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Abstract
Let X be a smooth proper variety over a field k and suppose that the degree map CH0 (𝑋 ⊗𝑘 𝐾) → Z is isomorphic
for any field extension 𝐾/𝑘 . We show that 𝐺 (Spec 𝑘) → 𝐺 (𝑋) is an isomorphism for any P1-invariant Nisnevich
sheaf with transfers G. This generalises a result of Binda, Rülling and Saito that proves the same conclusion for
reciprocity sheaves. We also give a direct proof of the fact that the unramified logarithmic Hodge–Witt cohomology
is a P1-invariant Nisnevich sheaf with transfers.
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1. Introduction

A proper smooth variety X over a field k is said to be universally CH0-trivial if for any field extension
𝐾/𝑘 , the degree map of the Chow group of 0-cycles induces an isomorphism deg: CH0 (𝑋 ⊗𝑘 𝐾)

�
−→ Z.

Basic examples of universally CH0-trivial varieties include rational (and more generally stably rational)
varieties, and this property may be considered a near-rationality condition. The condition plays a crucial
role in the degeneration method established by Voisin [32] and Colliot-Thélène and Pirutka [9], where
counterexamples to the Lüroth problem are produced.
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2 Wataru Kai et al.

Now it is natural to ask how to disprove the universal CH0-triviality for a given variety X. In
this direction, Merkurjev [23, Theorem 2.11] proved that X is universally CH0-trivial if and only
if the function field 𝑘 (𝑋) has trivial unramified cohomology – that is, 𝑀∗(𝑘) � 𝑀∗(𝑘 (𝑋))ur for
all Rost’s cycle modules 𝑀∗ over k. As a consequence, if ℓ is a prime number different from the
characteristic p of k, then ℓ-primary torsion elements of the Brauer group Br(𝑋) := 𝐻2

ét (𝑋,G𝑚)

not coming from Br(𝑘) obstruct the universal CH0-triviality. This is because the ℓ-primary torsion
subgroups Br(𝐾) [ℓ∞] � 𝐻2

ét (𝐾,Qℓ/Zℓ (1)) for all field extensions 𝐾/𝑘 give rise to a cycle module
𝑀∗ : 𝐾 ↦→

⊕∞
𝑖=0 𝐻𝑖+1

ét (𝐾,Qℓ/Zℓ (𝑖)), to which the theorem of Merkurjev can be applied.
There are, however, more obstructions other than cycle modules. In [28], Totaro adopted as an

obstruction the sheaves of differential forms Ω𝑖
𝑋/𝑘

to disprove the universal CH0-triviality for a wide
class of hypersurfaces. In [3], Auel et al. used Br(−)[2∞] in characteristic 𝑝 = 2 to obtain a similar
result for conic bundles over P2. Neither Ω𝑖 nor Br(−)[𝑝∞] in characteristic 𝑝 > 0 constitutes a cycle
module. In fact, it is not straightforward to extend Merkurjev’s result to Br(−)[𝑝∞]. This gap was filled
in by the previous work of Auel et al. [2]:
Theorem 1.1 ([1, Theorem 1.1]). Let X be a smooth proper variety over a field k which is universally
CH0-trivial. Then the structure morphism 𝑋 → Spec 𝑘 induces an isomorphism Br(𝑘) �−→ Br(𝑋).

Our main result extends this theorem to more general invariants:
Theorem 1.2 (see Corollary 3.3). Let X be a smooth proper variety over a field k which is universally
CH0-trivial. Then the structure morphism 𝑋 → Spec 𝑘 induces an isomorphism 𝐺 (𝑘)

�
−→ 𝐺 (𝑋) for any

P1-invariant Nisnevich sheaf with transfers G in the sense of Definition 3.1.
This theorem generalises Theorem 1.1, since the Brauer group has a structure of a P1-invariant

Nisnevich sheaf with transfers (see Remark 1.5(1)). The conclusion of Theorem 1.2 for homotopy-
invariant sheaves with transfers follows from Merkurjev’s result already cited. More recently, Binda
et al. proved the same conclusion for another class of Nisnevich sheaves with transfers, called reciprocity
sheaves [5, Theorem 10.13, Remark 10.14]. Our main theorem also covers their result, since we have
by [18, Theorems 3, 8]

homotopy invariant⇒ reciprocity⇒ P1-invariant (1.1)

Both implications are strict (see Remark 3.4). Note also that Ω𝑖 is a reciprocity sheaf by [18, Theorem
A.6.2], hence Totaro’s method can be explained either by our results or those of Binda et al. The main
technical issue in the proof of Theorem 1.2 is the comparison of 𝐺 (𝑋) and ℎ0 (𝐺) (𝑋), where ℎ0(𝐺)
is the maximal homotopy-invariant subsheaf with transfers of G. We rephrase the problem in terms of
algebraic cycles, and settle it by establishing a new moving lemma (Theorem 3.5).

The unramified logarithmic Hodge–Witt cohomology 𝐻1
ur

(
−, 𝑊𝑛Ω𝑖

log

)
(see Section 6 for the defini-

tion) satisfies the hypothesis of Theorem 1.2. Although this fact can also be deduced from known results
on reciprocity sheaves (see Remark 6.2), we will give a direct proof which depends on classical results
[12, 15] but not on reciprocity sheaves.
Proposition 1.3 (see Proposition 6.1). The unramified logarithmic Hodge–Witt cohomology
𝐻1

ur

(
−, 𝑊𝑛Ω𝑖

log

)
is a P1-invariant Nisnevich sheaf with transfers (over a field of positive characteristic)

for any integers 𝑛 ≥ 1 and 𝑖 ≥ 0.
As a corollary, we obtain a new proof of the following (known) result:

Theorem 1.4. Let X be a smooth proper variety over a field k of characteristic 𝑝 > 0. Assume that X is
universally CH0-trivial. Then the canonical map

𝐻1
ur

(
Spec 𝑘, 𝑊𝑛Ω

𝑖
log

)
→ 𝐻1

ur

(
𝑋, 𝑊𝑛Ω

𝑖
log

)
is an isomorphism for any integers 𝑛 ≥ 1 and 𝑖 ≥ 0.
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Remark 1.5.
(1) Since 𝐻1

ur

(
𝑋, 𝑊𝑛Ω1

log

)
� Br(𝑋) [𝑝𝑛], Theorem 1.4 for 𝑖 = 1 follows from Theorem 1.1. For general

i, Theorem 1.4 was posed as a problem by Auel et al. in [2, Problem 1.2] and previously proved in
[5] and [24], as explained in the following.

(2) Theorem 1.4 was shown by Binda et al. in [5, Theorem 10.13, Remark 10.14] as a conse-
quence of their general result on reciprocity sheaves already mentioned, along with the fact that
𝐻1

ur

(
−, 𝑊𝑛Ω𝑖

log

)
has a structure of reciprocity sheaf.

(3) Independent of [5], almost at the same time, Otabe also obtained Theorem 1.4 for 𝑛 = 1 [24,
Theorem 1.2]. His proof is somewhat close to ours, but it is more cycle-module-theoretical. A tame
subgroup of the unramified cohomology is used in place of ℎ0 (𝐺) in the present paper. The relation
between these two subgroups is left for future research.

(4) A similar statement to Theorem 1.4 holds when 𝐻1
ur is replaced by 𝐻

𝑗
ur for any 𝑗 ∈ Z. In-

deed, the cohomology groups in question are trivial unless 𝑗 = 0, 1, because the natural map
𝐻

𝑗
ur

(
𝑋, 𝑊𝑛Ω𝑖

log

)
→ 𝐻

𝑗
ur

(
𝑘 (𝑋), 𝑊𝑛Ω𝑖

log

)
is injective (if X is connected), and the p-cohomology

dimension of any field of characteristic 𝑝 > 0 is at most 1. The case 𝑗 = 0 follows from the results
of Bloch, Gabber and Kato [6, Theorem 2.1] and Merkurjev [23, Theorem 2.11].

The organisation of this paper is as follows. In Section 2, we revisit the proof of Theorem 1.2
for homotopy-invariant Nisnevich sheaves with transfers due to Merkurjev [23] and Kahn [16] (see
Corollary 2.4). In Section 3, we state the main result in a slightly more general form (see Theorem 3.2)
and prove it while admitting the key moving lemma (Theorem 3.5). The proof of Theorem 3.5 occupies
the next two sections.

In Section 4, we rephrase the problem in terms of algebraic cycles. To do so, we consider the Suslin
complex 𝐶•(𝑋) and its variant 𝐶•(𝑋), where the latter is defined by replacing A𝑛 with P𝑛 in the
former. Theorem 3.5 is then reduced to a comparison, up to Zariski sheafification, of their 0th homology
presheaves (see Theorem 4.1). Its proof is given in Section 5, which is pivotal in our work.

In Section 6, we give a proof of Proposition 1.3. Finally, Appendix A provides a proof of basic
properties of universally 𝐻𝑆

0 -trivial correspondences (see Definition 2.1).
We close this introduction with a brief discussion of related works. Shimizu [27] and Koizumi

[21] have obtained some results resembling our moving lemma (Theorem 3.5) in A1-homotopy theory.
Ayoub [4] has considered the notion of P1-localisation, which is much more sophisticated than our P𝑛-
Suslin complex introduced in Section 4. The relation of their works to ours is to be explored. Kahn has
communicated to us that Theorem 3.5 has implications in the theory of birational sheaves [19], which
should be an interesting topic for future research (see a brief comment in Remark 3.6).

