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Abstract. We prove the L2-convergence for the linear multiple ergodic averages of
commuting transformations T1, . . . , Tl , assuming that each map Ti and each pair TiT

−1
j

is ergodic for i �= j . The limiting behavior of such averages is controlled by a particular
factor, which is an inverse limit of nilsystems. As a corollary we show that the limiting
behavior of linear multiple ergodic averages is the same for commuting transformations.

1. Introduction
We consider the multiple ergodic averages

1

N

N−1∑
n=0

f1(T
n

1 x) · f2(T
n

2 x) · · · · · fl(T
n
l x), (1)

where T1, T2, . . . , Tl are commuting measure-preserving transformations of a probability
space (X,X , µ). Such averages, with T1 = T , T2 = T 2, . . . , Tl = T l , were originally
studied by Furstenberg [F77] in his proof of Szemerédi’s theorem, and for general
commuting transformations by Furstenberg and Katznelson [FK79] in their proof of the
multidimensional Szemerédi theorem. The convergence in L2(µ) for the first case was
proved in [HK03].

With certain hypotheses on the transformations, convergence for three commuting
transformations was proven by Zhang [Zh96]. Under the same hypotheses, we generalize
this convergence result for l commuting transformations.

THEOREM 1.1. Let l ≥ 1 be an integer. Assume that T1, T2, . . . , Tl are commuting
invertible ergodic measure-preserving transformations of a measure space (X,X , µ) so
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that TiT
−1
j is ergodic for all i, j ∈ {1, 2, . . . , l} with i �= j . Then if f1, f2, . . . , fl ∈

L∞(µ), the averages

1

N

N−1∑
n=0

f1(T
n

1 x) · f2(T
n
2 x) · · · · · fl(T

n
l x)

converge in L2(µ) as N → +∞.

In order to prove convergence, we show that in the average (1) we can replace each
function by its conditional expectation on a certain factor and that this factor is an inverse
limit of translations on a nilmanifold. However, this does not hold for general commuting
transformations. In §3 we show that certain ergodic assumptions on the differences TiT

−1
j ,

such as the ones we impose in Theorem 1.1, are necessary for the characteristic factor to
be an inverse limit of transformations on a nilmanifold. The general case for commuting
transformations remains open and is only known for l = 2 [CL84]. Convergence for
certain distal systems was obtained in [Ls93].

Using the machinery developed for the proof of Theorem 1.1 and a result of
Ziegler [Zi03], in §4 we prove an identity illustrating that for ergodic commuting
transformations the limiting behavior of the corresponding linear multiple ergodic averages
is the same.

THEOREM 1.2. Suppose that T and S are commuting invertible measure-preserving
transformations of a probability space (X,X , µ) and that both T and S are ergodic. Then,
for all integers l ≥ 1 and any f1, . . . , fl ∈ L∞(µ), we have

lim
N→∞

1

N

N−1∑
n=0

f1(T
nx) · · · · · fl(T

lnx) = lim
N→∞

1

N

N−1∑
n=0

f1(S
nx) · · · · · fl(S

lnx) (2)

in L2(µ).

We summarize the strategy of the proof of Theorem 1.1. The factors that control
the limiting behavior of the averages (1) are the same as those that arise in the proof of
the convergence of multiple ergodic averages along arithmetic progressions in [HK03].
These factors are defined by certain seminorms and the starting point for the convergence
of the averages (1) is that commuting ergodic systems have the same associated seminorms
(Proposition 3.1). We use this observation in Proposition 3.2 to bound the lim sup of the
L2-norm of the averages by the seminorms of the individual functions. The structure
theorem of [HK03] then implies that it suffices to check convergence when every
transformation Ti is isomorphic to an inverse limit of translations on a nilmanifold.
The main technical difficulty is to prove that this isomorphism can be taken to be
simultaneous and that the factor sub-σ -algebras that appear in the inverse limits can be
chosen to be the same for all transformations Ti (Theorems 4.1 and 4.2).

Notation. For l commuting maps T1, . . . , Tl , we use the shorthand (X,µ, T1, . . . , Tl),
omitting the σ -algebra, to denote the measure-preserving system obtained by the maps
T1, . . . , Tl acting on a fixed measure space (X,X , µ). For simplicity of notation,
we assume that all functions in this article are real-valued. With minor modifications,
the same definitions and results hold for complex-valued functions.
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2. Seminorms and factors Zk

Assume that (X,µ, T ) is an ergodic system; we summarize a construction and some results
from [HK03].

