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A COMPARISON OF CATEGORICAL AND TOPOLOGICAL
ENTROPIES ON WEINSTEIN MANIFOLDS

HANWOOL BAE and SANGJIN LEE

Abstract. Let W be a symplectic manifold, and let φ :W →W be a symplectic

automorphism. This automorphism induces an auto-equivalence Φ defined on

the Fukaya category of W. In this paper, we prove that the categorical entropy

of Φ provides a lower bound for the topological entropy of φ, where W is a

Weinstein manifold and φ is compactly supported. Furthermore, motivated by

[cCGG24], we propose a conjecture that generalizes the result of [New88, Prz80,

Yom87].

§1. Introduction

1.1 Introduction

Let W be a Weinstein manifold equipped with a compactly supported, exact symplectic

automorphism φ. The pair (W,φ) forms a discrete dynamical system. In this paper, we

compare two invariants of this dynamical system.

The first invariant is the topological entropy. This concept was introduced in the 1960s

for compact spaces and extended to noncompact spaces in the 1970s. See [2], [32], [33]. For

readers unfamiliar with dynamical systems, the books [12], [34], [44] are excellent references.

Let htop(φ) denote the classical invariant associated with (W,φ).

Recently, [18] introduced the concept of categorical entropy for a pair (C,Φ), where

C is a triangulated category and Φ : C → C is an auto-equivalence. In our setting, the

dynamical system (W,φ) induces a categorical dynamical system (C,Φ) of symplectic-

topological nature. Specifically,

• the (triangulated closure of the) wrapped Fukaya category W(W ) of a Weinstein manifold

W is a triangulated category, and

• the exact symplectic automorphism φ induces an auto-equivalence Φ :W(W )→W(W ).

This construction gives rise to the second invariant of the symplectic dynamical system

(W,φ): the categorical entropy of (W(W ),Φ). Let hcat(φ) denote this invariant, which we

refer to as the categorical entropy of φ.

Since both entropies are invariants of the same dynamical system, it is natural to compare

them. In this paper, we establish the inequality:

hcat(φ)≤ htop(φ). (1.1)

Remark 1.1.

1. [35], [38] studied the comparison of these two entropies in an algebro-geometric setting.

In particular, [35] considered a pair (X,φ), where X is a smooth projective variety, and

φ is a surjective endomorphism of X. Here, φ induces an auto-equivalence Φ on the
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2 H. BAE AND S. LEE

derived category of coherent sheaves. The induced categorical dynamical system defines

the categorical entropy of φ. In this context, [35] proved the equality hcat(Φ) = htop(φ).

2. In the symplectic-geometric setting, [9] proved the inequality hcat(φ)≤ htop(φ) in specific

cases.

Before presenting formal statements of our results, we provide additional context, par-

ticularly references that explore the relationship between symplectic-topological invariants

and the topological entropy of symplectic dynamical systems. The symplectic-topological

invariants we focus on here are Floer-theoretic invariants, as Lagrangian Floer theory plays

a key role in connecting categorical and topological entropy in this work. However, there

are numerous other significant results in the study of symplectic dynamical systems; see,

for example, [3]–[5], [16], [17], [46].

Floer theory produces various chain complexes and their homologies from symplectic

manifolds and associated data. For instance, given a symplectic manifoldX and a symplectic

automorphism φ :X →X, one can define the fixed-point Floer homology HF∗(φ
n) for each

n ∈ Z. When X is a compact surface and φ is a symplectomorphism of X, Fel’shtyn

[23] related the topological entropy of φ to the growth rate of dimHF∗(φ
n) as n → ∞.

Similarly, Frauenfelder and Schlenk [25], [26], as well as Macarini and Schlenk [39], observed

a connection between the growth rate of dimensions of Lagrangian Floer homology and the

topological entropy of the corresponding dynamical system.

In contact topology, a mathematical cousin of symplectic topology, it is known that the

topological entropy of Reeb flows is bounded below by the exponential growth rate of the

dimension of contact homology. For related results, see [1].

We note that the results cited above primarily relate the topological entropy to the

dimensions of Floer homology. More recently, leveraging ideas from topological data analysis

and the theory of persistence modules, researchers have begun to study the relationship

between the topological entropy of symplectic dynamical systems and the dimensions of

Floer chain complexes. For example, Cineli, Ginzburg, Gürel [13] explored the entropy of

Hamiltonian flows using these methods.

In this paper, whenW is a Weinstein manifold and φ is a compactly supported symplectic

automorphism, we relate the categorical entropy of φ to the growth of dimensions of

Lagrangian Floer homologies and the topological entropy of φ to the growth of dimensions

of Lagrangian Floer cochain complexes. Detailed statements of our results and an outline

of the methods will be presented in the next subsection.

1.2 Results

One of our main results is the inequality given in (1.1). A key reason why we have

an inequality instead of an equality in (1.1) is that hcat(φ) is invariant under compactly

supported Hamiltonian isotopy, whereas htop(φ) is not. In other words, if φ1 and φ2 are

Hamiltonian isotopic, then hcat(φ1) = hcat(φ2). This is because φ1 and φ2 induce the same

auto-equivalence on W(W ). However, htop(φ1) and htop(φ2) do not necessarily coincide.

Thus, one might expect the topological entropy to be more sensitive than the categorical

entropy, making the inequality in Theorem 1.2 plausible.

Theorem 1.2 (=Theorem 4.1). The categorical entropy of φ bounds the topological

entropy of φ from below, that is,

hcat(φ)≤ htop(φ).
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CATEGORICAL AND TOPOLOGICAL ENTROPIES 3

Sketch of Proof. Let C be a triangulated category with a generator G, and let Φ : C → C
be an auto-equivalence. By [18, Theorem 2.6], if C is smooth and proper, then

hcat(Φ) = lim
n→∞

dimHom(G,Φn(G)) . (1.2)

For the given dynamical system (W,φ), we note that the wrapped Fukaya categoryW(W )

of W is smooth but not necessarily proper. Thus, [18, Theorem 2.6] cannot be applied

directly.

However, a fully stopped partially wrapped Fukaya category is proper. Moreover, by

Lemma 2.10, the categorical entropies of φ on W(W ) and on a partially wrapped Fukaya

category are the same. Thus, Equation (1.2) holds if Hom refers to the morphism space in

a fully stopped partially wrapped Fukaya category.

To complete the proof, we show that the right-hand side of Equation (1.2) bounds htop(φ)

from below. The key idea is to apply Crofton’s inequality (3.3), introduced in Lemma 3.4.

(Note that the inequality in (3.3) is a modification of [13, Lemma 5.3]. For additional

context, see Remark 3.5.)

Specifically, let L1 =G and L2 = φn(G), where G is a generator of a partially wrapped

Fukaya category and n ∈ Z≥1. Then, combining (1.2) and (4.2), we conclude that the

exponential growth of the left-hand side of (3.3) bounds the categorical entropy of φ from

above, while the exponential growth of the right-hand side bounds the topological entropy

of φ from below. See Lemma 3.4 and Section 4 for details.

For the categorical entropy of φ, we primarily work with the wrapped Fukaya category

W(W ). However, there exists another triangulated category associated with W : the

compact Fukaya category F(W ) (or its triangulated closure). This raises the question:

why do we choose W(W ) over F(W )?

The reasons are as follows:

• It is well-known that W(W ) admits a Lagrangian generator. For F(W ), the existence of

a Lagrangian generator is not known in general for arbitrary W.

• W(W ) is a smooth category, while F(W ) is not necessarily smooth. Thus, [18, Theorem

2.6] cannot be applied to F(W ).

Nevertheless, if assumptions are added to resolve these issues, one could expect inequality

(1.1) to hold for F(W ) as well. With this perspective, we prove Theorem 1.3.

Theorem 1.3 (=Theorem 6.3). Let (W,φ : W → W ) satisfy the hypotheses in

Lemma 6.2. Let ΦF(W ) denote the functor induced by φ on the compact Fukaya category

F(W ). Then the categorical entropy hcat(ΦF(W )) bounds the topological entropy of φ from

below:

hcat(ΦF(W ))≤ htop(φ).

1.3 Further questions

At the beginning of Section 1.2, we highlighted a reason why we expect the inequality

(1.1): categorical entropy cannot distinguish members of a Hamiltonian isotopic class,

whereas topological entropy can. Here, we present another philosophical reason for this

expectation.
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4 H. BAE AND S. LEE

To explain this reason, we review a property of topological entropy. By [40], [43], [50], it

is known that

htop(φ)

= sup
compact submanifold Y⊂W

(the exponential growth rate of Vol(φn(Y )) with respect to n) .

In other words, htop(φ) can be computed by taking the supremum over all submanifolds Y.

On the other hand, the categorical entropy of φ is only influenced by exact Lagrangian

submanifolds; other submanifolds do not contribute to the categorical entropy.