2. Reminders on homotopy-invariant sheaves with transfers

We fix a field k. Let Sch be the category of separated k-schemes of finite type, and Sm its full subcategory
of smooth k-schemes. We write Fld𝑘 for the category of fields over k, and Fldgm

𝑘 for its full subcategory
consisting of the k-fields which are isomorphic to the function field of some (irreducible) 𝑈 ∈ Sm. For
𝐾 ∈ Fld𝑘 and 𝑋 ∈ Sch, we write 𝑋𝐾 := 𝑋 ⊗𝑘 𝐾 .

Let Cor be Voevodsky’s category of finite correspondences. By definition it has the same objects as
Sm, and for 𝑈,𝑉 ∈ Sm the space of morphisms Cor(𝑈, 𝑋) from U to V is the free abelian group on the
set of integral closed subschemes of 𝑈 × 𝑋 which is finite and surjective over an irreducible component
of U. An additive functor 𝐹 : Corop → Ab is called a presheaf with transfers. Denote by PST the
category of presheaves with transfers. If S is a k-scheme that is written as a filtered limit 𝑆 = lim

←−−𝑖
𝑆𝑖

where 𝑆𝑖 ∈ Sm and all transition maps are open immersions, then we define

𝐹 (𝑆) = lim
−−→
𝑖

𝐹 (𝑆𝑖) (𝐹 ∈ PST). (2.1)
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4 Wataru Kai et al.

We abbreviate 𝐹 (𝑅) = 𝐹 (Spec 𝑅) for a k-algebra R (when 𝐹 (Spec 𝑅) is defined). In particular, we may
speak of 𝐹 (𝐾) for 𝐾 ∈ Fldgm

𝑘 and 𝐹
(
O𝑋,𝑥

)
for 𝑥 ∈ 𝑋 ∈ Sm. We set Ztr (𝑋) := Cor(−, 𝑋) ∈ PST for

𝑋 ∈ Sm.
We say 𝐹 ∈ PST is homotopy-invariant if the projection pr : 𝑋 × A1 → 𝑋 induces an isomorphism

pr∗ : 𝐹 (𝑋) � 𝐹
(
𝑋 × A1) for any 𝑋 ∈ Sm. We write HI for the full subcategory of PST of homotopy-

invariant presheaves with transfers. We say 𝐹 ∈ PST is a Nisnevich sheaf with transfers if F composed
with the inclusion (graph) functor Sm → Cor is a Nisnevich sheaf on Sm. We write NST for the full
subcategory of PST of Nisnevich sheaves with transfers. Set HINis := HI ∩ NST.

We will use the following facts:

(V1) The inclusion functor NST ↩→ PST admits a left adjoint 𝑎Nis : PST → NST and 𝑎Nis (HI) ⊂
HINis holds [22, Corollary 11.2, Theorem 22.3]. We write 𝐹Nis := 𝑎Nis (𝐹). We have 𝐹Nis (𝐾) =
𝐹 (𝐾) for any 𝐾 ∈ Fldgm

𝑘 (because fields are Henselian local).
(V2) The inclusion functor HI ↩→ PST has a left adjoint ℎ0 given by the formula

ℎ0(𝐹) (𝑈) = Coker
(
𝑖∗0 − 𝑖∗1 : 𝐹

(
𝑈 × A1

)
→ 𝐹 (𝑈)

)
(𝐹 ∈ PST, 𝑈 ∈ Sm),

where we write 𝑖∗𝜀 for the pullback along 𝑈 → 𝑈×A1, 𝑥 ↦→ (𝑥, 𝜀), for 𝜀 = 0, 1. This is the maximal
homotopy-invariant quotient of F [22, Example 2.20]. For 𝑋 ∈ Sm, we write ℎ0 (𝑋) := ℎ0 (Ztr (𝑋)).
We call

𝐻𝑆
0 (𝑋𝐾 ) := ℎ0 (𝑋) (𝐾) = ℎ0 (𝑋)Nis (𝐾)

the 0th Suslin homology of 𝑋𝐾 for 𝐾 ∈ Fldgm
𝑘 . There is a canonical surjective map 𝐻𝑆

0 (𝑋𝐾 ) →

CH0 (𝑋𝐾 ), which is isomorphic if X is proper over k [22, Exercise 2.21].
(V3) The inclusion functor HI ↩→ PST has a right adjoint ℎ0, given by the formula

ℎ0 (𝐹) (𝑈) = PST(ℎ0 (𝑈), 𝐹)

for 𝐹 ∈ PST, 𝑈 ∈ Sm. This is the maximal homotopy-invariant subobject of F [25, Section 4.34].
(V4) Let 𝑓 : 𝐹 → 𝐺 be a morphism in HINis. If f induces an isomorphism 𝑓 ∗ : 𝐹 (𝐾) � 𝐺 (𝐾) for any

𝐾 ∈ Fldgm
𝑘 , then f is an isomorphism in HINis [22, Corollary 11.2].

(V5) Given 𝐹 ∈ PST, we denote by 𝐹Zar the Zariski sheaf associated to the presheaf on Sm obtained
by restricting F along the graph functor Sm → Cor. In general, it does not admit a structure of
presheaf with transfers, but if 𝐹 ∈ HI, then we have 𝐹Zar = 𝐹Nis by [22, Theorem 22.2], and hence
𝐹Zar acquires transfers by (V1). We say 𝐹 ∈ PST is a Zariski sheaf with transfers if 𝐹 = 𝐹Zar.

Another important fact can be stated as 𝐻𝑖
Zar (−, 𝐹Zar) = 𝐻𝑖

Nis (−, 𝐹Nis) ∈ HI for 𝐹 ∈ HI, assuming k
is perfect [30, Theorems 5.6, 5.7]. We will not use this in the sequel.

Definition 2.1. Let 𝑋,𝑌 ∈ Sm. We say 𝑓 ∈ Cor(𝑋,𝑌 ) is universally 𝐻𝑆
0 -trivial if the induced map

𝑓𝐾∗ : 𝐻𝑆
0 (𝑋𝐾 ) → 𝐻𝑆

0 (𝑌𝐾 ) is an isomorphism for each 𝐾 ∈ Fldgm
𝑘 .

Remark 2.2. This is an analogue of [9, Définition 1.1], where a proper morphism 𝑓 : 𝑋 → 𝑌 is said to
be universally CH0-trivial if the induced map 𝑓𝐾∗ : CH0(𝑋𝐾 ) → CH0(𝑌𝐾 ) is an isomorphism for each
𝐾 ∈ Fld𝑘 . When X and Y are proper over k, a universally CH0-trivial morphism is also universally 𝐻𝑆

0 -
trivial by (V2). (We tacitly identify a morphism with its graph.) Note also that a smooth proper variety
X is universally CH0-trivial (in the sense of Theorem 1.4) if and only if the structure map 𝑋 → Spec 𝑘
is universally CH0-trivial.

The following result is due to Merkurjev [23, Theorem 2.11] and Kahn [16, Corollary 4.7]. We
include a short proof here to keep self-containedness.
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Proposition 2.3. Set 𝑋,𝑌 ∈ Sm. The following conditions are equivalent for 𝑓 ∈ Cor(𝑋,𝑌 ):

(1) The finite correspondence f is universally 𝐻𝑆
0 -trivial.

(2) The induced map 𝑓∗ : ℎ0 (𝑋)Nis → ℎ0(𝑌 )Nis is an isomorphism in HINis.
(3) The induced map 𝑓 ∗ : 𝐹 (𝑌 ) → 𝐹 (𝑋) is an isomorphism for each 𝐹 ∈ HINis.

(Thanks to (V5), we may replace Nis by Zar in this statement.)

Proof. The equivalence of (1) and (2) is a consequence of (V4). We have

𝐹 (𝑋) = PST(Ztr (𝑋), 𝐹) = HI(ℎ0 (𝑋), 𝐹) = HINis(ℎ0 (𝑋)Nis, 𝐹)

for any 𝐹 ∈ HINis. Here we used, in order, Yoneda’s lemma, (V2) and (V1). Now another use of Yoneda’s
lemma shows the equivalence of (2) and (3). �

Corollary 2.4. Let X be a smooth and proper scheme over a field k. If X is universally CH0-trivial, then
we have 𝐹 (𝑘) � 𝐹 (𝑋) for any 𝐹 ∈ HINis.

Proof. In view of Remark 2.2, this is a special case of Proposition 2.3. �

We will generalise this result in Corollary 3.3.

Remark 2.5. We collect basic properties of universally 𝐻𝑆
0 -trivial correspondences. Since they are not

used in the sequel, the proof will be given in Appendix A.

(1) If 𝑓 , 𝑔 are composable finite correspondences and if two out of 𝑓 , 𝑔, 𝑓 ◦𝑔 are universally 𝐻𝑆
0 -trivial,

then so is the third.
(2) If 𝑓 : 𝑋 → 𝑌 and 𝑓 ′ : 𝑋 ′ → 𝑌 ′ are universally 𝐻𝑆

0 -trivial finite correspondences, then so is
𝑓 × 𝑓 ′ : 𝑋 × 𝑋 ′ → 𝑌 × 𝑌 ′.

(3) Suppose k is perfect. Let 𝑗 : 𝑈 ↩→ 𝑋 be an open dense immersion in Sm. If 𝑋 \ 𝑗 (𝑈) is of
codimension ≥ 2, then j is universally 𝐻𝑆

0 -trivial.
(4) Suppose k is perfect. A proper birational morphism in Sm is universally 𝐻𝑆

0 -trivial.

