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Structure Theory

of Totally Disconnected
Locally Compact Groups

via Graphs and Permutations

Rognvaldur G. Moller

Abstract. 'WIillis’s structure theory of totally disconnected locally compact groups is investigated in the
context of permutation actions. This leads to new interpretations of the basic concepts in the theory
and also to new proofs of the fundamental theorems and to several new results. The treatment of
Willis’s theory is self-contained and full proofs are given of all the fundamental results.

Introduction

Can there be such a thing as a general theory of totally disconnected locally compact
groups? The class of totally disconnected locally compact groups includes all p-adic
Lie groups and also all discrete groups, so the possibility of a general theory of any
depth seems slim. But, the recent work of George Willis (see mainly [20] and [22])
has the potential to prove this premonition wrong. Willis’s theory has already shown
its worth in the solution to several long standing open problems (see [12], [16] and
[21]) and ties in nicely with the theory of p-adic Lie groups and linear groups over
local skew fields, as shown by Glockner in [8] and [9].

This paper grew out of efforts to understand Willis’s structure theory and then to
apply it to the study of permutation groups, but what has emerged is an application
of permutation group theory to give a new self-contained approach to Willis’s theory.
The final product includes different descriptions of the main concepts of the theory,
new proofs of the fundamental results, and several new results that become visible in
the permutation group theory setting.

Let us turn to the contents of this paper and go briefly over its main results and
organisation. The approach to Willis’s theory described here runs in many ways par-
allel to Willis’s own development of the theory and many of the arguments here have
direct counterparts there. The emphasis in this introduction is on what is new and
different from Willis’s original work.
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The objects we will be working with are a totally disconnected locally compact
group G, a fixed element x in G and a compact open subgroup U of G. (The existence
of a compact open subgroup is guaranteed by an old theorem of van Dantzig, see [6]
and [10, Theorem 7.7].) The group G acts on the coset space & = G/U and it
is this action that is fundamental in the approach presented here to Willis’s theory.
The first section contains background material from permutation group theory and
graph theory and a description of how one can connect topology and permutation
actions. In Section 1.4 we go over the basic notational set-up that is used in most of
the results and their proofs.

The structure theory has two fundamental ingredients: tidy subgroups and the
scale function. We start with the tidy subgroups.

Definition 1 ([20]) Let G be a totally disconnected locally compact topological
group and x an element of G. For a compact open subgroup U of G define

oo o0
U, = ﬂxlUxfl U_ = ﬂxf’Ux’,
i=0 i=0

and
o o0
U_H_:Ux’U_'_x*’ U__ :UxilU,xl.
i=0 i=0

The subgroup U is said to be tidy for x if

(T1) U=U,U_=U_U,
and
(T2) U,, and U__ are both closed in G.

This definition is investigated in Sections 2 and 3; condition T1 having centre-
stage in Section 2. Condition T1 has several alternative formulations. The following
has the distinction of not involving the action of G on the coset space = G/U.

Corollary 2.2 Let G be a totally disconnected locally compact group, x an element of G
and U a compact open subgroup of G. Then U satisfies condition T1 if and only if

|U:UNx 'Ux| = |Uy:x 'Usx|.

That condition T1 implies the equality above is shown in [20, p. 354]; what is new
is the converse. It also emerges, as in [20, Lemma 1], that it is easy to construct a
compact open subgroup satisfying condition T1: start with any compact open sub-
group V and there is a number m such that U = (., X"Vx~" satisfies condition
T1 (Corollary 2.4). -

In the third section, condition T2 is combined with condition T1. The case when
(x) has compact closure (then x is said to be periodic) has to be handled separately.
It corresponds to the case where the orbits of x on €2 are finite. This is the “trivial”
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case in the theory and it is fully taken care of in Lemma 3.1. The main result of
Section 3 is the following theorem that translates the definition of a tidy subgroup
into permutation group theoretic terms.

Theorem 3.4 Let G be a totally disconnected locally compact group, x € G a fixed
element, U a compact open subgroup of G and Q@ = G/U. Set ap = U € Q and
note that G,, = U. Set o = apx'. Suppose that the orbit of ay under x is infinite
(that is, x is not periodic). Define a graph T’y such that VT'y = |J;~, oiU and ET', =
U>o(@i, @ix1)U. Then U is tidy for x if and only if T, is a tree, every two vertices in
'y have the same out-valency, and the in-valency of every vertex, except c, is 1 (that
is, I'y is a directed regular rooted tree such that all edges are directed away from the root
Oé()).

This technical looking theorem can be used to deduce a new simple characterisa-
tion of tidy subgroups for a given element x.

Corollary 3.5 Let G be a totally disconnected locally compact group, and x an element
in G. A compact open subgroup U of G is tidy for x if and only if

|U:UNx "Ux"| =|U:UNx 'Ux|",

for all integers n > 0.

In Section 4 it is shown how one can start with an arbitrary compact open sub-
group V of G and “tidy it up” to produce a tidy subgroup for a given element x of G.
The critical role in the construction is played by a graph theoretical result from [14].
It is interesting to note that this construction can, from the same raw material, pro-
duce a tidy subgroup different from the subgroup produced by Willis’s constructions
from [20] and [22]. An example of this is shown at the end of the section.

Now we turn to the scale function.

Definition 2 ([22, Definition 2.2])  Let G be a totally disconnected locally compact
group. The scale function on G is defined for x € G by the formula

s(x) = min{|V : V. Nx~'Vx| : V an open and compact subgroup of G}.

Remark This definition is differs slightly from that in [22, Definition 2.2]: there the
scale function s(x) is defined as the minimum value of |xVx™! : (xVx~') N V| for
all compact open subgroups V. Clearly [xVx™! : (xVx™ ") NV| = |[V:V Nx~'Vx,
so the above definition is equivalent to the definition in [22]. The definition of s(x)
shown here is not the same as the one used in [20], but in [22] it is shown that this
definition is equivalent to the definition used in [20].

The most important properties of the scale function are:

(S0) s: G — N is continuous, where N (the set of natural numbers) has the discrete
topology ([20, Corollary 4] and Corollary 7.3 below);

(S1) s(x) = 1 = s(x~!) if and only if there is a compact open subgroup of G nor-
malised by x. (See Corollary 5.4 below.)
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(S2) s(x") = s(x)" for every positive integer n and every x in G ([20, Corollary 3],
and Theorem 7.1 below).

(S3) Let A: G — R* denote the modular function on G. Then A(x) = s(x)/s(x 1)
for every x in G ([20, Corollary 1], and Theorem 5.2 below).

The scale function is closely related to tidy subgroups as will be shown in Section 6,
but before exploring that relationship we try in Section 5 to work only with the defi-
nition of the scale function. We get a short direct proof of property S3 (Theorem 5.2
below) and a simple proof, which bypasses the theory of tidy subgroups, of the fact
that if x € G and U is a compact open subgroup such that |[U : U N x™'Ux| = s(x)
then |[U : U NxUx™!| = s(x™!), see Corollary 5.3 below. In [22] Willis asked for
a such a proof. Property S1 can now be deduced directly from the definition of the
scale function via Corollary 5.3.

The connection between tidy subgroups and the scale function is that, if U is
a compact open subgroup of G then |U : U Nx~'Ux| = s(x) if and only if U
is tidy for x ([22, Theorem 3.1], see Theorem 6.1 below). The proof of this uses
the characterisation of tidy subgroups given in Theorem 3.4 and details from the
construction of tidy subgroups.

In the seventh and final section of this paper the properties of the scale function
are explored further, amongst other things we prove properties SO and S2, see Corol-
lary 7.3 and Theorem 7.1 below. The new results in Section 7 are an extension of [12,
Lemma 1.7] and the following new description of the scale function.

Theorem 7.7 Let V be a compact open subgroup of a totally disconnected group G.
Then for x € G,
s(x) = lim |V :V Nx "V,

n—00

Furthermore, s(x) = 1 if and only if there is a constant C (depending on V') such that
[V:VNnx"vx"| <C

for all integers n > 0.

Remark Let G be a totally disconnected and locally compact group. The scope of
this theory can be extended to treat continuous automorphisms of G, see [22]. For
an automorphism ¢ of G we define

s(¢) = min{|V : V. N (V)| : V an open and compact subgroup of G}.

Then we define
U= () U=,
=0 i=0

and

U = Je ' v =Jé W)
i=0

i=0
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A compact open subgroup U is said to be tidy for ¢ if U = U,U_ = U_U,, and both
U,+and U__ are closed in G. The definition for a subgroup to be tidy for an element
x in G corresponds to the case of it being tidy for the inner automorphism ¢, (y) =
x~!yx. The results and proofs in this paper are phrased in terms of subgroups tidy for
elements of G and the scale function as defined on G. If we are interested in knowing
about subgroups tidy for a continuous automorphism ¢ then we can form the semi-
direct product H of G with () and apply the results and methods in this paper to H
(see [22, Section 2]).

1 Preliminaries

To explain the new approach to tidy subgroups and the scale function we need con-
cepts from the theory of permutation groups and graph theory. We also need to
connect the topology on G to a permutation action of G. We start with the permu-
tation group theory in Section 1.1 and we link topology and permutation actions of
G in Section 1.2. Graph theoretical terms are explained in Section 1.3. Finally, in
Section 1.4 the notation that will be used in most of what follows is introduced.

1.1 Permutation Groups

Let G be a group acting on a set €. The group action will be written on the right, so
the image of a point @ € {2 under an element g € G is written as ag.