As a counterpart to the exponential growth rate of Vol(φn(Y )), we define another entropy,

called barcode entropy. This notion is a slight modification of the relative barcode entropy

introduced in [13]. By definition, barcode entropy is not an invariant of the dynamical

system (W,φ) but rather an invariant of (W,φ,L1,L2), where L1 and L2 are Lagrangian

submanifolds of W. We denote the barcode entropy for (W,φ,L1,L2) by hbar(φ;L1,L2). For

details, see Section 7.

With this definition, we establish Proposition 1.4.

Proposition 1.4 (=Propositions 7.6 and 7.7). For a pair of Lagrangians (L1,L2)

satisfying the conditions in Section 7,

hcat(φ)≤ hbar(φ;L1,L2)≤ htop(φ).

Based on Proposition 1.4 and the preceding discussion, we ask whether the following

equations hold:

hcat(φ) = inf
L1,L2

hbar(φ;L1,L2),

htop(φ) = sup
L1,L2

hbar(φ;L1,L2).

1.4 Structure of the paper

The paper consists of six sections except Section 1. Section 2 reviews definitions and

preliminaries. Sections 3 and 4 prove the main theorem, that is, Theorem 1.2. Section 5

discusses two examples: the first example shows that the inequality (1.1) can be strict, and

the second example shows that categorical entropy could force topological entropy to be

positive. Section 6 considers the compact Fukaya category of W under some assumptions.

Section 7 is about the further questions described in Section 1.3.

§2. Preliminaries

In this section, we give some preliminaries on Lagrangian Floer theory and (partially)

wrapped Fukaya categories. Then we also introduce the notions of topological entropy and

categorical entropy.

2.1 Lagrangian Floer theory

Let Ŵ be aWeinstein manifold with a Liouville one form λ, which means that (Ŵ ,ω= dλ)

is a non-compact symplectic manifold such that the Liouville vector field Z, that is, Z is

a vector field on Ŵ characterized by ιZω = λ, is gradient-like with respect to a certain

Morse function on Ŵ . See [15] for a reference on Weinstein manifolds. Then, there exists a

Weinstein domainW whose completion is Ŵ . In other words, (W,ω|W = dλ|W ) is a compact
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symplectic submanifold with boundary of Ŵ of codimension 0, for which the Liouville vector

field points outward along the boundary ∂W , and Ŵ is obtained from W by gluing the

cylindrical end [1,∞)×∂W along ∂W , namely,

Ŵ =W ∪ ([1,∞)×∂W ) .

Furthermore, on the cylindrical end [1,∞)×∂W , the Liouville one form λ satisfies

λ|[1,∞)×∂W := rα

where r is the coordinate for [1,∞) and α := λ|∂W . We remark that ∂W is a contact

manifold with the contact form α. Furthermore, since the Liouville vector field Z does not

vanish outside a compact subset of Ŵ , we may consider the orbit space ∂∞Ŵ of the flow

of Z at infinity, which we will call the ideal boundary of Ŵ . One can deduce that ∂W is

naturally diffeomorphic to ∂∞Ŵ .

Remark 2.1. We would like to point out that for a given Weinstein manifold Ŵ , the

choice of a Weinstein domain W is not unique. It seems that the choice of W is related to

the construction of wrapped Fukaya category of Ŵ . For example, the notion of cylindrical

at ∞ depends on the choice of W, see Definition 2.2. However, it is well-known that the

choice of W does not change the Morita-equivalence class of the resulting wrapped Fukaya

category of Ŵ . In the current paper, in order to avoid unnecessarily confusion, we assume

that a Weinstein domain W is given and Ŵ is defined to be the completion of W.

To discuss the Floer theory of a pair of Lagrangian submanifolds of Ŵ , let J be an

almost complex structure on Ŵ that is compatible with the symplectic form ω = dλ and is

of contact type at ∞. The first condition means that the symplectic structure ω and the

almost complex structure J determine a Riemannian metric g on W given by

g(·, ·) = ω(·,J ·).

The latter condition means that the almost complex structure J maps the Liouville

vector field Z to the Reeb vector field associated with α on ∂W and preserves the

contact distribution, which is necessary to apply maximum principles to J -holomorphic

curves in Ŵ .

Definition 2.2. An exact Lagrangian submanifold L of (Ŵ ,ω) is cylindrical (at ∞) if

L and ∂W intersect transversely and

L∩ ([1,∞)×∂W ) = [1,∞)×L,

where L := L∩∂W .

For convenience, we will use the term “Lagrangian” instead of “exact Lagrangian

submanifold that is cylindrical at ∞”.

Let us assume that L1 and L2 are a transversal pair of Lagrangians in Ŵ . Since Li is an

exact Lagrangian submanifold, there is a primitive function

hi : Li → R,

such that λ|Li = dfi. Let us fix such a primitive function hi for each Lagrangian Li.

Let P(L1,L2) be the space of paths from L1 to L2 in Ŵ . We define the action functional

A=AL1,L2 : P(L1,L2)→ R (2.1)
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6 H. BAE AND S. LEE

by

A(γ) :=−
∫

γ∗λ−h1(γ(0))+h2(γ(1)),∀γ ∈ P(L1,L2).

Let us further equip the path space P(L1,L2) with the standard L2-metric induced by g.

Then it is straightforward to check that

• critical points of the action functional A are constant paths from L1 to L2, that is,

intersection points of L1 and L2, and

• gradient flows are given by strips

u : R× [0,1]→ Ŵ

satisfying

u(s,0) ∈ L1,u(s,1) ∈ L2,∀s ∈ R

and the J -holomorphic equation

∂su+J∂tu= 0,∀(s, t) ∈ R× [0,1].

The Lagrangian Floer complex CF ∗(L1,L2) is given by the Morse complex for the action

functional A=AL1,L2 . Indeed, for a given field k,

• CF ∗(L1,L2) is a graded k -vector space generated by intersection points L1∩L2, and

• the differential δ : CF ∗(L1,L2) → CF ∗+1(L1,L2) is defined by counting J -holomorphic

strips of index 1 between two intersection points of L1 and L2.

We call the resulting cohomology Lagrangian Floer cohomology between L1 and L2 and

denote it by HF ∗(L1,L2).

We would like to point out that the grading of the Floer cochain complex is not crucial

in our remaining arguments. We will just assume that one of the followings holds.

• either the Floer complex CF ∗(L1,L2) is Z/2-graded, which is always possible, or

• it is Z-graded assuming that

2c1(Ŵ ) = 0

and the Lagrangians L1 and L2 are graded in the sense of [45, Section 12].

Later in Section 7 where the grading is not important, we will usually denote the Floer

cochain complex just by CF (L1,L2) without the superscript ∗.

We remark that one can extend the action functional A (2.1) as a function defined on

CF ∗(L1,L2) as

A
( ∑

xi∈L1∩L2

aixi

)
=max{A(xi)|ai 	= 0} . (2.2)

We need the extended action functional A in Section 7.

2.2 Partially wrapped Fukaya category

Let W be a Weinstein domain and let (Ŵ ,ω = dλ) be the completion of W as in the

previous subsection. The purpose of this subsection is to provide a brief introduction of

partially wrapped Fukaya category associated with a stop of Ŵ , mainly focusing on the
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definition of morphism space. There are two good references [29], [47] for this topic. For

convenience, we stick to the description given in [47]. A stop Λ of Ŵ is a (possibly empty)

hypersurface with boundary of ∂W (or equivalently ∂∞Ŵ ) such that Λ becomes a Liouville

domain with the Liouville form λ|Λ.
Let Λ ⊂ ∂W = ∂∞Ŵ be a stop. The partially wrapped Fukaya category W(W,Λ) is an

A∞-category associated with the pair (W,Λ) whose objects are cylindrical Lagrangians L

of Ŵ equipped with additional structures such as gradings, relative pin structures and local

systems such that L∩∂W ∩Λ = ∅.
To define morphism spaces of W(W,Λ), we consider quadratic Hamiltonians H on Ŵ

that are compatible with the stop Λ in the sense of [47, Section 2.4]. Let us denote the set

of all such Hamiltonians on Ŵ by H(Ŵ ). For any Hamiltonian H on Ŵ , we denote the

corresponding Hamiltonian vector field by XH , that is, XH is a unique vector field on Ŵ

characterized by

ιXH
ω =−dH.

We further consider an almost complex structure J that is compatible with ω and is of

contact type as in the previous subsection.

Let L1 and L2 be Lagrangians that are allowed to be objects of W(W,Λ). For a

Hamiltonian H ∈H(Ŵ ), we define an action functional

AL1,L2,H : P(L1,L2)→ R (2.3)

by

AL1,L2,H(γ) =−
∫

γ∗λ+

∫ 1

0

H(γ(t))dt−h1(γ(0))+h2(γ(1)).