3. P1-invariance and the main result

Recall from [31, Section 3.2] that PST is equipped with a symmetric monoidal structure ⊗ which is
uniquely characterised by the facts that it is right exact and the Yoneda functor is monoidal (that is,
Ztr (𝑋) ⊗ Ztr (𝑌 ) = Ztr (𝑋 × 𝑌 ) for 𝑋,𝑌 ∈ Sm). It admits a right adjoint Hom given by the formula

Hom(𝐹, 𝐺) (𝑋) = PST(𝐹 ⊗ Ztr (𝑋), 𝐺) (𝐹, 𝐺 ∈ PST, 𝑋 ∈ Sm). (3.1)

Definition 3.1. We say 𝐺 ∈ PST is P1-invariant if the structure map 𝜎 : P1 → Spec 𝑘 induces an
isomorphism 𝐺

�
−→ Hom

(
Ztr

(
P1) , 𝐺

)
– that is, 𝜎 induces isomorphisms 𝐺 (𝑈)

�
−→ 𝐺

(
𝑈 × P1) for all

𝑈 ∈ Sm. Denote by PINis the full subcategory of PST consisting of all Nisnevich sheaves with transfers
which are P1-invariant.

Theorem 3.2. Suppose that 𝑋,𝑌 are smooth and proper schemes over a field k and 𝑓 ∈ Cor(𝑋,𝑌 ).
Then the conditions in Proposition 2.3 are equivalent to the following:

(4) The induced map 𝑓 ∗ : 𝐺 (𝑌 ) → 𝐺 (𝑋) is an isomorphism for each 𝐺 ∈ PINis.

As with Corollary 2.4, Theorem 3.2 has an immediate consequence:

Corollary 3.3. Let X be a smooth proper scheme over a field k. If X is universally CH0-trivial, then we
have 𝐺 (𝑘) � 𝐺 (𝑋) for any 𝐺 ∈ PINis.
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Remark 3.4. Let T be a smooth quasi-affine scheme over k. It follows from [17, Theorem 6.4.1] that
Ztr (𝑇) ∈ PINis. On the other hand, Ztr (𝑇) does not have reciprocity in general. (This follows, for
example, from [18, Proposition 9.4.4].) We conclude that P1-invariance does not imply reciprocity (i.e.,
the converse of the second arrow in formula (1.1) does not hold). On the other hand, the conclusion of
Corollary 3.3 is obvious for 𝐺 = Ztr (𝑇). Indeed, it is not difficult to show Cor(Spec 𝑘, 𝑇) � Cor(𝑋, 𝑇)
for any 𝑋 ∈ Sm which is connected and proper over k (but not necessary universally CH0-trivial).

For 𝐹 ∈ PST we define

ℎ0(𝐹) := Coker
(
𝑖∗0 − 𝑖∗1 : Hom

(
Ztr

(
P1
)
, 𝐹

)
→ 𝐹

)
. (3.2)

We write ℎ0(𝑋) := ℎ0(Ztr (𝑋)) for 𝑋 ∈ Sm. The main part in the proof of Theorem 3.2 is the following:

Theorem 3.5 (A moving lemma). The natural map ℎ0(𝑋) → ℎ0 (𝑋) yields an isomorphism ℎ0(𝑋)Zar �
ℎ0 (𝑋)Zar for any smooth proper scheme X over a field k. (Hence we have ℎ0(𝑋)Nis � ℎ0(𝑋)Nis as well.)

The proof of Theorem 3.5 occupies the next two sections. In the rest of this section, we deduce
Theorem 3.2 assuming Theorem 3.5.

Remark 3.6. For X as in Theorem 3.5, we have an explicit formula:

ℎ0 (𝑋)Zar (𝑈) � CH0 (𝑋 ⊗𝑘 𝑘 (𝑈)) for any connected 𝑈 ∈ Sm,

because we know ℎ0 (𝑋)Nis (𝑈) � CH0 (𝑋 ⊗𝑘 𝑘 (𝑈)) by [19, Theorem 3.1.2] (and we have ℎ0 (𝑋)Zar �
ℎ0 (𝑋)Nis by (V2) and (V5)). In particular, ℎ0(𝑋)Zar is birational in the sense of [19, Definition 2.3.1] –
that is, any open dense immersion 𝑉 ↩→ 𝑊 induces an isomorphism ℎ0(𝑋)Zar (𝑊) � ℎ0 (𝑋)Zar (𝑉).

Denote by 𝑖𝜀 : Spec 𝑘 → P1 the closed immersion defined by a rational point 𝜀 ∈ P1 (𝑘).

Definition 3.7. Set 𝐹 ∈ PST. We say F is P1-rigid if the two induced maps

𝑖∗0, 𝑖∗1 : 𝐹
(
𝑈 × P1

)
→ 𝐹 (𝑈)

are equal for any 𝑈 ∈ Sm. Denote by PRig the full subcategory of PST consisting of all P1-rigid
presheaves with transfers.

Lemma 3.8. If 𝐹 ∈ PST is P1-invariant, then it is P1-rigid. The converse holds if F is separated for
Zariski topology.

Proof. See [18, Proposition 6.1.4]. �

Lemma 3.9.
(1) For 𝐹 ∈ PST, the following conditions are equivalent:

(a) F is P1-rigid.
(b) The two induced maps 𝑖∗0, 𝑖∗1 : Hom

(
Ztr

(
P1) , 𝐹

)
→ 𝐹 are equal.

(c) The canonical surjection 𝐹 → ℎ0(𝐹) is an isomorphism.
(d) The canonical injection PST

(
ℎ0(𝑈), 𝐹

)
→ PST(Ztr (𝑈), 𝐹) is an isomorphism for each

𝑈 ∈ Sm.
(2) Rormula (3.2) defines a left adjoint ℎ0 : PST→ PRig of the inclusion functor PRig ↩→ PST.
(3) We have HINis ⊂ PINis.

Proof. (1) The equivalence of (a), (b) and (c) follows from formulas (3.1) and (3.2). If (c) holds, then
any morphism Ztr (𝑈) → 𝐹 factors as Ztr (𝑈) � ℎ0 (𝑈) → ℎ0(𝐹) � 𝐹, whence (d). If (d) holds, then
any morphism Ztr (𝑈) → 𝐹 factors as Ztr (𝑈) � ℎ0(𝑈) → 𝐹, whence (b).
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(2) We need to show PST
(
ℎ0(𝐺), 𝐹

)
� PST(𝐺, 𝐹) for any 𝐹 ∈ PRig and 𝐺 ∈ PST. This is

(d) if 𝐺 = Ztr (𝑈) for 𝑈 ∈ Sm, to which the general case is reduced by taking a resolution of the
form ⊕

𝛽

Ztr
(
𝑉𝛽

)
→

⊕
𝛼

Ztr (𝑈𝛼) → 𝐺 → 0,

where 𝑈𝛼, 𝑉𝛽 ∈ Sm [31, Section 3.2].
(3) Given 𝐹 ∈ PST, we have a chain of canonical surjections 𝐹 � ℎ0(𝐹) � ℎ0 (𝐹), and F is

homotopy-invariant if and only if the composition is an isomorphism. It follows from (1) that HI ⊂ PRig.
Now the assertion follows from Lemma 3.8. �

Lemma 3.10. Suppose 𝐺 ∈ PST is a Zariski sheaf. Then ℎ0 (𝐺) is a Nisnevich sheaf.

Proof. This is essentially shown in [25, Section 4.34], but we include a short proof for the sake of
completeness. We consider a commutative diagram

ℎ0(𝐺)
� � ��

𝑗

��

𝐺

ℎ0(𝐺)Zar
� � �� 𝐺Zar.

The bottom arrow is injective, since the sheafification is exact. This shows the injectivity of j. Fact
(V5) shows that ℎ0 (𝐺)Zar = ℎ0 (𝐺)Nis, and (V1) shows that it is homotopy-invariant. Hence j must be
isomorphic, since ℎ0 (𝐺) ⊂ 𝐺 is the maximal subobject in HI. �

Proof of Theorem 3.2, admitting Theorem 3.5. That (4) implies (3) follows from Lemma 3.9(3). To
show the converse, we assume (3) and take 𝐺 ∈ PINis. Set 𝐹 := ℎ0 (𝐺). By Lemma 3.10 we find
𝐹 ∈ HINis, and hence we have 𝑓 ∗ : 𝐹 (𝑌 ) � 𝐹 (𝑋) by assumption (3). It remains to show 𝐺 (𝑋) = 𝐹 (𝑋)
for any proper 𝑋 ∈ Sm. By Theorem 3.5 we have ℎ0 (𝑋)Nis = ℎ0 (𝑋)Nis ∈ HINis ⊂ PST. We now proceed
as follows:

𝐺 (𝑋) = PST(Ztr (𝑋), 𝐺) (Yoneda)

= PST
(
ℎ0(𝑋), 𝐺

)
(Lemma 3.9(d))

= PST
(
ℎ0(𝑋)Nis, 𝐺

)
(𝐺 is a Nisnevich sheaf)

= PST(ℎ0(𝑋)Nis, 𝐺) (ℎ0(𝑋)Nis = ℎ0 (𝑋)Nis, by Theorem 3.5)
= PST(ℎ0 (𝑋), 𝐺) (𝐺 is a Nisnevich sheaf)
= HI(ℎ0 (𝑋), 𝐹) (ℎ0 is a right adjoint to the inclusion)
= PST(Ztr (𝑋), 𝐹) (ℎ0 is a left adjoint to the inclusion)
= 𝐹 (𝑋) (Yoneda).

