
2 π̃i

( ∑
k : |k|≥K∗

p̂k(i)

∫ +∞

0
P(1Ec 1{1+z≤|Wt |≤log+〈k,h〉/2λ}) dt − T

)

= 1
2 π̃i

( ∑
k : |k|≥K∗

p̂k(i)P

(
1Ec

∫ +∞

0
1{1+z≤|Wt |≤log+〈k,h〉/2λ} dt

)
− T

)
. (25)

Note that (|Wt |,P) is a Bessel-3 process starting from 0. Let la , a ≥ 0, be the family of its
local times, then the process {la∞, a ≥ 0} is a BESQ2(0) process which implies that la∞

d= al1∞
and P(l1∞ = 0) = 0 (see [15, Exercise 2.5]). Then we have the following calculations:

P

(
1Ec

∫ +∞

0
1{1+z≤|Wt |≤log+〈k,h〉/2λ} dt

)

= P

(
1Ec

∫ log+〈k,h〉/2λ

1+z
la∞ da

)

= P

(
1Ec

∫ log+〈k,h〉/2λ

1+z
a da

∫ a−1la∞

0
du

)

=
∫ log+〈k,h〉/2λ

1+z
a da

∫ +∞

0
P(1Ec 1{u≤a−1la∞}) du

≥
∫ log+〈k,h〉/2λ

1+z
a da

∫ +∞

0
(P(Ec)− P(a−1la∞ < u))+ du

= 1

2

(
log+〈k, h〉

2λ
− 1 − z

)2 ∫ +∞

0
(P(Ec)− P(l1∞ < u))+ du. (26)

In view of (25) and (26), we obtain

∑
k : |k|≥K∗

p̂k(i)

(
log+〈k, h〉

2λ
− 1 − z

)2 ∫ +∞

0
(P(Ec)− P(l1∞ < u))+ du < +∞. (27)

Given that

E(ξij(log+ ξij)
2) = +∞,

we have ∑
k∈Z

d+

p̂k(i)(log+〈k, h〉)2 = +∞.

https://doi.org/10.1239/aap/1396360111 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1396360111


236 Y.-X. REN AND T. YANG

It follows from (27) that ∫ +∞

0
(P(Ec)− P(l1∞ < u))+ du = 0.

Thus, by the fact that P(l1∞ = 0) = 0, we have P(Ec) = 0 for arbitrary c > 0; consequently,
R̃0y(Ec) = 0 for arbitrary c > 0. Thus, we complete the proof of part (a).

(b) Choose λ ∈ (0, λ). We have

+∞∑
n=0

(z+ X̃(ζεn)+ λζεn)〈Aεn, h〉e−λ(X̃(ζεn )+cζεn )

=
+∞∑
n=0

(· · · ) 1{〈Aεn ,h〉≤eλ(X̃(ζεn )+cζεn )} +
+∞∑
n=0

(· · · ) 1{〈Aεn ,h〉>eλ(X̃(ζεn )+cζεn )}

�= �+�.

We only need to prove that both � and � are finite almost surely under R̃0y .
Hereafter, we write ‘A � B’ to mean that there exists some constant c > 0 such that

A ≤ cB. Recall that, conditioned on GỸ , the split times of the spine is a Poisson point process
with characteristic measure (aỸt + λ∗) dt . Therefore,

R̃0y(�) = R̃0y

(∫ +∞

0
(aỸs + λ∗)(z+ X̃(s)+ λs)〈Aεns , h〉

× e−λ(X̃(s)+cs) 1{〈Aεns ,h〉≤eλ(X̃(s)+cs)} ds

)

≤
∫ +∞

0

∑
i∈S
(ai + λ∗)P̂y(Ỹs = i)

∑
k

p̂k(i) B̂
λ
z (Bes(s)e−(λ−λ)(Bes(s)−z)

× 1{Bes(s)≥λ−1 log+〈k,h〉+z}) ds

�
∑
i∈S

∑
k

p̂k(i)

∫ +∞

0
P(|Ws + ẑ|e−(λ−λ)|Ws+ẑ| 1{|Ws+ẑ|≥λ−1 log+〈k,h〉+z}) ds

�
∑
i∈S

∑
k

p̂k(i)

∫
{|y+ẑ|≥λ−1 log+〈k,h〉+z}

|y + ẑ|e−(λ−λ)|y+ẑ| dy

×
∫ +∞

0
s−3/2e−|y|2/2πs ds

�
∑
i∈S

∑
k

p̂k(i)

∫
{|y+ẑ|≥λ−1 log+〈k,h〉+z}

|y + ẑ|
|y| e−(λ−λ)|y+ẑ| dy

�
∑
i∈S

∑
k

p̂k(i)

∫
{|y|≥λ−1 log+〈k,h〉}

|y| + z

|y| e−(λ−λ)|y| dy

�
∑
i∈S

∑
k

p̂k(i)

∫ +∞

λ−1 log+〈k,h〉
(r2 + zr)e−(λ−λ)r dr

< +∞.