For an integer k ≥ 0, we write X[k] = X2k
and T [k] : X[k] → X[k] for the map

T × T × · · · × T , taken 2k times. We let Vk = {0, 1}k and write elements of Vk without
commas or parentheses. Elements of X[k] are written x = (xε : ε ∈ Vk).

We define a probability measure µ[k] on X[k] that is invariant under T [k], by induction.
Set µ[0] = µ. For k ≥ 0, let I[k] be the σ -algebra of T [k]-invariant subsets of X[k].
Then, µ[k+1] is the relatively independent square of µ[k] over I[k]. This means that if
F ′, F ′′ are bounded functions on X[k], then∫

X[k+1]
F ′(x′)F ′′(x′′) dµ[k+1](x′, x′′) :=

∫
X[k]

E(F ′ | I[k])E(F ′′ | I[k]) dµ[k]. (3)

For a bounded function f on X and integer k ≥ 1 we define

|||f |||2k

k =
∫

X[k]

2k−1∏
j=0

f (xj ) dµ[k](x), (4)

and we note that the integral on the right-hand side is non-negative. We immediately have
that |||f |||1 = ∣∣ ∫ f dµ

∣∣. It is shown in [HK03] that for every integer k ≥ 1, ||| · |||k is a
seminorm on L∞(µ), and using the ergodic theorem it is easy to check that

|||f |||2k+1

k+1 = lim
N→+∞

1

N

N−1∑
n=0

|||f · T nf |||2k

k . (5)

Furthermore, it is shown in [HK03] that for every integer k ≥ 1 the seminorms define
factors Zk−1(X) in the following manner: the T -invariant sub-σ -algebra Zk−1(X) is
characterized by

for f ∈ L∞(µ), E(f |Zk−1) = 0 if and only if |||f |||k = 0, (6)

then Zk−1(X) is defined to be the factor of X associated to the sub-σ -algebra Zk−1(X).
Thus defined, Z0(X) is the trivial factor, Z1(X) is the Kronecker factor and, more
generally, Zk(X) is a compact Abelian group extension of Zk−1(X). We denote the
restriction of µ to Zk(X) by µk .

Define G = G(X, T ) to be the group of measure-preserving transformations S of X

which satisfy for every integer k ≥ 1: the transformation S[k] of X[k] leaves the measure
µ[k] invariant and acts trivially on the invariant σ -algebra I[k].

In our context, there is more than one transformation acting on the space and so we
need some notation to identify the transformation with respect to which the seminorm is
defined. We write ||| · |||k,T for the kth seminorm with respect to the map T . Similarly, we
write Zk(X, T ) for the kth factor associated to T , µ

[k]
T for the measure defined by (3) and

I[k](T ) for the T [k]-invariant subsets of X[k].

3. Characteristic factors for commuting transformations
Let T1, T2, . . . , Tl be commuting invertible measure-preserving transformations of a
probability space (X,X , µ). We say that a sub-σ -algebra C of X is a characteristic factor
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for L2(µ)-convergence of the averages (1) if C is Ti -invariant for i = 1, . . . , l, and the
averages (1) converge in L2(µ) to zero whenever E(fi |C) = 0 for some i ∈ {1, . . . , l}.
In this section we show that under the assumptions of Theorem 1.1, the sub-σ -algebraZl−1

is characteristic for L2(µ)-convergence of the above averages. Before proving this, we give
an example showing that this does not hold for general commuting transformations.

Example. Consider the measure-preserving transformations T1 = R × S1, T2 = R × S2,
acting on the measure space (X = Y × Z,Y × Z, µ × ν) and suppose that T1 and T2

commute. Taking l = 2, f1(y, z) = f (y) and f2(y, z) = f (y), we see that the limit of
the averages in (1) is zero if and only if f is zero almost everywhere. It follows that any
sub-σ -algebra that is characteristic for L2(µ)-convergence of these averages contains Y .
So, if Y �⊂ Z1(Y,R), meaning that if (Y, µ,R) is not a Kronecker system for ergodic R,
then Z1(X, T1) is not a characteristic factor. More generally, if there exists a function that
is T1T

−1
2 -invariant but not Z1(X, Ti)-measurable, for i = 1, 2, the same argument gives

that Z1(X, Ti) is not a characteristic factor for i = 1, 2.

