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ON GALOIS EQUIVARIANCE OF
HOMOMORPHISMS BETWEEN

TORSION CRYSTALLINE REPRESENTATIONS

YOSHIYASU OZEKI

Abstract. Let K be a complete discrete valuation field of mixed characteristic

(0, p) with perfect residue field. Let (πn)n>0 be a system of p-power roots of a

uniformizer π = π0 of K with πpn+1 = πn, and define Gs (resp. G∞) the absolute

Galois group of K(πs) (resp. K∞ :=
⋃
n>0 K(πn)). In this paper, we study Gs-

equivariantness properties of G∞-equivariant homomorphisms between torsion

crystalline representations.
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3.1 Definitions 182

3.2 The functors Modr,Ĝ/S →Modr,Ĝs/S → M̃od
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§1. Introduction

Let p be a prime number and r > 0 an integer. Let K be a complete

discrete valuation field of mixed characteristic (0, p) with perfect residue

field and absolute ramification index e. Let π = π0 be a uniformizer of K

and πn a pnth root of π such that πpn+1 = πn for all n> 0. For any integer

s> 0, we put K(s) =K(πs). We also put K∞ =
⋃
n>0 K(n). We denote by

GK , Gs and G∞ absolute Galois groups of K, K(s) and K∞, respectively.

By definition we have the following decreasing sequence of Galois groups:

GK =G0 ⊃G1 ⊃G2 ⊃ · · · ⊃G∞.

Since K∞ is a strict APF extension of K, the theory of fields of norm

implies that G∞ is isomorphic to the absolute Galois group of some field of

characteristic p. Therefore, representations of G∞ have easy interpretations

via Fontaine’s étale ϕ-modules. Hence it seems natural to pose the following

question:

Question 1.1. Let T be a Zp- or Qp-representation of GK . How small

can we choose s> 0 to recover “enough” information of T |Gs from that of

T |G∞?

Nowadays there is an interesting insight of Breuil for this question; he

showed that representations of GK arising from finite flat group schemes

or p-divisible groups over the integer ring of K are “determined” by their

restriction to G∞. Furthermore, for Qp-representations, Kisin proved the

following theorem in [Kis] (which was a conjecture of Breuil): the restriction
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functor from the category of crystalline Qp-representations of GK into the

category of Qp-representations of G∞ is fully faithful.

In this paper, we give some partial answers to Question 1.1 for torsion

crystalline representations. A torsion Zp-representation T of GK is torsion

crystalline with Hodge–Tate weights in [0, r] if it can be written as the

quotient of lattices in some crystalline Qp-representation of GK with Hodge–

Tate weights in [0, r]. Let Repr,cris
tor (GK) be the category of them. In the

case r = 1, such representations are equivalent to finite flat representations.

(Here, a torsion Zp-representation of GK is finite flat if it arises from the

generic fiber of some p-power order finite flat commutative group scheme

over the integer ring of K.) We denote by Reptor(G∞) the category of torsion

Zp-representations of G∞. The first main result in this paper is as follows.

Theorem 1.2. (Full Faithfulness Theorem) Suppose e(r − 1)< p− 1.

Then the restriction functor Repr,cris
tor (GK)→ Reptor(G∞) is fully faithful.

Before this work, some results were already known. First, the full

faithfulness theorem was proved by Breuil for e= 1 and r < p− 1 via the

Fontaine–Laffaille theory [Br2, the proof of Théorèm 5.2]. He also proved

the theorem under the assumptions p > 2 and r 6 1 as a consequence of

a study of the category of finite flat group schemes [Br3, Theorem 3.4.3].

Later, his result was extended to the case p= 2 in [Kim], [La], [Li4] (proved

independently). In particular, the case p= 2 of the full faithfulness theorem

is a consequence of their works. On the other hand, Abrashkin proved the

full faithfulness in the case where p > 2, r < p and K is a finite unramified

extension of Qp [Ab2, Section 8.3.3]. His proof is based on calculations of

ramification bounds for torsion crystalline representations. In [Oz2], a proof

of Theorem 1.2 under the assumption er < p− 1 is given via (ϕ, Ĝ)-modules

(which was introduced by Tong Liu [Li2] to classify lattices in semistable

representations). We should remark that Abrashkin’s approach implies

that calculations of ramification bounds induce full faithfulness results on

restriction functors such as our theorems. However, known results on

ramification bounds for torsion crystalline representations are not sufficient

to obtain our results. Conversely, our results possibly help us to study

ramification bounds for them.

Our proof of Theorem 1.2 is similar to the proof for the main result

of [Oz2], but we need more careful considerations for (ϕ, Ĝ)-modules. In

fact, we prove a full faithfulness theorem for torsion representations arising

from certain classes of (ϕ, Ĝ)-modules (cf. Theorem 4.9), which immediately
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gives our main theorem. In addition, our study gives a result as below which

is the second main result of this paper (here, we define logp(x) :=−∞ for

any real number x6 0).

Theorem 1.3. Suppose that p is odd and s > n−1 + logp(r−(p−1)/e).

Let T and T ′ be objects of Repr,cris
tor (GK) which are killed by pn. Then any

G∞-equivariant homomorphism T → T ′ is Gs-equivariant.

For torsion semistable representations, a similar result was shown in [CL2,

Theorem 3], which was a consequence of a study of ramification bounds.

The bound appearing in their theorem was n− 1 + logp(nr). By applying

our arguments given in this paper, we can obtain a generalization of their

result; our refined condition is n− 1 + logpr (see Theorem 4.17). Some other

consequences of our study are described in Section 4.7. Motivated by the

full faithfulness theorem (= Theorem 1.2) and Theorem 1.3, we raise the

following question.

Question 1.4. Does there exist a constant c depending on e, r

and p so that any G∞-equivariant homomorphism in the category

Repr,cris
tor (GK) is Gs-equivariant for s > c? Moreover, can we choose c to be

logp(r − (p− 1)/e)?

On the other hand, there exist counter examples of the full faithfulness

theorem when we ignore the condition e(r − 1)< p− 1. Let Reptor(G1) be

the category of torsion Zp-representations of G1.

Theorem 1.5. (= Special case of Corollary 5.15) Suppose that K is

a finite extension of Qp, and also suppose e | (p− 1) or (p− 1) | e. If

e(r − 1)> p− 1, the restriction functor Repr,cris
tor (GK)→ Reptor(G1) is not

full (in particular, the restriction functor Repr,cris
tor (GK)→ Reptor(G∞) is

not full).

In particular, if p= 2, then the full faithfulness never hold for any finite

extension K of Q2 and any r > 2. Theorem 1.5 implies that the condition

“e(r − 1)< p− 1” in Theorem 1.2 is optimal for many finite extensions K

of Qp.

Now we describe the organization of this paper. In Section 2, we set

up notations and summarize facts we need later. In Section 3, we define

variant notions of (ϕ, Ĝ)-modules and give some basic properties. They are

needed to study certain classes of potentially crystalline representations and

restrictions of semistable representations. In Section 4, we study technical
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torsion (ϕ, Ĝ)-modules which are related with torsion (potentially) crys-

talline representations. The key result in this section is the full faithfulness

result Theorem 4.9 on them, which allows us to prove our main results

immediately. Finally, in Section 5, we calculate the smallest integer r for

a given torsion representation T such that T admits a crystalline lift with

Hodge–Tate weights in [0, r]. We mainly study the rank two case. We use

our full faithfulness theorem to assure the nonexistence of crystalline lifts

with small Hodge–Tate weights. Theorem 1.5 is a consequence of studies of

this section.

Notation and convention: Throughout this paper, we fix a prime number p.

Except in Section 5, we always assume that p is odd.

For any topological group H, we denote by Reptor(H) (resp. RepZp(H),

resp. RepQp(H)) the category of torsion Zp-representations of H (resp. the

category of free Zp-representations of H, resp. the category of Qp-

representations of H). All Zp-representations (resp. Qp-representations) in

this paper are always assumed to be finitely generated over Zp (resp. Qp)

and continuous.

For any field F , we denote by GF the absolute Galois group of F (for a

fixed separable closure of F ).

§2. Preliminaries

In this section, we recall definitions and basic properties for Kisin modules

and (ϕ, Ĝ)-modules. Throughout Sections 2–4, we always assume that p is

an odd prime.

2.1 Basic notations

Let k be a perfect field of characteristic p, W (k) the ring of Witt vectors

with coefficients in k, K0 =W (k)[1/p], K a finite totally ramified extension

of K0 of degree e, K a fixed algebraic closure of K. Throughout this paper,

we fix a uniformizer π of K. Let E(u) be the minimal polynomial of π

over K0. Then E(u) is an Eisenstein polynomial. For any integer n> 0,

we fix a system (πn)n>0 of pnth roots of π in K such that πpn+1 = πn.

Let R= lim←−OK/p, where OK is the integer ring of K and the transition

maps are given by the pth power map. For any integer s> 0, we write

πs := (πs+n)n>0 ∈R and π := π0 ∈R. Note that we have πs
ps = π.

Let L be the completion of an unramified algebraic extension of K

with residue field kL. Then πs is a uniformizer of L(s) := L(πs) and L(s)

is a totally ramified degree eps extension of L0 :=W (kL)[1/p]. We set
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L∞ :=
⋃
n>0 L(n). We put GL,s :=GL(s)

= Gal(L/L(s)) and GL,∞ :=GL∞ =

Gal(L/L∞). By definitions, we have L= L(0) and GL,0 =GL. Put SL,s =

W (kL)[[us]] (resp. SL =W (kL)[[u]]) with an indeterminate us (resp. u).

We equip a Frobenius endomorphism ϕ of SL,s (resp. SL) by us 7→ ups
(resp. u 7→ up) and the Frobenius on W (kL). We embed the W (kL)-

algebra W (kL)[us] (resp. W (kL)[u]) into W (R) via the map us 7→ [πs]

(resp. u 7→ [π]), where [∗] stands for the Teichmüller representative. This

embedding extends to an embedding SL,s ↪→W (R) (resp. SL ↪→W (R)).

By identifying u with up
s

s , we regard SL as a subalgebra of SL,s. It is

readily seen that the embedding SL ↪→SL,s ↪→W (R) is compatible with the

Frobenius endomorphisms. If we denote by Es(us) the minimal polynomial

of πs over K0, with indeterminate us, then we have Es(us) = E(up
s

s ).

Therefore, we have Es(us) = E(u) in SL,s. We note that the minimal

polynomial of πs over L0 is Es(us).

Let Sint
L0,s

(resp. Sint
L0

) be the p-adic completion of the divided power

envelope of W (kL)[us] (resp. W (kL)[u]) with respect to the ideal generated

by Es(us) (resp. E(u)). There exist a unique Frobenius map ϕ : Sint
L0,s
→ Sint

L0,s

(resp. ϕ : Sint
L0
→ Sint

L0
) and monodromy N : Sint

L0,s
→ Sint

L0,s
defined by ϕ(us) =

ups (resp. ϕ(u) = up) and N(us) =−us (resp. N(u) =−u). Put SL0,s =

Sint
L0,s

[1/p] = L0 ⊗W (kL) S
int
L0,s

(resp. SL0 = Sint
L0

[1/p] = L0 ⊗W (kL) S
int
L0

). We

equip Sint
L0,s

and SL0,s (resp. Sint
L0

and SL0) with decreasing filtrations

FiliSint
L0,s

and FiliSL0,s (resp. FiliSint
L0,s

and FiliSL0,s) by the p-adic com-

pletion of the ideal generated by Ejs(us)/j! (resp. Ej(u)/j!) for all j > 0.

The inclusion W (kL)[us] ↪→W (R) (resp. W (kL)[u] ↪→W (R)) via the map

us 7→ [πs] (resp. u 7→ [π]) induces ϕ-compatible inclusions SL,s ↪→ Sint
L0,s

↪→
Acris and SL0,s ↪→B+

cris (resp. SL ↪→ Sint
L0
↪→Acris and SL0 ↪→B+

cris). By these

inclusions, we often regard these rings as subrings of B+
cris. By identifying

u with up
s

s as before, we regard Sint
L0

(resp. SL0) as a ϕ-stable (but

not N -stable) subalgebra of Sint
L0,s

(resp. SL0,s). By definitions, we have

SL = SL,0, S
int
L0,0

= Sint
L0

and SL0,0 = SL0 (cf. Figure 1).

Convention: For simplicity, if L=K, then we often omit the subscript “L”

from various notations (e.g., GKs =Gs, GK∞ =G∞, SK = S,SK,s = Ss).

2.2 Kisin modules

Let r, s> 0 be integers. A ϕ-module over SL,s is an SL,s-module M

equipped with a ϕ-semilinear map ϕ : M→M. A morphism between two

ϕ-modules (M1, ϕ1) and (M2, ϕ2) over SL,s is an SL,s-linear map M1→M2
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Figure 1.

Ring extensions.

compatible with ϕ1 and ϕ2. Denote by ′Modr/SL,s the category of ϕ-modules

(M, ϕ) over SL,s of height 6 r in the sense that M is of finite type over

SL,s and the cokernel of 1⊗ ϕ : SL,s ⊗ϕ,SL,s M→M is killed by Es(us)
r.

Let Modr/SL,s be the full subcategory of ′Modr/SL,s consisting of finite free

SL,s-modules. We call an object of Modr/SL,s a free Kisin module of height

6 r (over SL,s).

Let Modr/SL,s,∞ be the full subcategory of ′Modr/SL,s consisting of finite

SL,s-modules which are killed by some power of p and have projective

dimension 1 in the sense that M has a two term resolution by finite free

SL,s-modules. We call an object of Modr/SL,s,∞ a torsion Kisin module of

height 6 r (over SL,s).

For any free or torsion Kisin module M over SL,s, we define a Zp[GL,∞]-

module TSL,s(M) by

TSL,s(M) :=

{
HomSL,s,ϕ(M, W (R)) if M is free,

HomSL,s,ϕ(M,Qp/Zp ⊗Zp W (R)) if M is torsion.

Here a GL,∞-action on TSL,s(M) is given by (σ.g)(x) = σ(g(x)) for σ ∈
GL,∞, g ∈ TS(M), x ∈M.