As done in the previous subsection, it is easy to check that

• critical points of the action functional AL1,L2,H are XH-chords from L1 to H2, where an

XH-chord from L1 to L2 means a path γ : [0,1]→ Ŵ satisfying γ(0) ∈ L1, γ(1) ∈ L2 and

γ̇(t) =XH(γ(t)), and

• gradient flows are given by Floer strips

u : R× [0,1]→ Ŵ

satisfying

u(s,0) ∈ L1,u(s,1) ∈ L2,∀s ∈ R

and the Floer equation

∂su+J(∂tu−XH(u)) = 0,∀(s, t) ∈ R× [0,1].

Let us denote by X (L1,L2;H) the set of all XH -chords from L1 to L2. There is a function

nΛ : X (L1,L2;H)→ Z≥0 defined by counting the intersection number of a given XH-chord

with the stop Λ. We take X0(L1,L2;H) to be n−1
Λ (0).
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8 H. BAE AND S. LEE

For a given field k, the partially wrapped Floer complex CW ∗
Λ(L1,L2) is defined as

follows.

• CW ∗
Λ(L1,L2) is a graded k -vector space generated by elements of X0(L1,L2;H), and

• the differential is defined by counting Floer strips of index 1 between two elements of

X0(L1,L2;H).

It can be shown as in [47] that this indeed defines a cochain complex. We call the resulting

cohomology the partially wrapped Floer cohomology between L1 and L2 with respect to

the stop Λ and denote it by HW ∗
Λ(L1,L2).

There are two particularly interesting cases of a stop. The first one is the case Λ = ∅. In
this case, the corresponding CW ∗

Λ(L1,L2) (resp. HW ∗
Λ(L1,L2)) is called the wrapped Floer

complex between L1 and L2 (resp. wrapped Floer cohomology between L1 and L2.) and

denoted by CW ∗(L1,L2) (resp. HW ∗(L1,L2)).

The second one is the case when the partially wrapped Floer complex (or more generally,

partially wrapped Fukaya category) is fully stopped. To be more precise, we define the notion

of full-stop.

Definition 2.3. A stop Λ is a full-stop if HW ∗
Λ(L1,L2) is of finite dimension for every

pair (L1,L2).

We would like to note two things. The first one is the reason why the notion of full-stop is

interesting. The reason is actually mentioned in Definition 2.3, that is, the morphism spaces

have finite dimensional homologies. Equivalently, we can simply say that the corresponding

partially wrapped Fukaya category is proper. This algebraic property plays a key role in

the current article. Then, a question naturally arises, which is the second one we would

like to note. The question asks the existence of full-stops. We note that for every Weinstein

manifold, the existence is guaranteed. For example, see [29, Section 8.6].

To complete an introduction of partially wrapped Fukaya category, we need to explain the

A∞-operations on it. Indeed, for a positive integer k, we call a disk with (k+1)-boundary

punctures a (k+1)-gon. We further label the boundary punctures with {1, . . . ,k+1 mod k+

2} and call the boundary component between ith and (i+1)-puncture the ith-boundary

component for 1 ≤ i ≤ k+1. For any collection (L1, . . . ,Lk+1) of Lagragians of W, the

A∞-operation

μk
Λ : CW ∗

Λ(Lk,Lk+1)⊗·· ·⊗CW ∗
Λ(L1,L2)→ CW ∗

Λ(L1,Lk+1)

is defined by counting rigid Floer (k+1)-gons, which map the ith boundary component to

Li and are asymptotic to an XH -chord from Li to Li+1 belonging to X0(Li,Li+1;H) at the

ith puncture for 1 ≤ i ≤ k and an XH -chord from L1 to Lk+1 at k+1-th puncture. Here

Lk+2 is defined to be L1 for simplicity. Especially the first operation μ1
Λ coincides with the

differential on the partially wrapped Floer complex up to sign. Then the operations μk
Λ’s

satisfy the A∞-relations as shown in [47].

The resulting A∞-category is the partially wrapped Fukaya category W(W,Λ) of the

pair (W,Λ). As done above, in the case Λ = ∅, the corresponding partially wrapped Fukaya

category is called the wrapped Fukaya category of W and denoted by W(W ). For future

use in this paper, we further define the compact Fukaya category F(W ) to be the full

subcategory of W(W ) generated by closed exact Lagrangian submanifolds of Ŵ .
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2.3 Topological entropy

Let X be a topological space and let φ : X → X be a continuous self-mapping defined

on X. The notion of topological entropy htop(φ) is defined in [2] for compact X and in [32],

[33] for non-compact X.

In particular, even though X is non-compact, if a continuous self-mapping φ :X →X is

compactly-supported and so its support is contained in a compact subspace X0 of X, then

the following equality holds

htop(φ|X0) = htop(φ).

Since we only consider the topological entropy of compactly-supported smooth self-

mappings on smooth manifolds in this paper, the above observation implies that it is

enough to consider the topological entropy of a smooth self-mapping on a compact smooth

manifold. Let X be a compact smooth manifold (with or without boundary) of dimension

n equipped with a Riemannian metric g in the rest of Section 2.3. Then the following is a

formulation of the topological entropy of a smooth map φ :X →X due to Dinaburg [19] and

Bowen [11].

Definition 2.4 (Dinaburg, Bowen).

1. Let Γk
φ denote the set of strings

Γk
φ :=

{(
x,φ(x), . . . ,φk−1(x)

)
∈Xk :=X×·· ·×X(k factors

}
.

2. An ε-cubes in Xk is a product of balls in X of radius ε.

3. For a subset Y ⊂Xk, CapεY is the minimal number of ε-cubes needed to cover Y.

4. The topological entropy of φ, denoted by htop(φ), is given by

htop(φ) := lim
ε→0

limsup
k→∞

1

k
logCapεΓ

k
φ.

Note that the htop(φ) in Definition 2.4 (4) does not depend on a specific choice of a

Riemannian metric g. See [11], [20] for more details on topological entropy.

We end this subsection by stating a property of topological entropy that plays a key role

in the proof of Lemma 3.4. For a C∞-submanifold Y ⊂X of dimension m, let

Γk
φ|Y :=

{(
y,φ(y), . . . ,φk−1(y)

)
∈Xk|y ∈ Y

}
.

We note that the product metric on Xk induces an m-dimensional volume form. Thus, we

can measure the volumes of Γk
φ|Y for all k. The following is a significant observation due to

Yomdin that the exponential growth rate of the volumes is a lower bound of htop(φ).

Theorem 2.5 (Yomdin). The topological entropy of φ is bounded by the exponential

growth rate of the volume of Γk
φ|Y , that is,

limsup
k→∞

1

k
logVol(Γk

φ|Y )≤ htop(φ).

See [30], [50] for the proof of Theorem 2.5.
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2.4 Categorical entropy

In this subsection, we introduce the notion of categorical entropy. This requires

preliminary knowledge on triangulated categories, split-generators, etc. We recommend [27],

[45] as a general reference on these. We start by introducing the notions of complexity and

categorical entropy, which are originally defined in [18].

Definition 2.6. Let C be a triangulated category with a split-generator G. Let Φ be

an auto-equivalence defined on C.

1. The complexity of E2 relative to E1 at t is a number in [0,∞] given by

δt(E1;E2) := inf

{
k∑

i=1

enit|
0 A1 A2

E1[n1] E1[n2]

. . .

Ak−1 E2⊕E′
2

E1[nk]

}
.

2. For a given t ∈ R, the categorical entropy of Φ at t is defined as

hcat(Φ; t) := lim
n→∞

1

n
logδt(G;Φn(G)) ∈ {−∞}∪R.

In the current paper, we only consider the case of t= 0.

Definition 2.7. Let Φ : C → C be an auto-equivalence defined on a triangulated

category C with a generator G. We define the categorical entropy of Φ as

hcat(Φ) := hcat(Φ;0).

Remark 2.8. We note that hcat(Φ) = hcat(Φ;0)≥ 0 by definition.

Let D be a fully faithful subcategory of C such that

• D is a triangulated category, and

• the restriction of Φ to D defines an auto-equivalence on D, that is, Φ(D)⊂D.

It is known that there exists a localization functor l

l : C → C/D.

See [21]. Then, Φ induces an auto-equivalence defined on C/D uniquely up to natural

transformations. More precisely, there exists a unique (up to natural transformation) dg

functor

ΦC/D : C/D → C/D,

satisfying

ΦC/D ◦ l = l ◦Φ.

To be clear, let us use the following notations ΦC,ΦD, and ΦC/D,

ΦC := Φ : C → C,ΦD := ΦC|D :D →D, and ΦC/D : C/D → C/D.

Then, [9, Theorem 3.8] compares the categorical entropies of ΦC,ΦD, and ΦC/D.