We turn now to the proof of the main result of the section. The most important ingredient
of the proof is the next observation. This result, as well as Proposition 3.2, has also been
obtained independently by I. Assani (personal communication).

PROPOSITION 3.1. Assume that T and S are commuting measure-preserving transfor-
mations of a probability space (X,X , µ) and that both T and S are ergodic. Then,
S ∈ G(X, T ), G(X, T ) = G(X, S), and for all integers k ≥ 1 and all f ∈ L∞(µ),
µ

[k]
T = µ

[k]
S , I[k](T ) = I[k](S), |||f |||k,T = |||f |||k,S and Zk(X, T ) = Zk(X, S).

Proof. By [HK03, Lemma 5.5], S ∈ G(X, T ). We use induction on k to show that
µ

[k]
T = µ

[k]
S and I[k](T ) = I[k](S). The statement is obvious for k = 0. Suppose

that it holds for some integer k ≥ 1. By equation (3), we have that µ
[k+1]
T = µ

[k+1]
S .

Since S ∈ G(X, T ), we have that S[k+1] leaves the measure µ
[k+1]
T = µ

[k+1]
S invariant and

acts trivially on I[k+1]
T . Hence, I[k+1](T ) ⊂ I[k+1](S). Reversing the roles of T and S,

we have that I[k+1](T ) = I[k+1](S). This completes the induction.
By the definition of G(X, T ) and equations (4) and (6), the equalities G(X, T ) =

G(X, S), |||f |||k,T = |||f |||k,S and Zk(X, T ) = Zk(X, S) follow. �

PROPOSITION 3.2. Let l ≥ 1 be an integer. Assume that T1, T2, . . . , Tl are commuting
invertible ergodic measure-preserving transformations of a probability space (X,X , µ)

such that TiT
−1
j is ergodic for all i, j ∈ {1, 2, . . . , l} with i �= j .

(i) If ‖fi‖∞ ≤ 1, i = 1, . . . , k, then

lim sup
N→+∞

∥∥∥∥ 1

N

N−1∑
n=0

f1(T
n

1 x) · f2(T
n

2 x) · · · · · fl(T
n
l x)

∥∥∥∥
L2(µ)

≤ min
i=1,2,...,l

|||fi |||l,

where the seminorm is taken with respect to any Ti , i ∈ {1, 2, . . . , l}.
(ii) The sub-σ -algebra Zl−1 is a characteristic factor for convergence of the

averages (1).

Proof. Note that, by Proposition 3.1, we can take these seminorms and the sub-σ -algebras
Zl with respect to any of the maps Ti with i ∈ {1, 2, . . . , l}, since they are all the same.
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Part (ii) follows immediately from part (i) and the definition of the sub-σ -algebra Zl−1.
We prove the inequality of part (i) by induction. For l = 1, this follows from the ergodic
theorem.

Assume the statement holds for l − 1 functions and that f1, f2, . . . , fl ∈ L∞(µ) with
‖fj‖∞ ≤ 1 for j = 1, 2, . . . , l. First, assume that i ∈ {2, 3, . . . , l}. (The case i = 1 is
similar, with the roles of T1 and T2 reversed.) Let

un = f1(T
n

1 x) · f2(T
n
2 x) · · · · · fl(T

n
l x).

For convenience, we use the notation T nf (x) = f (T nx). By the van der Corput lemma
(see Bergelson [B87]),

lim sup
N→∞

∥∥∥∥ 1

N

N−1∑
n=0

un

∥∥∥∥
2

L2(µ)

≤ lim sup
M→∞

1

M

M−1∑
m=0

lim sup
N→∞

∣∣∣∣ 1

N

N−1∑
n=0

〈un+m, un〉
∣∣∣∣. (7)

A simple computation gives that

1

N

N−1∑
n=0

〈un+m, un〉 ≤
∥∥∥∥ 1

N

N−1∑
n=0

(T2T
−1
1 )n(T m

2 f2f2) · · · · · (TlT
−1
1 )n(T m

l flfl)

∥∥∥∥
L2(µ)

.