The action is said to be transitive if for every two points «, 8 € € there is some
element ¢ € G such that ag = (. For a point « € 2, the subgroup

G, ={¢geG:ag=0a}

is called the stabiliser in G of the point a.. If I' is a subset of € then the pointwise
stabiliser Gy of I is defined as the subgroup of all the elements in G that fix every
element of I, that is,

Gry={g€G:yg=~forally T} = ﬂ G,.
yel

The setwise stabiliser Gy of I' is defined as the subgroup consisting of all elements
of G that leave I invariant, that is,

Gy ={g€G:Ig=T}

Suppose U is a subgroup of a group G. The group G acts on the set G/U of right
cosets of U and this action is transitive. The image of a coset Uh under an element
g € Gis U(hg). Conversely, if G acts transitively on some set Q2 and « is a point in {2
then € can be identified with G/G,,. Here “identified” means that there is a bijective
map 0: Q@ — G/G, such that for every w € Q and every element ¢ € G we get
0(wg) = 0(w)g, that is, 0 gives an isomorphism of G-actions.

The orbits of stabilisers of points in 2 are called suborbits, that is, the suborbits
are sets of the form 3G, where a, 5 € €. Orbits of G on the set of ordered pairs
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of elements from € are called orbitals. When G is transitive on 2 one can, for a
fixed point a € (), identify the suborbits 3G, with the orbitals: the suborbit G, is
identified with the orbital (o, 3)G. Define the orbital graph I" for the orbital (o, 3)G
as the graph with vertex set {2 and set of directed edges (¢, 3)G. (In Section 1.3 below
there is a discussion of graph theoretical terms.) The action of G on its vertex set €2
induces an action of G as a group of automorphisms on the graph I', because if («, 3)
is an edge in I then (ag, B¢) is in the same orbital and therefore also an edge in I'.
The number of elements in a suborbit G, often called the length of the suborbit, is
given by the index |G, : G4 N Gg|. In general the number of elements in the orbit
aU of a subgroup U is equal to the index |U : U N G,|.

A block of imprimitivity for G is a subset A of € such that for every g € G, ei-
ther Ag = A or AN (Ag) = @. The existence of a non-trivial proper block of
imprimitivity A (non-trivial means that |[A| > 1 and proper means that A # Q) is
equivalent to the existence of a non-trivial proper G-invariant equivalence relation ~
on €. When G acts transitively on €2, the block A and its translates under G give the
~-classes, and conversely if ~ is a non-trivial proper G-invariant equivalence relation
then the ~-classes are non-trivial proper blocks of imprimitivity for G. When ~ is a
G-invariant equivalence relation on €2 then G permutes the ~-classes and thus G acts
on the set {2/ ~ of equivalence classes. If there is no non-trivial proper G-invariant
equivalence relation on 2 we say that G acts primitively on €. In most (all?) books
on permutation groups it is shown that, if G acts transitively on €2 then G acts primi-
tively on 2 if and only if G,, is a maximal subgroup of G for every a € €. Part of the
proof of this is to show that if G, < H < G then aH is a non-trivial proper block of
imprimitivity.

Recent books covering this material (and of course more) are [3] and [7].

1.2 Permutation Topology

Let G be a group acting on a set €2. The action of G on €2 can be used to introduce a
topology on G. (The survey paper by Woess, [23], contains a detailed introduction
to this topology.) The topology of a topological group is completely determined by
a neighbourhood basis of the identity element. The permutation topology on G is
defined by letting the pointwise stabilisers of finite sets form a neighbourhood basis
of the identity, that is, a neighbourhood basis of the identity is given by the family of
subgroups
{G(e) : P afinite subset of Q}.

Think of €2 as having the discrete topology and elements of G as maps 2 — . Note
that the permutation topology is equal to the topology of pointwise convergence.
Thus a sequence {g;};>¢ of elements in G has an element g as a limit if and only if
for every o € (2 there is a number N (depending on «) such that if n > N then
ag, = ag.

Various properties of the action of G on (2 are reflected in properties of this topol-
ogy on G. For instance, the group G is Hausdorff if and only if the action of G on 2
is faithful (faithful means that the only element of G that fixes all the points in €2 is
the identity). If the action is faithful then G is totally disconnected.
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When G is a permutation group on {2, that is, G acts faithfully on €2, one can think
of G as a subgroup of Sym(€2), the group of all permutations of 2. We say that Gisa
closed permutation group if it is a closed subgroup of Sym (£2), where Sym(€2) has the
permutation topology.

Let us now turn the tables and assume that G is a totally disconnected topological
group and U a compact open subgroup of G. Define @ = G/U. Leta = U € Q,
that is, « is equal to the coset U. Thus G, = U. Suppose & = {f,...,08,} isa
finite subset of Q and x1, . .. ,x, are elements in G such that ax; = ;. Then

G@) = G, N+ NGy, = (x] ' Gax1) N+ N (x; ' Gaxy) = (x] 'Uxy)Ne - N (x5 Uxiy).

Hence all the elements that form the chosen basis of neighbourhoods of the identity
in the permutation topology are open in the topology on G. Therefore the permuta-
tion topology is contained in the topology on G. The permutation topology can be
different from the topology on G: the permutation topology does not separate points
in K = (N8 'Ug the kernel of the action of G on Q. But since the permuta-
tion topology is contained in the topology on G we see that if a sequence {g; }i>o of
elements in G has an accumulation point g with respect to the topology on G then
g is also an accumulation point of the sequence in the permutation topology on G.
Note that for every 5 € €2 the orbit 3G, = (U is finite. This is so because, if g is an
element of G such that g = 8 then U Ng~'Ug is an open subgroup of the compact
subgroup U and thus

|BGa| = |Ga: Ga NG| =|U:UnNg 'Ug| < o0.

Therefore, all suborbits in the action of G on (2 are finite. Compactness has a very
natural interpretation in the permutation topology as shown in the following lemma.

Lemma 1.1 ([23, Lemma2]) Let G be a totally disconnected locally compact group
and U a compact open subgroup of G. Set Q@ = G/U. A subset A in G has compact
closure in G if and only if the set oA is finite for all o in Q.

Furthermore, if A is a subset of G and aA is finite for some o in §) then QA is finite
for all o in Q.

Proof Suppose first that A has compact closure. We can just as well assume that A is
compact. Let a be a point in €2. The cosets of the group G, form an open covering

of A and thus there is a finite subcovering G,x1, . . . , Gox,. If we choose this finite
subcovering so that there is no redundancy, then aA = {axi,... ,ax,} and @A is
finite.

On the other hand, assume that oA is finite, say aA = {ax,... ,ax,}. Then

A C Goxp U -+ U Gux,. The set Goxy U - - - U Gux,, is compact and thus the closure
of A is compact.
The last statement of the lemma is now obvious. [ |

Lemma 1.1 has a sort of a “dual”: a subgroup H in G is cocompact (that is, G/H is
compact) if and only if H has only finitely many orbits on €2, see Lemma 7.5 below.
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Turning back to permutation groups on 2 we notice that if G is a closed permu-
tation group then G, is also closed in Sym(€2). It is easy to show that if G is a closed
permutation group and all the suborbits of G are finite then G, is compact and G is
a totally disconnected locally compact group (see [23, Lemma 1]).

1.3 Digraphs

In this section the basic graph theoretic terms needed are defined, in particular the
concept of highly arc transitive digraphs is introduced. Highly arc transitive digraphs
were first studied by Cameron, Praeger and Wormald in [5]. The terminology is
useful when the conditions defining a tidy subgroup are translated into terms relating
to group actions and results about highly arc transitive digraphs from [14] will be
used when showing the existence of tidy subgroups in Section 4.

A digraph I" = (VT', ET") consists of a set VI of vertices and a set EI' C VI' x VT’
of edges. An s-arc in a digraph I' is a sequence oy, a1, . . . , a; of distinct vertices such
that (@, ajy1) isanedgeinI" fori = 0,... ,s—1 (also called a directed path of length
s). A digraph T is said to be s-arc transitive if Aut(I') acts transitively on the set of
s-arcs. A highly arc transitive digraph is a digraph that is s-arc transitive for every
s>0.

For a vertex @ in I', define inr () as the set {3 € VI': (3, ) € EI'} and outr(«)
as the set {# € VI': (a,) € EI'}. The cardinality of inp(«) is called the in-
valency of a and the cardinality of outr(a) is the out-valency of a.. We say I is locally
finite if both the out-valency and the in-valency of « are finite for every vertex « in
I. A directed line in a digraph T is a sequence {q; };cz of distinct vertices such that
(aj, 1) is an edge in I for every i € Z (here Z denotes the set of integers). For
a subset A of VT, the subgraph spanned by A is the subgraph A of VI such that
VA = A and EA consists of all edges («, 3) in I" such that both « and 3 are in A.

The set of descendants of a vertex o in I is the set of all vertices 3 such that I"
contains a directed path from « to 8. Denote this set by desc(a). For A C VI define

desc(A) = U desc(a).

acA

Several terms properly belonging to the world of undirected graphs will also be
needed. If @ and 3 are vertices in a digraph I' we say that « and 3 are adjacent if (a, 3)
or (8, a)isanedgeinI'. A pathinadigraph I isasequence ap, o, ... , a; of distinct
vertices such that a; and a1 are adjacent fori = 0,... ,s — 1. A digraph is said to
be connected if for any two vertices there is always a path between them. A digraph is
said to be a free if it is connected and it has no non-trivial cycles, that is to say that
there is no sequence of vertices o, a1, . . . , a5 with s > 3 such that ag, oy, ... , s
are distinct but oy = «, and o; and a4 are adjacent fori =0, ... ,s — 1.

1.4 Notational Conventions

In what follows our environment will contain a totally disconnected locally compact
group G with a specified element x. The conditions for a compact open subgroup U
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to be tidy will be described in terms involving the action of G on the space G/U of
right cosets of U in G. The same basic set-up will appear in most of the arguments
and also in the results. Below the ingredients in this set-up are explained.