This completes the proof. �

4. Projective Suslin complex

Fix 𝑋 ∈ Sm in this section. After a brief review of the definition of the Suslin complex of X, we define
its variant using the projective spaces P𝑛. This will be used in the proof of the moving lemma in the
next section. (We will use them only up to degree 2.)
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For each nonnegative integer n, we write

Δ𝑛 := Spec 𝑘 [𝑡0, . . . , 𝑡𝑛]/(𝑡0 + · · · + 𝑡𝑛 − 1) � A𝑛.

For 𝑗 = 0, . . . , 𝑛, we define

𝑖𝑛, 𝑗 : Δ𝑛−1 → Δ𝑛; (𝑡0, . . . , 𝑡𝑛−1) ↦→
(
𝑡0, . . . , 𝑡 𝑗−1, 0, 𝑡 𝑗 , . . . , 𝑡𝑛−1

)
. (4.1)

The Suslin complex 𝐶•(𝑋) of X is a complex in PST defined by

𝐶𝑛 (𝑋) := Hom(Ztr (Δ
𝑛),Ztr (𝑋)),

𝜕𝑛 :=
𝑛∑
𝑗=0
(−1) 𝑗𝑖∗𝑛, 𝑗 : 𝐶𝑛 (𝑋) → 𝐶𝑛−1 (𝑋).

Its homology is denoted by ℎ𝑛 (𝑋) ∈ PST. For 𝑛 = 0, it recovers ℎ0 (𝑋) from (V2).
For each nonnegative integer n, we set

Δ
𝑛

:= Proj 𝑘 [𝑡0, . . . , 𝑡𝑛+1]/(𝑡0 + · · · + 𝑡𝑛 − 𝑡𝑛+1) � P𝑛.

We have a canonical open immersion 𝜄𝑛 : Δ𝑛 ↩→ Δ
𝑛
, which is isomorphic to A𝑛 ↩→ P𝑛. It induces a

map in PST

𝐶𝑛 (𝑋) := Hom
(
Ztr

(
Δ
𝑛
)
,Ztr (𝑋)

)
↩→ 𝐶𝑛 (𝑋), (4.2)

which is injective for any n and isomorphic for 𝑛 = 0. Indeed, its section over 𝑈 ∈ Sm is given by

(Id𝑈 × 𝜄𝑛)
∗ : Cor

(
𝑈 × Δ

𝑛
, 𝑋

)
→ Cor(𝑈 × Δ𝑛, 𝑋),

which is injective in general and isomorphic for 𝑛 = 0. We regard 𝐶𝑛 (𝑋) as a subobject in PST of
𝐶𝑛 (𝑋). Since the morphisms 𝑖𝑛, 𝑗 from formula (4.1) extend (uniquely) to morphisms Δ

𝑛−1
→ Δ

𝑛
, we

obtain a subcomplex 𝐶•(𝑋) of 𝐶•(𝑋). We write its homology by ℎ𝑛 (𝑋) ∈ PST. For 𝑛 = 0, it recovers
ℎ0(𝑋) from formula (3.2).

We write

𝑄•(𝑋) := 𝐶•(𝑋)/𝐶•(𝑋) (4.3)

for the quotient complex, and its homology presheaf is denoted by 𝐻𝑛 (𝑄•(𝑋)) ∈ PST. We have
𝐻0 (𝑄•(𝑋)) = 0, for formula (4.2) is isomorphic for 𝑛 = 0. Since the sheafification is exact, we obtain
an exact sequence

𝐻1(𝑄•(𝑋))Zar → ℎ0(𝑋)Zar → ℎ0 (𝑋)Zar → 𝐻0(𝑄•(𝑋))Zar = 0.

Theorem 3.5 is now reduced to the following:

Theorem 4.1. If 𝑋 ∈ Sm is proper, then we have 𝐻1(𝑄•(𝑋))Zar = 0.

Remark 4.2.
(1) In general, ℎ𝑛 (𝑋)Zar → ℎ𝑛 (𝑋)Zar is not isomorphic for 𝑛 > 0. Indeed, one easily checks

𝐻2
(
𝑄•

(
P1) )

Zar (𝑘) = 𝐻2
(
𝑄•

(
P1) ) (𝑘) ≠ 0.

(2) The properness assumption on X is essential. Indeed, it follows from [17, Theorem 6.4.1] that if X
is quasiaffine, then all the boundary maps of 𝐶•(𝑋) are the zero maps.
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5. Moving lemma

We shall prove Theorem 4.1 in the following (equivalent) form:
Theorem 5.1. Let 𝑋 ∈ Sm be proper. For every irreducible affine 𝑉 ∈ Sm and local scheme U at a
closed point of V, the restriction map

𝐻1 (𝑄•(𝑋)) (𝑉) → 𝐻1(𝑄•(𝑋)) (𝑈)

is the zero map. (The target 𝐻1 (𝑄•(𝑋)) (𝑈) is defined as a colimit – see equation (2.1).)
Note that in proving Theorem 5.1, we may assume k is infinite; for if k is finite, we can use the usual

norm argument.

5.1. The bad locus

In the notation of Theorem 5.1, let Γ ⊂ 𝑉 × 𝑋 × Δ𝑛 be an irreducible closed subset which is finite and
surjective over 𝑉 × Δ𝑛. Let Γ be its closure in 𝑉 × 𝑋 × Δ

𝑛
. We call

𝐵(Γ) :=
{
𝑝 ∈ 𝑉 × Δ

𝑛



 Γ→ 𝑉 × Δ

𝑛
is not finite over 𝑝

}
(5.1)

the bad locus of Γ, which witnesses how far Γ is from being a member of 𝐶𝑛 (𝑋) (𝑉).
Lemma 5.2.
(1) We have Γ ∈ 𝐶𝑛 (𝑋) (𝑉) if and only if 𝐵(Γ) = ∅.
(2) The bad locus 𝐵(Γ) is a closed proper subset of 𝑉 ×

(
Δ
𝑛
\ Δ𝑛

)
.

(3) If 𝑛 ≤ 1, the image of the projection 𝐵(Γ) → 𝑉 is a closed proper subset.
Proof. Assertion (1) is clear from definitions, and put for later reference.

To prove (2), consider the set upstairs:

𝐵
(
Γ
)

:=
{
𝑥 ∈ Γ




 locally around 𝑥, the fibre of Γ→ 𝑉 × Δ
𝑛

has dimension ≥ 1
}
.

It is a closed subset of 𝑉 × 𝑋 × Δ
𝑛

by Chevalley’s theorem [11, IV3 13.1.3]. It is contained in Γ \ Γ:

𝐵
(
Γ
)
⊂ Γ \ Γ, (5.2)

because Γ is assumed to be finite over 𝑉 × Δ𝑛. Since 𝐵(Γ) is by definition the image of the map
𝐵
(
Γ
)
→ 𝑉 ×Δ

𝑛
which is proper because X is, it follows that 𝐵(Γ) is a closed subset of 𝑉 ×

(
Δ
𝑛
\ Δ𝑛

)
.

To show that 𝐵(Γ) is a proper subset of 𝑉 ×
(
Δ
𝑛
\ Δ𝑛

)
, let 𝜉 ∈ 𝐵

(
Γ
)

be an arbitrary point and
𝜂 ∈ 𝐵(Γ) its image. By formula (5.2) we have

dim
(
Γ \ Γ

)
≥ trdeg(𝑘 (𝜉)/𝑘)

= trdeg(𝑘 (𝜉)/𝑘 (𝜂)) + trdeg(𝑘 (𝜂)/𝑘)
≥ 1 + trdeg(𝑘 (𝜂)/𝑘),

and by dim(𝑉) + 𝑛 − 1 ≥ dim
(
Γ \ Γ

)
we obtain

dim(𝑉) + (𝑛 − 2) ≥ trdeg(𝑘 (𝜂)/𝑘). (5.3)

Since dim(𝐵(Γ)) = sup𝜂∈𝐵 (Γ) trdeg(𝑘 (𝜂)/𝑘), we conclude dim
(
𝑉 ×

(
Δ
𝑛
\ Δ𝑛

))
> dim(𝐵(Γ)). We

are done.
Assertion (3) is a direct consequence of (2) (or of formula (5.3)). �
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5.2. Affine-space case

In this subsection we consider the case 𝑉 = A𝑁 of Theorem 5.1, with 𝑁 ≥ 0 an integer. Recall that we
may assume k is infinite, which we do here.

Let Γ ∈ 𝐶1 (𝑋)
(
A𝑁

)
be an arbitrary irreducible cycle. By a diagram chase in the following dia-

gram (see formula (4.3) for the definition of 𝑄•(𝑋)), it suffices to find Γ̃ ∈ 𝐶2 (𝑋)
(
A𝑁

)
such that(

Γ − 𝜕2Γ̃
)
|𝑈 ∈ 𝐶1(𝑋) (𝑈):

Γ̃ ?

∈

Γ

∈

𝑄2(𝑋)
(
A𝑁

) 𝜕2 ��

��

𝑄1 (𝑋)
(
A𝑁

) ��

��

0

𝑄2 (𝑋) (𝑈)
𝜕2 �� 𝑄1 (𝑋) (𝑈) �� 0.