For j = 2, 3, . . . , l, define Sj = TjT
−1

1 . The maps S2, S3, . . . , Sl commute, since the
maps T1, T2, . . . , Tl do, and they also commute with T1, . . . , Tl . Furthermore, for i �= j ,
the transformation SiS

−1
j = TiT

−1
j is ergodic by assumption. Hence, we can use the

inductive assumption and (5) to bound the right-hand side in (7) by

lim sup
M→∞

1

M

M−1∑
m=0

|||fiT
m
i fi |||l−1,Si ≤ lim sup

M→∞

(
1

M

M−1∑
m=0

|||fiT
m
i fi |||2l−1

l−1,Si

)1/2l−1

= |||fi |||2l,Ti
,

where the last equality follows from (5) and Proposition 3.1. �

4. Structure of the characteristic factor and the proof of convergence
We have shown that under the assumptions of Theorem 1.1, a characteristic factor for
L2(µ)-convergence of the averages (1) is Zl−1. The structure theorem of [HK03] gives
that for i = 1, . . . , l the system (Zl−1, µl−1, Ti) is isomorphic to an inverse limit of (l−1)-
step nilsystems. But this isomorphism a priori depends on the transformation Ti , and the
sub-σ -algebras that appear in the inverse limits depend on the transformations. In this and
the following section we extend several results from [HK03] and use them to deal with
these technical difficulties.

Throughout this section, T1, . . . , Tl are commuting, ergodic, measure-preserving
transformations of a probability space (X,X , µ). If S1, . . . , Sl are measure-preserving
transformations of a probability space (Y,Y, ν), we say that the system (X,µ, T1, . . . , Tl)

is isomorphic to (Y, ν, S1, . . . , Sl) if there exist sets X′ ⊂ X, Y ′ ⊂ Y of full measure that
are invariant under all the transformations on their respective spaces, and a measurable
bijection φ : X′ → Y ′ carrying µ to ν that satisfies φ(Ti(x)) = Si(φ(x)) for every
x ∈ X′ and all i = 1, . . . , l. When φ is not assumed to be injective, then we say that
(Y, ν, S1, . . . , Sl) is a factor of (X,µ, T1, . . . , Tl). For simplicity of notation, we assume
that X = X′ and Y = Y ′.

https://doi.org/10.1017/S0143385704000616 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385704000616


804 N. Frantzikinakis and B. Kra

We say that the system (X,µ, T1, . . . , Tl) is an extension of its factor (Y, ν, S1, . . . , Sl)

(let π : X → Y denote the factor map) by a compact Abelian group (V ,+) if there exist
measurable cocycles ρ1, . . . , ρl : Y → V and a measure-preserving bijection φ : X →
Y × V (we let mV denote the Haar measure on V ), satisfying:
(i) φ preserves Y , meaning that φ−1(Y × V ) = π−1(Y) up to sets of measure 0, where

Y × V = {A × V : A ∈ Y}, and
(ii) φ(Ti(x)) = T ′

i (φ(x)) for all x ∈ X, y ∈ Y , v ∈ V and i ∈ {1, . . . , l}, where

T ′
i (y, v) = (Si(y), v + ρi(y)).

Setting ρ̃ = (ρ1, . . . , ρl), we let Y ×ρ̃ V denote the system (Y × V, ν × mV ,

T ′
1, . . . , T

′
l ).

We say that the system (X,µ, T1, . . . , Tl) has order k if X = Zk(X). (Note that
Zk(X) = Zk(X, Ti) does not depend on i by Proposition 3.1.) It has toral Kronecker
factor if (Z1, µ1, T1, . . . , Tl) is isomorphic to a system (V ,mV ,R1, . . . , Rl), where V is a
compact Abelian Lie group, mV is the Haar measure, and Ri , for i = 1, . . . , l, is a rotation
on V . Finally, it is toral if it is of order k for some integer k ≥ 1, it has toral Kronecker
factor, and for j = 1, . . . , k − 1, the system (Zj+1, µj+1, T1, . . . , Tl) is an extension of
(Zj , µj , T1, . . . , Tl) by a finite-dimensional torus.

We say that the system (X,µ, T1, . . . , Tl) is an inverse limit of a sequence of
factors {(Xj , µj , T1, . . . , Tl)}j∈N, if {Xj }j∈N is an increasing sequence of sub-σ -algebras
invariant under the transformations T1, . . . , Tl , and such that

∨
j∈NXj = X up to sets

of measure 0. If, in addition, for every j ∈ N the factor system (Xj , µj , T1, . . . , Tl) is
isomorphic to a toral system of order k, we say that (X,µ, T1, . . . , Tl) is an inverse limit
of a sequence of toral systems of order k.

