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We present a mesoscale kinetic model for multicomponent flows, augmented with a
short range forcing term, aimed at describing the combined effect of surface tension
and near-contact interactions operating at the fluid interface level. Such a mesoscale
approach is shown to (i) accurately capture the complex dynamics of bouncing
colliding droplets for different values of the main governing parameters, (ii) predict
quantitatively the effective viscosity of dense emulsions in micro-channels and (iii)
simulate the formation of the so-called soft flowing crystals in microfluidic focusers.
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1. Introduction
A thorough knowledge of the dynamic interactions between fluid interfaces is

paramount to a deeper understanding of a variety of natural processes and engineering
applications, such as combustion, microfluidic coating, food processing and many
others. The coalescence and/or repulsion between droplets or bubbles can be traced
to the hydrodynamic drag originating from the relative motion of two fluid interfaces
in near contact (Barnocky & Davis 1989; Davis, Schonberg & Rallison 1989; Shi,
Brenner & Nagel 1994; Mani, Mandre & Brenner 2010; Rubin et al. 2017), and to
the combined action of nanoscale attractive and/or repulsive forces, such as van der
Waals and electrostatic forces, steric interactions, hydration repulsion and depletion
attraction (Bergeron 1999; Stubenrauch & Von Klitzing 2003).

A wide body of theoretical and experimental work has elucidated the complex
nature of the near-contact interactions which develop within intervening liquid films:
from the pioneering works of Gibbs and Marangoni on the thermodynamics of liquid
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thin films (see Bergeron (1999) for a comprehensive review) to the separate work
of Derjaguin and Overbeek (Derjaguin 1940; Verwey, Overbeek & Overbeek 1999)
which culminated in the joint DLVO theory (after its founders, Derjaguin, Landau,
Verwey and Overbeek).

These seminal works laid down the foundations for describing a broad variety of
complex flowing systems, such as colloids, foams and emulsions, as well as flowing
collections of droplets and bubbles characterized by highly ordered and uniform,
crystal-like structures, now known as soft flowing crystals (Garstecki & Whitesides
2006; Marmottant & Raven 2009).

From a numerical standpoint, the direct introduction of near-interaction forces at a
molecular level reflects the need of solving simultaneously six spatial decades: from
millimetres, i.e. the typical size of microfluidic devices, down to nanometres (and
below), namely the relevant spatial scale of contact forces. This is far beyond the
capability of any foreseeable computer (Montessori, Lauricella & Succi 2019), hence
placing a high premium on coarse-grained, mesoscale representations of near-contact
forces, capable of retaining computational viability without compromising the essential
physics.

Of course, the success of such mesoscale strategy hinges crucially on the
universality of the underlying physics, i.e. its dependence on suitable dimensionless
parameters measuring the relative strength of the interactions, rather than on the details
and strength of the interactions themselves (Succi 2015). Failing such universality, a
genuine microscopic approach cannot be helped, thus hampering the possibility to
reach up to the scales of the full device.

In the lattice Boltzmann (LB) framework, immiscible fluids were first modelled
by Gunstensen et al. (1991). These authors developed an LB model, augmented
with a forcing term in accordance with the local colour gradient, giving rise to
the interface tension and a segregation step. In Latva-Kokko & Rothman (2005),
the authors corrected the segregation rule proposed by Gunstensen, to avoid the
pinning problem that affected the Gunstensen model, allowing the fluids to moderately
mix and to keep the colour distribution symmetric with respect to the colour gradient.
The reason for lattice pinning is that at the sites where it happens, all of the particles
of one kind are sent in the same direction and hence they cannot move from one site
to another. More recently the model was further improved to simulate high density
and viscosity ratio (Leclaire, Reggio & Trépanier 2012; Leclaire et al. 2017; Saito,
Abe & Koyama 2017).

In addition to this, there have been several attempts to model interface interactions
in amphiphilic fluids within the LB framework (see for example Chen, Boghosian
& Coveney (2000), Nekovee et al. (2000), Love, Coveney & Boghosian (2001)).
These models aim at directly simulating the effect of a surfactant by evolving two
sets of distribution functions, allowing us to take into account the presence of an
amphiphilic fluid at the interface between two liquid phases. For a comprehensive
review of multiphase and multicomponent LB models (Shan & Chen 1993; Swift,
Osborn & Yeomans 1995; He, Shan & Doolen 1998; Guo & Zhao 2005; Philippi
et al. 2012), the interested reader is referred to Huang, Sukop & Lu (2015).

In this paper, we present an LB-based approach for multicomponent flows, based on
the colour-gradient model (Leclaire et al. 2012), augmented with an additional forcing
term which is aimed at representing the effects of the near-contact forces operating
at the fluid interface level. The proposed model is shown to accurately capture the
collision outcomes between bouncing droplets for different values of the governing
parameters, to predict the effective viscosity of dense emulsions in channels and to
effectively simulate the evolution of soft flowing crystals in flow focuser devices.
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The paper is organized as follows. In § 2 the LB equation with the Bhatnagar–
Gross–Krook collisional operator is described, together with the colour-gradient
model and the regularization algorithm for simulating multicomponent fluids. The
augmented LB model for repulsive near-contact interactions is discussed in detail in
§ 2.2. Section 3 collects the main results of the paper. Finally, a summary is reported
in § 4.