Convention: For simplicity, if L=K, then we often omit the subscript “L”

from various notations (e.g., Modr/SK,s,∞ = Modr/Ss,∞ , TSK,s = TSs). Also,

if s= 0, we often omit the subscript “s” from various notations (e.g.,

Modr/SL,0,∞ = Modr/SL,∞ , TSL,0 = TSL , Modr/SK,0,∞ = Modr/S∞ , TSK,0 =

TS).

https://doi.org/10.1017/nmj.2016.68 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.68


176 Y. OZEKI

Figure 2.

Galois groups of field extensions.

Proposition 2.1. (1) [Kis, Corollary 2.1.4 and Proposition 2.1.12] The

functor TSL,s : Modr/SL,s → RepZp(G∞) is exact and fully faithful.

(2) [CL1, Corollaries 2.1.6, 3.3.10 and 3.3.15] The functor TSL,s :

Modr/SL,s,∞ → Reptor(G∞) is exact and faithful. Furthermore, it is full if

er < p− 1.

2.3 (ϕ, Ĝ)-modules

The notion of (ϕ, Ĝ)-modules is introduced by Liu in [Li2] to classify

lattices in semistable representations. We recall definitions and properties

of them. We continue to use same notations as above.

Let Lp∞ be the field obtained by adjoining all p-power roots of unity to

L. We denote by L̂ the composite field of L∞ and Lp∞ . We define HL :=

Gal(L̂/L∞),HL,∞ := Gal(K/L̂)GL,p∞ := Gal(L̂/Lp∞) and ĜL := Gal(L̂/L)

(cf. Figure 2). Furthermore, putting L(s),p∞ = L(s)Lp∞, we define ĜL,s =

Gal(L̂/L(s)) and GL,s,p∞ := Gal(L̂/L(s),p∞).

Since p > 2, it is known that L(s),p∞ ∩ L∞ = L(s) and thus ĜL,s =

GL,s,p∞ oHL,s (cf. [Li1, Lemma 5.1.2]). Furthermore, GL,s,p∞ is topolog-

ically isomorphic to Zp.

Lemma 2.2. The natural map GL,s,p∞ →GK,s,p∞ defined by g 7→ g|K̂ is

bijective.

Proof. By replacing Ls with L, we may assume s= 0. It suffices to prove

K̂ ∩ Lp∞ =Kp∞ . Since GK,p∞ is isomorphic to Zp, we know that any finite

subextension of K̂/Kp∞ is of the form K(s),p∞ for some s> 0. Assume that
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we have K̂ ∩ Lp∞ 6=Kp∞ . Then we have K(1) ⊂ K̂ ∩ Lp∞ ⊂ Lp∞ . Thus π1

is contained in Lp∞ ∩ L∞ = L. However, since L is unramified over K, this

contradicts the fact that π is a uniformizer of L.

We fix a topological generator τ of GK,p∞ . We also denote by τ the

preimage of τ ∈GK,p∞ under the bijection GL,p∞ 'GK,p∞ of the above

lemma. Note that τp
s

is a topological generator of GL,s,p∞ .

For any g ∈GK , we put ε(g) = g(π)/π ∈R, and define ε := ε(τ̃). Here,

τ̃ ∈GK is any lift of τ ∈ ĜK and then ε(τ̃) is independent of the choice of

the lift of τ . With these notations, we also note that we have g(u) = [ε(g)]u

(recall that S is embedded in W (R)). An easy computation shows that

τ(π)/π = τp
s
(πs)/πs = ε. Therefore, we have τ(u)/u= τp

s
(us)/us = [ε].

We put t=−log([ε]) ∈Acris. Denote by ν :W (R)→W (k) the unique lift

of the projection R→ k, which extends to a map ν :B+
cris→W (k)[1/p]. For

any subring A⊂B+
cris, we put I+A= Ker(ν on B+

cris) ∩A. For any integer

n> 0, let t{n} := tr(n)γq̃(n)(
tp−1

p ) where n= (p− 1)q̃(n) + r(n) with q̃(n)>

0, 06 r(n)< p− 1 and γi(x) = xi

i! is the standard divided power. We define

a subring RL0,s (resp. RL0) of B+
cris as below:

RL0,s :=
{ ∞∑
i=0

fit
{i} | fi ∈ SL0,s and fi→ 0 as i→∞

}
(

resp. RL0 :=
{ ∞∑
i=0

fit
{i} | fi ∈ SL0 and fi→ 0 as i→∞

})
.

Put R̂L,s =RL0,s ∩W (R) (resp. R̂L =RL0 ∩W (R)) and I+,L,s = I+R̂L,s
(resp. I+,L = I+R̂L). By definitions, we have RL0,0 =RL0 , R̂L,0 =

R̂L and I+,L,0 = I+,L. Lemma 2.2.1 in [Li2] shows that R̂L,s
(resp. RL0,s) is a ϕ-stable SL,s-subalgebra of W (R) (resp. B+

cris),

and ν induces RL0,s/I+RL0,s ' L0 and R̂L,s/I+,L,s ' Sint
L0,s

/I+S
int
L0,s
'

SL,s/I+SL,s 'W (kL). Furthermore, R̂L,s, I+,L,s,RL0,s and I+RL0,s are

GL,s-stable, and GL,s-actions on them factors through ĜL,s. For any torsion

Kisin module M over SL,s, we equip R̂L,s ⊗ϕ,SL,s M with a Frobenius by

ϕR̂L,s ⊗ ϕM. It is known that the natural map M→ R̂L,s ⊗ϕ,SL,s M given

by x 7→ 1⊗ x is an injection (cf. [Oz1, Corollary 2.12]). By this injection, we

regard M as a ϕ(SL,s)-stable submodule of R̂L,s ⊗ϕ,SL,s M.

Definition 2.3. A free (resp. torsion) (ϕ, ĜL,s)-module of height 6 r
over SL,s is a triple M̂ = (M, ϕM, ĜL,s) where

https://doi.org/10.1017/nmj.2016.68 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.68


178 Y. OZEKI

(1) (M, ϕM) is a free (resp. torsion) Kisin module of height 6 r over SL,s;

(2) ĜL,s is an R̂L,s-semilinear ĜL,s-action on R̂L,s ⊗ϕ,SL,s M which induces

a continuous GL,s-action on W (FrR)⊗ϕ,SL,s M;

(3) the ĜL,s-action commutes with ϕR̂L,s ⊗ ϕM;

(4) M⊂ (R̂L,s ⊗ϕ,SL,s M)HL ;

(5) ĜL,s acts on the W (kL)-module (R̂L,s ⊗ϕ,SL,s M)/I+,L,s(R̂L,s ⊗ϕ,SL,s
M) trivially.

A morphism between two (ϕ, ĜL,s)-modules M̂1 = (M1, ϕ1, Ĝ) and M̂2 =

(M2, ϕ2, Ĝ) is a morphism f : M1→M2 of ϕ-modules over SL,s such

that R̂L,s ⊗ f : R̂L,s ⊗ϕ,SL,s M1→ R̂L,s ⊗ϕ,SL,s M2 is ĜL,s-equivariant. We

denote by Mod
r,ĜL,s
/SL,s

(resp. Mod
r,ĜL,s
/SL,s,∞

) the category of free (resp. torsion)

(ϕ, ĜL,s)-modules of height 6 r over SL,s. We often regard R̂L,s ⊗ϕ,SL,s M
as a GL,s-module via the projection GL,s� ĜL,s.

For any free or torsion (ϕ, ĜL,s)-module M̂ over SL,s, we define a

Zp[GL,s]-module T̂L,s(M̂) by

T̂L,s(M̂) =

{
HomR̂L,s,ϕ(R̂L,s ⊗ϕ,SL,s M, W (R)) if M is free,

HomR̂L,s,ϕ(R̂L,s ⊗ϕ,SL,s M,Qp/Zp ⊗ZpW (R)) if M is torsion.

Here, GL,s acts on T̂L,s(M̂) by (σ.f)(x) = σ(f(σ−1(x))) for σ ∈GL,s, f ∈
T̂L,s(M̂), x ∈ R̂L,s ⊗ϕ,SL,s M. Then, there exists a naturalGL,∞-equivariant

map

θL,s : TSL,s(M)→ T̂L,s(M̂)

defined by θ(f)(a⊗ x) = aϕ(f(x)) for f ∈ TSL,s(M), a ∈ R̂L,s, x ∈M. We

have the following theorem.

Theorem 2.4. [Li2, Theorem 2.3.1(1)] and [CL2, Theorem 3.1.3(1)]

The map θL,s is an isomorphism of Zp[GL,∞]-modules.

Convention: For simplicity, if L=K, then we often omit the subscript

“L” from various notations (e.g., “a (ϕ, ĜK,s)-module” = “a (ϕ, Ĝs)-

module”, Mod
r,ĜK,s
/SK,s

= Modr,Ĝs/Ss
, Mod

r,ĜK,s
/SK,s,∞

= Modr,Ĝs/Ss,∞
, T̂K,s = T̂s, θK,s =

θs). Furthermore, if s= 0, we often omit the subscript “s” from various

notations (e.g., Mod
r,ĜL,0
/SL,0

= Modr,ĜL/SL
,Mod

r,ĜL,0
/SL,0,∞

= Modr,ĜL/SL,∞
, T̂L,0 = T̂L,

Mod
r,ĜK,0
/SK,0

= Modr,Ĝ/S , “a (ϕ, ĜK,0)-module” = “a (ϕ, Ĝ)-module”, T̂K,0 = T̂ ,

θK,0 = θ).
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We denote by Repr,stQp (GL,s) (resp. Repr,cris
Qp (GL,s), resp. Repr,stZp (GL,s),

resp. Repr,cris
Zp (GL,s)) the category of semistable Qp-representations of GL,s

with Hodge–Tate weights in [0, r] (resp. the category of crystalline Qp-

representations of GL,s with Hodge–Tate weights in [0, r], resp. the category

of lattices in semistable Qp-representations of GL,s with Hodge–Tate weights

in [0, r], resp. the category of lattices in crystalline Qp-representations of

GL,s with Hodge–Tate weights in [0, r]).

There exists t ∈W (R) r pW (R) such that ϕ(t) = pE(0)−1E(u)t. Such t

is unique up to units of Zp (cf. [Li2, Example 2.3.5]). Now we define the

full subcategory Modr,Ĝ,cris
/S (resp. Modr,Ĝ,cris

/S∞
) of Modr,Ĝ/S (resp. Modr,Ĝ/S∞)

consisting of objects M̂ which satisfy the following condition; τ(x)− x ∈
upϕ(t)(W (R)⊗ϕ,S M) for any x ∈M.

The following results are important properties for the functor T̂L,s.

Theorem 2.5. (1) [Li2, Theorem 2.3.1(2)] The functor T̂ induces an

anti-equivalence of categories between Modr,Ĝ/S and Repr,stZp (GK).

(2) [GLS, Proposition 5.9] and [Oz2, Theorem 19] The functor T̂ induces

an anti-equivalence of categories between Modr,Ĝ,cris
/S and Repr,cris

Zp (GK).

(3) [Oz1, Corollaries 2.8 and 5.34] The functor T̂L,s : Mod
r,ĜL,s
/SL,s,∞

→
Reptor(GL,s) is exact and faithful. Furthermore, it is full if er < p− 1.

2.4 (ϕ, Ĝ)-modules, Breuil modules and filtered (ϕ, N)-modules

We recall some relations between Breuil modules and (ϕ, Ĝ)-modules.

Here we give a rough sketch only. For more precise information, see [Br1,

Section 6], [Li1, Section 5] and the proof of [Li2, Theorem 2.3.1(2)].

Let M̂ be a free (ϕ, ĜL,s)-module over SL,s. If we put D := SL0,s ⊗ϕ,SL,s
M, then D has a structure of a Breuil module over SL0,s which corresponds

to the semistable representation Qp ⊗Zp T̂L,s(M̂) of GL,s (for the definition

and properties of Breuil modules, see [Br1]). Thus D is equipped with a

Frobenius ϕD(= ϕSL0,s
⊗ ϕM), a decreasing filtration (FiliD)i>0 of SL0,s-

submodules of D and a L0-linear monodromy operator N :D→D which

satisfy certain properties (for example, Griffiths transversality).

Putting D =D/I+SL0,sD, we can associate a filtered (ϕ, N)-module over

L(s) as following: ϕD := ϕD mod I+SL0,sD, ND :=ND mod I+SL0,sD and

FiliDL(s)
:= fπs(Fil

i(D)). Here, fπs :D→DL(s)
is the projection defined

by D�D/Fil1SL0,sD 'DL(s)
. Proposition 6.2.1.1 of [Br1] implies that

there exists a unique ϕ-compatible section s :D ↪→D of D�D. By this
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embedding, we regard D as a submodule of D. Then we have ND|D =

ND and ND =NSL0,s
⊗ IdD + IdSL0,s

⊗ND under the identification D =

SL0,s ⊗L(s)
D.

The GL,s-action on R̂L,s ⊗ϕ,SL,s M extends to B+
cris ⊗R̂L,s (R̂L,s ⊗ϕ,SL,s

M)'B+
cris ⊗SL0,s

D. This action is in fact explicitly written as follows:

g(a⊗ x) =

∞∑
i=0

g(a)γi

(
−log

(g[πs]

[πs]

))
⊗N i

D(x)

for g ∈GL,s, a ∈B+
cris, x ∈ D.(1)

By this explicit formula, we can obtain an easy relation between ND
and τp

s
-action on M̂ as follows: first we recall that t=−log(τ([π])/[π]) =

−log(τp
s
([πs])/[πs]). By the formula, for any n> 0 and x ∈ D, an induction

on n shows that we have

(τp
s − 1)n(x) =

∞∑
m=n

( ∑
i1+···in=m

ij>0

m!

i1! · · · in!

)
γm(t)⊗Nm

D (x) ∈B+
cris ⊗SL0,s

D

and in particular we see (τp
s−1)n

n (x)→ 0 p-adically as n→∞. Hence we can

define

log(τp
s
)(x) :=

∞∑
n=1

(−1)n−1 (τp
s − 1)n

n
(x) ∈B+

cris ⊗SL0,s
D.

It is not difficult to check the equation

(2) log(τp
s
)(x) = t⊗ND(x).

2.5 Base changes for Kisin modules

Let M be a free or torsion Kisin module of height 6 r over SL (resp. over

S). We put ML,s = SL,s ⊗SL M (resp. SL = SL ⊗S M) and equip ML,s

(resp. ML) with a Frobenius by ϕ= ϕSL,s ⊗ ϕM (resp. ϕ= ϕSL ⊗ ϕM).