Thus, R̃0y(� < +∞) = 1.
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On the other hand, we have

R̃0y

(+∞∑
n=0

1{〈Aεn ,h〉>eλ(X̃(ζn)+cζεn )}

)

=
∫ +∞

0

∑
i∈S
(ai + λ∗)P̂y(Ỹs = i)

∑
k

p̂k(i)B̂
λ
z (Bes(s) < λ−1 log+〈k, h〉 + z) ds,

here we have used the fact that the split times of the spine is a Poisson point process with
characteristic measure (aỸt + λ∗) dt . Then

R̃0y

(+∞∑
n=0

1{〈Aεn ,h〉>eλ(X̃(ζn)+cζεn )}

)

�
∑
i∈S

∑
k

p̂k(i)

∫ +∞

0
P(|Ws + ẑ| < λ−1 log+〈k, h〉 + z) ds

�
∑
i∈S

∑
k

p̂k(i)

∫
{|y+ẑ|<λ−1 log+〈k,h〉+z}

dy
∫ +∞

0
s−(3/2)e−|y|2/2πs

ds

≤
∑
i∈S

∑
k

p̂k(i)

∫
{|y|<λ−1 log+〈k,h〉+2z}

|y|−1 dy.

Consequently, we get

R̃0y

(+∞∑
n=0

1{〈Aεn ,h〉>eλ(X̃(ζn)+cζεn )}

)
�

∑
i∈S

∑
k

p̂k(i)(λ
−1 log+〈k, h〉 + 2z)2

< ∞, (28)

where in the last inequality we used the condition that E(ξij(log+ ξij)
2) < +∞. Therefore, by

(28) we have

R̃0y

(+∞∑
n=0

1{〈Aεn ,h〉>eλ(X̃(ζn)+cζεn )} < +∞
)

= 1,

which means that� is a finite sum. Hence, R̃0y(� < +∞) = 1. Thus, we complete the proof
of part (b).

Proof of Theorem 5. Suppose that E(ξij(log+ ξij)
2) = +∞ for some i, j ∈ S. Since

Vλ(εn) ≥ 〈Aεn, b〉(z+ X̃(ζεn)+ λζεn)e
−λ(X̃(ζεn )+cζεn ),

using Lemma 12(a), we have R̃0y(lim supt→+∞ Vλ(t) = +∞) = 1. Thus,P0y(V (λ) = 0) = 1
by Lemma 8.

On the other hand, suppose that E(ξij(log+ ξij)
2) < +∞ for all i, j ∈ S. Recall that,

under R̃0y , {z+ X̃(t)+ λt : t ≥ 0} is a Bessel-3 process which is transient, i.e. R̃0y(limt→+∞
×(z+X̃(t)+λt) = +∞) = 1, then from the spine decomposition for Vλ(t) and Lemma 12(b),
we have R̃0y(lim supt→+∞ R̃0y(Vλ(t) | G̃) < +∞) = 1. By Fatou’s lemma, we get
R̃0y(lim supt→+∞ Vλ(t) < +∞) = 1, which implies that Vλ(t) converges to V (λ) inL1(P0y).
Thus, P0y(V (λ) = 0) < 1. Similar analysis as in the proof of Theorem 3 can be applied here
to show that P0y(V (λ) = 0) = 0. Hence, we complete the proof.
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Proof of Theorem 2. Using the same techniques as in the supercritical case, we can prove
that w(x, y) satisfies

w(x, y) = E0y

[ ∏
u∈Z(s)

w(x +Xu(s)+ cs, Yu)

]
,

for any x ∈ R and y ∈ S. Obviously, limx→+∞w(x, y) = 1 and limx→−∞w(x, y) = 0.
Thus, w(x, y) provides a nontrivial traveling wave solution to (1). Note that E0yM(λ) =
limt→+∞ E0yVλ(t) = E0yVλ(0) = xhy , and that limx→+∞w(x, y) = 1; thus,

1 − w(x, y)

xhye−λx = 1 − E0y[exp{−e−λxM(λ)}]
E0y[e−λxM(λ)] → 1 as x ↑ +∞.

Next we prove the uniqueness. Consider the space–time barrier �(z,λ) for z ≥ 0. By
arresting lines of descendants the first time they hit this barrier we again produce a sequence
of stopping lines {C(z, λ) : z ≥ 0} which are dissecting and tending to infinity. Recall that
C(z, λ) = ⋃

i∈S Ci(z, cλ) (see the proof of Theorem 1(a)). Suppose that �c is any traveling
wave with speed c, then

Mz(x, λ) :=
∏

u∈C(z,λ)
�c(x +Xu(t)+ ct, Yu) = exp

{∑
i∈S

�Ci(z, λ) log�c(x + z, i)

}

is a P0y-martingale which converges to �c(x, y) almost surely and in L1(P0y).
We turn our attention to the MBBM with a killing barrier at �(−x,λ) where x > 0. Define