Lemma 2.9 [9, Theorem 3.10]. The categorical entropies of ΦC,ΦD,ΦC/D satisfy

hcat(ΦC/D)≤ hcat(ΦC)≤max{hcat(ΦD),hcat(ΦC/D)}.
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CATEGORICAL AND TOPOLOGICAL ENTROPIES 11

Let Ŵ be a Weinstein manifold. Then let W ⊂ Ŵ be an associated Weinstein domain and

let Λ be a stop in ∂W = ∂∞Ŵ . Let φ : Ŵ → Ŵ be a compactly supported exact symplectic

automorphism and. Then φ induces functors Φ : W(W ) → W(W ) and ΦΛ : W(W,Λ) →
W(W,Λ). Thanks to Lemma 2.9, one can compare hcat(Φ) and hcat(ΦΛ).

Lemma 2.10 [9, Theorem 1.2]. The induced functors Φ and ΦΛ have the same categorical

entropy, that is,

hcat(Φ) = hcat(ΦΛ).

Proof. We note that

W(W ) :=W(W,Λ)/D,

where D means the full subcategory of W(W,Λ) generated by all linking disks. Here

linking disks are certain cylindrical Lagrangian disks of Ŵ associated with Λ, for which

the intersection with the domain W can be chosen to lie arbitrarily close to Λ⊂ ∂W . See

[29, Section 5] for a definition of linking disk.

Since φ is compactly supported, the restriction of Φ on D is the identity functor. Thus,

the categorical entropy of Φ|D is zero.

We note that, as mentioned Remark 2.8,

hcat(Φ),hcat(ΦΛ)≥ 0.

By applying Lemma 2.9, one has

0≤ hcat(ΦΛ)≤ hcat(Φ)≤max{hcat(ΦΛ),0}= hcat(ΦΛ).

This completes the proof.

Remark 2.11. In Section 1, we used the notation hcat(φ) to denote hcat(Φ) where Φ

is the induced auto-equivalence on the wrapped Fukaya category of Ŵ . In the above, we

have seen that φ induces an auto-equivalence Φ on the wrapped Fukaya category W(W )

and an auto-equivalence ΦΛ on the partially wrapped Fukaya category W(W,Λ). In order

to avoid confusion, we let hcat(Φ) (resp. hcat(ΦΛ)) denote the categorical entropy of Φ on

W(W ) (resp. ΦΛ on W(W,Λ)).

§3. Crofton’s inequality

The goal of this section is to prove Lemma 3.4 which plays a key role in the proof

of Theorem 1.2. In order to prove Lemma 3.4, we construct a family of Lagrangian

submanifolds satisfying some conditions in Lemma 3.2. By using the family of Lagrangians,

we prove Lemma 3.4 in Section 3.2.

3.1 Lagrangian tomograph

Let (Ŵ ,dλ) be a Weinstein manifold and let W ⊂ Ŵ be a Weinstein domain in the rest of

this section. In many places of this paper, we consider pairs of Lagrangians in Ŵ satisfying

the following condition.

Definition 3.1. A pair of Lagrangians (L1,L2) in Ŵ is good if L1 and L2 are disjoint

in the cylindrical part, that is,

L1∩L2∩ ([1,∞)×∂W ) =∅.
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12 H. BAE AND S. LEE

For a good pair of Lagrangians, we construct a Lagrangian tomograph in Lemma 3.2.

The original construction of Lagrangian tomograph is given in [13, Section 5.2.3], and our

construction is a slight modification of the original one.

Lemma 3.2. Let (L1,L2) be a good pair of Lagrangians in Ŵ . Then, for any ε > 0

and sufficiently large d ∈ N, there is a sufficiently small δ > 0 and a family of Lagrangians

{Ls}s∈Bd
ε
, where Bd

ε is a d-dimensional closed ball of radius δ in the Euclidean space, such

that

(i) L1 and Ls are Hamiltonian isotopic to each other for all s ∈Bd
ε ,

(ii) dH(L1,L
s)< ε

2 for all s ∈Bd
ε , and

(iii) Ls and L2 intersect transversely for almost all s ∈Bd
ε .

We note that the radius of the ball Bd
ε in the above lemma is δ, not ε. The reason why

we use the notation is explained in Remark 3.3.

Before going further, we briefly review the notion of Hofer norm dH of a Hamiltonian

isotopy, which appears in the condition (ii) of Lemma 3.2. Let ϕ be a compactly supported

Hamiltonian isotopy. Then, the Hofer norm of ϕ is defined as

‖ϕ‖Hofer := inf
H

∫
S1

(max
M

Ht−min
M

Ht)dt,

where the infimum is taken over all 1-periodic, time-dependent Hamiltonian H generating ϕ.

Moreover, one can define the Hofer distance between two Hamiltonian isotopic Lagrangians

L and L′ as

dH(L,L′) := inf{‖ϕ‖Hofer|ϕ(L) = L′}.

Proof of Lemma 3.2.. Since (L1,L2) is a good pair, there is a submanifold W0 ⊂W of

codimension 0 whose closure is compact such that

L1∩L2 ⊂ Int(W0)⊂W0 ⊂ Int(W ),

where Int(W0) and Int(W ) denote the interiors of W0 and W, respectively. Then, we choose

a collection of real-valued functions

{g1, . . . ,gd|gi : L1 → R},

satisfying

(A) gi(x) = 0 if x ∈ L1 \W , and

(B) for all x ∈ L1∩W0, the cotangent fiber T ∗
xL1 is generated by {dgi(x)|i= 1, . . . ,d}.

For any s= (s1, . . . , sd) ∈ R
d, We set

fs : L1 → R,

x �→ s1g1(x)+ · · ·+sdgd(x).

We note that there is a small neighborhood U of L1 in Ŵ , which is symplectomorphic to

a small disk cotangent bundle of L1. We call U a Weinstein neighborhood of L1. Then for

s ∈ R
d such that ‖s‖ � 1, one can assume that the graph of dfs is embedded into Ŵ . Let

Ls be the embedded image of the graph of dfs in Ŵ . By the construction of Ls, (i) holds

obviously.

https://doi.org/10.1017/nmj.2025.3 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2025.3


CATEGORICAL AND TOPOLOGICAL ENTROPIES 13

Then, one can observe that (ii) holds for all s ∈ R
d sufficiently close to the origin. Let

δ > 0 be a sufficiently small number such that if ‖s‖ < δ, then (ii) holds. Let Bd
ε ⊂ R

d be

the ball of radius δ centered at the origin.

In order to prove (iii), we show that the following map Ψ is submersive at every point of

Ψ−1(L2):

Ψ :Bd
ε ×L1 → Ŵ , (3.1)

(s,x) �→ dfs(x).

In other words, if Ψ(s,x) ∈ L2 for some (s,x) ∈Bd
ε ×L1, we show that

DΨ(s,x) : T(s,x)

(
Bd

ε ×L1

)
� TsB

d
ε ⊕TxL1 → TΨ(s,x)Ŵ

is surjective. Then it will follow that Ls and L2 intersect transversely for almost all s ∈Bd
ε ,

that is, (iii) holds.

We equip Ŵ with a Riemannian metric g compatible with the Weinstein neighborhood of

L1 in the following sense. Indeed, note that any Riemannian metric gL1 on L1 determines a

natural Riemannian metric on its contangent bundle T ∗L1. Then identifying the Weinstein

neighborhood U with a disk subbundle of T ∗L1, we require that the restriction of g to U

coincides with the unique natural Riemmanian metric induced by the Riemannian metric

gL1 := g|L1 in the above sense. This is always possible.

Now let

� := min{d(x,y)|x ∈ L1∩ (W \ Int(W0)) ,y ∈ L2∩ (W \ Int(W0))} , (3.2)

where d(x,y) is the distance function with respect to the Riemannian metric g. Since both

L1 ∩ (W \ Int(W0)) and L2 ∩ (W \ Int(W0)) are compact and L1 ∩L2 ⊂ Int(W0), � is well-

defined and positive.

Consider the Riemannian metric on L1 given by the restriction of g. Let us denote by

‖·‖ the corresponding norm on T ∗
xL1. If the radius δ is sufficiently small, then ‖dfs(x)‖< �

for all (s,x) ∈Bd
ε ×W since gi’s are compactly supported. We assume that δ is sufficiently

small in this sense in the rest of the proof.

Now assume that Ψ(s,x)∈L2 for some (s,x)∈Bd
ε ×L1. If Ψ(s,x)∈ Ŵ \W , then Ψ(s,x)∈

L1 since gi’s are assumed to be zero over Ŵ \W by (A). This contradicts to the assumption

L1 ∩L2 ⊂W0 ⊂W . Otherwise, if Ψ(s,x) ∈W \ Int(W0), then d(Ψ(s,x),x) = ‖dfs(x)‖ < �,

which follows from our choice of the Riemannian metric g. But, this contradicts to Equation

(3.2).

The above paragraph shows that if Ψ(s,x)∈L2, then Ψ(s,x)∈W0, that is, L
s∩L2 ⊂W0.