2. Method
Lattice Boltzmann models for non-ideal fluids come mainly in two families. The

first one is based on heuristic assumptions (Körner et al. 2005; Becker et al. 2009;
Leclaire et al. 2012, 2017; Montessori et al. 2018a) while the second one builds on
the projection of the kinetic equation on a discrete set of microscopic velocities (Shan
& Chen 1993; Swift et al. 1995; He et al. 1998; Guo & Zhao 2005; Philippi et al.
2012; Montessori et al. 2017). For a more exhaustive review, see Huang et al. (2015),
Succi (2018). In the following we provide a brief introduction to the one which we
found most suitable for the description of flowing crystals, namely the regularized
colour-gradient method (Montessori et al. 2018a).

2.1. Regularized colour-gradient lattice Boltzmann model
In the colour-gradient LB for multicomponent flows, two sets of distribution functions
are needed to track the evolution of the two fluid components, which occurs via a
streaming-collision algorithm (for a comprehensive review on the LB method, please
refer to Krüger et al. (2017), Succi (2018)),

f k
i (x+ ci1t, t+1t)= f k

i (x, t)+Ωk
i ( f k

i (x, t)), (2.1)

where f k
i is the discrete distribution function, representing the probability of finding a

particle of the kth component at position x and time t with discrete velocity ci, where
i is the index running over the lattice discrete directions i= 0, . . . , b, where b= 26
for a three-dimensional 27 speed lattice (D3Q27). The lattice time step 1t has been
taken as 1 (in lattice units) for convenience, which is a common practice in the LB
literature (see Succi (2018)). The density ρk of the kth component is given by the
zeroth moment of the distribution functions,

ρk(x, t)=
∑

i

f k
i (x, t). (2.2)

The total fluid density is given by ρ =
∑

k ρ
k, while the total momentum of the

mixture is defined as the sum of the linear momentum of the two components,

ρu=
∑

k

∑
i

f k
i (x, t)ci. (2.3)

The collision operator can be split into three parts (Gunstensen et al. 1991; Leclaire
et al. 2012, 2017),

Ωk
i = (Ω

k
i )
(3)
[(Ωk

i )
(1)
+ (Ωk

i )
(2)
]. (2.4)

In the above, (Ωk
i )
(1) stands for the standard collisional relaxation (Succi 2001)

which reads (Ωk
i )
(1)
= ωeff ( f k,eq

i − f k
i ), where ωeff = 2/(6ν̄ − 1) is the effective
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relaxation parameter with ν̄ the viscosity at the interface between the two fluids
which is computed as 1/ν̄ = (ρ1/(ρ1 + ρ2))(1/ν1) + (ρ2/(ρ1 + ρ2))(1/ν2) (ν1 and
ν2 are the kinematic viscosities of the two fluids in the bulk). The equilibrium
distribution function of the kth component f k,eq

i is given by a low Mach, second-order,
expansion of a local Maxwellian, namely f k,eq

i =wiρ
k(1+ (ci · u/c2

s )+ ((ci · u)2/2c4
s )−

(u · u/2c2
s )).

Here (Ωk
i )
(2) is the perturbation step (Gunstensen et al. 1991), which contributes

to the build-up of an interfacial tension. Finally, (Ωk
i )
(3) is the recolouring step

(Gunstensen et al. 1991; Latva-Kokko & Rothman 2005), which promotes the
segregation between species, so as to minimize their mutual diffusion.

In order to reproduce the correct form of the stress tensor (Landau & Lifshitz 1959),
the perturbation operator can be constructed by exploiting the concept of the
continuum surface force (Brackbill, Kothe & Zemach 1992). Firstly, the perturbation
operator must satisfy the following conservation constraints,∑

i

(Ωk
i )
(2)
= 0, (2.5)∑

k

∑
i

(Ωk
i )
(2)ci = 0. (2.6)

By performing a Chapman–Enskog expansion, it can be shown that the hydrodyna-
mic limit of (2.1) is represented by a set of equations for the conservation of mass
and linear momentum,

∂ρ

∂t
+∇ · ρu= 0, (2.7)

∂ρu
∂t
+∇ · ρuu=−∇p+∇ · [ρν(∇u+∇uT)] +∇ ·Σ, (2.8)

where p =
∑

k pk is the pressure and ν = c2
s (τ − 1/2) is the kinematic viscosity of

the mixture, with τ the single relaxation time and cs = 1/
√

3 the sound speed of the
model (Succi 2001; Krüger et al. 2017).

Note that the divergence of the stress tensor (last term in (2.8)), which is responsible
for the build-up of surface tension, acts only at the interface between the fluids (see
(2.11)).

The stress tensor in the momentum equation is given by

Σ =−τ
∑

i

∑
k

(Ωk
i )
(2)cici. (2.9)

The surface stress boundary condition at the interface between two fluids can be
expressed as follows (Landau & Lifshitz 1959; Brackbill et al. 1992):

T 1
· n− T 2

· n= σ(∇ · n)n−∇σ , (2.10)

where, I is the identity tensor, σ is the surface tension coefficient (with dimensions of
force per unit area), n is the unit normal to the interface, T =−pI + ρν(∇u+∇uT)

is the stress tensor of the kth component and ∇ · n is the local curvature of the fluid
interface.
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The local stress jump at the interface can be induced by adding an interfacial
volume force F(x, t) (Liu, Valocchi & Kang 2012),

F(x, t)=∇σδI − δI[σ(∇ · n)n]. (2.11)

In the above, δI = (1/2)|∇Θ| is an index function which explicitly localizes the
force on the interface and Θ= (ρ1

− ρ2)/(ρ1
+ ρ2) is the phase field (Liu et al. 2012).