C̃(z, λ) to be the random set of particles for the killed process that are stopped at the barrier
�(z,λ). More precisely, C̃(z, λ) := ⋃

i∈S C̃i(z, λ) consists of particles whose lines of descen-
dants (including themselves) have spatial paths that have met the barrier �(z,λ) before meeting
�(−x,λ), where C̃i(z, λ) denotes the subset of type i particles. Recall that γ (−x,λ) denotes the
event that the MBBM remains entirely to the right of�(−x,λ) and P0y(γ

(−x,λ)) ↑ 1 as x ↑ +∞.
On the event γ (−x,λ) the MBBM and the MBBM with killing barrier �(−x,λ) are the same, i.e.
�Ci(z, λ) = �C̃i(z, λ) on γ (−x,λ). Therefore,

lim
z→+∞ −

∑
i∈S

�C̃i(z, λ) log�c(z, i) (29)

exists almost surely and is nonnegative on γ (−x,λ). Furthermore, since the function x �→
�c(x, y) is nontrivial, an elementary argument shows that, for x > 0 sufficiently large,
limz→+∞ − ∑

i∈S �C̃i(z, λ) log�c(z, i) is positive with positive probability on γ (−x,λ). Con-
sider the sequence

V x
�(z,λ)

:= (hyx)
−1

∑
u∈C̃(z,λ)

hYu(x +Xu(t)+ λt)e−λ(Xu(t)+ct)

= (hyx)
−1(x + z)

∑
i∈S

hi �C̃i(z, λ)e
−λz.

Let F̃�(z,cλ) be the natural filtration generated by ancestral type and spatial paths receding from
particles at the moment they hit �(z,cλ) before meeting �(−x,λ). By the property of dissecting
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stopping lines, {V x
�(z,λ)

: z ≥ 0} is a mean-one P0y-martingale with respect to {F̃�(z,cλ) : z ≥ 0},
and

lim
z→+∞(x + z)e−λz ∑

i∈S
�C̃i(z, λ)hi = M(λ), P0y-almost surely. (30)

The arguments on W�(x,λ) (λ) in the proof of Theorem 1 still work when λ = λ; thus, we have

lim
z→+∞

∑
i∈S

�C̃i(z, λ)hie
−λz = 0, P0y-almost surely. (31)

Combining (30) and (31), we obtain

lim
z→+∞ ze

−λz ∑
i∈S

�C̃i(z, λ)hi = M(λ), P0y-almost surely. (32)

Applying similar arguments as in the supercritical case, we know that {(�C1(z, λ), . . . ,

�Cd(z, λ))
� : z ≥ 0} forms a nonextinct, positive regular continuous time multitype Markov

branching process (z plays the role of time). By the Kesten–Stigum theorem (see, for exam-
ple, [6, Theorem 2.1]), there is a nonnegative vector πλ = (π1

λ , . . . , π
d
λ )

�
such that 〈πλ, 1〉 = 1

and, for all i ∈ S, P0y(limz→+∞ �Ci(z, λ)/�C(z, λ) = πiλ) = 1 and, consequently, limz→+∞
�C̃i(z, λ)/�C̃(z, λ) = πiλ almost surely on γ (−x,λ). Let x ↑ +∞, we have

lim
z→+∞

�C̃i(z, λ)

�C̃(z, λ)
= πiλ, P0y-almost surely. (33)

Let π̃ = πλ/〈h, π〉. Using (32), (33), and the fact that hi > 0 for every i ∈ S, we get that, for
all i ∈ S,

lim
z→+∞ ze

−λz�C̃i(z, λ) = π̃iM(λ), P0y-almost surely. (34)

From (29) and (34), we conclude that β := limz→+∞ −z−1eλz
∑
i∈S π̃i log�c(z, i) exists and

is positive. Uniqueness (up to a multiplicative constant) is now immediate. In fact,

�c(x, y) = E0y

(
lim

z→+∞Mz(x, λ)
)

= E0y exp

{
lim

z→+∞
∑
i∈S

�Ci(z, λ) log�c(x + z, i)

}
.

Since limη↑+∞ P0y(γ
(−η,λ)) = 1, using (34) we obtain

�c(x, y) = lim
η↑+∞E0y

[
exp

{
lim

z→+∞
∑
i∈S

�C̃i(z, λ) log�c(x + z, i)

}
; γ (−η,λ)

]

= lim
η↑+∞E0y

[
exp

{
lim

z→+∞
∑
i∈S

π̃iM(λ)e
λzz−1 log�c(x + z, i)

}
; γ (−η,λ)

]

= E0y exp

{
−M(λ)e−λx

× lim
z→+∞ −x + z

z

∑
i∈S

π̃i(x + z)−1eλ(x+z) log�c(x + z, i)

}

= E0y exp{−β M(λ)e−λx}.
Hence, we complete the proof.
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