By the assumption (B), this means that Ψ is submersive at every point in Ψ−1(L2).

Remark 3.3. We also note that the the radius δ of Bd
ε in Lemma 3.2 is determined by

�,ε, and the collection {g1, . . . ,gd}. Among these factors, we would like to emphasize the

effect of ε since in Section 7, we will vary ε and observe the effect to define the notion of

barcode entropy. It is the reason why we use the notation Bd
ε .

3.2 Crofton’s inequality

In Section 3.2, we prove Lemma 3.4, that is, a Crofton type inequality, which plays a key

role in the proof of Theorem 1.2.
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14 H. BAE AND S. LEE

In order to state Lemma 3.4, we need some preparation. For s ∈ Bd
ε such that Ls � L2,

let

N(s) := |Ls∩L2|.

Then, N(s) is finite for almost all s ∈Bd
ε . Moreover, N(s) is an integrable function on Bd

ε .

Since Bd
ε ⊂R

d, Bd
ε carries the standard Euclidean metric. Let ds be the volume form on

Bd
ε induced by the Euclidean metric.

Let

E := Ψ−1(W0).

Then, let us fix a metric gE on E such that the restriction of DΨ to the normals to

Ψ−1(y),y ∈W is an isometry. Since Ψ is a proper submersion, Ψ is a locally trivial fibration

by Ehresmann’s fibration theorem [22]. Thus, the existence of such a metric is guaranteed.

Now, we state Lemma 3.4.

Lemma 3.4. The following inequality holds:∫
Bd

ε

N(s)ds≤ C ·Vol(L2∩W ), (3.3)

where C is a constant depending only on Ψ,ds, the fixed metric g on Ŵ , and the fixed metric

gE on E.

Proof. Let Σ :=Ψ−1(L2∩W ). Then, by definition, for all s ∈Bd
ε such that Ls � L2, one

has

|(s×L1)∩Σ|= |Ls∩L2|=N(s).

Note that in the proof of Lemma 3.2, we have

Ls∩L2 ⊂W0 ⊂W,

by choosing a sufficiently small Bd
ε .

We recall that Bd
ε carries the Euclidean metric and L1 also carries a metric g|L1 . Thus,

Bd
ε ×L1 carries a product metric. On E, the restriction of the product metric gives another

metric that does not need to be the same as gE .

Let π : E ↪→Bd
ε ×L1 →Bd

ε be the projection to the first factor. Then, if Vol1(·) denotes
the volume with respect to the product metric on E, one has∫

Bd
ε

N(s)ds=

∫
Bd

ε

|(s×L1)∩Σ|ds=
∫
Σ

π∗ds≤Vol1(Σ). (3.4)

Let Vol(·) (resp. Vol2(·)) denote the volume with respect to the fixed metric g (resp. gE)

on W (resp. E ). Then, by Fubini theorem, one has

Vol2(Σ) =

∫
L2∩W

Vol2
(
Ψ−1(y)

)
dy|L2 ≤ max

y∈Ψ(E)
Vol2

(
Ψ−1(y)

)
·Vol(L2∩W ). (3.5)

We note that since E is compact,

Vol1(Σ)≤ C0 ·Vol2(Σ), (3.6)

where C0 is a constant depending only on gE and the product metric on E.
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By combining Equations 3.4–3.6, one concludes that∫
Bd

ε

N(s)ds≤ C ·Vol(L2∩W ),

where C is a constant depending only on Ψ,ds,g, and gE .

Remark 3.5. We note that Lemma 3.4 is a slight modification of [13, Lemma 5.3]. The

original Crofton’s inequality is proven in [6], [7]. The reader can find additional context on

Crofton’s inequality in [13, Section 5.2.1], especially after [13, Remark 5.4], and in references

therein.

§4. Categorical vs topological entropy

In this Section, we prove our main theorem comparing categorical and topological

entropy. To be more precise, let (Ŵ ,dλ) be a Weinstein manifold and let W ⊂ Ŵ be an

associated Weinstein domain. Let φ : Ŵ → Ŵ be a compactly supported exact symplectic

automorphism of Ŵ . Let Φ :W(W )→W(W ) denote the functor induced by φ. Then, we

prove Theorem 4.1.

Theorem 4.1 (=Theorem 1.2). The categorical entropy of Φ bounds the topological

entropy of φ from below, that is,

hcat(Φ)≤ htop(φ).

Proof. In order to prove Theorem 4.1, we recall that every Weinstein manifold Ŵ admits

a Lefschetz fibration π : Ŵ →C by [28]. Then, π defines a Fukaya-Seidel category. Moreover,

it is known by [29] that the corresponding Fukaya–Seidel category is the partially wrapped

Fukaya category with the stop Λ = π−1(−∞). Also, it is known that the Lefschetz thimbles

of π generate W(W,Λ). Let G denote the generating Lagrangian submanifold.

We note that wrapping a Lagrangian G means taking a time-t flow of a Hamiltonian

vector field XH for positive time t, where H : Ŵ =W ∪ ([1,∞]×∂W )→R is a Hamiltonian

function satisfying the following:

H(x) =

{
0 if x ∈W,

r if x= (r,p) ∈ [1+ ε0,∞]×∂W with 0< ε0 � 1.

Since W(W,Λ) is fully stopped, there exists a positive number t0 such that the time-t0 flow

of XH , denoted by ϕ0, satisfies that

(A) (ϕ0(G),φn(G)) is a good pair for all n ∈ N, and

(B) HWΛ (G,φn(G)) =HF (ϕ0(G),φn(G)) for all n ∈ N.

See Figure 1.

For a given n ∈N, we apply Lemma 3.2 for the good pair of Lagrangians (ϕ0(G),φn(G)).

Then, there exists a family of Lagrangian {Ls}s∈Bd
ε
such that

(i) ϕ0(G) and Ls are Hamiltonian isotopic to each other for all s ∈Bd
ε ,

(ii) dH(ϕ0(G),Ls)< ε
2 , and

(iii) Ls � φn(G) for almost all s ∈Bd
ε .

We note that one can find a family {Ls}s∈Bd
ε
which does not depend on n. To be more

precise, we remark that in the proof of Lemma 3.2, the construction of {Ls}s∈Bd
ε
depends
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16 H. BAE AND S. LEE

Figure 1.

The interior of the black dotted circle is the base of a Lefschetz fibration π. The star marked points are the

singular values and the black dot is −∞. We note that the stop Λ is given by Λ = π−1(−∞). One can

choose G such that π(G) is the union of all black curves. Similarly, π (ϕ0(G)) is the union of all red curves.

Let π(W ) be contained in the interior of blue dotted circle. Then, (ϕ0(G),φn(G)) is a good pair for all

n ∈ Z.

only on ε, a collection of functions {g1, . . . ,gd}, and � in Equation (3.2). Since ε is a fixed,

sufficiently small positive number, ε is independent of n. Similarly, {g1, . . . ,gd} is a collection

of functions not depending on n.

We recall that in order to define the value � in Equation (3.2), we had to fix W0 ⊂W

such that

W0 ⊂ Int(W ) and ϕ0(G)∩φn(G)⊂ Int(W0).

Without loss of generality, one can assume that W0 not only satisfies the above two

conditions, but also contains the support of φ. Then, outside of W0, φ
n1(G) and φn2(G)

agree for all ni ∈ N. Thus, � in Equation (3.2) does not depend on n.

Since we have a family {Ls}s∈Bd
ε
not depending on n, one can define the following function

Nn(s) := |Ls∩φn(G)|.

We point out that for each n ∈ N, Nn(s) is an integrable function because of (iii).

By applying Lemma 3.4, we have∫
Bd

ε

Nn(s)ds≤ C ·Vol(φn(G)∩W ) . (4.1)

We note that the constant C in (4.1) is independent of n.

On the other hand, for s ∈Bd
ε such that Ls and φn(G) intersect transversely, we have

dimHWΛ (G,φn(G)) = dimHF (ϕ0(G),φn(G)) = dimHF (Ls,φn(G))≤Nn(s). (4.2)
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The first equality holds because of (B), the second equality holds because of (i), and the

last inequality holds because of the definition of Lagrangian Floer homology.

Since (4.2) holds for almost every s ∈Bd
ε , by integrating Equation (4.2), we have

Vol(Bd
ε ) ·dimHWΛ (G,φn(G)) =

∫
Bd

ε

dimHWΛ (G,φn(G))ds≤
∫
Bd

ε

Nn(s)ds. (4.3)

From two inequalities (4.1) and (4.3), one has

Vol(Bd
ε ) ·dimHWΛ (G,φn(G))≤ C ·Vol(φn(G)∩W ) . (4.4)

By taking limsupn→∞
1
n log+ for the both hand sides of (4.4), one has

hcat (ΦΛ :W(W,Λ)→W(W,Λ)) = limsup
n→∞

1

n
logdimHWΛ (ϕ0(G),φn(G)) (4.5)

≤ limsup
n→∞

1

n
logVol(φn(G)∩W ) .