Then it is not difficult to check that ML,s (resp. ML) is a free or torsion

Kisin module of height 6 r over SL,s (resp. over SL) (here we recall that

Es(us) = E(up
s

s ) = E(u)). Hence we obtained natural functors

Modr/SL →Modr/SL,s and Modr/SL,∞ →Modr/SL,s,∞(
resp. Modr/S→Modr/SL and Modr/S∞ →Modr/SL,∞

)
.
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By definition, we immediately see that we have TSL(M)' TSL,s(ML,s)

(resp. TS(M)|GL∞ ' TSL(ML)). In particular, it follows from Proposi-

tion 2.1(1) that the following holds:

Proposition 2.6. The functor Modr/SL →Modr/SL,s is fully faithful.

2.6 Base changes for (ϕ, Ĝ)-modules

Let M̂ be a free or torsion (ϕ, ĜL)-module (resp. (ϕ, Ĝ)-module) of height

6 r over SL (resp. over S). The GL,s action on R̂L ⊗ϕ,SL M (resp. the GL
action on R̂ ⊗ϕ,S M) extends to R̂L,s ⊗R̂L (R̂L ⊗ϕ,SL M)' R̂L,s ⊗ϕ,SL,s
ML,s (resp. R̂L ⊗R̂ (R̂ ⊗ϕ,S M)' R̂L ⊗ϕ,SL ML), which factors through

ĜL,s (resp. ĜL). Then it is not difficult to check that ML,s (resp. ML) has a

structure of a (ϕ, ĜL,s)-module (resp. (ϕ, ĜL)-module). Hence we obtained

natural functors

Modr,ĜL/SL
→Mod

r,ĜL,s
/SL,s

and Modr,ĜL/SL,∞
→Mod

r,ĜL,s
/SL,s,∞(

resp. Modr,Ĝ/S →Modr,ĜL/SL
and Modr,Ĝ/S∞ →Modr,ĜL/SL,∞

)
.

By definition, we immediately see that we have T̂L(M̂)|GL,s ' T̂L,s(M̂L,s)

(resp. T̂ (M̂)|GL ' T̂L(M̂L)). Similar to Proposition 2.6, we can prove the

following.

Proposition 2.7. The functor Modr,ĜL/SL
→Mod

r,ĜL,s
/SL,s

is fully faithful.

The proposition immediately follows from the full faithfulness property

of Theorem 2.5(1) and the lemma below.

Lemma 2.8. Let K ′ be a finite totally ramified extension of K. Then the

restriction functor from the category of semistable Qp-representations of GK
into the category of semistable Qp-representations of GK′ is fully faithful.

Proof. Let V and V ′ be semistable Qp-representations of GK and let

f : V → V ′ be a GK′-equivariant homomorphism. Considering the morphism

of filtered (ϕ, N)-modules over K ′ corresponding to f , we can check without

difficulty that f is in fact a morphism of filtered (ϕ, N)-modules over K.

This is because K ′ is totally ramified over K0 as same as K. This gives the

desired result.
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§3. Variants of free (ϕ, Ĝ)-modules

In this section, we define some variant notions of (ϕ, Ĝ)-modules. We

continue to use same notation as in the previous section. In particular, p is

odd.

3.1 Definitions

We start with some definitions which are our main concern in this and

the next section.

Definition 3.1. We define the category Mod
r,ĜL,s
/SL

(resp. M̃od
r,ĜL,s
/SL

) as

follows. An object is a triple M̂ = (M, ϕM, ĜL,s) where

(1) (M, ϕM) is a free Kisin module of height 6 r over SL;

(2) ĜL,s is an R̂L-semilinear ĜL,s-action on R̂L ⊗ϕ,SL M (resp. an R̂L,s-
semilinear ĜL,s-action on R̂L,s ⊗ϕ,SL M) which induces a continuous

GL,s-action on W (FrR)⊗ϕ,SL M;

(3) the ĜL,s-action commutes with ϕR̂L ⊗ ϕM (resp. ϕR̂L,s ⊗ ϕM);

(4) M⊂ (R̂L ⊗ϕ,SL M)HL (resp. M⊂ (R̂L,s ⊗ϕ,SL M)HL);

(5) ĜL,s acts on the W (kL)-module (R̂L ⊗ϕ,SL M)/I+,L(R̂L ⊗ϕ,SL M)

(resp. (R̂L,s ⊗ϕ,SL M)/I+,L,s(R̂L,s ⊗ϕ,SL M)) trivially.

Morphisms are defined by the obvious way. By replacing “free” of (1)

with “torsion”, we define the category Mod
r,ĜL,s
/SL,∞

(resp. M̃od
r,ĜL,s
/SL,∞).

Remark 3.2. The category Mod
r,ĜL,s
/SL

is very similar to the category

Mod
r,ĜL,s
/SL,s

from Definition 2.3, and so it may give the reader a little

confusion. The differences between these categories are as follows.

Mod
r,ĜL,s
/SL,s

Mod
r,ĜL,s
/SL

the base ring SL,s SL

coefficients of GL,s-actions R̂L,s R̂L

For any object M̂ of Mod
r,ĜL,s
/SL

or Mod
r,ĜL,s
/SL,∞

, we define a Zp[GL,s]-module

T̂L,s(M̂) by

T̂L,s(M̂) =

{
HomR̂L,ϕ(R̂L ⊗ϕ,SL M, W (R)) if M is free,

HomR̂L,ϕ(R̂L ⊗ϕ,SL M,Qp/Zp ⊗Zp W (R)) if M is torsion.
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Here, GL,s acts on T̂L,s(M̂) by (σ.f)(x) = σ(f(σ−1(x))) for σ ∈GL,s, f ∈
T̂L,s(M̂), x ∈ R̂L ⊗ϕ,SL M. Similar to the above, for any object M̂ of

M̃od
r,ĜL,s
/SL

or M̃od
r,ĜL,s
/SL,∞ , we define a Zp[GL,s]-module T̂L,s(M̂) by

T̂L,s(M̂) =

{
HomR̂L,s,ϕ(R̂L,s ⊗ϕ,SL M, W (R)) if M is free,

HomR̂L,s,ϕ(R̂L,s ⊗ϕ,SL M,Qp/Zp ⊗Zp W (R)) if M is torsion.

On the other hand, we have natural functors Modr,ĜL/SL
→Mod

r,ĜL,s
/SL

→

M̃od
r,ĜL,s
/SL

→Mod
r,ĜL,s
/SL,s

and

Modr,ĜL/SL,∞
→Mod

r,ĜL,s
/SL,∞

→ M̃od
r,ĜL,s
/SL,∞ →Mod

r,ĜL,s
/SL,s,∞

and it is readily seen that these functors are compatible with T̂L and T̂L,s. In

particular, the functors T̂L,s on Mod
r,ĜL,s
/SL

and M̃od
r,ĜL,s
/SL

take their values in

Repr,stZp (GL,s) since we have an equivalence of categories T̂L,s : Mod
r,ĜL,s
/SL,s

∼→
Repr,stZp (GL,s) by Theorem 2.5.

In the rest of this section, we study free cases. We leave studies for torsion

cases to the next section.

Convention: For simplicity, if L=K, then we often omit the subscript “L”

from various notations (e.g., Mod
r,ĜK,s
/SK

= Modr,Ĝs/S , M̃od
r,ĜK,s
/SK

= M̃od
r,Ĝs
/S ).

Furthermore, if s= 0, we often omit the subscript “s” from various notations

(e.g., Mod
r,ĜL,0
/SL

= Modr,ĜL/SL
, M̃od

r,ĜL,0
/SL,0

= M̃od
r,ĜL
/SL

).

3.2 The functors Modr,Ĝ/S →Modr,Ĝs/S → M̃od
r,Ĝs
/S →Modr,Ĝs/Ss

Now we consider the functors Modr,Ĝ/S →Modr,Ĝs/S → M̃od
r,Ĝs
/S →Modr,Ĝs/Ss

.

At first, by Proposition 2.6, we see that the functor M̃od
r,Ĝs
/S →Modr,Ĝs/Ss

is fully faithful. It follows from this fact and Theorem 2.5(1) that the

functor T̂s : M̃od
r,Ĝs
/S → Repr,stZp (Gs) is fully faithful. It is clear that the

functor Modr,Ĝs/S → M̃od
r,Ĝs
/S is fully faithful and thus so is T̂s : Modr,Ĝs/S →

Repr,stZp (Gs). Combining this with Theorem 2.5(1) and Lemma 2.8, we obtain

that the functor Modr,Ĝ/S →Modr,Ĝs/S is also fully faithful. Furthermore, we

prove the following.
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Proposition 3.3. The functor Modr,Ĝs/S → M̃od
r,Ĝs
/S is an equivalence of

categories.

Summary, we obtained the following commutative diagram.

Modr,Ĝ/S
� � //

o
��
T̂

��

Modr,Ĝs/S

∼ //
� w

**

T̂s

**

M̃od
r,Ĝs
/S
� � //
� r

%%

T̂s

%%

Modr,Ĝs/Ss

o
��
T̂s
��

Repr,stZp (GK) �
� //restriction // Repr,stZp (Gs).

Remark 3.4. The functor M̃od
r,Ĝs
/S ↪→Modr,Ĝs/Ss

may not be possibly

essentially surjective. In fact, under some conditions, there exists a rep-

resentation of GK which is crystalline over Ks but not of finite height. For

more precise information, see [Li2, Example 4.2.3].

Before starting the proof of Proposition 3.3, we give an explicit formula

such as (1) for an object of M̃od
r,Ĝs
/S . The argument below follows the

method of [Li2]. Let M̂ be an object of M̃od
r,Ĝs
/S . Let M̂s be the image

of M̂ for the functor M̃od
r,Ĝs
/S →Modr,Ĝs/Ss

. Put D = SK0 ⊗ϕ,S M and also

put Ds = SK0,s ⊗ϕ,Ss Ms = SK0,s ⊗SK0
D. Then Ds has a structure of a

Breuil module and also D =Ds/I+SK0,sDs has a structure of a filtered

(ϕ, N)-module corresponding to Qp ⊗Zp T̂s(M̂s) (see Section 2.4), which is

isomorphic to D/I+SK0D as a ϕ-module over K0. By [Li1, Lemma 7.3.1],

we have a unique ϕ-compatible section D ↪→D and we regard D as a

submodule of D ⊂Ds by this section. Then we have D = SK0 ⊗K0 D and

Ds = SK0,s ⊗K0 D. By the explicit formula (1) for M̂s, we know that

Ĝs(D)⊂ (K0[[t]] ∩RK0,s)⊗K0 D.

(Note that RK0,s can be regarded as a subring of K0[[t, us]] via [Li1, Lemma

7.1.2 ].) Hence, taking any K0-basis e1, . . . , ed of D, there exist As(t) ∈
Md×d(K0[[t]]) such that τp

s
(e1, . . . , ed) = (e1, . . . , ed)As(t). Since As(0) = Id,

we see that log(As(t)) ∈Md×d(K0[[t]]) is well defined. On the other hand,

choose g0 ∈Gs such that χp(g0) 6= 1, where χp is the p-adic cyclotomic

character. Since g0τ
ps = (τp

s
)χp(g0)g0, we have As(χp(g0)t) =As(t)

χp(g0) and
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thus we also have log(As(χp(g0)t)) = χp(g0)log(As(t)). Since log(As(0)) =

log(Id) = 0, we can write log(As(t)) as tB(t) for some B(t) ∈Md×d(K0[[t]]).

Then we have χp(g0)tB(χp(g0)t) = χp(g0)tB(t), that is, B(χp(g0)t) =B(t).

Hence the assumption χp(g0) 6= 1 implies that B(t) is a constant. Putting

Ns =B(t) ∈Md×d(K0), we obtain

τp
s
(e1, . . . , ed) = (e1, . . . , ed)

( ∞∑
i=0

N i
sγi(t)

)
.

Now we define ND :D→D by N(e1, . . . , ed) = (e1, . . . , ed)p
−sNs and

also define ND :=NSK0
⊗ IdD + IdSK0

⊗ND. (Note that we have NDϕD =

pϕDND and thus ND is nilpotent.) It is a routine work to check the

following:

(3)

g(a⊗ x) =
∞∑
i=0

g(a)γi(−log([ε(g)]))⊗N i
D(x) for g ∈Gs, a ∈B+

cris, x ∈D.

Since we have

(4) g(f) =
∞∑
i=0

γi(−log([ε(g)]))N i
SK0

(f)

for any g ∈GK and f ∈ SK0 , we obtain the following explicit formula:

(5)

g(a⊗ x) =
∞∑
i=0

g(a)γi(−log([ε(g)]))⊗N i
D(x) for g ∈Gs, a ∈B+

cris, x ∈ D.

In particular, as in Section 2.4, we can show that

(6) log(τp
s
)(x) = pst⊗ND(x)

for any x ∈ D.

Proof of Proposition 3.3. We continue to use the above notation. It

suffices to prove that the Gs-action on R̂s ⊗ϕ,S M preserves R̂ ⊗ϕ,S M.

Note that we have R̂ ⊗ϕ,S M = (RK0 ⊗K0 D) ∩ (W (R)⊗ϕ,S M), Gs(M)⊂
R̂s ⊗ϕ,S M⊂W (R)⊗ϕ,S M and Gs(RK0)⊂RK0 . Thus it is enough to

show Gs(D)⊂RK0 ⊗K0 D. This quickly follows from (3). In fact, we have

g(x) =
∞∑
i=0

γi(−log([ε(g)]))⊗N i
D(x) ∈RK0 ⊗K0 D for x ∈D, g ∈Gs.
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3.3 Relations with crystalline representations

We know that Qp ⊗Zp T̂s(M̂) is semistable over Ks for any object M̂ of

Modr,Ĝs/S or M̃od
r,Ĝs
/S . This subsection is devoted to prove a criterion, for M̂,

that describes when Qp ⊗Zp T̂s(M̂) becomes crystalline.