Set @ = G/U. Define o as the point in ) corresponding to the coset U. Thus U
is equal to the stabiliser G,, in G of the point ¢. Define o; = apx'. Once we start
looking at the elements of Willis’s theory it emerges that the case where the orbit
of a under x is finite is the “trivial” case of the theory (see Lemma 3.1). Note that
Gy, = x 'Gyyx' = x'Ux'. Define for n < m the following subgroups of G:

m m
Upm = ﬂx*"Ux" = ﬂ G5

i=n i=n

i=m

i=m
—i i .
U—_com = m x 'Ux' = ﬂ Gays
—00 —o0

(o] oo
Upoo = ﬂxilUx’ = ﬂ Go;-
i=n i=n

Thus U, is the subgroup of the elements in G that fix all the points &, a1, - - -
Quy, similarly U_ ,, is the subgroup of all the elements in G that fix all the points
Qs Qy—1, -« . » and Uy, o is the subgroup of all the elements in G that fix all the points
Quny Qutl,y - - - - The subgroup U is compact and therefore the subgroups defined above
are also compact. Following Willis [22] we define

o0 (o ]
Uy =[)6Ux " =U_wp U_=[x"Ux' = Upeo,
i=0 i=0

and

oo o0 o0 o0
Uy = J¥Uix "= U s U~ =Jx'U ¥ =JUico-
i=0 i=0 i=0 i=0

We define I as the orbital graph (Q, (e, al)G) . Then I'; is defined as the sub-
graph of I" with vertex set VI, = |J;~ @iGa, and edge set ET'y = U, (i, @i+1)Ga,-
Now assume that the orbit of oy under x is infinite. In the orbital graph I the set of
vertices A = {«; }icz forms an infinite directed line. Informally the graph I',; defined
above is what we get if we keep the vertex oy fixed and look at the graph “traced” by
images of the infinite directed path «y, a1, ... under U.

In addition we have use for another subgraph ', of I' with vertex set VI',, =
U,ez @iUs+ and edge set EI'y = J,; oz (e, @iy1)Uyy. Informally this graph can be
described as the graph “traced out” by the images of the line A if some infinite path
of the form a;, a; 1, . .. is kept fixed and we let i vary.

In Sections 5 and 7 we will have several compact open subgroups of G and the
action of G on their coset spaces simultaneously under the microscope. When needed
we will use labels: so that Q) denotes the coset space G/V and agv) denotes the coset
V in Q) such that V = G, and then we get I'"Y) and so on.
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2 Condition T1

In this section we explore the meaning of condition T1 that U = U,U_ = U_U,.
Theorem 2.1 gives the translation of condition T1 into terms involving the action
of G on G/U. From Theorem 2.1 we deduce Corollary 2.2 where we get another
formulation of condition T1, but this time without mentioning the action of G on
G/U. The ideas in Theorem 2.1 are then employed, via Theorem 2.3, to construct
subgroups satisfying condition T1 (Corollary 2.4).

Theorem 2.1  Let G be a totally disconnected locally compact group, U a compact
open subgroup of G and x an element of G. Set Q. = G/U. Choose ag = U € (). Set
o = aox'. Define Uy and U_ as in Section 1.4. The following are equivalent:

(i) oU=a Uy
(ii) for every g € U there is an element h, € U, such that a;jhy = oug for all i > 0;
(iii) condition T1 holds, that is,

U=U,U_=U_U,.

Remark Alternatively we can start with a closed permutation group G acting on a
set Q and such that all suborbits are finite. Then G is a totally disconnected locally
compact group. If we choose some point oy € €2 then U = G, is a compact open
subgroup of G and {2 can be identified with the coset space G/U.

Proof Recall that U, is the subgroup of G consisting of all the elements that fix all
the points ap, _1, . .., and U_ fixes all the points ap, a, . . ..

(i) = (ii): Assume that condition (i) above holds. Let g be an element in U. We use
induction to find a sequence {h, },>1 in U, such that ;g = a;h, fori =0,... ,n.
By condition (i) there is an element h; in U, such that a;¢ = a1h;. Assume now
that we have found an element #,, in U such that a;g = a;h, fori = 0,... ,n. Put
0B; = ajh,. Note that §; = «; for i < 0. Let V denote the stabiliser of the point 3, =
ash, = a,g. ThenV = Gg, = h, 'x "Ux"h, and G, 3, ,..) = h, 'x "U,x"h,,
because U, is the subgroup of G fixing the points oy, @_1, . .. and x"h,, moves «; to
Bi+n. Condition (i) implies that 3,41V = B,41Gg,,8,_1,..)- The two points 3,41 and
Q118 are in the same V-orbit and thus, by (i), there is an element b’ € G, 8, ,...)
such that a1 = By h'. Set hy1 = h,h'. Since h' fixes the points 3,,, B,—1, - . . we
see that a;g = a;hy,e1 fori = 0,... ,n,n+ 1. Also note that 4’ is in U, and therefore
hy41 1s also in U,

The sequence {h, },>1 is contained in the compact subgroup U, and has an accu-
mulation point h, € U,. From the definition of the permutation topology it follows
that a;g = a;h, for every i > 0.

(ii) = (iii): Assume now that condition (ii) holds. Let ¢ € U. Find h, € U, as
described in (ii). Set h_ = gh;'. Then ajh_ = a;gh;' = o for every i > 0, and
therefore h_ € U_. Hence g = h_h, € U_U,. We have shown that U = U_U,
and it follows that also U = U, U_.
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(iii) = (i): Assume now that U = U, U_ = U_U,. Take some point 3 in a1 U,
say B = o ;g whereg € U. Writeg = h_h, € U_U,. Then, since h_ fixes o, we get
that

B=ag= alhjlg = o hy € U,

Obviously oy Uy € o U and we conclude that o, U, = oy U. [ |

The above theorem also leads to another characterisation of condition T1. Part of
this result can be found in [20, p. 354].

Corollary 2.2 Let G be a totally disconnected locally compact group, x an element of
G and U a compact open subgroup of G. Then U satisfies condition T1 if and only if

|U:UNnx'"Ux| = |Uy:x'Uyx|.

Proof Use the notation in Theorem 2.1. First note that |[U : U Nx™'Ux| = |, U]|.
Then note that x™'Usx = Uy Nx~'Ux = Uy N G,,, and thus |U; : x7'Ux| =
|1 Uy |. Hence the condition that |[U : U Nx 'Ux| = |U; : x 'U,x]| is equivalent to
condition (i) in Theorem 2.1 and the corollary is established. [ |

The next step is to use the above ideas to show that every compact open subgroup
U contains a subgroup satisfying condition T1.

Theorem 2.3  Adopt the notation explained in Section 1.4.

(i)  There is some number m > 0 such that ocnU_p, 0 = oqUy.

(i) IfoaU_pp = Uy and g € U_,,  then there is an element h, € U, such that
;¢ = ajhy fori > 0.

(iii) IfouU_po =onUysthenU_y0 = U U_y 00 = U_p ocUs.

Proof (i) The set ;U is finite. Clearly a;Uy € aiU_,9 € anU_, o whenever
m > n > 0. Suppose that ;U is a proper subset of oyU_,, for every m > 0.
Then there is some point 3 € 2 such that 3 € a,U_,, for every m > 0, but
B & a1 U,. For every n > 0 there is an element h, € U_,, such that a; b, = . The
sequence {h, },>o is contained in U and, since U is compact, this sequence will have
an accumulation point h;. Clearly h, € U, and ayhy = B. Therefore § € o,Uy,
contrary to our assumptions. We conclude that there must be a number m such that
ayU_po = aqUs.

(ii) Use the same argument as proved the implication (i) = (ii) in Theorem 2.1.

(iii) Here we use (ii) above and the same argument as proved the implication
(ii) = (iii) in Theorem 2.1. |

The first of the following corollaries shows how the above analysis of condition T1
can be use to produce subgroups satisfying condition T1. In the second corollary an
unexpected symmetry between U, and U_ is pointed out.

https://doi.org/10.4153/CJM-2002-031-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2002-031-5

806 Rognvaldur G. Moller

Corollary 2.4 ([20, Lemma 1])  Let G be a totally disconnected locally compact topo-
logical group and x an element in G. Suppose U is a compact open subgroup of G. Then
there exists an integer m such that if V.= m0§n§m x"Ux™" then

V=V,V_=V_V,,
where V, = (<, X"Vx " and V_ =\ ., x "Vx".

Proof Consider the action of G on Q@ = G/U. We choose m as in Theorem 2.3 (i)
andset V. =U_,,o. ThenV, = U, and V_ = U_,, o and the result follows. [ |

Corollary 2.5 Use the same notation as in Theorem 2.3. If cyU_,, 0 = aU, then
a_ iy U—pmo = a—guyU—meo. In particular, if ;U = o U, then a_U =
aflUf.

Proof By Theorem 2.3, the assumption a;U_,, 0 = «; U, suffices to conclude that
U_mo = UU_y 0. Take an element g € U_, o and write ¢ = h,h_, with
hy € Uyand h_ € U_,; . Then a_(uing = a—minhih— = a—_@niyh—. Hence
A1) Um0 = Q— (1) U —i,00- u

3 Tidy Subgroups

Now we turn our attention to the effect of condition T2 when it is combined with
condition T1. The main result in this section is Theorem 3.4, which gives a new
characterisation of tidy subgroups for a fixed element x in G.

It is necessary to distinguish between two cases according to whether the closure
of (x) in G is compact or not. If the closure of (x) is compact then x is said to be
a periodic element of G (some authors use the term compact element). In view of
Lemma 1.1 we see that if U is a compact open subgroup of G and 2 = G/U then x is
periodic if and only if every x-orbit in € is finite. In particular we see that if ap € 2
and U = G, then there is a number N such that xN fixes ay, that is, xN¥ € U. The
following lemma takes complete care of the case when x is a periodic element of G.

Lemma 3.1 Let G be a totally disconnected locally compact group and x a periodic
element in G.