For a vector v ∈ A𝑁 (𝑘), consider the translation +v : A𝑁 → A𝑁 by v. The next assertion suggests
how it can be useful:

Lemma 5.3. There is a closed proper subset 𝐵 ⊂ A𝑁 such that for every vector v ∈ A𝑁 (𝑘) \ 𝐵, if we
denote by 𝜏v : A𝑁 ×𝑋×A1 → A𝑁 ×𝑋×A1 the base change of the translationA𝑁 +v

−−→ A𝑁 , then we have(
𝜏∗vΓ

)
|𝑈 ∈ 𝐶1(𝑋) (𝑈).

Proof. Let 𝑠 ∈ 𝑈 be the unique closed point of V contained in U. Let 𝐵(Γ) ⊂ 𝑉 × Δ
1

be as in formula
(5.1). By Lemma 5.2 we know that its projection pr𝑉 (𝐵(Γ)) ⊂ 𝑉 = A𝑁 is a closed proper subset.
Consider the closed subset

𝐵0 := pr𝑉
(
𝐵(Γ)𝑘 (𝑠)

)
− 𝑠 =

{
v ∈ A𝑁

𝑘 (𝑠)




v + 𝑠 ∈ pr𝑉 𝐵(Γ)𝑘 (𝑠)
}
� A𝑁

𝑘 (𝑠)

and let B be its image by the finite projection 𝜋 : A𝑁
𝑘 (𝑠)
→ A𝑁 :

𝐵 := 𝜋(𝐵0) � A
𝑁 . (5.4)

Take an arbitrary v ∈ A𝑁 (𝑘) \ 𝐵. By definitions, we know 𝑠 +v ∈ A𝑁 \ pr𝑉 𝐵(Γ). Since the right-hand
side is an open subset of A𝑁 , this relation remains true if we replace s by any point specialising to s. In
particular,

𝑈 + v ⊂ A𝑁 \ pr𝑉 𝐵(Γ). (5.5)

Let us denote by 𝜏v the endomorphism ofA𝑁 ×𝑋 ×Δ
1

obtained as the base change of the translation
+v. By formula (5.5), the maps 𝜏v and 𝜏v restrict themselves as in the following commutative diagram:

𝑈 × 𝑋 × Δ1 𝜏v ��

∩

(
A𝑁 \ pr𝑉 𝐵(Γ)

)
× 𝑋 × Δ1

∩

Γ|A𝑁 \pr𝑉 𝐵 (Γ)⊃

∩

𝑈 × 𝑋 × Δ
1 𝜏v ��

pr
��

(
A𝑁 \ pr𝑉 𝐵(Γ)

)
× 𝑋 × Δ

1

pr
��

Γ|A𝑁 \pr𝑉 𝐵 (Γ)⊃

finite������
���

���
���

𝑈 × Δ
1 (+v)×Id �� (A𝑁 \ pr𝑉 𝐵(Γ)

)
× Δ

1
.
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The slanted arrow is finite because Γ → A𝑁 × Δ
1

is finite outside 𝐵(Γ) precisely by definition (5.1),
and we have the inclusion

(
A𝑁 \ pr𝑉 𝐵(Γ)

)
× Δ

1
⊂

(
A𝑁 × Δ

1)
\ 𝐵(Γ). It follows that 𝜏∗vΓ is finite

over 𝑈 × Δ
1
. As a general fact about closure and continuity, we have the inclusion

(
𝜏∗vΓ

)
⊂ 𝜏∗vΓ. We

conclude that
(
𝜏∗vΓ

)
|𝑈 belongs to 𝐶1 (𝑋) (𝑈), and this completes the proof. �

Let B be as in Lemma 5.2 and fix a vector v ∈ A𝑁 (𝑘) \ 𝐵. Let 𝜑v : A𝑁 × A1 → A𝑁 be the map
(𝑎, 𝑡) ↦→ 𝑎 + 𝑡v and let

Φv,𝑛 : A𝑁 × 𝑋 × A1 × Δ𝑛 → A𝑁 × 𝑋 × Δ𝑛

be its base change by 𝑋 ×Δ𝑛 → Spec 𝑘 . Since finite morphisms are stable under base change, we know
that

the inverse image Φ−1
v,1Γ ⊂ A

𝑁 × 𝑋 × A1 × Δ1 is finite over A𝑁 × A1 × Δ1. (5.6)

We shall use the following triangulation maps, as in Figure 1:

𝜎1, 𝜎2 : Δ2 �−→ A1 × Δ1. (5.7)

𝑢0

𝑢1 𝑢2

Δ2

0

1
A1

𝑣0 𝑣1
Δ1

𝜎1

𝜎2

Figure 1. Triangulation.

Explicitly, the maps 𝜎1, 𝜎2 are the unique affine-linear ones satisfying

𝜎1(𝑢0) = (𝑣0, 0), 𝜎1(𝑢1) = (𝑣1, 0), 𝜎1(𝑢2) = (𝑣1, 1),
𝜎2(𝑢0) = (𝑣0, 0), 𝜎2(𝑢1) = (𝑣0, 1), 𝜎2(𝑢2) = (𝑣1, 1)

in
(
Δ1 × A1) (𝑘), where 𝑣 𝑗 = 𝑖1, 𝑗

(
Δ0) for 𝑗 = 0, 1 and 𝑢0 = 𝑖2,2 (𝑣1), 𝑢1 = 𝑖2,0(𝑣1), 𝑢2 = 𝑖2,1(𝑣0).

LetΦ(1)
v,1,Φ(2)

v,1 : A𝑁 ×𝑋×Δ2 → A𝑁 ×𝑋×Δ1 be the composite mapsΦv,1◦ (IdA𝑁×𝑋 × 𝜎𝑖) (𝑖 = 1, 2).
By fact (5.6), we conclude Φ(1)∗

v,1 Γ,Φ(2)∗
v,1 Γ ∈ 𝐶2 (𝑋)

(
A𝑁

)
. Now set

Γ̃ := Φ(1)∗
v,1 Γ − Φ(2)∗

v,1 Γ.

We want to show
(
Γ − 𝜕2Γ̃

)
|𝑈 ∈ 𝐶1 (𝑋) (𝑈).

By a routine calculation of 𝜕2Γ̃, we have

Γ − 𝜕2Γ̃ = 𝜏∗vΓ +Φ
∗
v,0

(
𝑖∗1,1Γ

)
−Φ∗v,0

(
𝑖∗1,0Γ

)
. (5.8)

By Lemma 5.3, for v ∈ A𝑁 (𝑘) \ 𝐵 we know that the first term of the right-hand side maps into
𝐶1(𝑋) (𝑈). So it suffices to show the following, which we apply to 𝛾 := 𝑖∗1, 𝑗Γ:
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Lemma 5.4. For every 𝛾 ∈ 𝐶0 (𝑋)
(
A𝑁

)
, there is a closed proper subset 𝐶 � A𝑁 such that for all

v ∈ A𝑁 (𝑘) \ 𝐶, the cycle Φ∗
v,0𝛾 on A𝑁 × 𝑋 × Δ1 belongs to 𝐶1 (𝑋)

(
A𝑁

)
.

Proof. Let us observe that as long as v ≠ 0, the morphism 𝜑v extends (uniquely) to a morphism

𝜑v : A𝑁 × P1 → P𝑁

(𝑎, [𝑡0 : 𝑡1]) ↦→ [𝑡0 : 𝑡0𝑎 + 𝑡1v] . (5.9)

For this proof, we may assume 𝛾 is irreducible. Let 𝛾 ⊂ P𝑁 × 𝑋 be the closure of 𝛾. Consider the set

𝐶∞ :=
{
𝑎 ∈ P𝑁 \ A𝑁



 𝛾 → P𝑁 is not finite over 𝑎
}
. (5.10)

By the 𝑉 = Spec(𝑘) case of Lemma 5.2(2) (via 𝑋 × Δ
𝑛
� P𝑁 × 𝑋), we find that 𝐶∞ is a closed proper

subset of P𝑁 \ A𝑁 . Let 𝐶 ⊂ A𝑁 be the cone associated to 𝐶∞, namely,

𝐶 :=

{
{0} ∪ 𝑞−1(𝐶∞) ⊂ A

𝑁 (𝑁 > 0),
∅ (𝑁 = 0),

where 𝑞 : A𝑁 \ {0} → P𝑁 \ A𝑁 is the projection with centre 0. This is a closed proper subset of A𝑁 .
Now suppose v ∈ A𝑁 (𝑘) \ 𝐶. Then by formula (5.9) we see that 𝜑v maps A𝑁 × P1 into P𝑁 \ 𝐶∞.

We obtain the following commutative diagram:

A𝑁 × 𝑋 × Δ1 Φv,0 ��

∩

A𝑁 × 𝑋

∩

𝛾⊃

∩

A𝑁 × 𝑋 × P1 𝜑v×Id𝑋��

pr
��

(
P𝑁 \ 𝐶∞

)
× 𝑋

pr
��

𝛾 |P𝑁 \𝐶∞⊃

�����
���

���
�

A𝑁 × P1 𝜑v �� P𝑁 \ 𝐶∞.

Since the slanted arrow is finite by the definition (5.10) of 𝐶∞, the inverse image (𝜑v × Id𝑋 )∗𝛾 is finite

over A𝑁 × P1. By the inclusion
(
Φ∗

v,0𝛾
)
⊂ (𝜑v × Id𝑋 )∗𝛾 of subsets of A𝑁 × 𝑋 × P1, we conclude that

Φ∗
v,0𝛾 belongs to 𝐶1(𝑋)

(
A𝑁

)
, completing the proof. �

Lemmas 5.3 and 5.4 applied to equation (5.8) prove Theorem 5.1 in the case 𝑉 = A𝑁 .