The normal to the interface can be approximated by the gradient of the phase field,
n=∇Θ/|∇Θ|.

Since the perturbation operator is responsible for generating interfacial tension, the
following relation must hold

∇ ·Σ =F. (2.12)

By choosing (Leclaire et al. 2012) (Ωk
i )
(2)
= (Ak/2)|∇Θ|[wi((ci · ∇Θ)

2/|∇Θ|2) −
Bi], substituting it into (2.5) and (2.12) and by imposing that the set Bi must satisfy
the following isotropy constraints∑

i

Bi =
1
3

∑
i

Bici = 0
∑

i

Bicici =
1
3 I, (2.13)

we obtain an equation for the surface tension of the model

σ =
2
9
(A1 + A2)

1
ωeff
=

4
9

A
1
ωeff

. (2.14)

The above relation shows a direct link between the surface tension and the parameter
A = A1 + A2 (A1 = A2). In actual practice, after choosing the viscosity of the two
components and the surface tension of the model, at each time step, one locally
computes the A= A1 + A2 coefficient by using the formula reported in (2.14).

It is worth noting that, in this work, a fourth-order isotropic discrete gradient
operator on a 27 points stencil is employed (for details please refer to Leclaire et al.
(2017)).

As pointed out above, the perturbation operator generates an interfacial tension
in compliance with the capillary-stress tensor of the Navier–Stokes equations for a
multicomponent fluid system.

Nonetheless, the perturbation operator alone does not guarantee the immiscibility
of different fluid components. For this reason, a further step is needed (i.e. the
recolouring step) to minimize the mutual diffusion between components.

Following the work of Latva-Kokko & Rothman (2005), the recolouring operator
for the two sets of distributions takes the following form:

f 1
i =

ρ1

ρ
f ∗i + β

ρ1ρ2

ρ2
cos φif

eq,0
i , (2.15)

f 2
i =

ρ2

ρ
f ∗i − β

ρ1ρ2

ρ2
cos φif

eq,0
i , (2.16)

where, f ∗i =
∑

k f k,∗
i denotes the set of post-perturbation distributions, ρ = ρ1

+ ρ2,
cosφi is the angle between the phase field gradient and the ith lattice vector and f eq,0

i =

fi(ρ, u = 0)eq
=

∑
k f k

i (ρ, u = 0)eq is the total zero-velocity equilibrium distribution
function (Leclaire et al. 2012).
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Note that the coefficient β in the above expressions is a free parameter which
can be used to tune the interface width, thus playing the role of an inverse
diffusion length scale (Latva-Kokko & Rothman 2005). We wish to point out that
the present model is employed to simulate droplet-based microfluidic applications
which are often characterized by very small We, Re and Ca numbers (i.e. much
smaller than one). Hence, by considering typical flow speeds of 10−3–10−2lu/step
the u3 error contribution is of the order O(10−12–10−9), which reflects in a
very negligible compressibility errors. It is important to note that, following the
work of Leclaire et al. (2012), in this work we perform the entire collision step
(collision+perturbation+recolouring steps) on two separate distributions, this at
variance with the works of Gunstensen et al. (1991) and Latva-Kokko & Rothman
(2005), in which the collision and perturbation are written in terms of the blind
distribution f = f 1

+ f 2.
The colour-gradient LB scheme is further regularized by filtering out the high-order

non-hydrodynamic (ghost) modes, emerging after the streaming step (see Latt &
Chopard (2006), Zhang, Shan & Chen (2006), Montessori et al. (2015), Montessori
et al. (2016), Coreixas et al. (2017), Mattila, Philippi & Hegele (2017), Hegele et al.
(2018) for further details).

Indeed, it was noted that sizeable non-isotropic effects arise in the model
(Montessori et al. 2018a), whenever the LB scheme is under-relaxed (τ > 1). As
a consequence, we exploit the regularization procedure in order to recover the loss
of isotropy by suppressing the non-hydrodynamic modes (Benzi, Succi & Vergassola
1992; Montessori et al. 2018a,b). For the sake of clarity, here we report a pseudocode
of the regularization procedure employed in our simulations:

Regularization step:
for l 6 b∧ ∀(i, j, k) ∈D do

f neq,m
l (i, j, k)= f pc,m

l (i, j, k)− f eq,m
l (i, j, k)

end for
for l 6 b∧ ∀(i, j, k) ∈D do

pm
αβ(i, j, k)= pm

αβ(i, j, k)+ (clαclβ − c2
sδαβ)f

neq,m
l (i, j, k)

end for
for l 6 b∧ ∀(i, j, k) ∈D do

f reg,m
l (i, j, k)= f eq,m

l (i, j, k)+
∑

l
wl
2c4

s
(clαclβ − c2

s )p
m
αβ(i, j, k)

end for

where f pc,m
l (i, j, k) is the set of post-collision distribution functions of the mth

component, f neq,m
l (i, j, k) is the non-equilibrium part of f pc,m

l (i, j, k), pm
αβ are the

components of the non-equilibrium part of the momentum flux tensor, D stands for
the fluid domain ((i, j, k) ∈D is a lattice node in the fluid domain) and f reg

l (i, j, k) is
the regularized set of post-collision distribution functions.

In the next subsection, we show how to include the effect of repulsive near-contact
interactions, directly within the LB framework, by augmenting the regularized colour-
gradient model with a forcing term aimed at coarse graining the near-contact forces
at the fluid surface.