Following [Fo2, Section 5] we set I [m]B+
cris := {x ∈B+

cris | ϕn(x) ∈
FilmB+

cris for all n> 0}. For any subring A⊂B+
cris, we put I [m]A=A ∩

I [m]B+
cris. Furthermore, we also put I [m+]A= I [m]A.I+A (here, I+A is

defined in Section 2.3). By [Fo2, Proposition 5.1.3] and the proof of [Li2,

Lemma 3.2.2], we know that I [m]W (R) is a principal ideal which is generated

by ϕ(t)m.

Now we recall Theorem 2.5(2): if M is an object of Modr,Ĝs/Ss
, then Qp ⊗Zp

T̂s(M̂) is crystalline if and only if τp
s
(x)− x ∈ ups(I [1]W (R)⊗ϕ,Ss M) for

any x ∈M. However, if such M descends to a Kisin module over S, then

we can show the following.

Theorem 3.5. Let M̂ be an object of Modr,Ĝs/S or M̃od
r,Ĝs
/S . Then the

following is equivalent:

(1) Qp ⊗Zp T̂s(M̂) is crystalline;

(2) τp
s
(x)− x ∈ up(I [1]W (R)⊗ϕ,S M) for any x ∈M;

(3) τp
s
(x)− x ∈ I [1+]W (R)⊗ϕ,S M for any x ∈M.

Proof. (1)⇒ (2): The proof here mainly follows that of [GLS, Proposition

4.7]. We may suppose M̂ is an object of M̃od
r,Ĝs
/S . Put D = SK0 ⊗ϕ,S M

and D =D/I+SK0D as in the previous subsection. We fix a ϕ(S)-basis

(ê1, . . . , êd) of M⊂D and denote by (e1, . . . , ed) the image of (ê1, . . . , êd)

for the projection D→D. Then (e1, . . . , ed) is a K0-basis of D. As described

before the proof of Proposition 3.3, we regard D as a ϕ-stable submodule

of D, and we have ND :D→D and ND :DD→DD.

Now we consider a matrix X ∈GLd×d(SK0) such that (ê1, . . . , êd) =

(e1, . . . , ed)X. We define S̃ =W (k)[[up, uep/p]] as in [GLS, Section 4], which

is a sub W (k)-algebra of Sint
K0

with the property NSK0
(S̃)⊂ upS̃. By an easy

computation we have U =X−1BX +X−1NSK0
(X). Here, B ∈Md×d(K0)

and U ∈Md×d(SK0) are defined by ND(e1, . . . , ed) = (e1, . . . , ed)B and

ND(ê1, . . . , êd) = (ê1, . . . , êd)U . By the same proof as in the former half part

of the proof of [GLS, Proposition 4.7], we obtain X, X−1 ∈Md×d(S̃[1/p]).
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On the other hand, let M̂s be the image of M̂ for the functor M̃od
r,Ĝs
/S →

Modr,ĜsSs
. Now we recall that Ds = SK0,s ⊗ϕ,Ss Ms has a structure of

the Breuil module corresponding to Qp ⊗Zp T̂s(M̂s) Denote by NDs its

monodromy operator. By the formula (2) for M̂s and the formula (6) for

M̂, we see that psND =NDs on D. Therefore, Qp ⊗Zp T̂s(M̂) is crystalline

if and only if NDs mod I+SK0,sDs is zero, which is equivalent to say that

ND = (ND mod I+SK0D) is zero, that is, B = 0. Therefore, the latter half

part of the proof [GLS, Proposition 4.7] gives the assertion (2).

(2) ⇒ (3): This is clear.

(3) ⇒ (1): Suppose that (3) holds. We denote by M̂s the image of M̂

for the functor M̃od
r,Ĝs
/S →Modr,ĜsSs

as above. We claim that, for any x ∈
Ms, we have τp

s
(x)− x ∈ I [1+]W (R)⊗ϕs Ms. Let x= a⊗ y ∈Ms = Ss ⊗S

M where a ∈Ss and y ∈M. Then

τp
s
(x)− x= τp

s
(ϕ(a))(τp

s
(y)− y) + (τp

s
(ϕ(a))− ϕ(a))y

and thus it suffices to show τp
s
(ϕ(a))− ϕ(a) ∈ I [1+]W (R). This follows from

the lemma below and thus we obtained the claim. By the claim and [Oz2,

Theorem 21], we know that Qp ⊗Zp T̂s(M̂s)'Qp ⊗Zp T̂s(M̂) is crystalline.

Lemma 3.6. (1) We have I [1]W (R) ∩ u`B+
cris = u`I [1]W (R) for `> 0.

(2) We have g(a)− a ∈ uI [1]W (R) for g ∈G and a ∈S.

Proof. This is due to [GLS, the proof of Proposition 7] but we write a

proof here.

(1) Take x= u`y ∈ I [1]W (R) with y ∈B+
cris. By [Li4, Lemma 3.2.2] we

have y ∈W (R). Now we remark that uz ∈ FilnW (R) with z ∈W (R) implies

z ∈ FilnW (R) since u is a unit of B+
dR. Hence u`y ∈ I [1]W (R) implies y ∈

I [1]W (R).

(2) By the relation (4), we see that g(a)− a ∈ I [1]W (R). On the other

hand, if i > 0, we can write N i
SK0

(a) = ubi for some bi ∈S. Thus by the

relation (4) again we obtain g(a)− a ∈ uB+
cris. Then the result follows

from (1).
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§4. Variants of torsion (ϕ, Ĝ)-modules

In this section, we mainly study full subcategories of M̃od
r,Ĝs
/S∞ defined

below and also study representations associated with them. As a conse-

quence, we prove theorems in Introduction. We use same notation as in

Sections 2 and 3. In particular, p is odd. In below, let vR be the valuation

of R normalized such that vR(π) = 1/e and, for any real number x> 0, we

denote by m>xR the ideal of R consisting of elements a with vR(a)> x.

Let J be an ideal of W (R) which satisfies the following conditions:

• J 6⊂ pW (R);

• J is a principal ideal;

• J is ϕ-stable and Gs-stable in W (R).

By the above first and second assumptions for J , the image of J under

the projection W (R)�R is of the form m>cJR for some real number cJ > 0.

Definition 4.1. We denote by M̃od
r,Ĝs,J

/S∞ the full subcategory of

M̃od
r,Ĝs
/S∞ consisting of objects M̂ which satisfy the following condition:

τp
s
(x)− x ∈ JW (R)⊗ϕ,S M for any x ∈M.

We denote by R̃ep
r,Ĝs,J

tor (Gs) the essential image of the functor T̂s :

M̃od
r,Ĝs
/S∞ → Reptor(Gs) restricted to M̃od

r,Ĝs,J

/S∞ .

By definition, we have relations

M̃od
r,Ĝs,J

/S∞ ⊂ M̃od
r,Ĝs,J ′

/S∞ and R̃ep
r,Ĝs,J

tor (Gs)⊂ R̃ep
r,Ĝs,J ′

tor (Gs)

for J ⊂ J ′.

4.1 Full faithfulness for M̃od
r,Ĝs,J

/S∞

For the beginning of a study of M̃od
r,Ĝs,J

/S∞ , we prove the following full

faithfulness result.

Proposition 4.2. Let r and r′ be nonnegative integers with cJ >

pr/(p− 1). Let M̂ and N̂ be objects of M̃od
r,Ĝs,J

/S∞ and M̃od
r′,Ĝs,J

/S∞ , respec-

tively. Then we have Hom(M̂, N̂) = Hom(M,N). (Here, two “Hom”s are

defined by obvious manners.)
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In particular, if cJ > pr/(p− 1), then the forgetful functor M̃od
r,Ĝs,J

/S∞ →
Modr/S∞ is fully faithful.

Proof. A very similar proof of [Oz2, Lemma 7] proceeds, and hence

we only give a sketch here. Let M̂ and N̂ be objects of M̃od
r,Ĝs,J

/S∞ and

M̃od
r′,Ĝs,J

/S∞ , respectively. Let f : M→N be a morphism of Kisin modules

over S. Put f̂ =W (R)⊗ f :W (R)⊗ϕ,S M→W (R)⊗ϕ,S M. Choose any

lift of τ ∈ Ĝ to GK ; we denote it also by τ . Since the Ĝs-action for M̂

is continuous, it suffices to prove that ∆(1⊗ x) = 0 for any x ∈M where

∆ := τp
s ◦ f̂ − f̂ ◦ τps . We use induction on n such that pnN = 0.

Suppose n= 1. Since ∆ = (τp
s − 1) ◦ f̂ − f̂ ◦ (τp

s − 1), we obtain the

following:

(0) : For any x ∈M, ∆(1⊗ x) ∈m
>c(0)
R (R⊗ϕ,S N)

where c(0) = cJ . Since M is of height 6 r, we further obtain the following

for any i> 1 inductively:

(i) : For any x ∈M, ∆(1⊗ x) ∈m
>c(i)
R (R⊗ϕ,S N)

where c(i) = pc(i− 1)− pr = (cJ − pr/(p− 1))pi + pr/(p− 1). The condi-

tion cJ > pr/(p− 1) implies that c(i)→∞ as i→∞ and thus ∆(1⊗ x) = 0.

Suppose n > 1. Consider the exact sequence 0→Ker(p)→N
p→ pN→ 0

of ϕ-modules over S. It is not difficult to check that N′ := Ker(p) and

N′′ := pN are torsion Kisin modules of height 6 r′ over S (cf. [Li1, Lemma

2.3.1]). Moreover, we can check that N′ and N′′ have natural structures

of objects of M̃od
r′,Ĝs
/S∞ (which are denoted by N̂′ and N̂′′, respectively)

such that the sequence 0→N′→N
p→N′′→ 0 induces an exact sequence

0→ N̂′→ N̂→ N̂′′→ 0. By the lemma below, we know that N̂′ and N̂′′

are in fact contained in M̃od
r′,Ĝs,J

/S∞ . By the induction hypothesis, we see

that ∆(1⊗ x) has values in (W (R)⊗ϕ,S N′) ∩ (JW (R)⊗ϕ,S N). By [Oz2,

Lemma 6] and the assumption that J 6⊂ pW (R) is principal, we obtain that

∆(1⊗ x) ∈ JW (R)⊗ϕ,S N′. Since pN′ = 0, an analogous argument in the

case n= 1 proceeds and we have ∆(1⊗ x) = 0 as desired.

Lemma 4.3. Let 0→ M̂′→ M̂→ M̂′′→ 0 be an exact sequence in

M̃od
r,Ĝs
/S∞. Suppose that M̂ is an object of M̃od

r,Ĝs,J

/S∞ . Then M̂′ and M̂′′ are

also objects of M̃od
r,Ĝs,J

/S∞ .
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Proof. The fact M̂′′ ∈ M̃od
r,Ĝs,J

/S∞ is clear. Take any x ∈M′. Then we have

τp
s
(x)− x ∈ (JW (R)⊗ϕ,S M) ∩ (W (R)⊗ϕ,S M′). Since J is a principal

ideal which is not contained in pW (R), we obtain τp
s
(x)− x ∈ JW (R)⊗ϕ,S

M′ by [Oz2, Lemma 6]. This implies M̂′ ∈ M̃od
r,Ĝs,J

/S∞ .

4.2 The category R̃ep
r,Ĝs,J

tor (Gs)

In this subsection, we study some categorical properties of R̃ep
r,Ĝs,J

tor (Gs).

Let M̂ be an object of M̃od
r,Ĝs
/S∞ . Following [Li2, Section 3.2] (note that

arguments in [Li2] is the “free case”), we construct a map ι̂s which connects

M̂ and T̂s(M̂) as follows. Observe that there exists a natural isomorphism

of Zp[Gs]-modules

T̂s(M̂)'HomW (R),ϕ(W (R)⊗ϕ,S M,Qp/Zp ⊗Zp W (R))

where Gs acts on HomW (R),ϕ(W (R)⊗ϕ,S M,Qp/Zp ⊗Zp W (R)) by

(σ.f)(x) = σ(f(σ−1(x))) for σ ∈Gs,

f ∈HomW (R),ϕ(W (R)⊗ϕ,S M,Qp/Zp ⊗Zp W (R)),

x ∈W (R)⊗ϕ,S M =W (R)⊗R̂s (R̂s ⊗ϕ,S M).

Thus we can define a morphism

ι̂′s :W (R)⊗ϕ,S M→HomZp(T̂s(M̂),Qp/Zp ⊗Zp W (R))

by

x 7→ (f 7→ f(x)), x ∈W (R)⊗ϕ,S M, f ∈ T̂s(M̂).

Since T̂s(M̂)'
⊕

i∈I Zp/pniZp as Zp-modules, we have a natural

isomorphism HomZp(T̂s(M̂),Qp/Zp ⊗Zp W (R))'W (R)⊗Zp T̂
∨
s (M̂) where

T̂∨s (M̂) = HomZp(T̂s(M̂),Qp/Zp) is the dual representation of T̂s(M̂). Com-

posing this isomorphism with ι̂′s, we obtain the desired map

ι̂s :W (R)⊗ϕ,S M→W (R)⊗Zp T̂
∨
s (M̂).

It follows from a direct calculation that ι̂s is ϕ-equivariant and Gs-

equivariant. If we denote by M̂s the image of M̂ for the functor M̃od
r,Ĝs
/S∞ →

Modr,Ĝs/Ss,∞
(cf. Section 3.1), then the above ι̂s is isomorphic to “ι̂ for M̂s
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in [Oz1, Section 4.1]”. Hence [Oz1, Lemma 4.2(4)] implies that

W (Fr R)⊗ ι̂s :W (Fr R)⊗W (R) (W (R)⊗ϕ,S M)

→W (Fr R)⊗W (R) (W (R)⊗Zp T̂
∨
s (M̂))

is bijective.

Proposition 4.4. Let (R) : 0→ T ′→ T → T ′′→ 0 be an exact sequence

in Reptor(Gs). Assume that there exists M̂ ∈ M̃od
r,Ĝs,J

/S∞ such that T̂s(M̂)'
T . Then there exists an exact sequence (M) : 0→ M̂′′→ M̂→ M̂′→ 0 in

M̃od
r,Ĝs,J

/S∞ such that T̂s((M))' (R).

Proof. The same proof as [Oz1, Theorem 4.5], except using not ι̂ in the

proof of [Oz1, Theorem 4.5] but ι̂s as above, gives an exact sequence (M) :

0→ M̂′′→ M̂→ M̂′→ 0 in M̃od
r,Ĝs
/S∞ such that T̂s((M))' (R). Therefore,

Lemma 4.3, gives the desired result.

