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A LATTICE-THEORETIC DESCRIPTION OF THE 
LATTICE OF HYPERINVARIANT SUBSPACES OF 

A LINEAR TRANSFORMATION 

W. E. LONGSTAFF 

1. I n t r o d u c t i o n . If A is a (linear) t ransformation acting on a (finite-
dimensional, non-zero, complex) Hilbert space H the family of (linear) sub-
spaces of H which are invar iant under A is denoted by La t A. T h e family of 
subspaces of H which are invar iant under every transformation commuting 
with A is denoted by Hyper la t A. Since A commutes with itself we have 
Hyper la t A Q La t A. Set-theoretic inclusion is an obvious part ial order on 
both these families of subspaces. Wi th this part ial order each is a complete 
lat t ice; joins being (linear) spans and meets being set-theoretic intersections. 
Also, each has H as greatest element and the zero subspace (0) as least element. 
Wi th this latt ice s t ructure being understood, La t A (respectively Hyper la t A) 
is called the lattice of invariant (respectively, hyper invariant) subspaces of A. 
A description of Hyper la t A is given in [4]. This description is par t ly linear-
algebraic and par t ly latt ice-theoretic. In the present paper this description, 
and some results of [3], are used to establish a purely lat t ice-theoretic descrip­
tion, in terms of La t A, of Hyper la t A. T h a t two transformations with the 
same invariant subspaces have the same hyper invar iant subspaces is an im­
mediate consequence of this description. 

2. N o t a t i o n a n d pre l iminar i e s . A lattice L is the direct product of its 
sublatt ices Lu L2 , . . . , Lm if each element a of L is uniquely expressible in the 
forma = a i V a2 V . . . V am with a * G Li in such a w a y t ha t the latt ice operations 
in L can be performed "coordinate-wise". We write L = ®^LiLf. A latt ice L 
is reducible if it is the direct product of two sublatt ices each having more than 
one element. Otherwise L is irreducible. An isomorphism (respectively, anti-
isomorphism ) of a lattice L i onto a lattice L 2 is a one-to-one mapping v of L i onto 
L2 with the proper ty t ha t a rg b (a, b £ Li) implies v(a) ^ v{b) (respectively, 
v(b) ^ v(a)) and conversely. An automorphism (respectively, anti-automor­
phism) of a latt ice L is an isomorphism (respectively, anti- isomorphism) of L 
onto itself. Any automorphism v of L satisfies v(a V b) = v(a) V vib) and 
v(a A b) = v(a) A v(b) (a, b £ L). Even more is t rue. If V a ^ a a and A«e"a« 
both exist in L then \Zaenv(aa) and / \ a € ^ ( a a ) both exist in L and v(\Za^aa) = 
Vaen^(^a), v(/\a(znaa) = /\aççiv(aa)- T h e element a of L is fixed by the auto­
morphism v if v(a) = a. T h e set of elements of L which are fixed by every auto-

Received December 18, 1975. 

1062 

https://doi.org/10.4153/CJM-1976-104-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-104-1


LATTICES 1063 

morphism is denoted by Fix (L). An element b of L is join-irreducible if b = 
x V y (x, y £ L) implies & = x or b — y. If c and d are elements of L, c covers d 
if d < c and there is no element z of L satisfying d < z < c. 

Throughout this paper all Hilbert spaces will be finite-dimensional, non­
zero and complex. If A is a transformation acting on a Hilbert space H we 
denote by JV(A) (respectively, â?(A)) the null space (respectively, range) of 
A. For any vector x of H, the subspace of H spanned by the vectors x, Ax, 
A 2x, . . . is denoted by Z(x\ A ) and is called the A-cyclic subspace generated by x. 
A subspace M of H is A-cyclic if M = Z(x\ A) for some vector x. The t rans­
formation A is cyclic if H is A -cyclic. 

3. A l a t t i c e - t h e o r e t i c descr ipt ion of Hyper la t A. We give a purely 
lattice-theoretic description of the lattice of hyperinvariant subspaces of a 
linear transformation in terms of its lattice of invariant subspaces. First we 
consider the nilpotent case. 