(i) A compact open subgroup U in G is tidy for x if and only if x normalises U.
(ii) There exists a compact open subgroup U in G that is tidy for x.

Proof (i) Suppose U is tidy for x. Since x is periodic, there is a number N such that
xN € U. Then clearly

U, =UNUx HN---neN tux VY =U_.
Since by assumption U = U,U_ and U, = U_ one concludes that U = U, = U_

and that x normalises U. On the other hand, if x normalises U then one only needs
to glance at the conditions for U to be tidy for x to see that they are satisfied. (From
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this we can also see that if x is periodic then a compact open subgroup U satisfies
condition T1 if and only if U is tidy for x.)

(ii) Let V be some compact open subgroup of G. Let N be a number such that
xN € V. The subgroup

U=vn@EVx Hn--nEtve 8,
is compact and open. It is clearly normalised by x and therefore tidy for x. ]

Lemma 3.2 ([20, Lemma 3])  Let G be a totally disconnected locally compact group
and x € G. Suppose U is a compact open subgroup of G that satisfies condition T1.
Recall from Section 1.4 that Uy = | J;oy x¥*Usx " and U__ = |J72) x 'U_x'". Then

(1) U,y isclosed if and only if U, NU = U, and, similarly, U__ is closed if and only
ifU__NU=U_;
(ii) Uyy is closed if and only if U_ _ is closed.

Proof (The proof of this lemma follows Willis’s proof of [20, Lemma 3].) Consider
the action of G on Q = G/U. Let ag denote the point in §2 corresponding to U and
set a; = apx’. By Lemma 3.1 we may assume that the orbit of o under x is infinite.
With this notation we see that

U, = {g € G: there is a number n such that a;g = «; for all i < n},
and
U__ = {g € G: there is a number n such that ;g = «; foralli > n}.

The condition U, N U = Uy, says that if g € U = G, and there is some number n
such that g fixes o; for all i < n, thatisif g € U,, then ¢ fixes ; for all i < 0.

(i) Suppose U, is closed. Clearly U, C U4y N U. Assume, seeking a contradic-
tion, that U, is a proper subset of U, NU and thatg € (U;+NU)\ U;. Sinceg € U
we can apply Theorem 2.1, and find an element h € U, such that a;g = a;h for all
i > 0. Thengh™' € U_ and clearly gh™! € (U;+ NU) \ Us. Thus we may assume
that g € U_. Since g is in U, but not in U, there is some number n < 0 such that
g fixes o for all i < #, but there is also a number /, between # and 0 such that g does
not fix . Define a sequence {h;};>; by induction such that h; = g and in general
hiy, = x"hix~™"g. A schematic view of how the elements in the sequence {hi}i>1
act on A = {a;}iez is shown in Figure 1. Thus h; will fix all points o with k < in
and also fixes aj, but does not fix the points ay j,, with j such that0 < j < i — 1.
All the elements in this sequence are contained in U. Because U is compact, this
sequence will have an accumulation point h contained in U. But this element £ is
clearly not in U, a contradiction with the assumption that U, is closed. Therefore
U,NU=U,.

IfU,+ NU = Uy, then Uy NU is closed. Since U is closed then, by [4, Proposi-
tion 2.4 in Chapter III] or [10, 5.37], U, is closed.

The statement for U__ is proved in exactly the same way.
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(ii) IfU__ is not closed (thatis, U__ N U # U_) then there exists an element
g that fixes o; for all i < 0 and all i > #n for some n but there is a number / such
that « is not fixed by g. We see that x"gx™" is in U, N U. As we saw in part (i), the
existence of such an element leads to the conclusion that U, is not closed. Hence, if
U, is closed then U__ must also be closed. By symmetry we can interchange U,
and U__. [ |

Theorem 2.1 and Lemma 3.2 combined give:
Corollary 3.3 Let G be a totally disconnected topological group, x an element in G and
U a compact open subgroup of G. Set Q = G/U and use the terminology set up in
Section 1.4. Then U is tidy for x if and only if

OélU.)_ = OélU

and
U_ o,-mNU =Uy, foreverym > 0.

The notation and terms used in the following theorem are explained in Sections 1.3
and 1.4.

Theorem 3.4  Let G be a totally disconnected locally compact group, x € G a fixed
element, U a compact open subgroup of G and Q = G/U. Set g = U € Q and
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note that G,, = U. Set a; = apx’. Suppose that the orbit of cvy under x is infinite
(that is, x is not periodic). Define a graph 'y such that VI'y = |J;~, iU and EI", =
U,so(@i, ais1)U. Then U is tidy for x if and only if ', is a tree, every two vertices in
I, have the same out-valency, and the in-valency of every vertex, except v, is 1 (that
is, I'y is a directed regular rooted tree such that all edges are directed away from the root

Oé()).

Remark A rooted directed tree with all edges directed away from the root is often
called arborescence in the literature. Here we will not use that term but instead just
talk about trees, or rooted trees, and specify any further properties.

Proof Assume first that U is tidy. Clearly the in- and out-valencies in I'; are the
same for all vertices in the orbit o, G,,. Note also that I'; is a connected graph.

Suppose n > 0 and in (o;) > 1. Then there is an element ¢ € G,, such that
a,g = a, buta,, 1 # o, 1. By Theorem 2.1 there is an element h € U, such that
ah = a;gforalli > 0. If i/ = x"hx™" then h' fixes oy and fixes o; for all i < —n.
Thus b’ € U,y NU. From Lemma 3.2 we know that U,, N U = U,. So h’ € U,
and h' therefore fixes ; for all i < 0. But h = x~"h’x" and h fixes the point q; for all
i < n, a contradiction. Thus every vertex in I';, except c, has in-valency equal to 1.

From condition T1 we see that out(cy) = a1G,, = U, and we observe also
that out(ay,) = a41(Ga, N Gg,). Considering the second condition in Theorem 2.1
we see that a1 (Ga, N Ga,) = aur1(Uy N Gg,) and from condition T2 it follows, via
Lemma 3.2, that Uy, N U = U, and therefore U, N G,, = U_,. Hence, again
applying T1,

out(a,) = an+1U—oo,n = au41Gq,,-
Clearly |ay41Ga,| = |@1Gq,|- The out-valency of a,, is thus the same as the out-
valency of oy, and every two vertices in I'; have the same out-valency. Since the
in-valency is 1 and VT, is by assumption infinite we see that I, is a tree.

Assume now that I'y is a tree and that all the vertices have the same out-valency
and all vertices, except v, have in-valency equal to 1. First we note that since I'; is
a tree, then if a group element ¢ € G, fixes some two vertices in I'y then g must
fix every vertex in the unique path between them. Hence U N x~"Ux" = U, and
UNUpoo = Upoo = U-_.

The assumption about the out-valency of vertices in I, implies that |a,41Uo | =
|1 G, | for every n > 0. We see that x"Ug ,.x " = U_, o and that a;U_,, 0 = a1 G,
for every n > 0. Therefore a1 G,, = a;U,. Hence condition T1 is satisfied.

By the first part of Lemma 3.2 we see that U__ is closed, and then, by the second
part of Lemma 3.2, condition T2 is satisfied. ]

Example 1 (cf. [20, Section 3]) Let T}, denote the (undirected) regular tree of valency
n+ 1. Set G = Aut(T,). Putting the permutation topology on G makes G into a
totally disconnected locally compact group. Let {a;}icz be a sequence of distinct
vertices in T}, such that ¢; is adjacent to «;4; for all i. Let x be an element in G such
that ajx = «jy forall i. Set U = G,,. The graph I'; constructed as described in
Section 1.4 is a tree, indeed the same as T, except that the edges have directions and
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all are directed away from . The out-valency in I'y of ag is n + 1 but the other
vertices in I'; have out-valency n. Theorem 3.4 says that U is not tidy for x. From
condition T1 we see that «v_; is contained in o;; U but is not contained in o;; U, and
thus T1 fails. It is easy to show that U = G,_, N G,, is tidy for x.

Corollary 3.5  Let G be a totally disconnected locally compact group, and x an element
in G. A compact open subgroup U of G is tidy for x if and only if

U:UNnx"Ux"|=|U:UnxUx|",
for all integers n > 0.

Proof Consider the permutation representation of G on Q = G/U. Use the notation
explained above and in Section 1.4. By Lemma 3.1 it is clear that the corollary is true
in the case when x is periodic, that is, when the orbit of a under x is finite. It is thus
safe to assume that the orbit of o,y under x is infinite.

First suppose that U is tidy for x. Then the graph I, is a tree. The out-valency of
[y isdy = |Gy Goy NGy, | =|U : UNx 'Ux| and the number of vertices in ', at
distance n from «y (that is, in the orbit v, G,, ) is clearly (d,.)". Thus

|U:UNXx"Ux"| = |Gay : Gay N Ga,| = |0nGay| = (d1)" = |U : U Nx~'Ux|".

Suppose now that |U : U Nx~"Ux"| = |U : U Nx 'Ux|" for all n > 0. Consider
the graph I';.. The out-valency of ag is dy = |Gy, : Gy N Go,y| = |U : U Nx~'Ux|.
The out-valency of any vertex in I'; can clearly not be greater than d,. But the num-
ber of vertices at distance n from «y is by assumption

|0 Gao| = |Gap : Gap NG, | = U : UNx™"Ux"| = |U : UNx"'Ux|" = (d;)".

This can only happen when I, is a tree and the in-valency of every vertex, except vy,
is 1, and every vertex in ['; has out-valency equal to d;. Thus, by Theorem 3.4, the
subgroup U is tidy for x. ]

From the definition of a tidy subgroup it is obvious that a subgroup that is tidy for
x is also tidy for x~!. The formula for the indices above gives an easy way to extend
that useful observation.

Corollary 3.6  Let G be a totally disconnected locally compact group, and x an element
in G. If a compact open subgroup U of G is tidy for x then it is also tidy for x" for all
integers n.