Corollary 4.5. The full subcategory R̃ep
r,Ĝs,J

tor (Gs) of Reptor(Gs) is

stable under subquotients.

Let L be as in Section 2, that is, the completion of an unramified algebraic

extension of K with residue field kL. We prove the following base change

lemma.

Lemma 4.6. Assume that J ⊃ upI [1]W (R) or L is a finite unramified

extension of K. If T is an object of R̃ep
r,Ĝs,J

tor (Gs), then T |GL,s is an object

of R̃ep
r,ĜL,s,J

tor (GL,s).

By an obvious way, we define a functor M̃od
r,Ĝs
/S∞ → M̃od

r,ĜL,s
/SL,∞ . The

underlying Kisin module of the image of M̂ ∈ M̃od
r,Ĝs
/S∞ for this functor is

ML = SL ⊗S M. Lemma 4.6 immediately follows from the lemma below.

Lemma 4.7. Assume that J ⊃ upI [1]W (R) or L is a finite unramified

extension of K. Then the functor M̃od
r,Ĝs
/S∞ → M̃od

r,ĜL,s
/SL,∞ induces a functor

M̃od
r,Ĝs,J

/S∞ → M̃od
r,ĜL,s,J

/SL,∞ .

Proof. Let M̂ be an object of M̃od
r,Ĝs
/S∞ and let M̂L be the image

of M̂ for the functor M̃od
r,Ĝs
/S∞ → M̃od

r,ĜL,s
/SL,∞ . In the rest of this proof,
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to avoid confusions, we denote the image of x ∈ML in W (R)⊗ϕ,SL ML

by 1⊗ x. Recall that we abuse notations by writing τ for the preim-

age of τ ∈GK,p∞ under the bijection GL,p∞ 'GK,p∞ of Lemma 2.2.

Then τp
s

is a topological generator of GL,s,p∞ . It suffices to show the

following: if M̂ is an object of M̃od
r,Ĝs,J

/S∞ , then we have τp
s
(1⊗ x)− (1⊗

x) ∈ JW (R)⊗ϕ,SL ML for any x ∈ML. Now we suppose M̂ ∈ M̃od
r,Ĝs,J

/S∞ .

Take any a ∈SL and x ∈M. Note that we have τp
s
(1⊗ ax)− (1⊗ ax) =

τp
s
(ϕ(a))(τp

s
(1⊗ x)− (1⊗ x)) + (τp

s
(ϕ(a))− ϕ(a))(1⊗ x) in W (R)⊗ϕ,SL

ML. Since M̂ is an object of M̃od
r,Ĝs,J

/S∞ , we have τp
s
(ϕ(a))(τp

s
(1⊗ x)−

(1⊗ x)) ∈ JW (R)⊗ϕ,SL ML. Therefore, it is enough to show (τp
s
(ϕ(a))−

ϕ(a))(1⊗ x) ∈ JW (R)⊗ϕ,SL ML. This follows from Lemma 3.6 imme-

diately in the case where J ⊃ upI [1]W (R). Next we consider the case

where L is a finite unramified extension of K. Let c1, . . . , c` ∈W (kL) be

generators of W (kL) as a W (k)-module. Then we have SL =
∑`

j=1 cjS

and thus we can write a=
∑`

j=1 ajcj for some aj ∈S. Hence it suf-

fices to show (τp
s
(ϕ(aj))− ϕ(aj))(1⊗ x) ∈ JW (R)⊗ϕ,SL ML but this in

fact immediately follows from the equation (τp
s
(ϕ(aj))− ϕ(aj))(1⊗ x) =

(τp
s
(1⊗ ajx)− (1⊗ ajx))− (τp

s
(ϕ(aj))(τ

ps(1⊗ x)− (1⊗ x))).

Remark 4.8. For a general L, the author does not know whether the

statement of the above lemma is true or not.

4.3 Full faithfulness theorem for R̃ep
r,Ĝs,J

tor (Gs)

Our goal in this subsection is to prove the following full faithfulness

theorem, which plays an important role in our proofs of main theorems.

Theorem 4.9. Assume that J ⊃ upI [1]W (R) or k is algebraically

closed. If ps+2/(p− 1)> cJ > pr/(p− 1), then the restriction functor

R̃ep
r,Ĝs,J

tor (Gs)→ Reptor(G∞) is fully faithful.

First we give a very rough sketch of the theory of maximal models for

Kisin modules (cf. [CL1]). For any M ∈Modr/S∞ , put M[1/u] = S[1/u]⊗S

M and denote by F rS(M[1/u]) the (partially) ordered set (by inclusion) of

torsion Kisin modules N of height 6 r which are contained in M[1/u] and

N[1/u] = M[1/u] as ϕ-modules. The set F rS(M[1/u]) has a greatest element

(cf. [CL1, Corollary 3.2.6]). We denote this element by Maxr(M). We say

that M is maximal of height 6 r (or, maximal for simplicity) if it is the

greatest element of F rS(M[1/u]). The association M 7→Maxr(M) defines
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a functor “Maxr” from the category Modr/S∞ of torsion Kisin modules

of height 6 r into the category Maxr/S∞ of maximal Kisin modules of

height 6 r. The category Maxr/S∞ is abelian (cf. [CL1, Theorem 3.3.8]).

Furthermore, the functor TS : Maxr/S∞ → Reptor(G∞), defined by TS(M) =

HomS,ϕ(M,Qp/Zp ⊗Zp W (R)), is exact and fully faithful (cf. [CL1, Corol-

lary 3.3.10]). It is not difficult to check that TS(Maxr(M)) is canonically

isomorphic to TS(M) as representations of G∞ for any torsion Kisin module

M of height 6 r.

Definition 4.10. [CL1, Section 3.6.1] Let d be a positive integer. Let

n = (ni)i∈Z/dZ be a sequence of nonnegative integers of smallest period d.

We define a torsion Kisin module M(n) as below:

• as a k[[u]]-module, M(n) =
⊕

i∈Z/dZ k[[u]]ei;

• for all i ∈ Z/dZ, ϕ(ei) = uniei+1.

We denote by Srmax the set of sequences n = (ni)i∈Z/dZ of integers 06
ni 6min{er, p− 1} with smallest period d for some integer d except the

constant sequence with value p− 1 (if necessary). By definition, we see that

M(n) is of height 6 r for any n ∈ Srmax. Putting r0 = max{r′ ∈ Z>0; e(r′ −
1)< p− 1}, we also see that M(n) is of height 6 r0 for any n ∈ Srmax. It is

known that M(n) is maximal for any n ∈ Srmax [CL1, Proposition 3.6.7]. If

k is algebraically closed, then M(n) is simple in Maxr/S∞ for any n ∈ Srmax

(cf. [CL1, Propositions 3.6.7 and 3.6.12]) and furthermore, the converse

holds; any simple object in Maxr/S∞ is of the form M(n) for some n ∈ Srmax

(cf. [CL1, Propositions 3.6.8 and 3.6.12]).

Lemma 4.11. Assume that ps+2/(p− 1)> cJ . Let d be a positive integer.

Let n = (ni)i∈Z/dZ be a sequence of nonnegative integers of smallest period d.

If M(n) is of height 6 r, then M(n) has a structure of an object of M̃od
r,Ĝs,J

/S∞ .

Proof. Choose any (pd − 1)th root η ∈R of ε. Since [η] · exp(t/(pd −
1)) is a (pd − 1)th root of unity, it is of the form [a] for some a ∈ F×

pd
.

Replacing ηa−1 with η, we obtain [η] = exp(−t/(pd − 1)) ∈ R̂×. Put xi =

[η]mi ∈ R̂× and x̄i = ηmi ∈ (R̂/pR̂)× ⊂R× for any i ∈ Z/dZ, where mi =∑d−1
j=0 ni+jp

d−j . We see that xi − 1 is contained in I+R̂. In the rest of this

proof, to avoid confusions, we denote the image of x ∈M(n) in R̂s ⊗ϕ,S
M(n)⊂R⊗ϕ,k[[u]] M(n) by 1⊗ x. Now we define a Ĝs-action on R̂s ⊗ϕ,S
M(n) by τp

s
(1⊗ ei) := x̄p

s

i (1⊗ ei) for the basis {ei}i∈Z/dZ of M(n) as in
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Definition 4.10. We claim that gϕ= ϕg on R̂s ⊗ϕ,S M(n) for any g ∈Gs.
For this, it suffices to check that the equality τp

s
ϕ(1⊗ ei) = ϕτp

s
(1⊗ ei)

holds for any i. Note that we have

τp
s
ϕ(1⊗ ei) = τp

s
(upni(1⊗ ei+1)) = x̄p

s

i+1(εp
s
u)pni(1⊗ ei+1)

and

ϕτp
s
(1⊗ ei) = ϕ(x̄p

s

i (1⊗ ei)) = x̄p
s+1

i upni(1⊗ ei+1).

Hence it is enough to check xp
s+1

i = xp
s

i+1[ε]p
s+1ni but we can show this

equality without difficulty. In fact, we have equivalences

xp
s+1

i = xp
s

i+1[ε]p
s+1ni ⇔ exp

(
−ps+1mi

t

pd − 1

)
= exp

(
−psmi+1

t

pd − 1
− ps+1nit

)
⇔ pmi

= mi+1 + (pd+1 − p)ni

and the last equality can be checked immediately by definition of mi.

By the claim above, we see that M(n) has a structure of an object of

M̃od
r,Ĝs
/S∞ via this Ĝs-action; we denote it by M̂(n). It suffices to prove that

M̂(n) is in fact an object of M̃od
r,Ĝs,J

/S∞ . Recall that vR is the valuation of R

normalized such that vR(π) = 1/e. Define t̃ = t mod pW (R) an element of R.

We denote by vp the usual p-adic valuation normalized by vp(p) = 1. Note

that we have vR(ε− 1) = p/(p− 1) and vR(̃t) = 1/(p− 1) (here, the latter

equation follows from the relation ϕ(t) = pE(0)−1E(u)t). Moreover, we

have vR(εm − 1) = vR(ηm − 1) = pvp(m)+1/(p− 1) for any m ∈ Zp by [GLS,

Lemma 6.6(1)]. Thus we have

vR(x̄p
s

i − 1) = vR(ηp
smi − 1) =

ps+vp(mi)+1

p− 1
>
ps+2

p− 1
.

Since ps+2/(p− 1)> cJ and the image of J in R is m>cJR , we obtain

τp
s
(1⊗ ei)− (1⊗ ei) ∈m>cJR R⊗ϕ,k[[u]] M(n)' JW (R)⊗ϕ,S M(n).

Finally we have to show that τp
s
(1⊗ aei)− (1⊗ aei) ∈m>cJR R⊗ϕ,k[[u]]

M(n) for any a ∈ k[[u]]. Since τp
s
(1⊗ aei)− (1⊗ aei) = τp

s
(ϕ(a))

(τp
s
(1⊗ ei)− (1⊗ ei)) + (τp

s
(ϕ(a))− ϕ(a))(1⊗ ei), it suffices to show
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τp
s
(ϕ(a))− ϕ(a) ∈m>cJR . Write ϕ(a) =

∑
i>0 aiu

pi for some ai ∈ k. Then

we have τp
s
(ϕ(a))− ϕ(a) =

∑
i>1 ai(ε

ps+1i − 1)upi. Since we have

vR((εp
s+1i − 1)upi) = ps+1vR(εi − 1) + vR(upi)>

ps+2

p− 1
> cJ

for any i> 1, we have done.

Recall that r0 = max{r′ ∈ Z>0; e(r′ − 1)< p− 1}. Put r1 := min{r, r0}.

Corollary 4.12. Assume that ps+2/(p− 1)> cJ . If n ∈ Srmax, then

M(n) has a structure of an object of M̃od
r′,Ĝs,J

/S∞ for any r′ > r1. Furthermore,

if cJ > pr1/(p− 1), it is uniquely determined. We denote this object by

M̂(n).

Proof. We should remark that M(n) is of height 6 r1 for any n ∈ Srmax.

The uniqueness assertion follows from Proposition 4.2.

Before the lemma below, we remark that any semisimple Fp-
representation of GK is automatically tame.

Lemma 4.13. (1) The restriction functor from the category of tamely

ramified torsion Zp-representations of GK to the category of torsion Zp-
representations of G∞ is fully faithful.

(2) The restriction functor in (1) induces an equivalence between the

category of semisimple (resp. irreducible) Fp-representations of GK and the

category of semisimple (resp. irreducible) Fp-representations of G∞.

Proof. (1) The result immediately follows from the fact that GK is

topologically generated by G∞ and the wild inertia subgroup of GK .

(2) It suffices to show the assertion for irreducible representations.

Denote by Repirr
Fp(GK) and Repirr

Fp(G∞) the category of irreducible Fp-
representations of GK and G∞, respectively. First we show that the

restriction of the action of GK to G∞ induces a functor Repirr
Fp(GK)→

Repirr
Fp(G∞). Let T be an irreducible Fp-representation of GK . Take a

G∞-stable submodule T ′ of T . Let Kt be the maximal tamely ramified

extension of K and Ip = Gal(K/Kt) the wild inertia subgroup of GK .

Then Ip acts on T trivially. In particular, T ′ is stable under Ip-action.

Since GK is topologically generated by G∞ and Ip, we know that T ′ is

a GK-stable submodule of T . Hence T ′ = 0 or T and this implies that

T |G∞ is irreducible. Thus the restriction functor Repirr
Fp(GK)→ Repirr

Fp(G∞)
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is well defined. This is fully faithful by (1). It is enough to show that this

functor is essentially surjective. Let T be an irreducible Fp-representation

of G∞. Since G∞ ∩ Ip acts on T trivially, the G∞-action on T factors

through G∞/G∞ ∩ Ip. We define a GK-action on T via natural maps GK �
Gal(Kt/K)'Gal(K∞K

t/K∞)'G∞/G∞ ∩ Ip. The restriction of this GK-

action on T to G∞ coincides with the original G∞-action on T and thus we

finish a proof.

Lemma 4.14. Assume that J ⊃ upI [1]W (R) or k is algebraically closed.