The next result extends [HK03, Theorem 10.3] to the case of several commuting
transformations and we postpone the proof until §5.

THEOREM 4.1. Any system (X,µ, T1, . . . , Tl) of order k is an inverse limit of a sequence
{(Xi, µi, T1, . . . , Tl)}i∈N of toral systems of order k.

To describe the characteristic factors, we briefly review the definition of a nilsystem.
Given a group G, we denote the commutator of g, h ∈ G by [g, h] = g−1h−1gh.
If A,B ⊂ G, then [A,B] is defined to be the subgroup generated by the set of commutators
{[a, b] : a ∈ A, b ∈ B}. Set G(1) = G and for integers k ≥ 1, we inductively define
G(k+1) = [G,G(k)]. A group G is said to be k-step nilpotent if its (k + 1) commutator
[G,G(k)] is trivial. If G is a k-step nilpotent Lie group and � is a discrete cocompact
subgroup, then the compact space X = G/� is said to be a k-step nilmanifold. The group
G acts on G/� by left translation and the translation by a fixed element a ∈ G is given by
Ta(g�) = (ag)�. There exists a unique probability measure mG/� on X that is invariant
under the action of G by left translations (called the Haar measure). Fixing elements
a1, . . . , al ∈ G, we call the system (G/�,mG/�, Ta1, . . . , Tal ) a k-step nilsystem and call
each map Ta a nilrotation.

The next result extends the structure theorem of [HK03, Theorem 10.5] to the case of
several ergodic commuting transformations.
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THEOREM 4.2. Let l ≥ 1 be an integer and let (X,µ, T1, . . . , Tl) be a toral system
of order k. Then there exist a k-step nilpotent Lie group G, a discrete and cocompact
subgroup � of G, and commuting elements a1, . . . , al of G, such that the system
(X,µ, T1, . . . , Tl) is isomorphic to the k-step nilsystem (G/�,mG/�, Ta1, . . . , Tal ).

Proof. Let G = G(X, T1). By the structure theorem in [HK03] the group G is k-step
nilpotent, and by Proposition 3.1 we have that T1, . . . , Tl ∈ G. Let G be the subgroup
of G that is spanned by the connected component of the identity and the transformations
T1, . . . , Tl . At the end of the proof of [HK03, Theorem 10.5], it is shown that there exist a
discrete cocompact subgroup � of G and a measurable bijection φ : G/� → X that carries
the Haar measure mG/� to µ, such that for all S ∈ G the transformation φ−1Sφ of G/� is
the left translation on G/� by S. Since φ does not depend on S ∈ G, and T1, . . . , Tl ∈ G,
the proof is complete. �

We now combine the previous results to prove Theorem 1.1.

Proof of Theorem 1.1. If E(fi |Zl−1) = 0 for some i ∈ {1, . . . , l}, then |||fi |||l = 0
and by Proposition 3.2 the limit of the averages (1) is 0. Hence, we can assume that
X = Zl−1. By Theorem 4.1, the system (X,µ, T1, . . . , Tl) is an inverse limit of
toral systems (Xi, µi, T1, . . . , Tl) of order l − 1. It follows from Theorem 4.2 that
(Xi, µi, T1, . . . , Tl) is isomorphic to an (l − 1)-step nilsystem. Using an approximation
argument, we can assume that X = G/�, µ = mG/� , and the transformations Ti are
given by nilrotations Tai on G/� where ai are commuting elements of G for i = 1, . . . , l.
If a = (a1, . . . , al) ∈ (G/�)l , then by [Lb03] the average

lim
N→∞

1

N

N−1∑
n=0

T n
a f

converges everywhere in (G/�)l as N → ∞ for f continuous. Using the convergence on
the diagonal and a standard approximation argument the result follows. �

We also now have the tools to prove Theorem 1.2.

Proof of Theorem 1.2. The L2(µ)-convergence for these averages was proved in [HK03].
From Proposition 3.1 we have that Zl−1(X, T ) = Zl−1(X, S), and by Proposition 3.2 this
common factor is characteristic for L2-convergence of the averages in (2). Hence, we can
assume that X = Zl−1. Then, by Theorem 4.1, the system (X,µ, T , S) is an inverse limit
of toral systems (Xi, µi, T , S) of order l −1. It follows by Theorem 4.2 that (Xi, µi, T , S)

is isomorphic to an (l − 1)-step nilsystem. Using an approximation argument, we can
assume X = G/�, µ = mG/� , and the transformations T and S are given by ergodic
nilrotations Ta, Tb on G/�.

