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O N D E L A Y D I F F E R E N T I A L I N E Q U A L I T I E S O F 
H I G H E R O R D E R 

BY 

G. L A D AS A N D I. P. S T A V R O U L A K I S 

ABSTRACT. Consider the nth order ( n > l ) delay differential 
inequalities y(n)(r) + ( - l ) n + 1 [ p n + q ( r ) ] y ( r - n T ) < 0 (1) and y(n)(t) + 
( - l ) n + 1 [p n +q(t)]y(t-nr)>0 (2) and the delay differential equation 
y(n)(t) + ( - l ) n + 1 [p n +q( t ) ]y ( t -m-) = 0 (3), where q(t)>0 is a con
tinuous function and p, T are positive constants. Under the condition 
pre>l we prove that when n is odd (1) has no eventually positive 
solutions, (2) has no eventually negative solutions, and (3) has only 
oscillatory solutions and when n is even (1) has no eventually 
negative bounded solutions, (2) has no eventually positive bounded 
solutions, and every bounded solution of (3) is oscillatory. The 
condition pre > 1 is sharp. The above results, which generalize 
previous results by Ladas and by Ladas and Stavroulakis for first 
order delay differential inequalities, are caused by the retarded 
argument and do not hold when T = 0. 

1. Introduction. In this paper we consider the nth order (rc>l) delay 
differential inequalities 

(1) y(n)(0 + ( " l ) n + 1 [ p n + q ( 0 ] y ( t - n r ) < 0 

and 

(2) yinXt) + (-l)n+1[pn + q(t)Mt-nr)>0 

and the delay differential equation 

(3) y (n\t) + ( - l ) n + 1 [p n + q(t)]y (t - nr) = 0, 

where q ( t )>0 is continuous function for teU+ and p, T are positive constants. 
In the particular case where n = 1 and q(t) = 0, Ladas and Stavroulakis [4] 

obtained the following result: 
The condition 

(4) pre > 1 

is necessary and sufficient so that: (1) has no eventually positive solutions, (2) 
has no eventually negative solutions, and (3) has only oscillatory solutions. 
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Using this result we examine the oscillatory character of all solutions of the 
above mentioned relations (1), (2) and (3) when n is odd, and of the bounded 
solutions only when n is even. More precisely, if (4) holds we prove the 
following results: 

(i) when n is odd: (1) has no eventually positive solutions, (2) has no 
eventually negative solutions, and (3) has only oscillatory solutions 

(ii) when n is even: (1) has no eventually negative bounded solutions, (2) has 
no eventually positive bounded solutions, and every bounded solution of (3) is 
oscillatory. 

As we shall explain in the following section our condition is the "best 
possible". The above results are caused by the retarded argument and are not 
valid when r = 0. 

As it is customary, a solution is said to be oscillatory if it has arbitrarily large 
zeros. 

2. Main results. At first we consider the case where n is odd. 

THEOREM 1. Consider the delay differential inequality 

(1)' y(n)(t) + [pn + q( t ) ]y( f -nr )<0 , n odd 

where p, r are positive constants and q(t)>0 is a continuous function for teU+. 
Assume that 

(4) pre>l. 

Then (1)' has no eventually positive solutions. 

Proof. Otherwise there exists a solution y(t) of (1)' such that for t0 suffi
ciently large 

y(f)>0, t>t0. 

Then y ( f - n r ) > 0 for t>t0+nr, and, from (1)', y ( n )(t)<0 for t>t0+nr. Now 
the conditions 

y( t )>0 and y ( n )(t)<0 for t>t0 + nr 

and the fact that n is odd imply that there exists an even integer /, 0 < I < n 
such that for t > t0 + nr 

fy(k\t)>0 for fc = 0 , 1 , 2 , . . . ,1 

(5) < and 

[ ( - l ) k y ( k ) ( t )>0 for k = l + l,l + 2,...,n. 