Let T ∈ Reptor(Gs) and T ′ ∈ R̃ep
r,Ĝs,J

tor (Gs). Suppose that T is tame, pT = 0

and T |G∞ ' TS(M) for some M ∈Modr/S∞. Furthermore, we suppose

ps+2/(p− 1)> cJ > pr/(p− 1). Then all G∞-equivariant homomorphisms

T → T ′ are Gs-equivariant.

Proof. Let L be the completion of the maximal unramified extension

Kur of K. By identifying GL with GKur , we may regard GL as a subgroup

of GK . Note that L(s) =K(s)L is the completion of the maximal unramified

extension of K(s), and Gs is topologically generated by GL,s and G∞.

Consider the following commutative diagram:

HomGL,s(T, T
′) �
� // HomGL,∞(T, T ′)

HomGs(T, T
′)

?�

OO

� � // HomG∞(T, T ′).
?�

OO

Since T ′|GL,s is contained in R̃ep
r,ĜL,s,J

tor (GL,s) if J ⊃ upI [1]W (R)

(cf. Lemma 4.6), the above diagram allows us to reduce a proof to the

case where k is algebraically closed. In the rest of this proof, we assume

that k is algebraically closed. Under this assumption, an Fp-representation

of Gs is tame if and only if it is semisimple by Maschke’s theorem. Thus

we may also assume that T is irreducible (here, we remark that any

subquotient of T is tame and, also remark that the essential image of

TS : Modr/S∞ → Reptor(G∞) is stable under subquotients in Reptor(G∞)).

By the assumption on T , we have T |G∞ ' TS(M)' TS(Maxr(M)) for

some M ∈Modr/S∞ . Since T |G∞ is irreducible (cf. By Lemma 4.13(2)) and

TS : Maxr/S∞ → Reptor(G∞) is exact and fully faithful, we know that

Maxr(M) is a simple object in the abelian category Maxr/S∞ . Therefore,

since k is algebraically closed, we have Maxr(M)'M(n) for some n ∈ Srmax
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(cf. [CL1, Propositions 3.6.8 and 3.6.12]). Let M̂(n) be the object of

M̃od
r,Ĝs,J

/S∞ as in Corollary 4.12. We recall that TS(M(n)) is isomorphic to

T̂s(M̂(n))|G∞ (see Theorem 2.5(1)), and hence we have an isomorphism

T |G∞ ' T̂s(M̂(n))|G∞ . Here, we note that T and T̂s(M̂(n)) are irreducible

as representations of Gs (cf. [CL1, Theorem 3.6.11]). Applying Lemma 4.13

again, we obtain an isomorphism T ' T̂s(M̂(n)) as representations of Gs.

On the other hand, we can take M̂′ = (M′, ϕ, Ĝs) ∈ M̃od
r,Ĝs,J

/S∞ such that

T ′ ' T̂s(M̂′). We consider the following commutative diagram:

HomGs(T, T
′) �
� // HomG∞(T, T ′)

Hom(M̂′, M̂(n))

T̂s

OO

forgetful
// HomS,ϕ(M′,M(n))

Maxr // HomS,ϕ(Maxr(M′),M(n))

TS

OO

Here, Hom(M̂′, M̂(n)) is the set of morphisms M̂′→ M̂(n) in the category

M̃od
r,Ĝs,J

/S∞ . The first arrow in the bottom line is bijective by Proposition 4.2

and so is the second (this follows from the fact that M(n) is maximal

by [CL1, Proposition 3.6.7]). Since the right vertical arrow is bijective, the

top horizontal arrow must be bijective.

Now we are ready to prove Theorem 4.9.

Proof of Theorem 4.9. At first, we note that the category R̃ep
r,Ĝs,J

tor (Gs)

is an exact category in the sense of Quillen [Qu, Section 2] by Corollary 4.5.

Hence short exact sequences in R̃ep
r,Ĝs,J

tor (Gs) give rise to exact sequences of

Hom’s and Ext1’s in the usual way. (This property holds for any exact cat-

egory.) Let T and T ′ be objects of R̃ep
r,Ĝs,J

tor (Gs). Take any Jordan–Hölder

sequence 0 = T0 ⊂ T1 ⊂ · · · ⊂ Tn = T of T in Reptor(Gs). By Corollary 4.5

again, we know that Ti and Ti,i−1 := Ti/Ti−1 are contained in R̃ep
r,Ĝs,J

tor (Gs)

for any i. By Lemma 4.14, if an exact sequence 0→ T ′→ V → Ti,i−1→ 0 in

R̃ep
r,Ĝs,J

tor (Gs) splits as representations of G∞, then it splits as a sequence

of representations of Gs. This shows that the fourth column in the diagram
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below is injective:

0 // HomGs(Ti,i−1, T
′) //

��

HomGs(Ti, T
′) //

��

HomGs(Ti−1, T
′) //

��

Ext1(Ti,i−1, T
′)

��
0 // HomG∞(Ti,i−1, T

′) // HomG∞(Ti, T
′) // HomG∞(Ti−1, T

′) // Ext1G∞(Ti,i−1, T
′)

Here, the extension Ext1(Ti,i−1, T
′) in the above diagram is taken in the

category R̃ep
r,Ĝs,J

tor (Gs). In addition, it follows from Lemma 4.14 that the

first column is an isomorphism. Therefore, we obtain an implication that, if

the third column is an isomorphism, then the second one is an isomorphism.

Hence a dévissage argument works and the desired full faithfulness follows.

4.4 Proof of Theorem 1.2

Now we are ready to prove our main theorems. First we prove The-

orem 1.2. Recall that a torsion Zp-representation T of GK is torsion

crystalline with Hodge–Tate weights in [0, r] if it can be written as the

quotient of lattices in some crystalline Qp-representation of GK with Hodge–

Tate weights in [0, r]. Let Repr,cris
tor (GK) be the category of them. We apply

our arguments given in previous subsections with the following J :

J = upI [1]W (R) = upϕ(t)W (R).

Then we have cJ = p/e+ p/(p− 1) and thus the inequalities ps+2/(p− 1)>
cJ > pr/(p− 1) are satisfied if e(r − 1)< p− 1. Therefore, Theorem 1.2 is

an easy consequence of the following proposition and Theorem 4.9.

Proposition 4.15. The category Repr,cris
tor (GK) is a subcategory of the

category R̃ep
r,Ĝs,J

tor (Gs) when s= 0.

Proof. In this proof, we put s= 0. So we omit subscript s in various

notations (e.g., Ĝs = Ĝ, M̃od
r,Ĝs
/S∞ = M̃od

r,Ĝ

/S∞). Let T be an object of

Repr,cris
tor (GK) and let L⊂ L′ be lattices in a crystalline Qp-representation

with Hodge–Tate weights in [0, r] such that L′/L' T . By Theorem 2.5(1),

there exists an injection L̂′ ↪→ L̂ of (ϕ, Ĝ)-modules over S which corresponds

to the injection L ↪→ L′. Now we put M = L/L′. Since L′/L is killed by a

power of p, M is an object of Modr/S∞ . We equip a Ĝ-action with R̂ ⊗ϕ,S M
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by a natural isomorphism R̂ ⊗ϕ,S M' (R̂ ⊗ϕ,S L)/(R̂ ⊗ϕ,S L′). Then we

see that M has a structure of an object of M̃od
r,Ĝ

/S∞ ; denote it by M̂.

Moreover, Theorem 3.5 implies that M̂ is in fact contained in M̃od
r,Ĝ,J

/S∞ . By

a similar argument to the proof of [CL2, Lemma 3.1.4], we have an exact

sequence 0→ T̂ (L̂)→ T̂ (L̂′)→ T̂ (M̂)→ 0 of representations of GK which is

isomorphic to 0→ L→ L′→ T → 0. This finishes a proof.

4.5 Proof of Theorem 1.3

We give a proof of Theorem 1.3. If s> n− 1, then we put

J = upI [ps−n+1]W (R) = upϕ(t)p
s−n+1

W (R).

Note that we have cJ = p/e+ ps−n+2/(p− 1) and thus the inequalities

ps+2/(p− 1)> cJ > pr/(p− 1) are satisfied if

s > n− 1 + logp(r − (p− 1)/e).

Proposition 4.16. Suppose s> n− 1. If T is an object of Repr,cris
tor (GK)

which is killed by pn, then T |Gs is contained in R̃ep
r,Ĝs,J

tor (Gs).

Proof. Let L be an object of Repr,cris
Zp (GK). Take a (ϕ, Ĝ)-module L̂ over

S such that L' T̂ (L̂). It is known that (τ − 1)i(x) ∈ upI [i]W (R)⊗ϕ,S L for

any i> 1 and any x ∈ L (cf. the latter half part of the proof of [GLS, Propo-

sition 4.7]). Take any x ∈ L. Since (τp
s − 1)(x) =

∑ps

i=1

(
ps

i

)
(τ − 1)i(x), we

obtain that

(7) (τp
s − 1)(x) ∈

ps∑
i=1

ps−vp(i)upI [i]W (R)⊗ϕ,S L.

Now let T be an object of Repr,cris
tor (GK) which is killed by pn. Take an exact

sequence (R) : 0→ L1→ L2→ T → 0 of Zp-representations of GK with

L1, L2 ∈ Repr,cris
Zp (GK). By [CL2, Theorem 3.1.3 and Lemma 3.1.4], there

exists an exact sequence (M) : 0→ L̂2→ L̂1→ M̂→ 0 of (ϕ, Ĝ)-modules

over S such that T̂ ((M))' (R). By (7), we see that

(τp
s − 1)(x) ∈

ps∑
i=1

ps−vp(i)upI [i]W (R)⊗ϕ,S M
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for any x ∈M. Since M is killed by pn and s> n− 1, we have

ps∑
i=1

ps−vp(i)upI [i]W (R)⊗ϕ,S M =
∑

i=1,...,ps

s−vp(i)<n

ps−vp(i)upI [i]W (R)⊗ϕ,S M

=

n−1∑
`=0

p`upI [ps−`]W (R)⊗ϕ,S M

⊂ upI [ps−n+1]W (R)⊗ϕ,S M.

Therefore, we obtained the desired result.

Proof of Theorem 1.3. By Theorem 1.2, we may suppose logp(r − (p−
1)/e)> 0, that is, e(r − 1)> p− 1. Suppose s > n− 1 + logp(r − (p− 1)/e).

Note that the condition s> n− 1 is now satisfied. Let T and T ′ be as

in the statement of Theorem 1.3. Let f : T → T ′ be a G∞-equivariant

homomorphism. Denote by L the completion of Kur and identify GL with

the inertia subgroup of GK . We note that T |GL and T ′|GL are objects

of Repr,cris
tor (GL). By Proposition 4.16, T |GL,s and T ′|GL,s are objects of

R̃ep
r,ĜL,s,J

tor (GL,s). Hence we have that f is GL,s-equivariant by Theorem 4.9.

Since Gs is topologically generated by GL,s and G∞, we see that f is Gs-

equivariant.

4.6 Galois equivariance for torsion semistable representations

In this subsection, we prove a Galois equivariance theorem for torsion

semistable representations. A torsion Zp-representation T of GK is torsion

semistable with Hodge–Tate weights in [0, r] if it can be written as the

quotient of lattices in some semistable Qp-representation of GK with Hodge–

Tate weights in [0, r]. We denote by Repr,sttor (GK) the category of them.

Note that Rep0,st
tor (GK) = Rep0,cris

tor (GK). Similar to Theorem 1.3, we show

the following, which is the main result of this subsection.

Theorem 4.17. Suppose that s > n− 1 + logpr. Let T and T ′ be objects

of Repr,sttor (GK) which are killed by pn. Then any G∞-equivariant homomor-

phism T → T ′ is Gs-equivariant.

If s> n− 1, then we put

J = I [ps−n+1]W (R) = ϕ(t)p
s−n+1

W (R).
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Then we have cJ = ps−n+2/(p− 1). To show Theorem 4.17, we use similar

arguments to those in the proof of Theorem 1.3.

Proposition 4.18. Suppose s> n− 1. If T is an object of Repr,sttor (GK)

which is killed by pn, then T |Gs is contained in R̃ep
r,Ĝs,J

tor (Gs).

Proof. Let L be a lattice in a semistable Qp-representation of GK with

Hodge–Tate weights in [0, r]. Take a (ϕ, Ĝ)-module L̂ over S such that

L' T̂ (L̂). It is known that (τ − 1)i(x) ∈ I [i]W (R)⊗ϕ,S L for any i> 1 and

any x ∈ L (cf. the proof of [Li3, Proposition 2.4.1]). Thus the same proof

proceeds as that of Proposition 4.16.

Proof of Theorem 4.17. We have Rep0,st
tor (GK) = Rep0,cris

tor (GK) and thus

Theorem 1.3 for r = 0 is an easy consequence of Theorem 1.2. Hence we may

assume r > 1. The rest of a proof is similar to the proof of Theorem 1.3.

4.7 Some consequences

In this subsection, we generalize some results proved in [Br3, Section 3.4].

First of all, we show the following elementary lemma, which should be well

known to experts, but we include a proof here for the sake of completeness.

Lemma 4.19. The full subcategories Repr,cris
tor (GK) and Repr,sttor (GK)

of Reptor(GK) are stable under formation of subquotients, direct sums

and the association T 7→ T∨(r). Here T∨ = HomZp(T,Qp/Zp) is the dual

representation of T .

Proof. We prove the statement only for the category Repr,cris
tor (GK). Let

T ∈ Repr,cris
tor (GK) be killed by pn for some n > 0. Assertions for quotients

and direct sums are clear. We prove that T∨(r) is contained in Repr,cris
tor (GK).

There exist lattices L1 ⊂ L2 in some crystalline Qp-representation of GK
and an exact sequence 0→ L1→ L2→ T → 0 of Zp[GK ]-modules. This

exact sequence induces an exact sequence 0→ T → L1/p
nL1→ L2/p

nL2→
T → 0 of finite Zp[GK ]-modules. By duality, we obtain an exact sequence

0→ T∨→ (L2/p
nL2)∨→ (L1/p

nL1)∨→ T∨→ 0 of finite Zp[GK ]-modules.

Then we obtain a GK-equivariant surjection L∨1 � T∨ by the composite

L∨1 � L∨1 /p
nL∨1

∼→ (L1/p
nL1)∨� T∨ of natural maps (here, for any free

Zp-representation L of GK , L∨ := HomZp(L, Zp) stands for the dual of

L). Therefore, we obtain L∨1 (r)� T∨(r) and thus T∨(r) ∈ Repr,cris
tor (GK).