The first equality in Equation (4.5) holds because of [18, Theorem 2.6] and becauseW(W,Λ)

is smooth and proper.

Lemma 2.10 says that

hcat(Φ) = hcat(ΦΛ).

Also the following holds by Theorem 2.5,

limsup
n→∞

1

n
logVol(φn(G)∩W )≤ htop(φ). (4.6)

Then, (4.5) and (4.6) complete the proof.

Remark 4.2.

1. In the proof of Theorem 4.1, we fix a Lefschetz fibration, and we use the corresponding

Fukaya-Seidel category. We note that if one fixes a fully stopped partially wrapped

Fukaya category instead of a Fukaya–Seidel category, the same proof still works.

2. A direct application of Theorem 4.1 is to show that the topological entropy of some

symplectic automorphisms are positive. For example, [31, Theorem 1.2] shows that

symplectic automorphisms of a specific type, defined on the Milnor fibers of An-

type, admit positive topological entropy. For the symplectic automorphisms which [31]

considers, one can check that their categorical entropy are positive by [9, Theorem

7.14 and Lemma 8.5]. Then, Theorem 4.1 guarantees that the topological entropy is

also positive. We note that [31] shows their result by showing that the symplectic

automorphisms have certain form of nonuniform hyperbolicity.

§5. Examples

In this section, we provide two examples. The first example is a symplectic automorphism

for which the inequality (1.1) is strict. The second example shows that categorical entropy

can be strictly greater than the spectral radius of its induced map on the homology.
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18 H. BAE AND S. LEE

5.1 The first example

Let W be a 2-dimensional Weinstein domain such that W 	= D
2. It is well-known that

its wrapped Fukaya category is generated by the Lagrangian cocores, see [14], [29]. This

ensures that the categorical entropy of an endo-functor on W(W ) is well-defined.

Let U be a small open ball in W. It is well-known that there is a Hamiltonian

diffeomorphism φ̃ : U → U defined on the closure of U such that

• φ̃ is the identity near the boundary of U , and

• φ̃ has a positive topological entropy.

Smale’s horseshoe map is an example of such φ̃.

Since φ̃ is assumed to be the identity near the boundary of the closure of U, it admits

a trivial extension to the whole Weinstein domain W, which we will call φ. Since φ is a

compactly supported Hamiltonian diffeomorphism, if we let Φ be its induced functor on

W(W ) as above, then we have

hcat(Φ) = 0< htop(φ̃= φ|U )≤ htop(φ).

Hence φ is an example showing that the inequality (1.1) can be strict.

5.2 The second example

Let φ : Ŵ → Ŵ be a compactly supported exact symplectic automorphism of a Weinstein

manifold Ŵ . Let φ∗ : H∗(Ŵ ) → H∗(Ŵ ) be the linear map on the homology of Ŵ that φ

induces. We define the spectral radius of φ as the maximal absolute value of eigenvalues

of φ∗. Let Rad(φ) denote the spectral radius of φ. It is a well-known fact due to Yomdin

[50] that logarithm logRad(φ) of the spectral radius is a lower bound of htop(φ). We refer

the reader to [30], [50] for more details. Since Theorem 4.1 gives another lower bound of

htop(φ), that is, hcat(Φ), one can ask the relationship between two lower bounds of htop(φ).

In this subsection, first, we give an example of φ such that

logRad(φ) = 0< hcat(φ).

The example shows that the categorical entropy could be an useful tool for proving positivity

of topological entropy of symplectomorphisms. After introducing the example, we also

introduce a construction of symplectomorphisms having positive topological entropy.

To introduce the example, let A and B be n-dimensional spheres. Then let Ŵ be the

plumbing of the cotangent bundles T ∗A and T ∗B at a point. In other words, Ŵ is the

Milnor fiber of A2-type.

Let τA and τB be the Dehn twist defined on W along A and B, respectively. Let us

consider the symplectic automorphism on Ŵ given by

φ= τA ◦ τ−1
B .

Now observe that the homology of Ŵ is given by

H∗(Ŵ ) =

⎧⎪⎨⎪⎩
Z〈[pt]〉 ∗= 0,

Z〈[A], [B]〉 ∗= n,

0 otherwise.
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Since φ induces the trivial map on the zeroth homology H0(Ŵ ), it is enough to consider

its induced map on the n-dimensional homology Hn(Ŵ ) to compute Rad(φ∗).

For that purpose, we consider the induced map of τA and τB on Hn(Ŵ ) separately.

1. (τA)∗([A]) = (−1)n−1[A].

2. (τA)∗([B]) = [A]+ [B].

3. (τB)∗([A]) = [A]+ (−1)n[B].

4. (τB)∗([B]) = (−1)n−1[B].

In other words, (τA)∗ and (τB)∗ are represented by the matrices

(τA)∗ =

(
(−1)n−1 1

0 1

)
and (τB)∗ =

(
1 0

(−1)n (−1)n−1

)
,

respectively.

Consequently, the map φ∗ = (τA)∗ ◦ (τ−1
B )∗ is represented by(

(−1)n−1 1

0 1

)(
1 0

(−1)n (−1)n−1

)−1

=

(
(−1)n−1 1

0 1

)(
1 0

1 (−1)n−1

)
=

(
1+(−1)n−1 (−1)n−1

1 (−1)n−1

)
.

Let us now assume that n is even. Then the above matrix is(
0 −1

1 −1

)
.

A straightforward computation shows that its eigenvalues are

−1+
√
3i

2
and

−1−
√
3i

2
.

Hence the spectral radius of φ∗ is∣∣∣∣∣−1+
√
3i

2

∣∣∣∣∣=
∣∣∣∣∣−1−

√
3i

2

∣∣∣∣∣= 1.

On the other hand, [10, Theorem 1.5] says that the categorical entropy of the induced

map of φ on the wrapped Fukaya category is the same as its stretching factor. Moreover,

one can easily compute the stretching factor of φ by employing the techniques in [10], and

the stretching factor of the given example φ is

3+
√
5

2
.

We note that the detailed computation could be found in [10, Section 11.1].

Finally, we can prove that φ has positive topological entropy even though the spectral

radius of φ is 1, since

logRad(φ) = 0<
3+

√
5

2
= hcat(Φ)≤ htop(φ).

We would like to note that the above example φ is a symplectic automorphism constructed

by a construction introduced in [37]. We introduce the construction given in [37] and prove
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that if a symplectic automorphism ψ is compactly supported Hamiltonian isotopic to any

symplectic automorphism φ constructed in [37], then ψ has positive topological entropy.

The following is the construction given in [37] with a technical condition.

Definition 5.1. Let M be a symplectic manifold and φ : M → M be a symplectic

automorphism. We call that φ is of Penner type if there exist two collections of Lagrangian

spheres in M,

{α1, . . . ,αs} and {β1, . . . ,βt}

satisfying the following conditions:

(i) φ is a product of positive powers of τi and negative powers of σj where τi and σj are

generalized Dehn twists along αi and βj , respectively.

(ii) {α1, . . . ,αs} and {β1, . . . ,βt} are pair-wisely disjoint collections of Lagrangian spheres

and αi and βj are transverse to each other.

(iii) Let G be a graph such that

• whose vertex set is {α1, . . . ,αs,β1, . . . ,βt} and

• two vertices v,w ∈ {α1, . . . ,αs,β1, . . . ,βt} are connected by k edges if the number of

intersection points of two Lagrangian spheres is k, that is, |v∩w|= k.

Then, the graph G is a tree.

Remark 5.2. We remark that Definition 5.1 is motivated from Penner’s construction

of pseudo-Anosov surface mapping classes, introduced in [41]. One can easily see that two

conditions (i) and (ii) of Definition 5.1 are generalizations of the original construction of

Penner. The third condition (iii) is a technical condition which we need, in order to employ

the result of [10]. However, we expect that the technical condition could be removed. More

details will be mentioned in Remark 5.4.

Now, we prove the main result of the present subsection.

Theorem 5.3. Let M be a symplectic manifold of dimension ≥ 6. If a symplectic

automorphism φ :M →M is of Penner type, then

htop(φ)> 0.

Proof. We note that any Penner type φ is compactly supported by Definition 5.1.

Moreover, the compact support of φ is given as a small neighborhood of

∪αi

⋃
∪βj .

Thanks to Weinstein’s neighborhood theorem [49], we could assume that the compact

support is a subset of a plumbing space P of T ∗Sn where n is the dimension of the

Lagrangian spheres. Moreover, the plumbing pattern of P is determined by the intersection

pattern of αi and βj . Thus, the plumbing pattern is the graph G defined in 5.1 (iii).

Simply, we have

compact support of φ⊂ P.