T H E O R E M 3.1. If N is a nilpotent transformation acting on a (finite-dimensional) 
Hilbert space, Hyper la t N = Fix (Lat N). In other words, a subspace is hyper­
invariant if and only if it is invariant and is fixed by every automorphism of 
La t iV . 

Proof. Let N act on space H. Let the minimum polynomial mN of N be 
mN(z) = zk. Then k ^ 1. The proof of the theorem is in several steps. In each 
step the first s ta tement is proved. 

(i) The join-irreducible elements of Lat N are precisely the N-cyclic sub-
spaces. Let M be a join-irreducible element of La t N. If M = (0) then M = 
Z ( 0 ; N). If M ^ (0) let M0 be the unique element of La t N covered by M. 
Let x be a vector belonging to M bu t not Mo. Then Zix; N) belongs to La t N 
and Mo V Z(x; N) = M. Since M is join-irreducible it follows t ha t M = 
Z(x;N). 

Let y be an arb i t rary vector. Clearly Z(y\ N) is invariant under N. Let B be 
the transformation induced on Z(y\ N) by N. Since B is nilpotent and cyclic, 
La t B is totally ordered [3]. Thus if Z(y; N) = K V L (K, L G La t iV) then 
K, L G La t 5 so either X C L or Z, C X. I t follows tha t Z(y; N) is join-
irreducible. 

(ii) Every automorphism of La t N preserves the property of being N-cyclic. 
This follows immediately from (i). 

(iii) Every automorphism of La t N preserves dimension. I t is well-known tha t 
if M and L belong to La t N and M covers L then dim M = dim L + 1. I t 
follows t ha t a chain Mo C Mi C • • • C Mn in La t iV is a maximal chain in 
La t N if and only if dim Mj = j and i f„ = H. Every element of La t N belongs 
to some maximal chain in La t N and the image of a maximal chain under any 
automorphism is a maximal chain. The result follows. 
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(iv) The dimension of Z(x; N) is the smallest non-negative integer r satisfying 
Z(x; N) Qj/(Nr). The result is obviously true if Z(x; N) = (0). If dim 
Z(x; N) = r and r ̂  1, the vectors x, iVx, N2x, . . . , Nr_1x form a basis for 
Z(x;N) and iVrx = 0, Nr~lx * 0 ([5, p. 228]). Thus Z(x; N) C ^ ( i V ' ) and 
if Z(x; iV) C ^K(iVs) then Nsx = 0 so s ^ r. 

(v) Eac/z 0//Ae sub spaces jV(Nr) (0 ^ r ̂  k) is fixed by every automorphism 
v of Lat N. This is proved by induction on r. Clearly it is true for r = 0. 
Suppose it is true for r. Since 

^K(iV^i) = J/(Nr) V (V{Z(x;iV) : x G ^( iV r + 1 )VK(t f r )} ) 

= ^V(Nr) V (V{Z(x;iV) : dimZ(x;iV) = r + 1}) [by (iv)] 
we have 

v(^(Nr+1)) =^V(Nr) V (V{v(Z(x;N)) : dim Z(x;iV) = r + 1}) 

= ^ ( A W ) [by (ii) and (iii)]. 

(vi) Each of the sub spaces & (Nr) (0 ^ r ̂  fe) is fixed by every automorphism 
v of Lat iV. Notice that if ^ is an anti-automorphism of Lat N then \p~l o v o \p 
is an automorphism of Lat TV. By (v), \p~l o v o ^ fixes JV(NT) (0 ^ r ^ fe) so 
*> fixes \f/(^V(Nr)). We show that there is an anti-automorphism ^ of Lat TV 
which maps JV{Nr) onto <% (Nr) (0 ^ r S k). Now m^(z) = z*. There exist 
non-zero vectors Xi, x2, . . . , xt such that the iV-cyclic subspaces Z(x;-; A7") are 
independent and span H i.e. H = E;=i © Z(xô\ N) ([5, p. 223]). If dim 
Z(Xj\ N) = kj then x;-, iVx;-, . . . , N

kj~lXj is a basis for Z(XJ\ N) and iV^̂ 'x̂  = 0. 
If ejfi = Ni~lxj (1 ^ i g jfe,, 1 ^ j ^ /) then 

â? = {en, 0i2, . . . , eutjî e2i, 2̂2, • . . , e2ks; . . . ; eti, ««2, • • , etkt] 

is an ordered basis for H and 

If 
^ * = {/ll»/l2i • • • ,/l/fci;/21,/22, • • • jf2k2'j • • • î/ïlf/«2, • • • ,/f/cj 

is the dual ordered basis and iV* is the adjoint of N we have 

iV / i ' i ~~ \ 0 i = 1. 