We claim that i = 0, i.e. for t>t0 + nr 

(6) ( - l ) y k ) ( t ) > 0 for fc = 0 , l , 2 , . . . , n . 
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To prove it assume that Z>0. Then integrating (1)' n — l times from tx to t for 
t± sufficiently large, we obtain 

y'l\t)^T(l^r-ya+k)(h)- f (/"S,r"'"![p"+q(S)]y(S-nr)dS 
k=o fc! Jtl ( n - i - 1 ) ! 

k=o fe! ( n - / - l ) ! Jti 

n-l-l (t_t \k 

= I i L
r r-y a + k ) ( t i ) -c ( t - t 1 )"- ' 

k = 0 ^ I 

where 

y(^i-^T) n 

is a positive constant. This implies that 

y(i:)(f)-^-oo as r->+oo 

which contradicts (5) and proves (6). 
Set 

x(f) = y (n-1}(0 - py (n-2)(t - T) + p2y(n~3)(f - 2T) + pn _ 1y (t - (n - 1)T). 

Then, in view of (5) 

(7) x ( t )>0 . 

Observe that 

x'(t) = y(n)(r) - py(n~1}(t - T) + p2y(n~2)(t - 2T) + pn _ 1y '(t - (n - l )r) 

and therefore 

x'(t) + px(t - T) = y(n)(f) + pny (f - MT) < -q(t)y(t - nr) < 0. 

That is 

(8) Jc'(t) + px ( f -T )<0 . 

But pre > 1 which implies that (8) has no eventually positive solutions. This 
contradicts (7) and the proof of Theorem 1 is complete. 

THEOREM 2. Consider the delay differential inequality 

(2)' y (n)(0 + [pn + q ( 0 ] y ( t - n r ) > 0 , n odd 

subject to the hypotheses of Theorem 1. Then (2)' has no eventually negative 
solutions. 

Proof. The result follows immediately from the observation that if y(0 is a 
solution of (2)' then —y(t) is a solution of (1)'. 
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From Theorems 1 and 2 it follows that when n is odd the delay differential 
equation (3) has no eventually positive or eventually negative solutions and 
therefore we are led to the following conclusion. 

COROLLARY 1. Consider the delay differential equation 

(3)' y(n)(f) + [pn + q(t)]y (t - nr) = 0, n odd 

subject to the hypotheses of Theorem 1. Then every solution of (3)' oscillates. 

Now we turn to the case where n is even. 

THEOREM 3. Consider the delay differential inequality 

(2)" yM(t)-[pn + q(t)]y(t-nr)>0, n even 

subject to the hypotheses of Theorem 1. Then (2)" has no eventually positive 
bounded solutions. 

Proof. Otherwise there exists a bounded solution y(f) of (2)" such that for t0 

sufficiently large 

y(f)>0, f>*o. 

Then y ( t - n r ) > 0 for t>t0 + nr and, from (2)", y (n )(f)>0 for t>t0+nr. Since 
y(f) is bounded, it follows that 

y (n )(f)>0, y ( n - 1 ) ( t ) < 0 , . . . , y"(0>0, y ' ( 0<0 , y(r)>0 

i.e. 

( - l ) k y ( k ) (0>0 , fc=0,l,2,...,n. 

Set 

(9) x ( t ) -y ( n - 1 ) (0 -py ( n " 2 ) ( t -T ) + p 2 y ( n - 3 ) ( r -2r ) p ^ y ^ - f a - D r ) 

which for sufficiently large t is negative. Differentiating both sides of (9), we 
obtain 

X'(t) = y(n)(t) - py(n-x)(t - T) + p2y(n~2)(f - 2 T ) pn_1y'(t - (n - l )r) . 

Observe that 

x'(t) + px(t-T) = y(nXt)-pny(t-nT)>q(t)y(t-nT)>0. 

That is 

(10) x'(0 + p x ( t - T ) > 0 . 

But pre>\ which implies that (10) has no eventually negative solutions. This 
contradicts the fact that x(t) is negative and the proof of Theorem 3 is 
complete. 
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THEOREM 4. Consider the delay differential inequality 

(1)" y ( n ) ( t ) - [p n + q ( t ) ] y ( t - n r ) < 0 , n even 

subject to the hypotheses of Theorem 1. Then (1)" has no eventually negative 
bounded solutions. 