It is not true that a compact open subgroup U that is tidy for x” is automatically
tidy for x. A simple example would be when x is periodic and x" € U, but x does not
normalise U.

Assume that U = G,, is tidy for x and that the orbits of x on Q@ = G/U are
infinite. Let I" denote the orbital graph (Q, (avg, al)G) . Every vertex in I' has out-
valency equal to |a;G,,|- This is the same as the out-valency of the vertices in ;.
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From the definition we see that I'; is a subgraph of I' and, since the two graphs have
the same out-valency, I, is the subgraph of I' that is spanned by VI';. Another way
to describe I'; is that I';. is the subgraph spanned by the vertices in desc(ay).

Proposition 3.7 Continue with the notation above and assume that U is tidy for x.
The graph 'y is the subgraph of(Q, (v, oq)G) spanned by VI, = |, iGa,-

Furthermore, the graph ', with vertex set VI, = |J;c, iUy and edge set
Elyy = U,z (@i, @i1)Uyy is the subgraph of( Q, (ag, al)G) spanned by J;, iU+
It follows from the fact that I, is a tree, that ', is a tree.

Before turning to the matter of constructing tidy subgroups we show how the
above observation can be used to deduce a condition for an element ¢ € U to be in
U_ or U,. This lemma will be used in Section 6.

Lemma 3.8 ([20, Lemma 9])  Let U be a compact open subgroup of a totally discon-
nected group G. Suppose that U is tidy for an element x in G. Then an element g of
U belongs to U_ if and only if the family {x"gx™"},>0 has an accumulation point.
Similarly, g € U belongs to U, if and only if {x~"gx"},>0 has an accumulation point.

Proof We use the same notation as explained in Section 1.4.

Ifg € U_ then {x"gx "},>9 C U_. Since U_ is compact, the family {x"gx "} ,>¢
must have an accumulation point.

Suppose now that {x"gx""},>¢ has an accumulation point g,. Then there is an
infinite sequence of numbers 0 < n; < #1, < - -+ such that ao(x"gx™") = apgeo for
all i > 1. Let m be the biggest number such that there is a directed path in I, from
0y, t0 0goo- Note that g fixes oy so x™gx™" fixes apx™ ™ = a_,,. Thus there must
be a directed path in I'y; from a_,, t0 agoo. Therefore the definition of m makes
sense and 0 > m > —n,. The subgraph of I';, spanned by those vertices that can be
reached by a directed path from o, is invariant under x" gx~". This graph is a tree
and contains ay, o, and opgoeo. The path from a_,, to o is mapped by x™ " gx™ to
a path from a_,;, t0 apgoo. This means that x" gx™" fixes ;. Now we conclude that
g fixes ™ = Quyin, for all i > 0. Hence there are arbitrarily large numbers i such
that g fixes ;, and because I'; is a tree, ¢ will fix a; foralli > 0. Sog € U_. The
proof that if {x~"gx"},>( has an accumulation point if and only if ¢ € U, is exactly
the same: we just replace x in all arguments with x L. ]

4 Construction of Tidy Subgroups

In this section it is shown that if G is a totally disconnected locally compact group
and x is an element of G, then G contains a compact open subgroup that is tidy for x.
Along the way we clarify the nature of tidy subgroups further.

By Theorem 3.4 we must find a compact open subgroup U that acts on a rooted
tree such that all vertices have the same out-valency and all, except the root, have in-
valency 1. The strategy is to show first that if V satisfies condition T1 then the graph
I';+ is highly arc transitive. From the results in [14] we learn that Iy, is “tree-like”
in a certain sense and that it is possible to construct a tree from I';,. There we have
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a tree and we can spot our tidy subgroup. It is interesting to note that the method
of construction here can in some cases produce a different tidy subgroup than the
constructions described by Willis in [20] and [22]. An example of this phenomenon
is shown at the end of the section.

Theorem 4.1 ([20, Theorem 1])  Let G be a totally disconnected locally compact group
and x an element of G. There is a compact open subgroup of G that is tidy for x.

Proof Let V be a compact open subgroup of G. By Corollary 2.4 there is some inte-
ger m such that (), -, X"Vx~" satisfies condition T1. If necessary, replace V" with
ﬂo <nem X"VXT, and thus we may assume that V satisfies condition T1.

Consider the action of G on Q = G/V. Choose oy € 2 such that V = G,, and
use the notation explained in Section 1.4. By Lemma 3.1 we only have to think about
the case where the orbits of x are infinite. Now we make a short graph theoretical
break in the proof of Theorem 4.1 and state and explain two results from [14]. Then
we show how Theorem 4.2 can be applied to the graph I, ;.

Theorem 4.2 ([14, Theorem 1])  Let I" be a locally finite highly arc transitive digraph.
Suppose that there is a directed line A = {; }icz in T such thar T' = desc(A). Then
there exists a surjective homomorphism of digraphs ¢: I' — T where T is a directed
tree with in-valency 1 and finite out-valency. The automorphism group of I' has a nat-
ural action on T as a group of automorphisms such that p(ag) = p(a)g for every
g € Aut(I') and every o in VI'. The action of Aut(I') on T is highly arc transitive.
Furthermore, the fibers of ¢ are finite and all have the same number of elements.

Let us briefly review how T and ¢ are defined. One can make the set Z of integers
into a digraph by saying that (i, i + 1) is an edge for all integers i. The first step in the
proof of the above theorem is to show that there is a well defined map ¢: VI' — Z
such that 1(«;) = i for all i, and if 3 is some vertex in I" and there is a directed path
from ¢ to 3 of length k then ¥(3) =i + k, see [14, Lemma 4].

For an integer k, define V; = 1! (k) and Ey as the set of all edges («, 3) in I such
¥(a) = k — 1 and ¥(B8) = k. The digraph I \ E; will have more than one infinite
component. Define an equivalence relation on the vertex set VI' such that a ~ g if
and only if o and 3 are both in V for some k and o and 3 are in the same component
of '\ E. This equivalence relation is preserved under the action of Aut(T"). The tree
T in the theorem is the quotient digraph I'/ ~. Two vertices a and b in T, that is two
~-classes, are connected by an edge (a, b) in T if and only if there are vertices «, 3 in
I' such that @ € aand 8 € b and («, ) is an edge in I'. The natural quotient map
p: I' = T is the homomorphism we seek.

The following result from [14] will be used in Section 5.

Proposition 4.3 ([14, Lemma 5])  Let I' be a locally finite highly arc transitive di-
graph. Denote by d— the in-valency of I' and by d* the out-valency of I'. Suppose that
there is a directed line A = {«;}icz such that ' = desc(A). Then the out-valency t of
the tree T described in Theorem 4.2 is given by t = d* /d—.

Now we show that Theorem 4.2 can be applied to the graph I'..,.
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Lemma 4.4 The graph 'y, is highly arc transitive and I' . = desc(A).

Proof of Lemma We show that the group H = (V. x) acts highly arc transitively
on I'y,. It is enough to show that if By, 51, . .. , B, is some n-arc in I, then there is
some element 4 € H mapping the n-arc By, 51, ... , B, to the n-arc ap, oy, . . . , Q.
First note that H acts vertex transitively on I'y.. Hence there is an element b’ € H
such that Bph’ = . Secondly we note that since V satisfies condition T1 then V,
acts transitively on the set of n-arcs that start at oy (see condition (ii) in Theorem 2.1).

Thus there is an element b’/ € V, C H that maps the n-arc ay, 51h', ..., B,h’ to
the n-arc ag, vy, . .. , ;. Whence h = h'h'’ € H maps the n-arc By, 81, ... , B to
the n-arc ag, ay, . .. , ay.

Finally we have to prove that I'y; = desc(A). Take some vertex 3 in I'y;. Say
B = a,,h where h € V... There is a number n < m such that a,,h = «,. Then
h maps the directed path ay, ay41, ... ,ay to a directed path from «, to 8. Thus
0B € desc(a,) C desc(A). [ |

Proof of Theorem 4.1 Concluded Let p: Ty, — T be the homomorphism of di-
graphs described in Theorem 4.2. The fibers of ¢ define an equivalence relation ~
on VI'y,. This equivalence relation is preserved by Aut(I';.), the classes are finite
and all have the same size. Note that ¢ is the quotient map from I';;, to 'y, / ~. Set
a; = p(a;) and A; = ¢ !(a;). To summarise: «; is a vertex in I'y, the image a; of
a; under ¢ is a vertex in T and finally A; = ¢~ !(a;) is a set of vertices in I';,. Thus
A; is the ~—class of o; and A; = Agx’. Set U = Gya,)- Because U is open in the
permutation topology it will also be open in G and thus also closed in G. Note also
that ayU C Aq. Thus aU is finite and hence is U compact.

Since I'y; is equal to the subgraph of the orbital graph I' = (Q, (ao,al)G)
spanned by VI',,, we see that the set of descendants of Ay in ', is equal to the
set of descendants of Ay in I'. The set of descendants of Ay is thus invariant under U.
Define also T, as the subgraph in T = I'y;/ ~ spanned by descr(ag). The rooted
tree T is isomorphic to the graph one constructs from the action of G on G/U by
taking as a vertex set | J;~., a;G,, and edge set | J;~.((a;, ai41)G,. Since the graph T is
a tree and the conditions in Theorem 3.4 are satisfied we conclude that U is tidy for
x. This finishes the proof of Theorem 4.1. ]

The two following corollaries are of some independent interest.

Corollary 4.5 ([20, Lemma 6])  Suppose G is a totally disconnected locally compact
group, x an element in G and V' a compact open subgroup of G. Then the group L =
Vit NV__ is compact.