Finally, we prove the stability assertion for subobjects. Let T ′ be aGK-stable

submodule of T . We have a GK-equivariant surjection f : L∨1 � T∨� (T ′)∨.

Let L′2 be a free Zp-representation of GK such that its dual is the kernel
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of f . We have an exact sequence 0→ (L′2)∨→ L∨1
f→ (T ′)∨→ 0 of Zp[GK ]-

modules. Repeating the construction of the surjection L∨1 � T∨, we obtain

a GK-equivariant surjection L′2 = (L′2)∨∨� (T ′)∨∨ = T ′ and thus we have

T ′ ∈ Repr,cris
tor (GK).

In the case where r = 1, the assertion (1) of the following corollary was

shown in [Br3, Theorem 3.4.3].

Corollary 4.20. Let T be an object of Repr,cris
tor (GK) which is killed by

pn for some n > 0. Let T ′ be a G∞-stable subquotient of T .

(1) If e(r − 1)< p− 1, then T ′ is GK-stable (with respect to T ).

(2) If s > n− 1 + logp(r − (p− 1)/e), then T ′ is Gs-stable (with respect

to T ).

Proof. By the duality assertion of Lemma 4.19, it is enough to show the

case where T ′ is a G∞-stable submodule of T . Take any sequence T ′ = T0 ⊂
T1 ⊂ · · · ⊂ Tm = T of torsion G∞-stable submodules of T such that Ti/Ti−1

is irreducible for any i. As explained in the proof of Proposition 4.14, the

G∞-action on Ti/Ti−1 can be (uniquely) extended to GK . By Theorem 5.3

given in the next section, we know that Ti/Ti−1 is an object of Repr0,cris
tor (GK)

where r0 := max{r′ ∈ Z>0; e(r′ − 1)< p− 1}.
(1) We may suppose r = r0. The G∞-equivariant projection T = Tm�

Tm/Tm−1 is GK-equivariant by the full faithfulness theorem (= Theo-

rem 1.2). Thus we know that Tm−1 is GK-stable in T , and also know that

Tm−1 is contained in Repr,cris
tor (GK) by Lemma 4.19. By the same argument

for the G∞-equivariant projection Tm−1� Tm−1/Tm−2, we know that Tm−2

is GK-stable in T , and also know that Tm−2 is contained in Repr,cris
tor (GK).

Repeating this argument, we have that T ′ = T0 is GK-stable in T .

(2) Put J = upI [ps−n+1]W (R). By (1) we may assume e(r − 1)> p− 1.

Under this assumption we have r > r0 and s > n− 1 + logp(r − (p− 1)/e)>
n− 1. In particular, T |Gs and (Ti/Ti−1)|Gs , for any i, are contained in

R̃ep
r,Ĝs,J

tor (Gs) by Proposition 4.16. First we consider the case where k

is algebraically closed. By Theorem 4.9, the G∞-equivariant projection

T = Tm� Tm/Tm−1 isGs-stable. Thus we know that Tm−1 isGs-stable in T ,

and also know that Tm−1 is contained in R̃ep
r,Ĝs,J

tor (Gs) by Corollary 4.5. By

the same argument for the G∞-equivariant projection Tm−1� Tm−1/Tm−2,

we know that Tm−2 is Gs-stable in T , and also know that Tm−2 is contained

in R̃ep
r,Ĝs,J

tor (Gs). Repeating this argument, we have that T ′ = T0 isGs-stable
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in T . Next we consider the case where k is not necessary algebraically closed.

Let L be the completion of the maximal unramified extension Kur of K, and

we identify GL with the inertia subgroup of GK . Clearly T |GL is contained

in Repr,cris
tor (GL) and T ′ is GL∞-stable submodule of T . We have already

shown that T ′ is GL,s-stable in T . Since Gs is topologically generated by

GL,s and G∞, we conclude that T ′ is Gs-stable in T .

Now let V be a Qp-representation of GK and T a Zp-lattice of V which is

stable under G∞. Then we know that T is automatically Gs-stable for some

s> 0. Indeed we can check this as follows. Take any GK-stable Zp-lattice

T ′ of V which contains T , and take an integer n > 0 with the property that

pnT ′ ⊂ T . Furthermore, we take a finite extension K ′ of K such that GK′

acts trivially on T ′/pnT ′. Then T/pnT ′ is G∞-stable and also GK′-stable

in T ′/pnT ′. If we take any integer s> 0 with the property K ′ ∩K∞ ⊂K(s),

we know that T/pnT ′ is Gs-stable. This implies that T is Gs-stable in T ′.

The following corollary, which was shown in [Br3, Corollary 3.4.4] in the

case where r = 1, is related with the above property.

Corollary 4.21. Let V be a crystalline Qp-representation of GK with

Hodge–Tate weights in [0, r] and T a Zp-submodule of V which is stable

under G∞. If e(r − 1)< p− 1, then T is stable under GK .

Proof. We follow the method of the proof of [Br3, Corollary 3.4.4]. First

we suppose that T is finitely generated over Zp. Take any GK-stable Zp-
lattice T ′ of V which contains T . Since T ′/pnT ′ is contained in Repr,cris

tor (GK)

for any n > 0, Corollary 4.20(1) implies that any G∞-stable submodule of

T ′/pnT ′ is in factGK-stable. Thus (T + pnT ′)/pnT ′ isGK-stable in T ′/pnT ′.

Therefore, we obtain g(T )⊂
⋂
n>0 (T + pnT ′) = T for any g ∈GK . Next we

consider general case; so T is not necessary finitely generated over Zp. We

may suppose T 6= 0. Denote by Tx the smallest Zp-submodule of T which

contains x and is stable underG∞. Since Tx is contained in some (GK-stable)

Zp-lattice of V , we see that Tx is finitely generated over Zp, and hence it is

stable under GK . Then the relation T =
⋃
x∈T Tx gives the desired result.

§5. Crystalline lifts and c-weights

We continue to use the same notation except for that we may allow p= 2.

We remark that a torsion Zp-representation of GK is torsion crystalline with

Hodge–Tate weights in [0, r] if there exists a lattice L in some crystalline
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Qp-representation of GK with Hodge–Tate weights in [0, r] and a GK-

equivariant surjection f : L� T . We call f a crystalline lift (of T ) of weight

6 r. Our interest in this section is to determine the minimum integer r (if

it exists) such that T admits crystalline lifts of weight 6 r. We call this

minimum integer the c-weight of T and denote it by wc(T ). If T does not

have crystalline lifts of weight 6 r for any integer r, then we define the c-

weight wc(T ) of T to be ∞. For the existence of crystalline lifts of various

torsion representations, for example, it is useful for the readers to refer the

Muller’s PhD Thesis [Mu]. Motivated by [CL2, Question 5.5], we pose the

following question.

Question 5.1. For a torsion Zp-representation T of GK , is the c-weight

wc(T ) of T finite? Furthermore, can we calculate wc(T )?

This question strongly related to the weight part of Serre’s conjecture. It

is dated to Serre, when raised Serre’s conjecture over Q, he had already

considered the question to lift a 2-dimensional mod p representation of

GQp to a 2-dimensional crystalline representation with “optimal” weights

(which is very close to minimum weights considered here). He obtained some

partial results that contained in Proposition 5.6 and Corollary 5.7. We do

not go into details here but the recent developments of the weight part

of Serre’s conjecture (e.g., [GLS]) also contribute (explicitly or implicitly)

partial results in this section.

5.1 General properties of c-weights

We study general properties of c-weights. At first, by ramification

estimates, it is known that c-weights may have infinitely large values [CL2,

Theorem 5.4]; for any c > 0, there exists a torsion Zp-extension T of GK
with wc(T )> c. In this paper, we mainly consider representations with

“small” c-weights. If c-weights are “small”, they are closely related with

tame inertia weights. Now we recall the definition of tame inertia weights.

Let IK be the inertia subgroup of GK . Let T be a d-dimensional irreducible

Fp-representation of IK . Then T is isomorphic to

Fpd(θ
n1
d,1 · · · θ

nd
d,d)

for one sequence of integers between 0 and p− 1, periodic of period d.

Here, θd,1, . . . , θd,d are the fundamental characters of level d. The integers

n1/e, . . . , nd/e are called the tame inertia weights of T . For any Fp-
representation T of GK , the tame inertia weights of T are the tame inertia

weights of the Jordan–Hölder quotients of T |IK .
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Let χp :GK → Z×p be the p-adic cyclotomic character and χ̄p :GK → F×p
the mod p cyclotomic character. It is well known that χ̄p|IK = θe1 where

θ1 : IK � F×p is the fundamental character of level 1. In particular, denoting

by Kur the maximal unramified extension of K, we have [Kur(µp) :Kur] =

(p− 1)/gcd(e, p− 1).

Proposition 5.2. (1) Minimum c-weights are invariant under finite

unramified extensions of the base field K.

(2) The c-weight of an unramified torsion Zp-representation of GK is 0.

(3) Put ν = (p− 1)/gcd(e, p− 1). Let s be an integer such that ν(s− 1)<

wc(T )6 νs. Then we have ν(s− 1)<wc(T
∨)6 νs. In particular, if (p− 1) |

e, then we have wc(T ) = wc(T
∨).

(4) Let T be an Fp-representation of GK and i the largest tame inertia

weight of T . Then we have wc(T )> i.

Proof. (1) Let T be a torsion Zp-representation of GK . Let K ′ be a finite

unramified extension of K. It suffices to prove that T has crystalline lifts

of weight 6 r if and only if T |GK′ has crystalline lifts of weight 6 r. The

“only if” assertion is clear and thus it is enough to prove the “if” assertion.

Let f : L� T |GK′ be a crystalline lift of T |GK′ of weight 6 r. Since K ′/K

is unramified, IndGKGK′
L is a lattice in some crystalline Qp-representation of

GK with Hodge–Tate weights in [0, r]. Furthermore, the map

IndGKGK′
L= Zp[GK ]⊗Zp[GK′ ]

L→ T, σ ⊗ x 7→ σ(f(x))

is a GK-equivariant surjection and hence we have done.

(2) The result follows from (1) immediately.

(3) Taking a finite unramified extension K ′ of K with the property

[Kur(µp) :Kur] = [K ′(µp) :K ′], it follows from Lemma 4.19 that we have

ν(s− 1)<wc(T |G′K )6 νs if and only if we have ν(s− 1)<wc((T
∨)|G′K )6

νs. Thus the result follows from the assertion (1).

(4) If ewc(T )> p− 1, then there is nothing to prove, and thus we may

suppose that ewc(T )< p− 1. Let L� T be a crystalline lift of T of weight

6 wc(T ). Since the tame inertia polygon of L lies on the Hodge polygon of

L [CS, Théorème 1], the largest slope of the former polygon is less than or

equal to that of the latter polygon. This implies wc(T )> i.

Theorem 5.3. Let T be a tamely ramified Fp-representation of GK . Let

i be the largest tame inertia weight of T . Then we have wc(T ) = min{h ∈
Z>0; h> i}.
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Proof. The proof below is essentially due to Caruso and Liu [CL2,

Theorem 5.7], but we give a proof here for the sake of completeness.

Put i0 = min{h ∈ Z>0; h> i}. By Proposition 5.2(4), we have wc(T )> i0.

Thus it suffices to show wc(T )6 i0. We note that T |IK is semisimple.

Any irreducible component T0 of T |IK is of the form Fpd(θ
n1
d,1 · · · θ

nd
d,d) for

one sequence of integers between 0 and p− 1, periodic of period d. We

decompose nj = emj + n′j by integers 06mj 6 i0 and 06 n′j < e. Now we

define an integer kj,` by

kj,` :=


e if 16 `6mj ,

n′j if `=mj + 1,

0 if ` > mj + 1.

Note that we have nj =
∑i0

`=1 kj,`, and also have an IK-equivariant surjec-

tion

T0 '
⊗

`=1,...,i0,Fpd

Fpd(θ
k1,`
d,1 · · · θ

kd,`
d,d )�

⊗
`=1,...,i0,Fp

Fpd(θ
k1,`
d,1 · · · θ

kd,`
d,d ).

By a classical result of Raynaud, each Fpd(θ
k1,`
d,1 · · · θ

kd,`
d,d ) comes from a

finite flat group scheme defined over Kur. We should remark that such a

finite flat group scheme is in fact defined over a finite unramified extension of

K. Since any finite flat group scheme can be embedded in a p-divisible group,

the above observation implies the following: there exist a finite unramified

extension K ′ over K, a lattice L in some crystalline Qp-representation of

GK′ with Hodge–Tate weights in [0, i0] and an IK-equivariant surjection

f : L� T . The map f induces an IK-equivariant surjection f̃ : L/pL� T .

Since L/pL and T is finite, we see that f̃ is in fact GK′′-equivariant for

some finite unramified extension K ′′ over K ′, and then so is f . Therefore,

we obtain wc(T |GK′′ )6 i0. By Proposition 5.2(1), we obtain wc(T )6 i0.

5.2 Rank 2 cases

We give some computations of c-weights related with torsion represen-

tations of rank 2. We prove the following lemma by an almost identical

method with [GLS, Lemma 9.4].

Lemma 5.4. Let K be a finite extension of Qp. Let E be a finite

extension of Qp with residue field F. Let i and ν be integers such that ν is

divisible by [K(µp) :K]. Suppose that T is an F-representation of GK which
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sits in an exact sequence (∗) : 0→ F(i)→ T → F→ 0 of F-representations

of GK . Then there exist a ramified degree at most 2 extension E′ over E,

with integer ring OE′, and an unramified continuous character χ :GK →
F× with trivial reduction such that (∗) is the reduction of some exact

sequence 0→OE′(χχi+νp )→ Λ→OE′ → 0 of free OE′-representations of

GK . Furthermore, we have the followings:

(1) If i+ ν = 1 or χ̄1−i
p 6= 1, then we can take E′ = E and χ= 1.

(2) If i+ ν = 0 and T is unramified, then we can take E′ = E, χ= 1 and

Λ to be unramified.

Proof. Suppose i+ ν = 1 (resp. χ̄1−i
p 6= 1). Then the map H1(K,OE(i+

ν))→H1(K, F(i)) arising from the exact sequence 0→OE(i+ ν)
$→OE(i+

ν)→ F(i)→ 0 is surjective since H2(K,OE(1))'OE (resp. H2(K,OE(i+

ν)) = 0), where $ is a uniformizer of E. Hence we obtained a proof of (1).