Proof. The result follows immediately from the observation that if y (0 is a 
bounded solution of (1)" then —y(t) is a bounded solution of (2)". 

From Theorems 3 and 4 it follows that when n is even the delay differential 
equation (3) has no eventually positive or eventually negative bounded solu
tions and therefore we are led to the following conclusion. 

COROLLARY 2. Consider the delay differential equation 

(3)" y(n\t)~[pn + q(t)]y(t-nr) = 0, n even 

subject to the hypotheses of Theorem 1. Then every bounded solution of (3)" 
oscillates. 

Next we show that when q(t) = 0 that is, in the case of the delay differential 
inequalities 

(I) y(n)(t) + (- l ) n + 1p ny(^-WT)<0 

and 

(II) yin\t) + (-l)n+1pny(t-nr)>0 

and the delay differential equation 

(III) y(n)(r) + ( - l ) n + 1 p n y ( ^ - ^ ) - 0 

the condition 

(4) pre > 1 

is sharp. More precisely the following result holds: 

THEOREM 5. Assume that 

(11) p r e < l . 

Then for n odd: (I) has eventually positive solutions, (II) has eventually negative 
solutions, and (III) has non-oscillatory solutions while for n even: (I) has 
eventually negative bounded solutions, (II) has eventually positive bounded 
solutions, and (III) has non-oscillatory bounded solutions. 

Proof. For n odd, one can show directly that 

y(t) = e~a/r)t is a positive solution of (I) 
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and 

y(f) = -e~ ( 1 / T ) t is a negative solution of (II). 

Next we will prove that for n odd (III) has a non-oscillatory solution of the 
form y(t) = ekt with - l / r ^ A < 0 . This follows from the observation that the 
characteristic equation of (III), namely, 

F(À) = À n +p n éT X n T 

satisfies the condition 

F ( - i ) F ( 0 ) = ^ ) " [ ( p r e ) » - l ] £ 0 . 

In a similar way one can show that for n even, 

y(t) = -e~(1/r)t is a negative bounded solution of (I), 

y(0 = e_(1/T)t is a positive bounded solution of (II), 

and that (III) has a non-oscillatory bounded solution of the form eXt with 
- ( 1 / T ) < A < 0 . 

In view of Theorems 1, 2, 3, 4, 5 and Corollaries 1, 2 we conclude that the 
following result is true. 

COROLLARY 3. The condition 

(4) pre > 1 

is necessary and sufficient so that: 
(i) when n is odd: (I) has no eventually positive solutions, (II) has no 

eventually negative solutions, and (III) has only oscillatory solutions 
(ii) when n is even: (I) has no eventually negative bounded solutions, (II) has 

no eventually positive bounded solutions, and every bounded solution of (III) is 
oscillatory. 

EXAMPLE 1. The odd order delay differential inequality 

y " ' ( 0 + y ( t - i ) ^ o 

has the positive solution y(t) = e~~3t and the inequality 

y'"(t) + y ( t - l ) > 0 

has the negative solution y(t) = —e~3t. 
On the other hand the even order delay differential inequality 

y ( 4 ) ( 0 - â y ( ' - 4 ) < o 

has the negative bounded solution y(t) = —e~t and the inequality 

y ( 4 ) ( 0 - à y ( t - 4 ) ^ o 

has the positive bounded solution y(t) = e~l. 
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As expected condition (4) is not satisfied for all these inequalities. 

EXAMPLE 2. The odd order delay differential equation 

yw(0+y(t-y) = o 

has the oscillatory solutions y1(f) = sint and y2(f) = cosf. Furthermore condi
tion (4) is satisfied and therefore all solutions of this equation are oscillatory. 

On the other hand the even order delay differential equation 

256 
~4 y < 4 ) (0 - ^y ( t -D = o 
e 

admits the non-oscillatory bounded solution y(t) = e~4t. As expected condition 
(4) is not satisfied for this equation. 
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