Now, we can consider a symplectic automorphism φ0 : P → P , which is a natural extension

of the restriction of φ on the compact support. Then, we have that the topological entropy

of φ and φ0 coincide. Thus, it is enough to show that hcat(Φ0)> 0.
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Note that the domain of φ0 is a plumbing space P whose plumbing pattern is a tree.

Thus, we can employ the results of [10]. Finally, [10, Theorems 1.5 and 7.1] proves that

hcat(Φ0)> 0.

Remark 5.4. We end this subsection with remarks on Theorem 5.3 and

Definition 5.1 (iii).

1. We note that the proof of Theorem 5.3 used the results in [10] without details. We

want to simply explain the idea of [10] before moving on to the next section. The

main result of [10] is to show that if φ is of Penner type, then φ induces a functor on

Fukaya category having simple asymptotic behavior. In other words, Φn has a simple, in

a categorical sense, behavior as n→∞. It is expected by [37] that shows a simple, in

a geometric sense, asymptotic behavior of φ. To prove the simple asymptotic behaviors

of Penner type symplectic automorphisms, [10], [37] generalized the notion of measured

train track and linear algebras on it in geometric and categorical senses. For more details

on measured train tracks, we refer the reader to [24]

2. As mentioned in Remark 5.2, Definition 5.1 (iii) is a technical condition. We note that

thanks to the technical condition, we can guarantee that the plumbing pattern of P

in the proof of Theorem 5.3 is a tree. Then, since there exist known generators of the

compact Fukaya category of P, we can employ the techniques in [10].

However, we expect that one can choose specific generators of compact Fukaya

category of any plumbing space. This is an ongoing project of the second-named author,

together with Wonbo Jeong and Dogancan Karabas. After fixing generators of compact

Fukaya category of a general plumbing space, we expect that the result of [10] could

be generalized on a general plumbing space. And, it allows us to drop the technical

condition, that is, Definition 5.1 (iii).

§6. The case of compact Fukaya category

As mentioned in the introduction, we prove that a variant of Theorem 4.1 holds for

compact Fukaya category under an additional assumption. Let (Ŵ ,dλ) be a Weinstein

manifold and let W ⊂ Ŵ be an associated Weinstein domain. The assumption we consider

is a kind of “duality” between compact and wrapped Fukaya categories of W. We start

Section 6 by giving a specific example satisfying the “duality”.

Let T be a tree and let Pn(T ) be the plumbing of the cotangent bundles of T ∗Sn along

T as in [9]. For each vertex v of T, let Sv be the Lagrangian sphere in Pn(T ) corresponding

to v, and let Lv be the Lagrangian cocore disk corresponding to v. This means that the

Lagrangian spheres Sv and the Lagrangian cocore disks Lv intersect transversely and that

the intersection numbers between those are given by

|Sv ∩Lw|=
{
1 v = w,

0 otherwise.

We note that [9] compares the categorical entropies on compact and wrapped Fukaya

categories of Pn(T ) by using [8, Lemma 2.5] and the above Lagrangians {Sv} and {Lv}.
Motivated by this, we will assume the following in this subsection.

Assumptions 6.1. There exists a finite collection of exact, closed Lagrangians {Si}i∈I

of Ŵ indexed by some set I such that
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1. the direct sum S =⊕i∈ISv split-generates the compact Fukaya category F(W ) in such

way that every exact, closed Lagrangian L of Ŵ is quasi-isomorphic to a twisted complex

for L with components {Si}, in which none of the arrows are nonzero multiples of the

identity morphisms, and

2. there exists another collection of Lagrangians {Li}i∈I of Ŵ , each of which intersects

Si ∈ I transversely and satisfies

|Si∩Lj |=
{
1 i= j,

0 otherwise.

Let S =
⊕

i∈I Si and L =
⊕

i∈I Li. Let us denote by ΦF(W ) the auto-functor on F(W )

induced by φ. Then, since the arguments in [9, Lemma 6.5 and Theorem 6.6] continue to

work under Assumption 6.1, we have Lemma 6.2.

Lemma 6.2. For any exact, compactly-supported symplectic automorphism φ on a

Weinstein manifold Ŵ , if Ŵ satisfies Assumption 6.1, then

hcat(ΦF(W )) = lim
n→∞

1

n
logdimHF ∗(φn(S),L).

Theorem 6.3. Let a pair (Ŵ ,φ : Ŵ → Ŵ ) be as in Lemma 6.2. Then the categorical

entropy hcat(ΦF(W )) for its induced functor on the compact Fukaya category F(W ) bounds

the topological entropy of φ from below, that is,

hcat(ΦF(W ))≤ htop(φ).

Proof. Basically, most arguments in the proof of Theorem 4.1 can be applied to this

case. Indeed, for n ∈ N, we once again apply Lemma 3.2 to the pair (S,φ−n(L)) to get a

family of Lagrangians {Ss}s∈Bd
ε
such that

(i) S and Ss are Hamiltonian isotopic to each other for all s ∈Bd
ε ,

(ii) dH(S,Ss)< ε
2 , and

(iii) Ss � φ−n(L) for almost all s ∈Bd
ε .

As mentioned in the proof of 4.1, one can find such a family {Ss}s∈Bd
ε
, for which the third

condition (iii) holds for all n ∈ N.

Then we consider the following function

Nn(s) := |Ss∩φ−n(L)|.

By applying Lemma 3.4 once again, we have∫
Bd

ε

Nn(s)ds≤ C ′ ·Vol
(
φ−n(L)∩W

)
. (6.1)

for some constant C ′ which does not depend on n.

On the other hand, for Ss � φ−n(L), we have

dimHF (φn(S),L) = dimHF
(
S,φ−n(L)

)
= dimHF

(
Ss,φ−n(L)

)
≤Nn(s). (6.2)

The above inequality holds since S and Ss are Hamiltonian isotopic.
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By integrating Equation (6.2), one has

Vol(Bd
ε ) ·dimHF (φn(S),L) =

∫
Bd

ε

dimHF (φn(S),L)ds≤
∫
Bd

ε

Nn(s)ds. (6.3)

From two inequalities (6.1) and (6.3), one has

Vol(Bd
ε ) ·dimHF (φn(S),L)≤ C ′ ·Vol(φn(G)∩W ) . (6.4)

By taking limsupn→∞
1
n log for the both hand sides of (6.4) and using Lemma 6.2, one has

hcat(ΦF(W )) = limsup
n→∞

1

n
logdimHF (φn(S),L) (6.5)

≤ limsup
n→∞

1

n
logVol

(
φ−n(L)∩W

)
.

Here the latter is again bounded above by htop(φ) due to Theorem 2.5. Therefore, (6.5)

proves the assertion.

§7. Barcode entropy

In this section, we define another entropy, called barcode entropy. As mentioned in

Section 1.2, the notion of barcode entropy is the same as the relative barcode entropy defined

in [13]. At the end of Section 7, we give further questions related to categorical, topological,

and barcode entropies.

7.1 Preliminaries

In this subsection, we review the theory of persistence modules, and we apply it to

Lagrangian Floer homology. We refer the reader to [42], [48] for the theory of persistence

modules. Also, we refer the reader to [13] for the details we omitted in the current subsection.

The notion of non-Archimedean norm on a vector space is defined in [48, Definition

2.2]. It is easy to check that A in (2.2) is a non-Archimedean norm on the k -vector space

CF (L1,L2). Moreover, CF (L1,L2) is orthogonal with respect to A.

Now, we are ready to apply [48, Theorem 3.4] for the differential

δ : CF (L1,L2)→ CF (L1,L2).

Since δ is a linear self-mapping of an orthogonal vector space CF (L1,L2), one obtains a

basis Σ = {αi,βj ,γj} of CF (L1,L2) satisfying

1. ∂αi = 0,

2. ∂γj = βj , and

3. A(γ1)−A(β1)≤A(γ2)−A(β2)≤ . . . .

By using the above, we define the followings.

Definition 7.1.

1. A bar of CF (L1,L2) is either αi or a pair (βj ,γj).

2. The length of a bar b is given by

the length of b=

{
∞ if b= αi,

A(γj)−A(βj) otherwise.
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3. Let bε(L1,L2) be the number of bars of CF (L1,L2) whose lengths are greater than or

equal to ε.

Remark 7.2. We note that A is unique up to constant. More precisely, for an exact

Lagrangian Li, a choice of primitive function hi : Li → R is not unique, but unique up

to constant. Thus, it is easy to show that the length of bars depends only on Li and

independent of the choice of primitive function hi : Li → R.

By Definition 7.1, Lemma 7.3 is obvious.

Lemma 7.3. Let L1 and L2 be a transversal pair of Lagrangians. Then, for any ε≥ 0,

bε(L1,L2)≤ b0(L1,L2)≤ |L1∩L2|.

It is well-known that bε is insensitive to small perturbations of the Lagrangians with

respect to the Hofer distance. More precisely, Lemma 7.4 holds.