Proof Continue with the same notation as above. By Theorem 2.3 there is a number
m such that U = (), <, x"Vx~" satisfies condition T1. Note that V, = U, and
V__ =U__ and therefore L = U, N U__. Think of G as acting on Q = G/U and
use the terminology in the proof of Theorem 4.1. An element ¢ € G is in L precisely
if there are numbers n and m such that ¢ fixes ; foralli < nandalli > m. When g
acts on the tree T then g will fix all the vertices a; where i < nand alli > m. But T is
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a tree so ¢ must fix g; for all i. In particular agg = gy and thus also Agg = A,. Hence
Ay is invariant under L. The set A is finite so the L-orbits of the vertices of ' that
are in Ay are finite. By Lemma 1.1 we conclude that L is compact. ]

Let G be a permutation group acting transitively on a set 2 and L a subgroup
of G. Denote the closures of G and L in the permutation topology with G and L,
respectively. Note that L is a subgroup of G and if & € € then aL = aL. In the
following corollary we may thus assume that G is closed in the permutation topology.
Keeping Lemma 1.1 in mind the result is just a translation of Corollary 4.5 into the
language of permutation groups.

Corollary 4.6  Let G be a group acting transitively on a set Q2 so that all suborbits of
G are finite. Let x be an element of G and set o; = ax', where oy is some point in €.

Then the subgroup of G defined by
{g € G : there is a number n such that o;g = ¢ for all i such that |i| > n}

has only finite orbits.

The next example shows that the above construction can yield results different
from the constructions that Willis gives in [20] and [22].

Partof T Corresponding part of I'

Partial view of "

Figure 3
Example2 We start by constructing a graph I'. Take a directed tree T such that every

vertex has in-valency 1 and every vertex has out-valency 3. We construct I' from T
by first replacing every vertex in T by a group of three distinct vertices and putting in
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edges so that to every subgraph in T of the type shown to the left on Figure 2 there
will correspond a subgraph in I' like the one shown to the right on Figure 2. On
Figure 3 there is a view of a larger part of I'. Each vertex has in-valency 2 and out-
valency 6. Label the vertices in " as shown on Figure 3 and let {«; };cz be an infinite
directed line in I'. Set G = Aut(I"). With the permutation topology, G is a totally
disconnected locally compact group. It is easy to convince oneself that I is a highly
arc transitive digraph. The map ¢ described in Theorem 4.2 maps a vertex in I to
the corresponding vertex in T. Let x be an element in G such that a;x = ;1. Set
V = G,,. Running V through the machinery in the construction above (note that V
already satisfies T1) we produce the subgroup U = Gy, 3,,} that is tidy for x. In
the construction described in [22] weuse L =V, NV__,set W = Gy} and W is
tidy for x. Here we see that W = Gy, 5,3- The construction from [20] will give the
same group. The reader may note that W and U are closely related in this example:
W=UnNxUx'andU = xWx L.

5 The Scale Function

Definition 2 ([22, Definition 2.2]) Let G be a totally disconnected locally compact
group. The scale function on G is defined for x € G by the formula

s(x) = min{|V : V. Nx Vx| : V an open and compact subgroup of G}.

As said in the introduction there is a close relationship between the scale function
and tidy subgroups, but before developing that relationship we look at what can be
deduce directly from the definition. We look here at properties S1 and S3 as stated in
the Introduction.

The scale function is related to the modular function on G. First we review briefly
the definition of the modular function and the Haar measure. Let G be a locally
compact group. The (right-invariant) Haar measure 1 on G is a non-zero Borel mea-
sure on G such that for all measurable subsets A and all group elements g in G we
have 11(Ag) = p(A) (see [10, Chapter 4] and [11, Chapter III]). The Haar mea-
sure is unique up to a constant multiple. For an element x € G one defines fi
with the formula p,(A) = p(xA) for every Borel set A. It is easy to show that p,
is also a right-invariant Haar measure and thus there is a number A(x) such that
x(A) = p(xA) = A(x)u(A) for every measurable subset A of G. It turns out that
A is a continuous homomorphism of G into the multiplicative group of positive real
numbers. The homomorphism A is called the modular function of G.

Lemma 5.1 ([17, Lemma 1(iii)] and [19, Theorem 1])  Let G be a totally discon-
nected locally compact group and U a compact open subgroup of G. Set Q@ = G/U.
Leta € Qandx € G. Set 3 = ax. Then

_ 18Ga|

A =
) laGg|’
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and
_U:UNnx'Ux|

Ax) = m
Proof The proof is accomplished by direct calculation:
BGa| = |Ga : Ga N Gl
= p(Ga)/1(Ga N Gg)
= p(xGpx ") /(Go N Gp)
= u(xGp)/(Ga N Gp)
= A(x)u(Gg) /(G N Gg)
= A(x)|Gy : Go N Gyl
= A(x)|aGs|.

Thus A(x) = |5G,|/|aGgl.
To prove the second equation in the lemma we choose « such that G, = U. Then
G = x 'Gpx = x~'Ux. Hence

|BGa| = |Ga: Ga N Gs| = |U : UNx 'Ux|,
and
|aGs| = |Gs : Ga NG| =[x 'Ux:UNx"'Ux| = |U: UNxUx""|. [

Theorem 5.2 ([20, Corollary 1])  Let G be a totally disconnected locally compact
group. Denote by A the modular function on G and by s the scale function on G. Then,
foreveryx € G,

s(x)

Proof Let U; and U, be compact open subgroups of G such that

U, : Uy ﬁx71U1x| =s(x) and |U,: U, ﬁxU2x71| =s(x ).
Note that

|Uy: Uy Nx 'Usx| >s(x) and |U, : U, NxUx ' > s(x ).
Now we use Lemma 5.1 and get

s(x) Uy :Uinx U]
s(x~1) T U : U NxUx|

U Uy nx U] s(x)

Ax) = .
) |U, : Uy NxUxx— 1 — s(x1)

Hence A(x) = s(x)/s(x71). [ ]
From the above we see that |U; : U; N xU;x | = s(x~!). This approach thus

yields a proof of the following corollary bypassing the theory of tidy subgroups. In
[22] Willis asks for such a proof.
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Corollary 5.3 ([22, Corollary 3.11])  Let x be an element of a totally disconnected
locally compact group G, and U a compact open subgroup of G. Then |U : U Nx 'Ux|
equals the minimum value s(x) if and only if [U : U N xUx | equals the minimum
value s(x~1).

Finally we prove property S1 of the scale function. As mentioned earlier this prop-
erty can be easily deduced by using the connections between the scale function and
tidy subgroups, but it can also be deduced more directly from the definition of the
scale function by using Corollary 5.3.

Corollary 5.4  Let G be a totally disconnected locally compact group. Then it is equiv-
alent for an element x in G that s(x) = 1 = s(x™ ') and that x normalises some compact
open subgroup of G.

Proof Suppose that s(x) = 1 = s(x~!). By Corollary 5.3 there is a compact open
subgroup U of G such that both |U : UNx™'Ux| = s(x) = land |U : UNxUx™!| =
s(x~1) = 1. And from these it is obvious that x must normalise U.

Conversely, if x normalises some compact open subgroup then it follows straight
from the definition that s(x) = 1 = s(x~1). [ |

Remark Can property S2 be deduced directly from the definition of the scale func-
tion? If so, then that could possibly be used to simplify the proof of the connection
between the scale function and tidy subgroups.

6 The Scale Function and Tidy Subgroups

Our aim in this section is to prove the link between tidy subgroups and the scale
function.

Theorem 6.1 ([22, Theorem 3.1])  Let G be a totally disconnected locally compact
group and x € G. Let U be a compact open subgroup of G. Then

s(x) = |U:UNx"'Ux|
if and only if U is tidy for x.

Proof Before starting with the proof proper note that when x is periodic the theorem
follows from Lemma 3.1. We will therefore assume that x is not periodic.

First we prove that, if [U : U N x 'Ux| = s(x) then U is tidy for x. Consider
the action of G on Q@ = G/U and use the notation described in Section 1.4. Then
|U : UNx"'Ux| = |aU|. Looking at the definition of s(x), we see that for every
m > 0 the following inequality holds

|041U| = |U U ﬂxilUx| S |U,m7() : U,,m() ﬂxilU,mox\ = |061U,m70|.

But, since U_,, o < U we know that |oqU_,, | < |aqU| and hence cuU = ocqU_,,9
for every m > 0. Thus U must satisfy condition T1.
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Now we look at the latter half of the construction of a tidy subgroup in Sec-
tion 4. Consider the graph I',, defined there. It has out-valency d* and in-valency
d~. Note that d* = |oyU| = |U : U N x 'Ux|. Denote the tidy subgroup con-
structed by Uy. In the tree T the in-valency is 1 and the out-valency is f, and t =
|Ug : Uy N x 'Ugx|. From [14] (see Proposition 4.3) we know that t = d*/d~, and
we see that the assumption on U implies that d~ = 1. Thus I'; is already a tree and
it follows from Theorem 3.4 that U is tidy.

The technical part of the proof of the second half of Theorem 6.1 is taken care of
in the proof of the following lemma whose proof we defer for the moment.

Lemma 6.2 (cf. [20, Theorem 2])  Let G be a totally disconnected locally compact
group and x an element of G. If UV and U are compact open subgroups of G that are
both tidy for x € G, then

U UY nx oWy = u® : U nxtu@x|.

Conclusion of the Proof of Theorem 6.1 Assume for the moment that Lemma 6.2
is true. We have to show that if U is tidy then |U : U N x 'Ux] is equal to s(x).
We have already shown that if V is a compact open subgroup such that s(x) =
|V : V. Nx Vx|, then V is tidy for x. Using Lemma 6.2 we get

U:UNx 'Ux| = |V:VNx Vx| = s(x). [ |

Now we return to Lemma 6.2. The proofis split up into a sequence of lemmas.