The transformation 5 defined by Sejti = fjtkj—i+i (1 ^ i ^ fe^, 1 ̂  7 5jj /) is 
invertible and iV* = SNS-1. It follows that the mapping M -> S~lM (M £ 
Lat N*) is an isomorphism of Lat iV* onto Lat TV. With K1- denoting the 
orthogonal complement of K, we therefore have that the mapping \p: Lat 
N —> Lat N defined by \//(K) = S^K-1- is an anti-isomorphism of Lat TV. The 
matrix representation of N relative to Se is the same as the matrix representa­
tion of N* relative to {Sen, Se12, . . . , Seu \ Se<n, Se22, • • • , Se2k \ . . . ; 5 ,̂1» 
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Seti, . . . , Setkt\. It follows that S~l3i{N*r) = & (Nr) (0 ^ r S k). Hence 
4,(^V(Nr)) = S-l@{N*r) = S?(Nr) (0 ^ r S k). 

(vii) Hyperlat N Ç Fix (Lat iV). If v is an automorphism of Lat N it fixes 
the subspaces jV(Nr), S%(Nr) (0 ^ r ^ fe) by (v) and (vi). So i> fixes every 
subspace of the form jV(NT) C\ 3% (Ns) (0 ^ r, s ^ &). Since every hyperin-
variant subspace of N is a span of such subspaces ([4, Theorem 4.1]) v fixes 
every hyperinvariant subspace of N. 

(viii) Fix (Lat N) Ç Hyperlat N. This follows immediately from the fact 
that if B is an invertible transformation commuting with N the mapping 
M —» 51f ( if G Lat iV) defines an automorphism of Lat N. 

This completes the proof of the theorem. 
We now turn to the general case. The result is presented as the following 

theorem. 

THEOREM 3.2. Let A be a transformation acting on a (finite-dimensional) 
Hilbert space. There exist sublattices Li, Z2, . . . , Lm of Lat A each of which is 
irreducible and contains more than one element such that Lat A = ®iLiLt. 
With these properties the family of sublattices {Lt : 1 g i S m} is unique, and 
Hyperlat 4̂ = <g)-Li Fix (Lt). 

Proof. Let A act on space H. Let the minimum polynomial mA of A have 
the factorization mA(z) = II^Li (z — at)

Si where the at are distinct complex 
numbers and the st are positive integers. The subspaces Wt = <A\(A — at)

Si) 
(1 ^ i S, m) are non-zero invariant subspaces of A and H — J2T=i ® Wt 

([5, p. 220]). If A i is the transformation induced on Wt by A then Ax — at 

is nilpotent ([5, p. 220]) and Lt = Lat (At — at) is an irreducible sublattice of 
Lat A with more than one element [3]. Also, Lat A = ®^LiLt[i] and Hyperlat 
A = ®JLi Hyperlat (At — at) [4]. By Theorem 3.1 we have Hyperlat A = 
®£Li Fix (Lt). The uniqueness of the family {Lt : 1 ^ i ^ m) follows from 
the work of Birkhofï ([1, p. 26; and 2]). This completes the proof. 

The following corollaries are immediate consequences of this description of 
the lattice of hyperinvariant subspaces of an arbitrary transformation. 

COROLLARY 3.2.1. If A and B act on the same space and Lat A = Lat B then 
Hyperlat A = Hyperlat B. 

COROLLARY 3.2.2. If Bx acts on the space Ht (i = 1, 2) and Lat B\ is iso­
morphic to Lat B2 then Hyperlat Bi is isomorphic to Hyperlat B2. 
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