5.3. The general case

Let 𝑉 ∈ Sm be affine and irreducible. Let 𝑁 = dim(𝑉) be its dimension. Fix a closed embedding
𝑉 ↩→ A𝑁 ′ into an affine space. For a technical reason (see Proposition 5.6), we assume it is obtained
as the composition of a preliminary one 𝑉 ↩→ A𝑁 ′0 and the 2-fold Veronese embedding A𝑁 ′0 ↩→ A𝑁 ′ ,

𝑁 ′ :=
(
𝑁 ′0 + 2

2

)
− 1 defined by

(𝑥𝑖)𝑖=1,...,𝑁 ′0 ↦→
(
𝑥1, . . . , 𝑥𝑁 ′0 ;

(
𝑥𝑖𝑥 𝑗

)
𝑖≤ 𝑗

)
. (5.11)

Let 𝑀𝑁𝑁 ′ � A𝑁𝑁 ′ be the k-scheme parametrising 𝑁 × 𝑁 ′ matrices. The choice of a k-rational point
𝑓 ∈ 𝑀𝑁𝑁 ′ (𝑘) determines a morphism, which we denote by the same symbol 𝑓 : A𝑁 ′ → A𝑁 .
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Proposition 5.5 (Noether’s normalisation lemma). There is a closed proper subset 𝐷1 ⊂ 𝑀𝑁𝑁 ′ such
that the composite map

𝜋 𝑓 : 𝑉 ↩→ A𝑁 ′ 𝑓
−→ A𝑁

is finite and flat whenever 𝑓 ∈ 𝑀𝑁𝑁 ′ (𝑘) \ 𝐷1.

Proof. For the existence of 𝐷1 which guarantees finiteness, see, for example, [1, p. 69] or [20, Sec-
tion 3.1]. Flatness is then automatic by the smoothness of V and A𝑁 ; see [13, Exercise III-10.9,
p. 276]. �

By Proposition 5.5, for 𝑓 ∈ 𝑀𝑁𝑁 ′ (𝑘) \ 𝐷1 we have push-forward maps 𝜋 𝑓 ∗ : 𝐻𝑛 (𝑋) (𝑉) →
𝐻𝑛 (𝑋)

(
A𝑁

)
. Let 𝑠 ∈ 𝑈 be the unique closed point of V contained in U. Let 𝑈0 ⊂ A

𝑁 be the local
scheme at 𝜋 𝑓 (𝑠). Since 𝜋 𝑓 carries U into 𝑈0, we have the following commutative diagram:

𝐶1 (𝑋) (𝑉) �� �� 𝐻1 (𝑄•(𝑋)) (𝑉)

𝜋 𝑓 ∗

��
𝐻1(𝑄•(𝑋))

(
A𝑁

)
𝜋∗𝑓

��

(−) |𝑈0=0
�� 𝐻1(𝑄•(𝑋)) (𝑈0)

(𝜋 𝑓 |𝑈 )
∗

��
𝐻1 (𝑄•(𝑋)) (𝑉)

(−) |𝑈 �� 𝐻1(𝑄•(𝑋)) (𝑈).

(5.12)

Here the restriction map (−)|𝑈0 is the zero map by the conclusion of Section 5.2.
Now toward the proof of Theorem 5.1, let

Γ ∈ 𝐶1 (𝑋) (𝑉)

be an irreducible cycle. The commutative diagram shows that
(
𝜋∗𝑓 𝜋 𝑓 ∗Γ

)
|𝑈 = 0 in 𝐻1 (𝑄•(𝑋)) (𝑈). In

other words, we have

Γ|𝑈 =
(
Γ − 𝜋∗𝑓 𝜋 𝑓 ∗Γ

)
|𝑈 in 𝐻1(𝑄•(𝑋)) (𝑈). (5.13)

This right-hand side turns out to be easier to handle.
Let Γ ⊂ 𝑉 × 𝑋 × Δ

1
be the closure and let 𝐵(Γ) ⊂ 𝑉 × Δ

1
be the bad locus in formula (5.1). By

Lemma 5.2, we know it is a closed proper subset of 𝑉 × {∞}. Let 𝐵(Γ) � 𝑉 be its projection (which is
isomorphic to 𝐵(Γ)).

Proposition 5.6. There is a closed proper subset 𝐷2 � 𝑀𝑁𝑁 ′ such that whenever 𝑓 ∈ 𝑀𝑁𝑁 ′ (𝑘) \
(𝐷2 ∪ 𝐷1), we have the equality of zero cycles:

𝜋∗𝑓 𝜋 𝑓 ∗𝑠 = 𝑠 +
𝑚∑
𝑖=1

𝑥𝑖 on 𝑉, (5.14)

where 𝑠, 𝑥1, . . . , 𝑥𝑚 are distinct and 𝑥𝑖 ∈ 𝑉 \ 𝐵(Γ) for all i.

Proof. This can be shown using Chow’s techniques [8, pp. 458–460], [7, p. 3-08, Lemma 2]. We present
a proof based on a more recent account [20].

First, since we are using the Veronese embedding (5.11), we can invoke [20, Propositions 3.2 and 3.3],
which state that there is a closed proper subset 𝐷 ′ � 𝑀𝑁𝑁 ′ such that for all 𝑓 ∈ 𝑀𝑁𝑁 ′ (𝑘) \ (𝐷

′ ∪𝐷1),
the map 𝜋 𝑓 : 𝑉 → A𝑁 is étale over 𝜋 𝑓 (𝑠) and the restriction 𝑠→ 𝜋 𝑓 (𝑠) is an isomorphism. This gives
an equality of the form (5.14), with s and 𝑥𝑖s distinct.
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It remains to show that 𝑥𝑖 ∈ 𝑉 \ 𝐵(Γ). We need the following statement:

Proposition 5.7 (a special case of [20, Proposition 3.5]). Let 𝐵 ⊂ 𝑉 be a proper closed subset and 𝑠 ∈ 𝑉
a closed point. Then there is a closed proper subset 𝐷 ′′ � 𝑀𝑁𝑁 ′ such that for all 𝑓 ∈ 𝑀𝑁𝑁 ′ (𝑘) \ 𝐷 ′′,
we have the equality of subsets of V: (

𝜋−1
𝑓 𝜋 𝑓 (𝑠) \ {𝑠}

)
∩ 𝐵 = ∅.

(To extract Proposition 5.7 from [20, Proposition 3.5], set 𝑋 := 𝑉 , 𝑌 := Spec(𝑘), 𝑝 = 0, 𝑊 := 𝐵 and
𝑉 := {𝑠}. Also note that the only topological space having dimension ≤ −1 is the empty set.)

Now set 𝐷2 := 𝐷 ′ ∪ 𝐷 ′′ and suppose 𝑓 ∈ 𝑀𝑁𝑁 ′ (𝑘) \ (𝐷1 ∪ 𝐷2). Then we know 𝜋−1
𝑓 𝜋 𝑓 (𝑠) \ {𝑠} =

{𝑥1, . . . , 𝑥𝑚}, by the first half of this proof. Applying Proposition 5.7 to 𝐵 := 𝐵(Γ), we get the desired
result. This completes the proof of Proposition 5.6. �

Corollary 5.8. Take any 𝑓 ∈ 𝑀𝑁𝑁 ′ (𝑘)\ (𝐷1∪𝐷2) and form the fibre product 𝑉×A𝑁 𝑈 of 𝜋 𝑓 : 𝑉 → A𝑁

and 𝜋 𝑓 |𝑈 : 𝑈 → A𝑁 . Then it decomposes as

𝑉 ×A𝑁 𝑈 � 𝑈 � 𝑇,

where 𝑇 is finite and étale over U by the second projection and maps into 𝑉 \ 𝐵(Γ) along the first
projection.

Proof. Since 𝜋 𝑓 is finite and étale over 𝑈0 by Proposition 5.6 and U maps into 𝑈0, the second projection
𝑉 ×A𝑁 𝑈 → 𝑈 is étale (and finite by default, because 𝑓 ∈ 𝑀𝑁𝑁 ′ (𝑘) \ 𝐷1). Since it has the diagonal
splitting 𝑈 → 𝑉 ×A𝑁 𝑈, we have 𝑉 ×A𝑁 𝑈 � 𝑈 �𝑇 . By Proposition 5.6, the set of its closed points can
be computed as 𝑉 ×A𝑁 {𝑠} � {𝑠, 𝑥1, . . . , 𝑥𝑚}, with the right-hand side having the reduced structure,
and we know that 𝑥𝑖s map into 𝑉 \ 𝐵(Γ) by the first projection. This completes the proof. �

Consider the following Cartesian diagram, where Id denotes Id𝑋×Δ1 :

Γ

∩

(𝑈 � 𝑇) × 𝑋 × Δ1

� Corollary 5.8

𝑉 × 𝑋 × Δ1

𝜋 𝑓 ×Id
��

(𝑉 ×A𝑁 𝑈) × 𝑋 × Δ1pr1×Id��

pr2×Id
��

A𝑁 × 𝑋 × Δ1 𝑈 × 𝑋 × Δ1.
(𝜋 𝑓 |𝑈 )×Id

��

�

(5.15)