In [Zi03], Ziegler gives a formula for the limit of the averages in (2) when the
transformations are nilrotations. Using this identity it is clear that the limit is the same
for all ergodic nilrotations on G/�. Since both Ta and Tb are ergodic, the result follows. �

5. Proof of Theorem 4.1
The proof of Theorem 4.1 is carried out in three steps, as in [HK03] for a single
transformation. We give all the statements of the needed modifications, but only include
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the proof when it is not a simple rephrasing of the corresponding proof in [HK03].
We summarize the argument. Suppose that the system (X,µ, T1, . . . , Tl) is of order k + 1,
meaning that X = Zk+1. First, we prove that the system (Zk+1, µk+1, T1, . . . , Tl) is a
connected compact Abelian group extension of (Zk, µk, T1, . . . , Tl). Next, we show that
if (Zk, µk, T1, . . . , Tl) is an inverse limit of systems {(Zk,i, µk,i, T1, . . . , Tl)}i∈N, then the
cocycle that defines the extension is measurable with respect to some Zk,i . Finally, we
combine the first two steps to complete the proof by induction. To prove Lemmas 5.1
and 5.2, we make use of the analogous results in [HK03] for a single transformation,
extending them to several transformations. The argument given in Step 3 is similar to the
one used in [HK03] and we include it as it ties together the previous lemmas.

Step 1. We extend from [HK03, Theorem 9.5].

LEMMA 5.1. Let k, l ≥ 1 be integers and let T1, . . . , Tl be commuting ergodic
measure-preserving transformations of a probability space (X,X , µ). Then the system
(Zk+1, µk+1, T1, . . . , Tl) is an extension of the system (Zk, µk, T1, . . . , Tl) by a connected
compact Abelian group.

Proof. Using the analogous result for a single transformation in [HK03, part (ii) of
Theorem 9.5], we get that there exist a connected compact Abelian group V , a cocycle
ρ1 : Zk → V , a measure-preserving bijection φ : Zk+1 → Zk × V that preserves Zk such
that T1(φ(x)) = φ(T ′

1(y, v)) for y ∈ Zk, v ∈ V , and a measure-preserving transformation
S1 : V → V such that

T ′
1(y, v) = (S1(y), v + ρ1(y)).

For i = 2, . . . , l, define T ′
i = φ−1Tiφ. Since both φ and Ti preserve Zk , we have that T ′

i

has the form
T ′

i (y, v) = (Si(y),Qi(y, v)),

for some measurable transformation Qi : Zk × V → V for i = 2, . . . , l. By [HK03,
Corollary 5.10], all maps Ru : Zk × V → Zk → V defined by Ru(y, v) = (y, v + u)

belong to the center of G(T ′
1). By Proposition 3.1, T ′

i ∈ G(T ′
1) and so T ′

i commutes with
Ru for all u ∈ V . This can only happen if Qi has the form Qi(y, v) = v + ρi(y) for some
measurable ρi : Y → V . This completes the proof. �

Step 2. For i = 1, . . . , l define the coboundary operator ∂i by ∂i(f ) = f ◦ Ti − f . If U is
a compact Abelian group and ρi : X → U are cocycles, then the cocycle ρ̃ = (ρ1, . . . , ρl)

is called an l-cocycle if

∂iρj = ∂jρi , for all i, j ∈ {1, . . . , l}.
This is equivalent to saying that the maps S1, . . . , Sl defined on X × U by Si(x, u) =
(Tix, u + ρi(x)) commute.