First, let us set up notation. Set V.= UMY NU® and Q@ = G/V. We let
denote the point in €2 such that G,, = V. Set oy, = apx”. Construct I'; in the usual
fashion. The subgroups U" and U® both contain V and since U" and U® are
both compact and V is open we see that V has finite index in both UV and U®. For
i=1,2setk;=|UD: V|

The following lemma is a restatement of some basic and well known facts about
permutation groups, see Section 1.1.

Lemma 6.3 The following holds with i = 1,2. The orbit Agi) = ayU"Y is a finite
block of imprimitivity in Q for G, and UY = Gy If ~; denotes the corresponding

0 .
G-equivalence relation then the G-space Q] ~; is isomorphic to the G-space Q) =
G/UY, The size of the ~;-classes is equal to k; = |U" : V|.

We make the following definitions for i = 1,2. We consider the actions of G
on Q0 = G/UY = Q/ ~;. Let aé’) be a point in Q) such that G o = UY.
Furthermore, set o) = a!/x". From these we define in the usual fashion graphs I'".
We get homomorphisms ¢;: I'y — I‘Er') Note that I'" is a trees, since U is tidy for
x. The out-valencies of vertices in T'\"’ are constant. Let d; = |U? : U N x~1U"x|
denote the out-valency of the vertices in I'\".,

Lemma 6.4  With the above notation, k;(d;)" > |a,V| > (d;)"/k; for everyn > 1
andi=1,2.
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Proof Because U'” is assumed to be tidy for x we know that |a’U?| = d’. But we
identify the ~;-class A} in 2 with the point ) in Q) and therefore the ~;-class
A" in Q must have precisely d” distinct and disjoint images under U'”. From this we
conclude that the orbit a,,U® must have at least d! elements (at least one element in
each of the distinct images of AEf) under U®) and at most kid} elements (the distinct
images of A under U contain precisely k;d! elements). Let {1, ul ”1(\1,)} bea
set of coset representatives of V in U, Then

a,U" = a,V U an(Vugi)) U---u a,,(Vu,((f)).
Whence

lo, UD| _ ar
ki T ki

\%
|3
|

kld:l > ‘anU(i)| > |Oé,1V‘ >

Lemma 6.5 ThegraphT'y is a tree.

Proof The first step is to show that a ~1-class intersects a ~,-class in at most one
point. It is enough to show that the ~-class and ~;,-class of aq intersect only in
the point ap. The two classes are the orbits A(()l) = aoU®W and A(()Z) = qUW. If
B e A’ N AJ then there is some element ¢ € G such that agg = (. Then g
leaves both A} and A} invariant. But, U") = Gay and U = Gy 508 €

ubNnu® =v = G, and hence § = apg = «y.

Suppose now that I'; is not a tree. Therefore some vertex in I'y must have in-
valency bigger than 1. Looking at the definition of I',. we conclude that there must
be two different directed paths p; = g, 81, B2, --. , By and pr = @9, Y1,%2,- -+ », Y
with 8, = 7y, and §; # v; fori = 1,... ,n — 1. Applying the digraph homomor-
phism %, to the paths p; and p, we see that they have the same image in the tree
IV, that is 1, (3;) = () fori = 1,...,n, and similarly 1,(3;) = 1, (v;) for
i =1,...,n Thus 8, and =, are distinct vertices in I'y belonging to the same ~;-
class (because 1;(81) = ¥1(71)), and they also belong to the same ~;,-class. This
contradicts the claim established above. We have a contradiction, and hence I'y must
be a tree. ]

Note that V acts on I'; as a group of automorphisms. Thus all the vertices in the
orbit v,V have the same in-valency and the same out-valency. For n > 0let ¢, denote
the out-valency of «,,. By the last lemma the in-valency of all the vertices in I'; is 1.

Lemma 6.6  The sequence ty,t1,t,, ... is decreasing and eventually settles to a con-
stant value t. This number t is equal to both d, and d, and thus d, = d,.

Proof The out-valency of o, is equal to the orbit size of ;41 under V,,, = VNV, N
-+ N V,,. Hence it is clear that ¢, does not increase when 7 increases. The numbers
to,t1,t2, . . . are all non-negative integers so there is a number ¢ and a number N such
thatif n > N thent, = t.
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Since I, is a tree we see that
|anV| =to-ty- - g

Then we use that #,, = ¢ for all but finitely many values of n and therefore there is a
constant [ such that g - ¢, - --- - ¢, = It" for all n. By Lemma 6.4

kid! > |a,1V| =" > d,"/k,

foralln > 0 and i = 1, 2. This inequality can only hold if t = d;. Therefore d; = d,.
|

Proof of Lemma 6.2 By Lemma 6.6,
UV Y nxluWx =d, =dy, = [U?P : UP nx U@y ]

This completes the proof of Theorem 6.1. We will continue with this thread of
arguments and prove the following theorem, clarifying that the group V used in the
above arguments is indeed tidy for x.

Theorem 6.7 ([20, Lemma 10])  Let G be a totally disconnected locally compact group
and x an element of G. IfU'Y and U® are compact open subgroups of G that are both
tidy for x € G, then UV N U is tidy for x.

Proof Adopt the same notation as above. Let N be a number so that the out-valency
of a, inI'} isequal to ¢ forall n > N. Let A denote the subtree of I'; that is spanned
by oy and the vertices in I',. that can be reached by directed paths from ay. Similarly,
define A as the subtree of I'\") spanned by ag\}) and the vertices in I'") that can be
reached from o}’ by directed paths. Counting arguments like the ones applied in
Lemma 6.4 show that when we think of the vertices in A" as equivalence classes of
points in €2 then each equivalence class contains precisely one vertex from A. Note
also that from the way I';. is defined we can conclude that V,, =V NV, N---NV,,
acts transitively on the set of infinite directed paths starting at cy. Because V is a
closed subgroup and the valency of «,, is constant when n > N we conclude that
ViNV NV, N---NV,, acts transitively on the set of infinite directed paths starting
at ay. Thus Vo, NV NV, N---NV,, also acts transitively on the set of infinite
directed paths in I'\" starting at a}’. From this we conclude that V', acts transitively
on the set of infinite directed paths in T'}" starting at a}".

Now take some element ¢ from V. By the above we can find an element g, € V.
so that a'Vg, = aVg foralln > 0. Theng = gg, ' fixes oV for all n > 0 so
¢ € U Notealso that g fixes ag so g isin V and thus in U,. Becauseg € UV
we see that the family {x"g_x""},>¢ has an accumulation point. From Lemma 3.8
we conclude that g_ € U'”. Then g_ fixes both aV) and a!?, and therefore the
subsets Al and A?) are invariant under g for all n > 0. In the proof of Lemma 6.5
we saw that Al N A®) = {a,,} and therefore is c, fixed by g forall n > 0. Thus g
isinV_andg=g,g €V,V_.

We have shown that V satisfies condition T1 and that therefore the out-valency of
all the vertices in I'; is the same. We have already proved that I'; is a tree and we can
conclude that V is tidy for x.
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7 More About the Scale Function

In this section we use the relationship between the scale function and tidy subgroups
to get further information about the scale function.

Theorem 7.1  Let G be a totally disconnected locally compact group. For every element

x € G and every integer n > 0
s(x") = s(x)".

Proof Let U be a compact open subgroup of U that is tidy for x. By Theorem 6.1
U :UNx 'Ux| = s(x),
and by Corollary 3.5
U:Unx "Ux"|=|U:Unx 'Ux|".

Corollary 3.6 says that since U is tidy for x it is also tidy for x". Thus, by combining
Theorem 6.1, Corollary 3.5 and Corollary 3.6 we get

s(xX") = U :UNx™"Ux"| =|U : UNx"'Ux|" = s(x)". [ |

The scale function does not in general behave well with respect to products. Let
us continue with Example 1 where we left it in Section 3.

Example 1 continued From Theorem 7.1 we see that s(x) = n. Indeed, if y is any
element in G such that there is some sequence of distinct vertices {(3; };cz such that
(3; is adjacent to 3;y, for all i and B;y = B for all i, then s(y) = n*. Let now g be
an element in G, such that a;g = a_; for all i and let g’ be an element in G,, such
that ;¢’ = a_4;. Set h = g¢g’ and note that o;h = a4, for all i. Both ¢ and g’ are
periodic elements in G and therefore s(g) = 1 = s(g’) but s(gg’) = s(h) = n’.

Theorem 7.2 ([20, see Theorem 3 and p. 357])  Let G be a totally disconnected lo-
cally compact group and x an element in G. If U is a compact open subgroup that is tidy
for x then U is also tidy for every element in the double coset UxU. Furthermore, the
scale function s is constant on UxU.

Proof Once again we use the notation explained in Section 1.4. Take some element
y € UxU. Set 3 = apy'. Then 1 = apy € ayU s0 (B, B1) = (v, ) is an edge
in I';. We see that 8, € a,U and in general 3, € a,,U. Thus
U:UNny 'Uy| =|4U| = |U| = |U:UnNx"'Ux|,
and, since 5,U = «a,,U, we get by using Corollary 3.5 that
[U:UNy "Uy"|=|6,U|l =|U:UNx "Ux"|
=|U:UNnx'Ux|"=|U:Uny 'Uy|"
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Appealing again to Corollary 3.5 one concludes that U is tidy for y. By Theorem 6.1
we see that

s(y) =|U:UNy 'Uy| = |U| =|U:UNx 'Ux| = s(x). [ |

Corollary 7.3  Let G be a totally disconnected locally compact group. Think of N, the
set of natural numbers, as having the discrete topology. The scale function s: G — N is
continuous.

Proof We have to show that if x is some element in G then there is an open neigh-
bourhood of x such that on this neighbourhood s is constant. But by Theorem 7.2
UxU is precisely such a neighbourhood. ]

Before continuing our study of the general properties of the scale function let us
make a brief digression and make some use of the above theorem and corollary.