The element
(
𝜋∗𝑓 𝜋 𝑓 ∗Γ

)
|𝑈 in equation (5.13) is represented by the cycle

( (
𝜋 𝑓 |𝑈

)
× Id

)∗ (
𝜋 𝑓 × Id

)
∗
Γ on

𝑈 × 𝑋 ×Δ1. By a slight abuse of notation, let us omit Ids from the notation in what follows; for example,
the previous expression is shortened as

(
𝜋 𝑓 |𝑈

)∗
𝜋 𝑓 ∗Γ. By the base-change formula for flat pullback and

proper push-forward of algebraic cycles, we know this equals pr2∗pr∗1Γ. Via the vertical isomorphism in
diagram (5.15), if we write pr𝑖𝑈 and pr𝑖𝑇 ( 𝑖 = 1, 2) for the restrictions of the projections, we get(

𝜋∗𝑓 𝜋 𝑓 ∗Γ
)
|𝑈 = pr2𝑈∗pr∗1𝑈Γ + pr2𝑇 ∗pr∗1𝑇 Γ. (5.16)

We know that pr1𝑈 : 𝑈 → 𝑉 is the inclusion map and pr2𝑈 : 𝑈 → 𝑈 is the identity map. Thus the
first term is Γ|𝑈 . Therefore we can compute the right-hand side in equation (5.13) as(

Γ − 𝜋∗𝑓 𝜋 𝑓 ∗Γ
)
|𝑈 = −pr2𝑇 ∗pr∗1𝑇 Γ. (5.17)
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By Corollary 5.8, we know that pr1𝑇 maps 𝑇 into 𝑉 \𝐵(Γ) ⊂ 𝑉 . In the resulting commutative diagram

Γ ∈ 𝐶1 (𝑋) (𝑉)
(−) |𝑉 \𝐵 (Γ) �� 𝐶1 (𝑋)

(
𝑉 \ 𝐵(Γ)

) pr∗1𝑇 �� 𝐶1 (𝑋) (𝑇)

𝐶1(𝑋)
(
𝑉 \ 𝐵(Γ)

) pr∗1𝑇 ��

∪

𝐶1(𝑋) (𝑇),

∪

we know that Γ|𝑉 \𝐵 (Γ) belongs to the subgroup 𝐶1 (𝑋)
(
𝑉 \ 𝐵(Γ)

)
by the definition of 𝐵(Γ). It follows

that pr∗1𝑇 Γ ∈ 𝐶1(𝑋) (𝑇). Since pr2𝑇 : 𝑇 → 𝑈 is finite, we conclude pr2𝑇 ∗pr∗1𝑇 Γ ∈ 𝐶1 (𝑋) (𝑈).
Combined with equations (5.13) and (5.17), this shows that Γ|𝑈 = 0 in 𝐻1(𝑄•(𝑋)) (𝑈). This

completes the proof of Theorem 5.1.

6. The unramified cohomology 𝐻1
ur

(
−, 𝑊𝑛Ω

𝑗
log

)
The aim of this short section is to prove Proposition 6.1.

Let X be a scheme over F𝑝 . For any integer 𝑛 ≥ 1, let 𝑊𝑛Ω•𝑋 denote the de Rham–Witt complex of
𝑋/F𝑝 (see [14, I, 1.3]). For any morphism of F𝑝-schemes 𝑓 : 𝑌 → 𝑋 , there exists a natural morphism
of complexes of 𝑊𝑛 (O𝑌 )-modules,

𝑓 −1𝑊𝑛Ω
•
𝑋 → 𝑊𝑛Ω

•
𝑌 (6.1)

(see [14, I, (1.12.3)]), which is an isomorphism if f is étale (see [14, I, Proposition 1.14]).
For any 𝑖 ≥ 0, we denote by 𝑊𝑛Ω𝑖

𝑋 ,log the logarithmic Hodge–Witt sheaf of X in the sense of [26,
Definition 2.6]. Namely, it is the étale sheaf on X defined as the image

𝑊𝑛Ω
𝑖
𝑋 ,log := im

( (
O×𝑋

) ⊗𝑖
→ 𝑊𝑛Ω

𝑖
𝑋

)
of the map

(
O×𝑋

) ⊗𝑖
→ 𝑊𝑛Ω𝑖

𝑋 ; 𝑥1 ⊗ · · · ⊗ 𝑥𝑖 ↦→ 𝑑 log[𝑥1] ∧ · · · ∧ 𝑑 log[𝑥𝑖], where [𝑥] ∈ 𝑊𝑛O𝑋 is the
Teichmüller representative of any local section 𝑥 ∈ O𝑋 . If 𝑓 : 𝑌 → 𝑋 is a morphism of F𝑝-schemes, by
the functoriality of the de Rham–Witt complexes (6.1) there exists a natural morphism of étale sheaves
on Y,

𝑓 −1𝑊𝑛Ω
𝑖
𝑋 ,log → 𝑊𝑛Ω

𝑖
𝑌 ,log. (6.2)

Proposition 6.1. Fix 𝑛 > 0 and 𝑖 ≥ 0. We denote by 𝐻1
ur

(
−, 𝑊𝑛Ω𝑖

log

)
the Zariski sheaf on Sm

associated to

𝐻1
(
−, 𝑊𝑛Ω

𝑖
log

)
: 𝑋 ↦→ 𝐻1

ét

(
𝑋, 𝑊𝑛Ω

𝑖
𝑋 ,log

)
.

Then 𝐻1
ur

(
−, 𝑊𝑛Ω𝑖

log

)
is a P1-invariant Nisnevich sheaf, and has a structure of presheaf with transfers.

Remark 6.2. As mentioned in the introduction, it is known that 𝐻1
ur

(
−, 𝑊𝑛Ω𝑖

log

)
has reciprocity [5,

Section 11.1 (5)], hence it is P1-invariant by [18, Theorem 8]. We shall give a direct proof of Proposition
6.1 which makes no use of the theory of reciprocity sheaves.

To ease the notation, for 𝑞 = 0, 1 we set

𝐹𝑞,𝑖 := 𝐻𝑞
(
−, 𝑊𝑛Ω

𝑖
log

)
, 𝐹𝑞,𝑖

ur := 𝐻𝑞
ur

(
−, 𝑊𝑛Ω

𝑖
log

)
.
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We have 𝐹𝑞,𝑖 (𝑆) = 𝐹𝑞,𝑖
ur (𝑆) for any local S.

Theorem 6.3. For any 𝑋 ∈ Sm and any 𝑞 = 0, 1, we have an exact sequence

0→ 𝐹𝑞,𝑖
ur (𝑋) →

⊕
𝑥∈𝑋 (0)

𝐹𝑞,𝑖 (𝑥) →
⊕
𝑥∈𝑋 (1)

𝐺𝑞,𝑖
𝑥 (𝑋),

where we set 𝐺𝑞,𝑖
𝑥 (𝑋) := 𝐻𝑞+1

𝑥

(
𝑋, 𝑊𝑛Ω𝑖

𝑋 ,log

)
. Moreover, if 𝑞 = 0 there exists a canonical isomorphism

𝜃𝑖𝑥 : 𝐹0,𝑖−1(𝑘 (𝑥))
�
−→ 𝐺0,𝑖

𝑥 (𝑋)

for any codimension 1 point 𝑥 ∈ 𝑋 (1) .

Proof. For the first assertion, see [12, Theorem 1.4] or [26, Theorem 4.1]. For the last assertion, see
[26, Theorem 3.2]. �

Proposition 6.4. The étale sheaf 𝑊𝑛Ω𝑖
log on Sm has a structure of presheaf with transfers. Hence so

does the étale cohomology group 𝐻 𝑗
(
−, 𝑊𝑛Ω𝑖

log

)
for any 𝑗 ≥ 0.

Proof. According to [22, 6.21], the second assertion is immediate from the first one. Therefore, it
suffices to show that 𝑊𝑛Ω𝑖

log ∈ PST. However, thanks to Theorem 6.3 together with the theorem of
Bloch, Gabber and Kato [6], for any 𝑋 ∈ Sm we have a natural exact sequence

0→ 𝐻0
(
𝑋, 𝑊𝑛Ω

𝑖
log

)
→

⊕
𝑥∈𝑋 (0)

𝐾M
𝑖 (𝑘 (𝑥))/𝑝

𝑛 (𝜕
M
𝑥 )

−−−−→
⊕
𝑥∈𝑋 (1)

𝐾M
𝑖−1(𝑘 (𝑥))/𝑝

𝑛,

where 𝜕M
𝑥 is the tame symbol at each 𝑥 ∈ 𝑋 (1) . This implies that the sheaf 𝑊𝑛Ω𝑖

log has a structure of
(homotopy-invariant) presheaf with transfers (see [16]). This completes the proof of the proposition. �

Proposition 6.5. Let 𝑓 : 𝑌 → 𝑋 be an étale morphism in Sm which induces an isomorphism 𝑘 (𝑦) �
𝑘 (𝑥) for some 𝑦 ∈ 𝑌 (1) and 𝑥 := 𝑓 (𝑦). Then for 𝑞 = 0, 1, in the commutative diagram

𝐹𝑞,𝑖
(
FracO𝑋,𝑥

)
/𝐹𝑞,𝑖

(
O𝑋,𝑥

) ��

��

𝐹𝑞,𝑖
(
FracO𝑌 ,𝑦

)
/𝐹𝑞,𝑖

(
O𝑌 ,𝑦

)
��

𝐺𝑞,𝑖
𝑥 (𝑋) �� 𝐺𝑞,𝑖

𝑦 (𝑌 )

all maps are bijective.