The assertion (2) follows immediately from the fact that the natural map

H1(GK/IK ,OE)→H1(GK/IK , F) is surjective.

In the rest of this proof, we always assume that i+ ν 6= 1 and χ̄1−i
p = 1.

Let L ∈H1(K, F(i)) be a 1-cocycle corresponding to (∗). We may suppose

L 6= 0. For any unramified continuous character χ :GK → F× with trivial

reduction, we denote by

δ1
χ :H1(K, F(i))→H2(K,OE(χχi+νp ))

(resp. δ0
χ :H0(K, E/OE(χ−1χ1−i−ν

p ))→H1(K, F))

the connection map arising from the exact sequence

0→OE(χχi+νp )
$→OE(χχi+νp )→ F(i)→ 0

(resp. 0→ F→ E/OE(χ−1χ1−i−ν
p )

$→ E/OE(χ−1χ1−i−ν
p )→ 0)

of OE [GK ]-modules. Consider the following commutative diagram:

H1(K, F(i))

δ1χ
��

× H1(K, F) // E/OE

H2(K,OE(χχi+νp )) × H0(K, E/OE(χ−1χ1−i−ν
p ))

δ0χ

OO

// E/OE

Since we know that the above two pairings are perfect, we see that L

lifts to H1(GK ,OE(χχi+νp )) if and only if H is contained in the image of
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δ0
χ. Here, H ⊂H1(K, F) is the annihilator of L under the local Tate pairing

H1(K, F(i))×H1(K, F)→ E/OE . Let n> 1 be the largest integer with the

property that χ−1χ1−i−ν
p ≡ 1 mod $n (such n exists since χ̄1−i

p = 1 and 1−
i− ν 6= 0). We define αχ :GK →OE by the relation χ−1χ1−i−ν

p = 1 +$nαχ,

and denote (αχ mod $) :GK → F by ᾱχ. By definition, ᾱχ is a nonzero

element of H1(K, F), and it is not difficult to check that the image of δ0
χ is

generated by ᾱχ. If ᾱχ is contained in H for some χ, we are done. Suppose

this is not the case.

Suppose that H is not contained in the unramified line in H1(K, F). We

claim that we can choose χ such that ᾱχ is ramified. Let m be the largest

integer with the property that (χ−1χ1−i−ν
p )|IK ≡ 1 mod $n. Clearly, we

have m> n. If m= n, then we are done and thus we may assume m> n.

Fix a lift g ∈GK of the Frobenius of K. We see that ᾱχ(g) 6= 0. Let χ′

be the unramified character sending g to 1 +$nαχ(g). Then χ′ has trivial

reduction. After replacing χ with χχ′, we reduce the case where m= n

and thus the claim follows. Suppose ᾱχ is ramified. Then there exists a

unique x̄ ∈ F× such that ᾱχ + ux̄ ∈H where ux̄ :GK → F is the unramified

character sending g to x̄. Denote by χ′′ the unramified character sending g

to 1 +$nαχ(g). Replacing χ with χχ′′, we have done.

Suppose that H is contained in the unramified line in H1(K, F) (thus

H and the unramified line coincide with each other). By replacing E with

E(
√
$), we may assume that n > 1. Let χ0 be a character defined by χ

times the unramified character sending our fixed g to 1 +$. Since n > 1, we

see that χ−1
0 χ1−i−ν

p ≡ 1 mod $ and χ−1
0 χ1−i−ν

p 6≡ 1 mod $2. We define αχ0 :

GK →OE by the relation χ−1
0 χ1−i−ν

p = 1 +$αχ0 , and denote (αχ0 mod $) :

GK → F by ᾱχ0 . By definition and the assumption n > 1, ᾱχ0 is a nonzero

unramified element of H1(K, F), hence it is contained in H. Therefore, we

have done.

Lemma 5.5. Let K be a finite extension of Qp, n> 2 an integer and

χ :GK → E× an unramified character. Then any E-representation of GK
which is an extension of E by E(χχnp ) is crystalline.

Proof. This is well known; for example, see the argument of [BK,

Section 3].

Proposition 5.6. Suppose p > 2. Let K be a finite unramified extension

of Qp. Let T ∈ Reptor(GK) be killed by p and sit in an exact sequence

0→ Fp(i)→ T → Fp→ 0 of Fp-representations of GK . Then we have the

followings:
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(1) If i= 0 and T is unramified, then we have wc(T ) = 0.

(2) If i= 0 and T is not unramified, then we have wc(T ) = p− 1.

(3) If i= 2, . . . , p− 2, then we have wc(T ) = i.

Proof. (1) By Lemma 5.4(2), we know that T has unramified (and thus

crystalline) lift, which implies wc(T ) = 0.

(2) By Lemmas 5.4 and 5.5, it suffices to prove that T is not torsion

crystalline with Hodge–Tate weights in [0, p− 2] if T is not unramified.

Let KT be the definition field of the representation T of GK and put G=

Gal(KT /K). Let Gj be the upper numbering jth ramification subgroup of

G (in the sense of [Se]). Since T is not unramified and killed by p, we see

that KT is a totally ramified degree p extension over K. Thus G1 is the wild

inertia subgroup of G and G1 =G, which does not act on T trivial by the

definition of G. Thus we obtain the desired result by ramification estimates

of [Fo1] (or [Ab1]) for torsion crystalline representations with Hodge–Tate

weights in [0, p− 2]: if T is torsion crystalline with Hodge–Tate weights in

[0, p− 2], then Gj acts on T trivial for any j > (p− 2)/(p− 1).

(3) The result follows immediately from Proposition 5.2(4), Lemmas 5.4

and 5.5.

Corollary 5.7. Let K be a finite unramified extension of Qp. Then any

2-dimensional Fp-representation of GK is torsion crystalline with Hodge–

Tate weights in [0, 2p− 2].

Proof. If T is irreducible, the result follows from Theorem 5.3. Assume

that T is reducible. Since K is unramified over Qp, any continuous

character GK → F×p is of the form χχ̄ip for some unramified character χ

and some integer i. Replacing K with its finite unramified extension, we

may assume that T sits in an exact sequence 0→ Fp(i)→ T → Fp(j)→ 0

of Fp-representations of GK , where i and j are integers in the range

[0, p− 2] (we remark that wc(T ) is invariant under unramified exten-

sions of K by Proposition 5.2(1)). It follows from Lemmas 5.4 and 5.5

that wc(T (−j))6 p. Therefore, we obtain wc(T ) = wc(T (−j)⊗Fp Fp(j))6
wc(T (−j)) + wc(Fp(j))6 p+ (p− 2) = 2p− 2.

Remark 5.8. The author does not know whether 2p− 2 in the state-

ment of Corollary 5.7 is optimal or not.
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5.3 Extensions of Fp by Fp(1) and nonfullness theorems

By Lemma 5.4, we know that the c-weight wc(T ) of an Fp-representation

T of GK which sits in an exact sequence 0→ Fp(1)→ T → Fp→ 0 of Fp-
representations of GK , is less than or equal to p. Let us calculate wc(T ) for

such T more precisely. We should remark that such T is written as p-torsion

points of a Tate curve. Hence we consider torsion representations coming

from Tate curves.

Let vK be the valuation of K normalized such that vK(K×) = Z, and take

any q ∈K× with vK(q)> 0. Let Eq be the Tate curve over K associated with

q and Eq[p
n] the module of pn-torsion points of Eq for any integer n > 0. It

is well known that there exists an exact sequence

(#) 0→ µpn → Eq[p
n]→ Z/pnZ→ 0

of Zp[GK ]-modules. Here, µpn is the group of pnth roots of unity in K.

Let xn :GK → µpn be the 1-cocycle defined to be the image of 1 for

the connection map H0(K, Z/pnZ)→H1(K, µpn) arising from the exact

sequence (#). Then xn corresponds to q mod (K×)p
n

via the isomorphism

K×/(K×)p
n 'H1(K, µpn) of Kummer theory. Thus the exact sequence (#)

splits if and only if q ∈ (K×)p
n
.

First we consider the case p | vK(q) (i.e., peu ramifié case).

Lemma 5.9. Let K be a finite extension of Qp. If p | vK(q), then Eq[p]

is the reduction modulo p of a lattice in some 2-dimensional crystalline Qp-

representation with Hodge–Tate weights in [0, 1].

Proof. Since p | vK(q), there exists q′ ∈K× such that vK(q′ − 1)> 0 and

q ≡ q′ mod (K×)p. Consider the exact sequence 0→ Zp(1)→ L→ Zp→ 0

of Zp-representations of GK corresponding to q′ via the isomorphism

H1(K, Zp(1))' lim←−nK
×/(K×)p

n
of Kummer theory. By the condition q ≡ q′

mod (K×)p, the reduction modulo p of L is Eq[p]. Thus it suffices to

show that V := Qp ⊗Zp L is crystalline. Take a system (q′n)n>0 of p-power

roots of q′ in OK such that q′0 = q′ and (q′n+1)p = q′n for any n> 0. We

also take a system (ε′n)n>0 of p-power roots of unity in OK such that

ε′0 = 1, ε′1 6= 1 and (ε′n+1)p = ε′n for any n> 0. We define a map c :GK → Zp
by g(qn) = (ε′n)c(g)qn for any n> 0. Then we can choose a basis e, f of

V such that g(e) = χp(g)e and g(f) = c(g)e + f for any g ∈GK . Put q′ =

(q′n mod p)n>0 ∈R, ε′ = (ε′n mod p)n>0 ∈R and t′ =− log[ε′] ∈Acris. By the

condition vK(q′ − 1)> 0, we see ([q′]− 1)e ∈ Fil1W (R) + pW (R) and thus
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log[q′] converges in B+
cris. With these notations, we see that the W (k)[1/p]-

vector space (Bcris ⊗Qp V )GK is of dimension 2 with basis e1 := t−1e and

e2 := log[q′] · t−1e + f . Therefore, V is crystalline.

Corollary 5.10. Suppose that K is a finite extension of Qp, (p− 1) - e
and p | vK(q). Then we have wc(Eq[p]) = 1.

Proof. By the assumption (p− 1) - e, we know that the largest tame

inertia weight of Eq[p] is positive. Thus Proposition 5.2(4) shows wc(Eq[p])>
1. The inequality wc(Eq[p])6 1 follows from Lemma 5.9.

Next we consider the case p - vK(q) (i.e., très ramifié case).

Proposition 5.11. If e(r − 1)< p− 1 and p - vK(q), then Eq[p
n] is not

torsion crystalline with Hodge–Tate weights in [0, r] for any n > 0.

Remark 5.12. If e= 1, the fact that Eπ[pn] is not torsion crystalline

with Hodge–Tate weights in [0, p− 1] immediately follows from the theory

of ramification bound as below. We may suppose n= 1. Suppose Eπ[p] is

torsion crystalline with Hodge–Tate weights in [0, p− 1]. Then the upper

numbering jth ramification subgroup GjK of GK (in the sense of [Se]) acts

trivially on Eπ[p] for any j > 1 [Ab1, Section 6, Theorem 3.1]. However, this

contradicts the fact that the upper bound of the ramification of Eπ[p] is

1 + 1/(p− 1).

Proof of Proposition 5.11. We may suppose n= 1. We choose any

uniformizer π′ of K. Putting vK(q) =m, we can write q = (π′)mx with

some unit x of the integer ring of K. Since m is prime to p, we have a

decomposition x= ζ`y
m in K× for some ` > 0 prime to p and y ∈K with

vK(y − 1)> 0. Here ζ` is a (not necessary primitive) `th root of unity. Since

` is prime to p, we have ζ` = ζps` for some integer s. We put π = π′y. This is a

uniformizer of K. Choose any pth root π1 of π and put q1 = ζs`π
m
1 ∈K(π1)×.

Then we have q = qp1 ∈ (K(π1)×)p and in particular, the exact sequence (#)

(for n= 1) splits as representations of Gal(K/K(π1)). Now assume that

Eq[p] is torsion crystalline with Hodge–Tate weights in [0, r]. Then (#) (for

n= 1) splits as representations of GK by Theorem 1.2. This contradicts the

assumption p - vK(q) (and hence q /∈ (K×)p).

Now we put r′0 = min{r ∈ Z>0; e(r − 1)> p− 1}. Recall that we have

[Kur(µp) :Kur] = (p− 1)/gcd(e, p− 1).

Lemma 5.13. Let K be a finite extension of Qp. Then Eq[p] is torsion

crystalline with Hodge–Tate weights in [0, 1 + (p− 1)/gcd(e, p− 1)].
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Proof. Taking a finite unramified extension K ′ of K such that [Kur(µp) :

Kur] = [K ′(µp) :K ′], we obtain wc((Eq[p])|GK′ )6 1 + (p− 1)/gcd(e, p− 1)

by Lemma 5.4. Thus we have wc(Eq[p])6 1 + (p− 1)/gcd(e, p− 1) by

Proposition 5.2(1).

Corollary 5.14. Suppose that K is a finite extension of Qp, and also

suppose e | (p− 1) or (p− 1) | e. We further suppose that p - vK(q). Then we

have wc(Eq[p]) = r′0.

Proof. We have wc(Eq[p])6 r′0 by Lemma 5.13. In addition, we also have

wc(Eq[p])> r′0 by Proposition 5.11.

Lemma 5.13 gives some nonfullness results on torsion crystalline repre-

sentations.

Corollary 5.15. Suppose that K is a finite extension of Qp. If

r > 1 + (p− 1)/gcd(e, p− 1), then the restriction functor Repr,cris
tor (GK)→

Reptor(G1) is not full.

Proof. We consider two representations Eπ[p] and Fp(1)⊕ Fp, which

are objects of Reprtor(GK) by Lemma 5.13. They are not isomorphic as

representations of GK but isomorphic as representations of G1. Thus the

desired nonfullness follows.

Corollary 5.16. Suppose that any one of the following holds:

• p= 2 and K is a finite extension of Q2 (in this case r′0 = 2);

• K is a finite unramified extension of Qp (in this case r′0 = p);

• K is a finite extension of Qp(µp) (in this case r′0 = 2).

Then the restriction functor Repr,cris
tor (GK)→ Reptor(G1) is not full.
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