Lemma 7.4. Let L′
1 be a Lagrangian satisfying

• L′
1 and L1 are Hamiltonian isotopic to each other,

• dH(L1,L
′
1)<

δ
2 with δ < ε, and

• L′
1 and L2 are transversal to each other.

Then,

bε+δ(L
′
1,L2)≤ bε(L1,L2)≤ bε−δ(L

′
1,L2).

Proof. See [13, Equations (3,13) and (3,14)]. We also refer the reader to [36], [42], [48].

Now, we extend the barcode counting function bε(L1,L2) to a good pair (L1,L2) defined

in Definition 3.1. For a good pair, we set

bε(L1,L2) := liminf
dH(L2,L′

2)→0
bε(L1,L

′
2),

where the limit is taken over Lagrangians L′
2 such that L′

2 � L1. We also note that L2 and

L′
2 should be Hamiltonian isotopic so that the Hofer distance between them is defined.

7.2 Barcode entropy

In the rest of this paper, we consider the same situation as what we considered in

Section 4. For the reader’s convenience, we review the setting.

Let (Ŵ ,dλ) be a Weinstein manifold and let φ : Ŵ → Ŵ be a compactly supported exact

symplectic automorphism. Then, there is a Weinstein domain W such that

• Ŵ =W ∪ ([1,∞)×∂W ),

• λ|[1,∞×∂W ) = rα where r is a coordinate for [1.∞) and α := λ|∂W , and

• the support of φ is contained in Int(W ).

Let (L1,L2) be a good pair of Lagrangians with respect to W, that is,

L1∩L2∩ ([1,∞)×∂W ) =∅.

Since φ is the identity outside of W, (L1,φ
n(L2)) is also a good pair for any n ∈ Z. Then,

for a fixed ε, bε (L1,φ
n(L2)) is well-defined. We would like to define the barcode entropy of

φ as the exponential growth rate of bε (L1,φ
n(L2)) as n→∞.
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To be more precise, let log+ : Z≥0 → R be the function defined as

log+(k) =

{
0 if k = 0,

log(k) other wise,

where the logarithm is taken base 2.

Definition 7.5.

1. For any ε ∈ R≥0, the ε-barcode entropy of φ relative to (L1,L2) is

hε(φ;L1,L2) := lim
n→∞

1

n
log+ bε (L1,φ

n(L2)) .

2. The barcode entropy of φ relative to (L1,L2) is

hbar(φ;L1,L2) := lim
ε↘0

hε(φ;L1,L2).

We note that Definition 7.5 is the same as the notion of relative barcode entropy in [13],

except a minor adjustment to our set up.

7.3 Barcode vs topological entropy

In this subsection, we prove that for any good pair (L1,L2), the barcode entropy of φ

bounds the topological entropy of φ from below. The proof of Proposition 7.6 is almost

same as the [13, Proof of Theorem A].

Proposition 7.6 (= The second inequality in Proposition 1.4). For any good pair

(L1,L2),

hbar(φ;L1,L2)≤ htop(φ).

Proof. If hbar(φ;L1,L2) = 0, then there is nothing to prove. Thus, let assume that

hbar(φ;L1,L2)> 0. We would like to show that if α≤ hbar(φ;L1,L2), then α≤ htop(φ).

Let δ be a positive number. Since

hbar(φ;L1,L2) := lim
ε↘0

hε(φ;L1,L2)≥ α,

there is ε0 > 0 such that if ε < ε0, then hε(φ;L1,L2) > α− δ. We fix a positive number ε

such that 2ε < ε0.

Since

h2ε(φ;L1,L2) = limsup
n→∞

1

n
log+ b2ε (L1,φ

n(L2))> α− δ,

there is an increasing sequence of natural numbers {ni}i∈N such that

b2ε (L1,φ
ni(L2))> 2(α−δ)ni . (7.1)

Now, we apply Lemma 3.2 to the good pair (L1,φ
ni(L2)). Then, one obtains a family of

Lagrangians {Ls}s∈Bd
ε,ni

such that

(i) L1 and Ls are Hamiltonian isotopic for all s ∈Bd
ε,ni

,

(ii) dH(L1,L
s)< ε

2 for all s ∈Bd
ε,ni

, and

(iii) Ls � φni(L2) for almost all s ∈Bd
ε,ni

.
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We point out that by the argument in the proof of Theorem 4.1, we can choose a family

satisfying (i)–(iii) for all ni. Let {Ls}s∈Bd
ε
denote a fixed Lagrangian tomograph.

Let

Ni(s) := |Ls∩φni(L2)|.

Then, one has ∫
Bd

ε

Ni(s)ds≤ C ·Vol(φni(L2)∩W ),

by applying Lemma 3.4. We note that C is a constant independent from ni.

From Lemmas 7.3 and 7.4 and Equation (7.1), we have

2(α−δ)ni ≤ b2ε (L1,φ
ni(L2))≤ bε (L

s,φni(L2))≤ |Ls∩φni(L2)|=Ni(s).

Then, by taking integration over Bd
ε , one has

Vol(Bd
ε ) ·2(α−δ)ni ≤ C ·Vol(φni(L2)∩W ) .

Since Vol(Bd
ε ) and C do not depend on ni,

α− δ ≤ limsup
i→∞

1

ni
log+Vol(φni(L2)∩W )≤ htop(φ|W ). (7.2)

The last inequality holds due to Theorem 2.5, and because of the fact that

φni(L2)∩W = φni(L2∩W ) = (φ|W )ni(L2∩W ).

Finally, we note that φ is compactly supported, and that supp(φ)⊂W . Thus,

htop(φ) = htop(φ|W ).

Thus, one has

α− δ ≤ htop(φ).

This completes the proof.

7.4 Barcode vs categorical entropy

In the previous section, for an arbitrary good pair (L1,L2), we compared the barcode

entropy of a triple (φ;L1,L2) and the topological entropy of φ. As the result, we proved

Proposition 7.6. In this subsection, we compare barcode and categorical entropy. However,

in order to compare them, we should choose some specific pairs of Lagrangians.

First, we choose a stop Λ giving a fully stopped partially wrapped Fukaya category

W(W,Λ). Let G be an embedded Lagrangian generating W(W,Λ). As we did in the proof

of Theorem 4.1, let ϕ0 be a Hamiltonian isotopy satisfying

(A) (ϕ0(G),φn(G)) is a good pair for all n ∈ N,

(B) HWΛ (G,φn(G)) =HF (ϕ0(G),φn(G)) for all n ∈ N.

As we showed before, one has

hcat(Φ) = hcat(ΦΛ) = limsup
n→∞

1

n
log+dimHF (ϕ0(G),φn(G)) .
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Since dimHF (ϕ0(G),φn(G)) equals the number of bars having infinite length, one has

dimHF (ϕ0(G),φn(G))≤ bε (ϕ0(G),φn(G)) .

This induces Proposition 7.7.

Proposition 7.7 (= The first inequality in Proposition 1.4). For G and ϕ0 given above,

hcat(Φ)≤ hbar (φ;ϕ0(G),G) .

Remark 7.8. We note that there always exists a good pair (L1,L2) such that

hbar(φ;L1,L2) = 0. By choosing a Lagrangian L2 such that L2 does not intersect the support

of φ, one obtains a such pair. Thus, the choice of G (and ϕ0) in Proposition 7.7 is essential.

7.5 Further questions

In this subsection, we discuss the questions given in Section 1.3 in more detail.

We also recall that

htop(φ)≥ the exponential growth rate of Vol(φn(Y )) ,

for any compact submanifold Y by [40], [43]. And it is known by [50] that

htop(φ) = sup
compact submanifold Y⊂W

(the exponential growth rate of Vol(φn(Y ))) . (7.3)

As one can see in the proof of Proposition 7.6, hbar(φ;L1,L2) bounds the exponential

volume growth rate of φn(L2) from below. Thus,

htop(φ)≥ hbar(φ;L1,L2).

As a generalization of Equation (7.3), one can ask whether the following equality holds or

not:

htop(φ) = sup
(L1,L2) is a good pair

hbar(φ;L1,L2).

The supremum in the above equation runs over the set of all good pairs. As mentioned

in Remark 7.8, it is easy to find a good pair (L1,L2) such that hbar(φ;L1,L2) = 0. Thus,

we would like to remove such good pairs from the set where the supremum runs over, for

computational convenience.

Finally, we ask whether the following equality holds or not:

htop(φ) = sup
G,ϕ0

hbar (φ;ϕ0(G),G)) ,

where G is a generating Lagrangian and ϕ0 is a Hamiltonian isotopy satisfying the

conditions in Section 7.4.

On the other hand, one can ask a similar question for hcat(φ). More precisely, we ask

whether the following equality holds or not:

hcat(φ) = inf
G,ϕ0

hbar (φ;ϕ0(G),G)) .
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