2.2. Augmented LB model for repulsive near-contact interactions
The stress-jump condition across a fluid interface is augmented with a repulsive term
aimed at providing a mesoscale representation of all the repulsive near-contact forces
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Frep

n
X

y = x + hn

AhM

AhM
hmin hmax

FIGURE 1. (Colour online) Graphical representation of the near interaction between two
impacting droplets.

(i.e. van der Waals, electrostatic, steric and hydration repulsion) acting on much
smaller scales (∼O(1 nm)) than those resolved on the lattice (typically well above
hundreds of nanometres). It takes the following form:

T 1
· n− T 2

· n=−∇(σ I − σ(n⊗ n))−πn, (2.17)

where π[h(x)] is responsible for the repulsion between neighbouring fluid interfaces,
h(x) being the distance along the normal n, between locations x and y = x + hn at
the two interfaces, respectively (see figure 1).

The above expression can be rewritten in the following form (Li 2016):

T 1
· n− T 2

· n= σ(∇ · n)n−∇sσ −πn (2.18)

in which ∇s is used to identify the gradient tangent to the interface.
By neglecting any variation of the surface tension along the interface, we can

approximate T = −pI (Brackbill et al. 1992) and the above equation takes the
following form:

(−p1I) · n− (−p2I) · n= σ(∇ · n)n−πn. (2.19)

By projecting the equation along the normal to the surface, we obtain the extended
Young–Laplace equation (Williams & Davis 1982; Chan, Klaseboer & Manica 2011):

(p2 − p1)= σ(∇ · n)−π. (2.20)

The additional term can be readily included within the LB framework, by adding a
forcing term acting only on the fluid interfaces in near contact, namely,

Frep =∇π :=−Ah[h(x)]nδI. (2.21)
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In the above, Ah[h(x)] is the parameter controlling the strength (force per unit
volume) of the near-contact interactions (please refer to the sketch in figure 1).

In this work, Ah is set to a constant value (AhM) if h< hmin and then decreases as
∼h−3, as shown in figure 1, although other choices are certainly possible.

The near-contact force has been defined solely as a function of the distance between
two fluid interfaces. Nonetheless, it could be easily extended to take into account local
variations due to the effect of spontaneous migrations of the surfactant along the fluid
interface (Gupta, Badruddoza & Doyle 2017).

The addition of the repulsive force, naturally leads to the following (extended)
conservation law for the momentum equation,

∂ρu
∂t
+∇ · ρuu=−∇p+∇ · [ρν(∇u+∇uT)] +∇ · (Σ +πI). (2.22)

This is the Navier–Stokes equation for a multicomponent system augmented with a
surface-localized repulsive term, expressed through the potential function ∇π.

There have been other attempts to model interface interactions in amphiphilic fluids
in the literature (see for example Chen et al. (2000), Nekovee et al. (2000), Love
et al. (2001)). These models aim at directly simulating the effect of a surfactant
by evolving two sets of distribution functions, allowing us to take into account
the presence of an amphiphilic fluid at the interface between two liquid phases.
Indeed, the propagation of the amphiphilic molecules is described as a set of LB
equations, one for the distribution function and one for the relaxation of the average
dipole vector to its local equilibrium orientation. Halliday, Hollis & Care (2007) and
Spencer, Halliday & Care (2010) extended the colour-gradient model to any number
of components. This method makes use of a set of distributions for each immiscible
fluid species. More recently, Wöhrwag et al. (2018) proposed a thermodynamically
consistent free energy model for fluid flows comprised of one gas and two liquid
components using the entropic LB scheme.

The standpoint of our work is quite different in that the repulsive action of a
surfactant, arising when two interfaces come in close contact, is taken into account
by introducing a repulsive forcing term localized at the interface of the two fluids.
Importantly, this just requires two distributions functions regardless of the number of
droplets.

To conclude, the extended approach still holds to a continuum description of the
interface dynamics, with the governing equations modified only by the presence of
a distributed body force, which can heuristically be interpreted as a coarse-grained
version of the short-range molecular forces acting at the nanometre and sub-nanometre
scales.

3. Numerical results
In this section we test the extended LB model on three applications namely, head-on

and off-axis collisions between two bouncing droplets, pressure-driven flow of a dense
emulsion in a channel and the formation of soft flowing crystals in a microfluidic flow
focuser.

3.1. Droplets coalescence
Here we first test the ability of the colour-gradient LB model to capture the physics
of the coalescence process between two equally sized droplets. The simulation set-up
consists of a three-dimensional fully periodic box (160 × 100 × 121) in which two
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0

0.2

rb

0.4
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1.0
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(t/†)0.5
0.4 0.6

r b
/R

(a)

(c) (d)

(b)

FIGURE 2. (Colour online) (a–c) Bubble formation during the droplet coalescence process
due to the fact that only a fraction of the fluid caught in the narrow gap between the two
spheres is able to escape. The rest accumulates in a ‘bubble’, that forms at the meniscus
(Eggers et al. 1999). (d) Normalized bridge radius as a function of the non-dimensional
time t/τ , where τ =

√
R3/σ , for different values of the kinematic viscosity (symbols).