If U is a compact Abelian group and ρ1, . . . , ρl : X → U are cocycles, then the cocycle
ρ̃ = (ρ1, . . . , ρl) is an l-coboundary for the system (X,µ, T1, . . . , Tl) if there exists a
measurable function f : X → U such that ρi = ∂if for i = 1, . . . , l. Furthermore,
ρ̃ is said to be an l-quasi-coboundary for (X,µ, T1, . . . , Tl) if there exists a measurable
function f : X → U and ci ∈ U such that ρi = ci + ∂if for all i = 1, . . . , l.
Two l-cocycles are cohomologous if their difference is an l-coboundary.
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For clarity of exposition, we include a few more definitions from [HK03]. Let (X,µ, T )

be a measure-preserving system and let U be a compact Abelian group. We say that
the cocycle ρ : X → U is ergodic with respect to the system (X,µ, T ) if the extension
(X×U,µ×mU, Tρ), where Tρ : X×U → X×U is given by Tρ(x, u) = (T x, u+ρ(x)),
and mU is the Haar measure on U , is ergodic. An l-cocycle ρ̃ = (ρ1, . . . , ρl) is ergodic
with respect to the system (X,µ, T1, . . . , Tl) if ρi is ergodic with respect to (X,µ, Ti) for
i = 1, . . . , l.

For an integer k ≥ 1 and ε ∈ Vk , write |ε| = ε1 + · · ·+ εk and s(ε) = (−1)|ε|. For each
k ≥ 1, we define the map 	kρ : X[k] → U by

	kρ(x) =
∑
ε∈Vk

s(ε)ρ(xε).

We say that the cocycle ρ : X → U is of type k with respect to the system (X,µ, T ) if the
cocycle 	kρ : X[k] → U is a coboundary of the system (X[k], µ[k], T [k]). An l-cocycle
ρ̃ : X → Ul is said to be of type k with respect to the system (X,µ, T1, . . . , Tl) if each
coordinate cocycle is of type k.

Let (Y,Y, ν) be a probability space, let V be a compact Abelian group with Haar
measure mV and let X = Y × V . The action {Rv : v ∈ V } of measure-preserving
transformations Rv : X → X defined by Rv(y, u) = (y, u+ v) is called an action on X by
vertical rotations over Y .

Let (X,X , µ) be a probability space, let V be a connected compact Abelian group
and let {Sv : v ∈ V } be an action of V on X by measure-preserving transformations
Sv : X → X. The action Sv is said to be free if there exists a probability space (Y,Y, ν)

and an action Rv : Y × V → Y × V by vertical rotations over Y such that the actions
{Sv : v ∈ V } and {Rv : v ∈ V } are isomorphic. This means that there exists a measurable
bijection φ : Y ×V → X, mapping ν×mV to µ and satisfying φ(Rv(y, u)) = Sv(φ(y, u))

for all y ∈ Y and all u, v ∈ V .

LEMMA 5.2. Let l ≥ 1 be an integer and let T1, . . . , Tl be commuting ergodic measure-
preserving transformations of a probability space (X,X , µ). Let {Sv : v ∈ V } be a free
action of a compact Abelian group V on X that commutes with Ti for i = 1, . . . , l. Let U

be a finite-dimensional torus and let ρ̃ = (ρ1, . . . , ρl) : X → Ul be an l-cocycle of type k

for some integer k ≥ 2. Then there exists a closed subgroup V ′ of V such that V/V ′ is a
compact Abelian Lie group, and there exists an l-cocycle ρ′ = (ρ′

1, . . . , ρ
′
l ), cohomologous

to ρ, such that ρ′
i ◦ Sv = ρ′

i for every v ∈ V ′.

Proof. As before, we define the operators ∂i by ∂i(f ) = f ◦ Ti − f for i = 1, . . . , l and
define ∂v(f ) = f ◦Sv−f for v ∈ V . Using the analogous result for a single transformation
[HK03, Corollary 9.7], we get that for i = 1, . . . , l there exist closed subgroups Vi of V

such that V/Vi is a compact Abelian Lie group, and measurable fi : X → U such that
ρ̄i = ρi + ∂ifi satisfies ∂vρ̄i = 0 for all v ∈ Vi . If W = ⋂k

i=1 Vi , then V/W is a compact
Abelian Lie group and all the previous relations hold for v ∈ W . We take V ′ to be the
connected component of the identity element in W . For i = 1, . . . , l let ρ′

i = ρi + ∂if1.
Since V/W is a compact Abelian Lie group and W/V ′ is finite, we have that V/V ′ is also
a compact Abelian Lie group. It suffices to show that for v ∈ V ′ we have ∂vρ

′
i = 0 for all

i = 1, . . . , l.
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Since ∂1ρi = ∂iρ1 and the operators ∂i commute, it follows that ∂1ρ
′
i = ∂iρ

′
1. Moreover,

since Sv commutes with all the Ti , the operators ∂v and ∂i commute. It follows that

∂1∂vρ
′
i = ∂v∂1ρ

′
i = ∂v∂iρ

′
1 = ∂i∂vρ

′
1 = 0

for v ∈ V ′, where the last equality holds since by assumption, ∂vρ
′
1 = 0 for v ∈ V ′.