Proof. For 𝑞 = 0, the assertion follows from the last claim of Theorem 6.3. So let us assume that 𝑞 = 1.
Then the bijectivity of the left vertical map is a consequence of the localisation sequence

𝐹1,𝑖 (O𝑋,𝑥
)
→ 𝐹1,𝑖 (FracO𝑋,𝑥

)
→ 𝐺1,𝑖

𝑥 (𝑋) → 𝐻2
(
O𝑋,𝑥 , 𝑊𝑛Ω

𝑖
𝑋 ,log

)
= 0,

and the same for the right vertical map. The statement for the upper horizontal map in the case when 𝑛 = 1
is a consequence of [29, Theorem 4.3]. Indeed, given any discrete valuation ring over k, the cited theorem
shows that there is an exhaustive filtration 𝐹1,𝑖 (𝑅) = 𝑈−1 ⊂ 𝑈0 ⊂ 𝑈1 ⊂ · · · ⊂ 𝐹1,𝑖 (Frac 𝑅) whose
graded quotients are described solely in terms of the residue field. In our situation, 𝐹1,𝑖 (FracO𝑋,𝑥

)
→

𝐹1,𝑖 (FracO𝑌 ,𝑦
)

respects this filtration because O𝑋,𝑥 → O𝑌 ,𝑦 is étale. Hence the desired bijectivity
follows from the assumption 𝑘 (𝑦) � 𝑘 (𝑥). For 𝑛 > 1, thanks to the exact sequence

0→ 𝑊𝑛−1Ω
𝑖
𝑋 ,log → 𝑊𝑛Ω

𝑖
𝑋 ,log → Ω𝑖

𝑋 ,log → 0
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for any regular scheme X over F𝑝 (see [26, Proposition 2.12]), one can inductively see the bijectivity of
the map 𝐹1,𝑖 (FracO𝑋,𝑥

)
/𝐹1,𝑖 (O𝑋,𝑥

)
→ 𝐹1,𝑖 (FracO𝑌 ,𝑦

)
/𝐹1,𝑖 (O𝑌 ,𝑦

)
. This completes the proof. �

Proof of Proposition 6.1. We first show that 𝐹1,𝑖
ur is a sheaf for Nisnevich topology. For this, we take a

Cartesian diagram in Sm

𝑉 ��

��

𝑌

𝑓

��
𝑈

𝑗 �� 𝑋,

where j is an open dense immersion and f is an étale morphism that is an isomorphism over 𝑋 \ 𝑗 (𝑈).
By [22, 12.7], it suffices to prove the exactness of the upper row in the commutative diagram

0

��

0

��

0

��
0 �� 𝐹1,𝑖

ur (𝑋) ��

��

𝐹1,𝑖
ur (𝑈) ⊕ 𝐹1,𝑖

ur (𝑌 ) ��

��

𝐹1,𝑖
ur (𝑉)

��
0 �� ⊕

𝑥∈𝑋 (0)
𝐹1,𝑖 (𝑥) ��

��

⊕
𝑥∈𝑈 (0)

𝐹1,𝑖 (𝑥) ⊕
⊕

𝑦∈𝑌 (0)
𝐹1,𝑖 (𝑦) ��

��

⊕
𝑦∈𝑉 (0)

𝐹1,𝑖 (𝑦)

⊕
𝑥∈𝑋 (1)

𝐺1,𝑖
𝑥 (𝑋)

(∗)
�� ⊕
𝑥∈𝑈 (1)

𝐺1,𝑖
𝑥 (𝑈) ⊕

⊕
𝑦∈𝑌 (1)

𝐺1,𝑖
𝑦 (𝑌 ).

The second row is exact for obvious reason, and all columns are exact by Theorem 6.3. The map (∗) is
injective by Proposition 6.5 (and the assumption on f ). Now the claim follows by diagram chasing. As a
consequence, we can find that 𝐹1,𝑖

ur is the same as the Nisnevich sheaf associated with 𝐹1,𝑖 ∈ PST (see
Proposition 6.4). Therefore, we conclude that 𝐹1,𝑖

ur ∈ PST by [22, 13.1].
Finally, to show that 𝐹1,𝑖

ur is P1-invariant, we apply Lemma 6.6. Condition (1) is due to Izhboldin [15]
(see also [29, Theorem 4.4]), and (2) is a part of Theorem 6.3. �

Lemma 6.6. Set 𝐹 ∈ PST. Suppose the following conditions hold:

(1) For any 𝐾 ∈ Fldgm
𝑘 , 𝜎∗𝐾 : 𝐹 (Spec 𝐾) � 𝐹

(
P1
𝐾

)
is an isomorphism, where 𝜎𝐾 denotes the base

change of the structure morphism 𝜎 : P1 → Spec 𝑘 .
(2) Any open immersion 𝑈 ↩→ 𝑉 in Sm induces an injection 𝐹 (𝑉) → 𝐹 (𝑈).

Then F is P1-invariant.

Proof. Define 𝐺 ∈ PST by the formula

𝐺 (𝑈) := Coker
(
𝜎∗ : 𝐹 (𝑈) → Hom

(
Ztr

(
P1
)
, 𝐹

)
(𝑈) = 𝐹

(
𝑈 × P1

))
(𝑈 ∈ Sm). (6.3)

We have a direct sum decomposition Hom
(
Ztr

(
P1) , 𝐹

)
� 𝐹 ⊕ 𝐺 (provided by a k-rational point of

P1), and 𝐺 (𝑈) = 0 holds if and only if the map in formula (6.3) is an isomorphism. By (1), we have
𝐺 (Spec 𝐾) = 0 for any 𝐾 ∈ Fldgm

𝑘 . Property (2) for F implies the same property for Hom
(
Ztr

(
P1) , 𝐹

)
and hence for G. We conclude that 𝐺 (𝑈) ↩→ 𝐺 (𝑘 (𝑈)) = 0 for any (irreducible) 𝑈 ∈ Sm, which means
F is P1-invariant. �
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A. Proof of Remark 2.5

We give a proof of Remark 2.5. Property (1) is obvious. Property (2) is a consequence of the formula
ℎ0 (𝑋 × 𝑋 ′) = ℎ0 (𝑋) ⊗ ℎ0 (𝑋

′). For (3) and (4), we shall freely use Voevodsky’s triangulated category
DM−eff (𝑘) ⊂ 𝐷−(NST) of effective motivic complexes over k [31]. For 𝑉 ∈ Sm, we denote the
motivic complex of V by 𝑀 (𝑉) := 𝐶∗(Ztr (𝑉)) ∈ DM−eff (𝑘). Recall that its homology sheaves ℎ𝑛 (𝑉) :=
𝐻𝑛 (𝑀 (𝑉)) are trivial if 𝑛 < 0, and for 𝑛 = 0 it recovers ℎ0 (𝑉) defined in (V2).

Lemma A.1. Let 𝑐 > 0 be a positive integer and let 𝑗 : 𝑈 → 𝑋 be an open immersion in Sm. Define
𝑀 (𝑋/𝑈) to be the cone of 𝑗∗ : 𝑀 (𝑈) → 𝑀 (𝑋). If each component of 𝑍 := (𝑋 \𝑈)red is of codimension
≥ 𝑐 in X, then ℎ𝑛 (𝑋/𝑈) := 𝐻𝑛 (𝑀 (𝑋/𝑈)) vanishes for any 𝑛 < 𝑐.

Proof. If Z is smooth over k, then by the Gysin triangle [22, Theorem 15.15] we have

𝑀 (𝑋/𝑈) � 𝑀 (𝑍) (𝑐) [2𝑐] � 𝑀 (𝑍) ⊗ (G𝑚 [0])⊗𝑐 [𝑐],

from which the statement follows. In general, let 𝑍 ′ ⊂ 𝑍 be the singular locus of Z, and define
𝑈 ′ := 𝑋 \ 𝑍 ′. There is a distinguished triangle

𝑀 (𝑈 ′/𝑈) → 𝑀 (𝑋/𝑈) → 𝑀 (𝑋/𝑈 ′) → 𝑀 (𝑈 ′/𝑈) [1] .

Since each component of 𝑍 ′ has codimension ≥ 𝑐 +1 in X, we may assume ℎ𝑛 (𝑋/𝑈
′) = 0 for any 𝑛 ≤ 𝑐

by induction. Since 𝑈 ′ \𝑈 = 𝑍 \ 𝑍 ′ is smooth over k, we have shown ℎ𝑛 (𝑈
′/𝑈) = 0 for 𝑛 < 𝑐. It follows

that ℎ𝑛 (𝑋/𝑈) = 0 for 𝑛 < 𝑐. �

Now (3) immediately follows from Lemma A.1. To show (4), let 𝑓 : 𝑋 → 𝑌 be a proper birational
morphism in Sm. Let 𝑉 ⊂ 𝑌 be the open dense subset on which 𝑓 −1 is defined. Then f restricts to an
isomorphism 𝑈 := 𝑓 −1(𝑉)

�
−→ 𝑉 and 𝑌 \𝑉 has codimension ≥ 2 in Y. We have a commutative diagram

ℎ0 (𝑈) ��

�
��

ℎ0(𝑋) ��

��

ℎ0 (𝑋/𝑈) = 0

��
0 = ℎ1(𝑌/𝑉) �� ℎ0 (𝑉) �� ℎ0 (𝑌 ) �� ℎ0 (𝑌/𝑉) = 0,

in which we used Lemma A.1 for the vanishing. This proves (4).
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