In agreement with Eggers et al. (1999), the liquid bridge radius rb is shown to follow a
scaling law rb ∝ t1/2 with a dimensionless prefactor of 1.6, in close agreement with the
value 1.62, reported in Duchemin et al. (2003).

liquid droplets of radius R= 30, surrounded by a dispersed fluid of the same density,
are placed at close distance. The surface tension of the mixture was fixed at a constant
value, σ = 0.01 while the surface tension of the two fluids was varied from ν = 0.05
to ν = 0.15. The viscosity ratio between the droplets and the surrounding phase has
been set to unity, and all the physical quantities are reported in lattice units. As shown
in figure 2(a–c), a liquid bridge forms between the two droplets. As pointed out in
Eggers, Lister & Stone (1999) the coalescence process in the early stage is so fast that
only a fraction of the fluid caught in the narrow gap between the two spheres is able
to escape, while the rest accumulates in a ‘bubble’ which forms at the meniscus. The
simulations predict the formation of such a bubble, which remains trapped between the
two coalescing droplets. To be more quantitative, we measured the normalized radius
of the liquid bridge, rb/R, as a function of the square root of the non-dimensional time
t/τ (panel d), with rb the bridge radius, t the simulation time and τ a characteristic
time scale defined as τ =

√
R3/σ . As evidenced in the figure, the growth of the liquid

bridge follows a scaling law rb ∝ (t/τ)0.5, with the data collapsing on a single master
curve rb/R = 1.6

√
t/τ . It is also worth noting that the prefactor predicted by the

simulations (1.6) is in very close agreement with the value 1.62 reported in Duchemin,
Eggers & Josserand (2003).

3.2. Bouncing colliding droplets
In this subsection, we show the capability of the extended LB model to accurately
reproduce the correct dynamics of head-on and off-axis collisions between two
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(a)

(b)

(c)

FIGURE 3. (Colour online) Collision sequences for three different impact numbers at
different Weber numbers: (a) b= 0 and We= 10; (b) b= 0.33 and We= 10; (c) b= 0.85
and We= 7. Upper row experiments (Chen & Chen 2006), lower row simulation results.

nx× ny× nz D Urel σ Ah ν b= χ/D We Re

(a) 121× 101× 121 30 0.06 0.01 0.01 0.0167 0 10 108
(b) 121× 101× 121 30 0.06 0.01 0.01 0.0167 0.33 10 108
(c) 121× 101× 121 30 0.05 0.01 0.01 0.0167 0.85 7 90

TABLE 1. Droplets collision: simulation parameters (lattice units). From the first column
on the left: number of computational nodes, droplets diameter, relative impact velocity,
surface tension, strength of the near-contact force, kinematic viscosity, impact number,
Weber and Reynolds numbers.

bouncing droplets (Chen & Chen 2006). The characteristic non-dimensional parameters
governing the collision outcome are the Weber and the Reynolds numbers, defined
as We = ρU2

relD/σ and Re = UrelD/ν, respectively. In the above, Urel is the relative
impact velocity, D the droplet diameter, σ the surface tension coefficient and ν the
kinematic viscosity, as well as the impact number b = χ/D, namely, the distance
between the collision trajectories in units of the droplet diameter. In table 1, we
report the main simulation parameters (expressed in lattice units).

Also in this case, the viscosity ratio between the droplets and the surrounding
phase has been set to unity. Figure 3 shows three collision sequences for different
impact, Weber and Reynolds numbers. The collision outcomes are compared with
those reported in Chen & Chen (2006). The experiments were performed with
near-millimetric droplets of immiscible fluids, with diameters ranging between
700–800 µm and impact velocities in the range of 1–3 m s−1. The other relevant
parameters can be found in Chen & Chen (2006). By taking a droplet diameter of
700 µm, discretized with 30 lattice units, we obtain a lattice spacing 1x≈ 20 µm=
1 lu, which is the minimum interaction distance between the simulated droplets.
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0
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(a)

(b)

FIGURE 4. (Colour online) Sequence of the flow field during the impact between the
two droplets (mid-plane slice). As shown in (b), during the first stage of the collision the
dispersed phase flows outwards, allowing the two droplets to approach. Afterwards, when
the droplets come into close contact, the fluid within the thin film begins to recirculate,
thereby preventing film rupture hence the coalescence between the droplets. A remark
is in order: in real interacting systems the thin film between two interfaces in near
contact develops on characteristic length scales of the order of the nanometres, far below
the spatial scales accessible to our simulations. Indeed, in (b), the smallest spatial scale
is approximately 20 µm while the characteristic distance between two non-coalescing
impacting droplets is of the order of one to ten nanometres, i.e. three orders of magnitude
smaller than the grid size.

It is worth noting that the thin film between two interfaces in near contact
has characteristic length scales of the order of nanometres, far below the spatial
scales accessible to our simulations. Indeed, in our simulations, the smallest spatial
scale is approximately 20 µm (1x), while the characteristic distance between two
non-coalescing impacting droplets is of the order of 1–10 nm, i.e. three orders of
magnitude smaller than the grid size. Notwithstanding this gap, by matching the main
governing parameters (Weber and Reynolds numbers), the overall impact dynamics is
correctly captured by the simulations. This, again, calls into question the universality
of the underlying physical processes, i.e. at the spatial scale at hand, the interaction
physics depends upon the dimensionless numbers, measuring the relative strength of
the interactions, rather than on the strength of the interactions themselves. Panel (a)
reports the sequence of a head-on collision between two equally sized droplets. As
expected, at these Weber and Reynolds numbers, the two droplets bounce off without
coalescing, because the coalescence is frustrated by the effect of the near-contact
repulsive forces.