Theorem 7.4  Let G be a totally disconnected locally compact group. Suppose that G
has a cocompact subgroup H such that s(h) = 1 for all h € H. Then s(x) = 1 for all
xe G

If s(x) = 1 for all x € G the we say that the group G is uniscalar. This result is
an extension of [12, Lemma 1.7] where it is in addition assumed that H is normal.
Before proving the theorem we must interpret the meaning of “cocompactness” in
the permutation topology. The following lemma can be found in [15, Proposition 1]
where it is stated for groups acting on trees.

Lemma 7.5 Let G be a topological group acting transitively on a set Q. Suppose the
stabiliser G, of a point a € € is both open and compact (for example, G is a closed
permutation group acting transitively with finite suborbits). Then a subgroup H of G is
cocompact if and only if H has only finitely many orbits on Q.

Remark The above lemma can be seen as a generalisation of the fact that if a group
G acts transitively on a set 2 and H is a subgroup of G of finite index k then H has at
most k orbits on €2 (see [3, Exercise 3(v)]).

Proof Suppose first that H is cocompact. This means that both the spaces of right
and left cosets of H in G are compact (the map Hx ~ x~'H is a homeomor-
phism from the space of right cosets to the space of left cosets). Let X denote the
set of left cosets of H in G. The quotient map 7: G — X is open. The family
of cosets {Gag}eci is an open covering of G and hence {7(G,g)}qcc is an open
covering of X. We are assuming that X is compact, so there is a finite subcover-
ing 7(Gag1), ... ,7(Gogn) of X. Then G = Gog1H U - - U G,g,H and therefore
Q= (ag)HU---U(ag,)H.

Suppose now that H has only finitely many orbits on €2, say there are elements
iy g suchthat Q = (ag1)HU -+ - U (agy)H. Then G = GogtH U - - - U Gog,H
and X = w(Gag1) U - - - Um(Guagn)- Each of the sets 7(G,g;) is compact. We see that
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X, the set of left cosets of H in G, is compact, because it can be written as a union of
finitely many compact sets. n

Proof of Theorem 7.4 Suppose there is some element x in G with s(x) # 1. Let U
be a compact open subgroup that is tidy for x. Set 2 = G/U and adopt the usual
notational set-up. Since H is cocompact it has only finitely many orbits on €2 and
therefore there are some numbers i and j, with i < j, such that o; and o are in the
same H-orbit. If necessary, we can replace U with x 'Ux’ and renumber the points

.,Q_1,Q,Q1,00,. .., s0 we may assume that there is some element & in H such
that aph = o with j > 0. Then Ux/U = UhU. The subgroup U is tidy for x’ and
s(h) = s(x/) = s(x)! # 1 by Theorem 7.2. We have reached a contradiction and the
assumption that there is an element x in G with s(x) # 1 must be wrong. ]

The scale function can also be defined in terms of arbitrary compact open sub-
group. First we need a preparatory lemma.

Lemma 7.6  Let G be a totally disconnected locally compact group and x € G. Then
lim,, 500 |V 1 V N x™"Vx"|V/" exists for every compact open subgroup V. If V and W
are some compact open subgroups of G then

lim [V:VNx"Vx"|Y" = lim [W: W Nx"Wx"|V/",

n—o0 n—ro0

Proof For a compact open subgroup V of G we call the limit

lim |V :V Nx"Vx"|"
n— 00

the index limit of V.

First we assume that W < V. Define Q) = G/V and Q") = G/W. Let a(()V) be
a point in Q) such that V is the stabiliser of "’ and similarly let o be a point
in Q) such that W is the stabiliser of o). Set agv) = ox' and agw) = ofxl.

Then set v; = |a§V)V| and w; = |a£W)W|. Note that
vi=|V:VNx Vx| and w;=|W:WnNx Wy

Since W < V, we can use V to define a G invariant equivalence relation ~ on Q™).

The ~-class of a"" is the set o'/ V. All the ~-classes are finite and they all have the

same number of elements k = [V : W| and Q) can be identified with Q") / ~.
Write V. = W U (Wg) U --- U (Wg), where &5,... ,¢ € V. From this we see
that w; = |a!"W| > |a!"V|/k. Since [a!"'V] > |a!V'V| = v; we conclude that
w; > v;/k. Conversely, aEW)W must be contained in the union of the ~-classes
contained in aEW)V. These ~-classes correspond to the points in the set algv)V and
|a£V)V| = v;. Each ~-class has k points and thus

wi = oW < of"V] < KoV | = kv
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We have now shown that v; /k < w; < kv; and therefore also w; /k < v; < kw;. Thus,
for everyn > 0

(vu/ V" < Wi/ < (kv )V" and  (w, /K" < VYT < (kw,)

From these inequalities it is clear, by using the “squeeze theorem” of elementary Cal-
culus, that if the limits
lim w,l/ " and  lim Vil/ "
n— o0 n— 00
exist then they are equal and if one of the index limits exists then the other also does.

Assume now that U is tidy for x. From Corollary 3.5 we know that
U:UNnx"Ux"| = |U:UNx""'Ux|",
and thus (also using Theorem 6.1)

lim |U: U Nx"Ux"|Y" = |U : U Nx'Ux| = s(x).

n—o0
We now have at least one compact open subgroup, the tidy subgroup U, for which
the index limit exists. Let now V' be some compact open subgroup. Then W = VNU
is a compact open subgroup that is contained in U. Since the index limit for U exists
then the index limit for W exists, by the above, and therefore, the index limit for V'
exists also. Thus the index limit exists for every compact open subgroup V.

Above we have been assuming that W < V and in that case we know that the two

index limits are equal. In the general case we put Z = V N W. Then Z is a compact
open subgroup of Gand Z < V and Z < W. Thus

lim |V Vv ﬂx_”Vx”|1/” = lim |Z . me—ann|1/n

n—o0 n—o0

= lim [W: W nx"wx"|/".

n—o00 .

Theorem 7.7  Let V be a compact open subgroup of a totally disconnected group G.
Then for x € G,
s(x) = lim |V : VvV nx"vx"[}/",

n—o0
Furthermore, s(x) = 1 if and only if there is a constant C such that
[V:VNnx"vx"| <C
for all integers n > 0.

Proof Let U be a compact open subgroup of G that is tidy for x. Lemma 7.6 gives

lim [V:VNx"Vx"|Y" = lim |U:UNx "Ux"|V" = s(x).

n—o0 n—r00
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Now suppose s(x) = 1. If U is a compact open subgroup that is tidy for x then, by
Corollary 3.5, |U : U Nx "Ux"| = 1foralln > 1. The argument used in Lemma 7.6
now shows that there exists a constant C such that [V : V Nx "Vx"| < C for all
n > 0. For the reverse conclusion it is obvious, by the first part of the theorem, that
the existence of such a constant C implies that s(x) = 1. [ |

Let G be a permutation group acting transitively on a set {2. Assume that all subor-
bits are finite. The closure of G in the permutation topology is a totally disconnected
locally compact group. The scale function on G is defined to be the restriction to G
of the scale function on the closure of G. The following corollary is a translation into
permutation group theoretic terms of Theorem 7.7.

Corollary 7.8  Let G be a group acting transitively on a set ). Assume that all the
suborbits (orbits of stabilisers of points) of G are finite. Let oy € Q2 and x € G. Set
o, = appx’.

(i) Then
s(x) = lim \anGaO|1/”.
n—00
In particular the value of the limit is an integer.
(i) s(x) = 1 if and only if there is some constant C such that |a,G,| < C for all
n > 0.

Proof Replacing G with the closure of G in the permutation topology will not change
the sizes of the suborbits. We can thus assume that G is closed in the permutation
topology. Set V. = G,,. Note that V is a compact open subgroup of G. Now the
result follows directly from Theorem 7.7. ]

Remark Let us continue with the notation in Corollary 7.8, but to simplify the ex-
position let us assume that G is a closed permutation group. We see that if there is a
constant C such that |a;G,,| < C for all i then both s(x) and s(x ') are equal to 1
and therefore, by property S1, there is some compact open subgroup U normalised
by x. This is a special case of [1, Theorem 6(iii)], which in this context says that if
K is a subgroup of G and there is a constant C such that |3G,,| < C for all 8 in the
orbit oK then there is some compact open subgroup of G that is normalised by K.
The above quoted theorem of Bergman and Lenstra is an extension of the following
theorem of Schlichting [18] (see also [1, Theorem 3]):

Suppose G is a closed permutation group acting transitively on a set Q). If there is a
constant C such that |3G,| < C for all a, 8 € Q then G has a normal compact open
subgroup.

A natural question is to find additional conditions on G so that the assumption
that every element in a totally disconnected locally compact group G normalises some
compact open subgroup (that is, G is uniscalar) implies that G has a normal compact
open subgroup.

Unfortunately the assumption that G is uniscalar seems to be a lot weaker than
the assumptions in Schlichtings theorem. Even under the additional assumption that
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G is compactly generated, uniscalar does not imply that there is a normal compact
open subgroup. An example of a compactly generated uniscalar group that has no
normal compact open subgroup was constructed by Bhattacharjee and Macpherson
[2, Theorem 1.2] following earlier work of Kepert and Willis [13].

Let now I be a locally finite connected graph (undirected). The vertex set VI of I
carries a natural metric d such that for vertices o and (3 the distance d(«, (3) is defined
as the smallest possible number of edges in a path between o and 3. For a vertex g
inI" defineb, = [{8 € VI : d(ay, 8) < n}|. If the group of automorphisms acts
transitively on VT then the value of b, does not depend on the choice of ay. We say
I' has subexponential growth if for every value of a > 1 there is a number N such
that b, < a" for all n > N. The proof of the following corollary is left to the reader.

Corollary 7.9 Let I" be a locally finite connected graph with subexponential growth.
Set G = Aut(I") and assume that G acts transitively on VI'. Then G is uniscalar.
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