Since ∂1∂vρ
′
i = 0 and T1 is ergodic, we have that for i = 1, . . . , l and v ∈ V ′ there

exists a constant cv,i ∈ U such that ∂vρ
′
i = cv,i . It follows that for fixed i the map

cv,i : V ′ → U is a measurable homomorphism. Moreover, for i = 1, . . . , l we have
ρ′

i = ρ̄i + ∂i(f1 − fi), and ∂vρ̄i = 0 for all v ∈ V ′. Hence, cv,i = ∂vρ
′
i = ∂igi for all

v ∈ V ′, where gi = ∂v(f1 − fi). The spectrum of Ti is countable and so the last relation
implies that cv,i can only take on countably many values for v ∈ V ′. So cv,i : V ′ → U is
a measurable homomorphism and takes on countably many values. Since V ′ is connected,
it follows that cv,i = 0 for i = 1, . . . , l and v ∈ V ′. �

Using the previous lemma, the proof of the next result is identical to that of [HK03,
Lemma 10.4] and so we do not reproduce it.

LEMMA 5.3. Let l ≥ 1 be an integer, let T1, . . . , Tl be commuting ergodic measure-
preserving transformations of a probability space (X,X , µ), let U be a finite-dimensional
torus, and let ρ̃ : X → Ul be an ergodic l-cocycle of type k and measurable with respect
to Zk for some integer k ≥ 1. Assume that the system (X,µ, T1, . . . , Tl) is an inverse limit
of the sequence of systems {(Xi, µi, T1, . . . , Tl)}i∈N. Then ρ̃ is cohomologous to a cocycle
ρ̃′ : X → Ul , which is measurable with respect to Xi for some i.

Step 3. We complete the proof of Theorem 4.1 by using induction on k. If k = 1 we
can assume that (X,µ, T1) is an ergodic rotation on a compact Abelian group V . Since Ti

commutes with T1 for i = 1, . . . l, it follows that each Ti is also a rotation on V . A compact
Abelian group is a Lie group if and only if its dual is finitely generated. Hence, every
compact Abelian group is an inverse limit of compact Abelian Lie groups and the result
follows.

Suppose that the result holds for some integer k ≥ 1. Assume that (X,µ, T1, . . . , Tl)

is a system of order k + 1. By Lemma 5.1, we get that the system (X,µ, T1, . . . , Tl)

is an extension of (Zk, µk, T1, . . . , Tl) by a connected compact Abelian group V .
Thus, we can assume that X = Zk ×ρ̃ V where ρ̃ = (ρ1, . . . , ρl) : Zk → V l is the
l-cocycle defining the extension. The cocycle ρ̃ is an ergodic l-cocycle since every system
(X,µ, Ti) is. Moreover, since (X,µ, Ti) and (Zk, µk, Ti) are systems of order k + 1,
by [HK03, Corollary 7.7] the cocycle ρi is of type k + 1 for i = 1, . . . l. Hence, ρ̃ is an
l-cocycle of type k + 1.

Since V is a connected compact Abelian group it can be written as an inverse limit
of finite-dimensional tori Vj . Let ρ̃j : Zk → V l

j be the projection of ρ̃ on the quotient
Vj of V . By the inductive hypothesis, (Zk, µk, T1, . . . , Tl) can be written as an inverse
limit of toral systems (Zk,i, µk,i, T1, . . . , Tl). By Lemma 5.3, for every integer j there
exist an integer ij , and an l-cocycle ρ̃′

i : Y → V l
j cohomologous to ρ̃i and measurable

with respect to Zk,ij . Without loss of generality, we can assume that the sequence ij is
increasing. Let Xj = Zk × Vj . Then the system (Xj , µj , T1, . . . , Tl) is isomorphic to
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the toral system Zk,ij ×ρ̃′
j
Vj . Since (X,µ, T1, . . . , Tl) is an inverse limit of the sequence

{(Xj , µj , T1, . . . , Tl)}j∈N, the proof is complete. �
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