The bouncing collision also occurs by increasing the impact parameter (b,c). Indeed,
in both cases, the impact velocity is not sufficient to break the intervening thin film
and a kissing-like collision is finally observed.

We then inspected the evolution of the thin liquid film during the collision process.
As reported in figure 4, in a first stage, the fluid between the two droplets flows
outwards, thus allowing the droplets to approach each other (b, left). Afterwards, as
they get closer, the liquid begins to recirculate inwards within the intervening film,
stabilizing it and preventing the coalescence between the colliding droplets (b, right).

This phenomenon resembles the so-called Marangoni flow in liquid films, namely
a fluid recirculation occurring in liquid thin films in the presence of shear and
temperature gradients, which was observed to prevent the coalescence between bodies
of liquids (Dell’Aversana, Banavar & Koplik 1996).
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Sß = 0.25, SK = 1.5

Sß = 1, SK = 0.36
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FIGURE 5. (Colour online) Effect of the magnitude of the near-contact force. The upper
panel reports a flow field sequence of two impacting droplets (mid-plane slice). The
simulation parameters are the same as those reported in table 1, except for the repulsive
parameter, which is four times smaller. It is evident that the repulsive force is not strong
enough to frustrate the coalescence between the two impacting droplets, as occurs in the
case reported in the lower panel (Sσ = 1, Sκ = 0.36).

It is straightforward to note that, by varying the magnitude of the repulsive force,
it is possible to promote or inhibit the coalescence of the impacting droplets.

From this standpoint, it proves expedient to introduce two further non-dimensional
parameters, which measure the relative strength of inertia and surface tension versus
repulsive forces. The first, (Sσ ) is defined as the ratio between the repulsive force
(∼AhM) which frustrates the coalescence between droplets, and the surface tension (σ ),
which promotes it. The second (Sκ), is defined as the ratio between the local impact
kinetic energy and the work done by the repulsive forces to prevent the two interfaces
from coalescing.

The two non-dimensional parameters read as follows:

Sσ = (AhM ·1x)/σ (3.1)
Sκ = ρU2/(AhM ·1x). (3.2)

In the above 1x, the lattice spacing, is the characteristic length scale of near-contact
interactions between two droplets on the lattice. In our simulations Sσ = 1 and
Sκ = 0.36, meaning that the inertial and the surface forces (both promoting
coalescence) are not strong enough to withstand the effect of the local repulsion.

By lowering the intensity of the repulsive forces by a factor four (Sκ = 1.5 and
Sσ = 0.25), we finally observe the coalescence between the impacting droplets (see
figure 5). It will be shown below (§ 3.4) that the balance between inertia, surface
forces and repulsive actions crucially affects the formation and the overall dynamics
of crystal-like structures in foams and emulsions.

3.3. Dense emulsion in a planar channel
We now discuss the pressure-driven flow of a dense emulsion within a narrow channel,
made of a regular arrangement of equal-sized droplets (component A) dispersed in a
continuous matrix (component B) (see figure 6). The simulations are performed on a
137× 1× 137 (H×W×L) node domain. The viscosities of both the dispersed and the
continuous phase are set to 0.167, while the surface tension is set to σ = 0.02 (both

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

37
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.372


Mesoscale modelling of near-contact interactions for complex flowing interfaces 339

H

L

g

FIGURE 6. (Colour online) Sketch of the pressure-driven flow of an emulsion in a narrow
channel: H × L = 137× 137 while g, the applied force employed to mimic the pressure
gradient along the channel, is set to 10−5, to guarantee laminar flow conditions.

in lattice units). Periodic boundary conditions have been applied to the cross-flow and
along the flow direction while, on the upper and lower walls, no-slip conditions have
been imposed. The static contact angle between the dispersed phase and the solid
walls is set to 180◦ (pure hydrophobic walls). A body force (g= 10−5, in lattice units)
is employed to mimic the effect of an applied pressure gradient along the channel.
The value of g was chosen so as to keep the Reynolds number sufficiently low
(Re 6 10) to guarantee laminar flow conditions within the channel, as typical of
microfluidic channels.

Figure 7(b) reports the averaged velocity profiles at different values of the packing
fraction, φ = n · Vdrop/Vtot, with n the number of droplets in the channel, Vdrop the
volume of the (cylindrical) droplet and Vtot the volume of the channel. When φ = 0,
the usual Poiseuille flow parabolic profile for a pure fluid is recovered, as shown in
figure 7(a).

As φ increases, the velocity profiles flatten in the central region of the channel. In
order to quantify the effect of the packing fraction, we measured the effective (or
relative) dynamic viscosity, defined as the flow rate ratio µeff = Q(φ = 0)/Q(φ) and
compared it against the model proposed by Taylor (1932) and Bullard et al. (2009).
In Taylor theory, the effective dynamic viscosity (for νd/νc = 1) can be expressed as
a linear function of the volume fraction (in the limit of small droplets and volume
fractions) as follows:

µeff = 1+ 1.75φ. (3.3)

The effective dynamic viscosity predicted by Bullard, which is based on the
differential effective medium theory, reads as follows:

µeff = (1− φ)−[η], (3.4)

with [η] the intrinsic viscosity, whose value is restricted between the undeformable and
the freely deformable limit (Douglas & Garboczi 1995). As reported in figure 7(a), the
simulation results are a very close match with respect to the theoretical prediction of
Taylor (inset in figure 7a) and Bullard (with intrinsic viscosity set to [η] = 1).
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FIGURE 7. (Colour online) (a) Measured µeff (symbols) as a function of droplet volume
fraction φ. The solid line is a fit based on the differential effective medium theory
(Bullard et al. 2009). In the inset, we report also the Taylor theory (νd/νc= 1), (solid line)
(1+ 1.75φ), which holds for small values of the volume fraction, versus the simulations.
(b) Averaged velocity profiles as a function of the packing fraction φ.
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FIGURE 8. (Colour online) Sketch of the flow focuser device.

3.4. Soft flowing crystals in a microfluidic focuser
As an application, we simulated the formation of oil/water emulsions in a microfluidics
flow focusing device, whose sketch is reported in figure 8. The micro-device is made
of three channels supplying the dispersed (A) and the continuous (B) phase, plus an
orifice (C) placed downstream of the three coaxial inlet streams.

The mechanism of droplet formation follows from the periodic pinch-off of the
dispersed jet by the continuous stream and the pinch-off mechanism takes place in
the small orifice.

Flow focusers are nowadays widely employed for the production of mono-dispersed
emulsions, due to the precise control over the emulsion monodispersity and the droplet
size (Whitesides 2006; Sackmann, Fulton & Beebe 2014; Cruz-Mazo et al. 2017). The
high degree of flow reproducibility is due to the dominance of the viscous forces
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nx× ny× nz H,W,Hc, h uin
d uin

c νd νc σ AhM Γ

(Figure 9a) 400× 20× 140 40, 20, 80, 20 0.01 0.01 0.0167 0.1167 0.1 0.1 1/2
(Figures 9b,c–10b) 400× 20× 140 40, 20, 80, 20 0.01 0.005 0.0167 0.1167 0.1 0.1 1/1
(Figure 10a,c) 400× 20× 140 40, 20, 80, 20 0.01 0.005 0.0167 0.1167 0.1 0.02 1/1

TABLE 2. Flow focuser simulations: main parameters (lattice units). From the first column
on the left: number of computational nodes, device characteristics, inlet velocity of
the dispersed phase, inlet velocity of the continuous phase, dispersed phase viscosity,
continuous phase viscosity, repulsive interaction parameter, flow rate ratio. The viscosity
ratio between the droplets and the surrounding phase has been set to νd/νc = 1/7.

over inertia which smooths flows and tames hydrodynamic instabilities. The pinch-
off process is thus metronomic, allowing to produce droplets with measured standard
deviations in size as little as 0.1 % (Ganán-Calvo & Gordillo 2001; Link et al. 2004;
Marmottant & Raven 2009).

Here, we show that the mesoscale approach proposed in this paper is able to
reproduce different packing configurations in the outlet channel of the flow focuser,
which are obtained by varying the dispersed-to-continuous flow rate ratio. Moreover,
we also show that, by tuning the magnitude of the near-contact force interaction,
different structures of the flowing crystals can be achieved. The simulation setup is
sketched in figure 8, while the main simulation parameters are reported in table 2.

The prototypical focuser, used in the simulations, consists of three main channels
(A and B) of width H = 200 µm, a nozzle (C) h = 100 µm and an outlet channel
of width Hc = 400 µm, while the height of the focuser is W = 100 µm. By taking
an interfacial tension of an oil–water mixture (∼50 mN m−1), the dynamic viscosity
of the water (dispersed phase) µ∼ 10−3 Pa s and an inlet velocity of the dispersed
phase ∼0.1 m s−1 we obtain a Weber number We = 0.04 and a capillary number
Ca = 0.0017, which are typical of flow focuser devices (Marmottant & Raven
2009). Figure 9 reports two different flow configurations which can be obtained
by varying the flow rate ratios between the dispersed and the continuous phase.
In both cases, droplets readily self-assemble in ordered patterns described as soft
flowing crystals (Garstecki & Whitesides 2006; Marmottant & Raven 2009; Dollet,
Scagliarini & Sbragaglia 2015). In (a) (φ = 1/2), the reported sequence shows a
typical wet foam-like configuration in which the droplets are circular (cylinders
in three dimensions) and automatically arrange on three rows, as evidenced in
figure 9(c), which also provides a visual comparison with the experimental data
reported in Marmottant & Raven (2009). Panel (b) (φ = 1/1) shows a more ordered
crystal structure, made of larger cylindrical droplets disposed along two staggered
rows. We further investigated the effect of the magnitude of the near force on the
formation of the crystal pattern. Figure 10(a) shows a time sequence of the flow
field during the break-up stage occurring downstream of the striction of the focuser,
with a magnitude of the near-contact force lowered by a factor 5 with respect to the
base case of figure 9(b). It is evident that the magnitude of the repulsive force is
no longer sufficient to prevent the coalescence between the droplet downstream the
striction and the upstream jet, due to the high impact velocity. Thus, as evidenced
in panel (c), the droplets in the outlet channel are approximately twice the size with
respect to the previous case, and proceed in single-file motion, i.e. aligned along
the horizontal axes of the focuser. It is also interesting to note that the action of
the repulsive force keeps frustrating the coalescence in the outlet channel, where
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(a)

(c)

(b)

FIGURE 9. (Colour online) (a,b) Different configurations of monodispersed emulsions
at the outlet of the flow focuser, on an xy midplane, obtained by changing the
dispersed/continuous flowrate ratios. (c) Zoom of the three droplets foam structure: visual
comparison between experiments ((Marmottant & Raven 2009), left panel) and numerical
simulations (right panel).

the typical velocities are much lower than at the exit of the nozzle. Once again, we
can compute the non-dimensional parameter Sκ , downstream of the nozzle, where
the coalescence occurs. By taking a characteristic jet velocity UJ ∼ 0.1, we estimate
Sκ ∼ 1.4 (figure 10a) and Sκ ∼ 0.18 (figure 10b). Thus, Sκ ∼O(1) may be interpreted
as a threshold above which the repulsive force is no longer able to balance the inertia,
so as to frustrate the coalescence between the jet and the droplet. These preliminary
simulations clearly highlight the pivotal role of the near-contact interactions on the
structure of the resulting flowing crystal.

From this standpoint, the proposed approach may open up new chances to
investigate the complex dynamics of flowing microfluidics crystals, helping in
identifying the optimal operational regimes required to precisely control the production
of mono-dispersed emulsions.

4. Conclusions
The dynamic interactions occurring at fluid interfaces at nanometric and subnano-

metric scales, are known to play a crucial role on the macroscopic behaviour of
complex states of densely packed soft flowing matter, such as colloidal systems, foams
and emulsions. As a result, an in-depth knowledge of these dynamic interactions is
pivotal to a deeper understanding of the properties of soft flowing crystals (Garstecki
& Whitesides 2006; Marmottant & Raven 2009; Montessori et al. 2019). Many
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FIGURE 10. (Colour online) (a–b) Flow field sequence during the break-up stage
occurring at the outlet of the striction of the flow focuser. (a) Lower and (b) higher
near-contact forces. In the first case the strength of the repulsive force is not sufficient to
prevent the coalescence between the droplet and the jet, due to the high speed of the jet
at the outlet of the nozzle. Nonetheless, the repulsive force is strong enough to prevent the
coalescence between droplets moving in the outlet channel (c, left figure). In the second
case, the repulsive force is strong enough to completely suppress the coalescence between
the jet and the newly formed droplets, thus allowing the formation of an ordered soft
flowing crystal in the outlet channel.

theoretical and experimental researchers have endeavoured to explain the basic
physics behind near-contact interactions. Notwithstanding the surge of experimental
and theoretical activity, the numerical description of soft flowing matter is still in its
early stage.

One reason is that the concurrent solution of the macroscopic equations, needed
to evolve the fluid interface, together with a direct description of the near-contact
interactions at the nano-scales stands out as a prohibitive multiscale problem.

In this paper, we have proposed a coarse-grained approach to include the effect
of the near-contact interactions within the LB computational framework, and shown
that such an extended LB model is able to accurately describe a number of relevant
physical effects. That is, (i) to capture the evolution of two bouncing impacting
droplets for different values of the main governing parameters namely, the Weber,
Reynolds and impact numbers; (ii) to predict the effective viscosity of a dense
emulsion flowing in a micro-channel, in agreement with the theoretical model of
Bullard (Bullard et al. 2009). Moreover, the extended LB approach is also able to
reproduce different droplets arrangements at the outlet channel of a microfluidic
focuser, thus permitting us to simulate soft flowing crystals at the scale of the actual
microfluidic device.

To this purpose, two additional non-dimensional parameters (Sσ and Sκ) have been
introduced which measure the strength of inertia and surface tension versus the
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repulsive near-contact interactions. We found that Sκ = 1 acts as a natural threshold,
above which the repulsive near-contact forces are no longer able to withstand the
impact kinetic energy and prevent the coalescence between colliding fluid interfaces.

Even though in this paper we have discussed the specific case of a flow focuser
microfluidic device, the method presented in this work is expected to apply to a much
broader variety of engineering and biomedical problems.

An application where our methods can be specifically useful (and in future
will be developed for) is the design of systems where droplets would undergo
an internal transition from viscous solutions to elastic materials. This in-droplet
gelation ‘freezes’ the shape of the microparticles as it is at the outlet channel. The
resulting microparticle systems (also produced in microfluidic devices) are employed
e.g. for the encapsulation of living cells in hydrogels (biological reactors or sensors
for toxicological screening) or of pharmaceutically active compounds in polymer
matrices (controlled drug release). By applying our methods to such materials, it will
be possible to rationally design complex, micro particle-based flowing crystals, where
morphology/aspect ratio and any ensuing properties are precisely and topologically
controlled. This would allow e.g. (i) a permanent and tailored modulation of optical
properties orthogonally to the channel direction, producing soft waveguides, or (ii) a
very fine control of the conditions of dynamic arrest (macroscopic ‘gelation’) of the
emulsion or foam obtained through the microfluidic device, which can be particularly
useful in applications of 3-D printing.

We would like to stress that the possibility of employing a mesoscale instead
of a full-scale description crucially relies upon the universality of the underlying
physics or, in other words, its dependence on suitable dimensionless parameters
measuring the relative strength of the interactions, rather than on the microscopic
details of the interactions themselves. The aim of this work was precisely to present
a coarse-grained approach encompassing the basic physical features of near-contact
interactions. In this regard, the proposed model represents an up-scale of the
interactions occurring at the interface level. Whilst being a dramatic simplification
of the underlying physics at the molecular level, the results obtained in this paper
suggest that, at least at the spatial scale at hand, a coarse-grained description is
appropriate to describe the mesoscale evolution of an interacting multidroplet system.
To conclude, it is hoped that the numerical approach presented here may open the way
to an experimental-scale modelling of soft flowing crystals, promising new chances
to decode the complexity which characterizes this fascinating state of flowing matter.
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