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ON GALOIS EQUIVARIANCE OF
HOMOMORPHISMS BETWEEN
TORSION CRYSTALLINE REPRESENTATIONS

YOSHIYASU OZEKI

Abstract. Let K be a complete discrete valuation field of mixed characteristic
(0, p) with perfect residue field. Let (7, )n>0 be a system of p-power roots of a
uniformizer m = 7y of K with 7|',Z+1 = mp, and define G (resp. Goo) the absolute
Galois group of K (7s) (resp. Koo :=J,,5¢ K (7n)). In this paper, we study Gs-
equivariantness properties of Goo-equivariant homomorphisms between torsion
crystalline representations.
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81. Introduction

Let p be a prime number and r > 0 an integer. Let K be a complete
discrete valuation field of mixed characteristic (0, p) with perfect residue
field and absolute ramification index e. Let m = my be a uniformizer of K
and 7, a pth root of m such that 7r£+1 = m, for all n > 0. For any integer
s >0, we put K, = K(ms). We also put Koo =59 K(n)- We denote by
Gk, Gs and G absolute Galois groups of K, K (4 and K, respectively.
By definition we have the following decreasing sequence of Galois groups:

Gk=GyDG1DGyD - DGx.

Since K is a strict APF extension of K, the theory of fields of norm
implies that G, is isomorphic to the absolute Galois group of some field of
characteristic p. Therefore, representations of G, have easy interpretations
via Fontaine’s étale p-modules. Hence it seems natural to pose the following
question:

QUESTION 1.1. Let T be a Zjy,- or Q,-representation of G . How small
can we choose s > 0 to recover “enough” information of T'|q, from that of

Tla..?

Nowadays there is an interesting insight of Breuil for this question; he
showed that representations of Gk arising from finite flat group schemes
or p-divisible groups over the integer ring of K are “determined” by their
restriction to G. Furthermore, for Q,-representations, Kisin proved the
following theorem in [Kis| (which was a conjecture of Breuil): the restriction
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functor from the category of crystalline Q,-representations of G'x into the
category of Q,-representations of G is fully faithful.

In this paper, we give some partial answers to Question 1.1 for torsion
crystalline representations. A torsion Z,-representation T' of Gk is torsion
crystalline with Hodge-Tate weights in [0, 7] if it can be written as the
quotient of lattices in some crystalline Q,-representation of G'x with Hodge—
Tate weights in [0, r]. Let Rep}<™(Gk) be the category of them. In the
case r = 1, such representations are equivalent to finite flat representations.
(Here, a torsion Z,-representation of G is finite flat if it arises from the
generic fiber of some p-power order finite flat commutative group scheme
over the integer ring of K.) We denote by Rep,., (G« ) the category of torsion
Zy-representations of Go. The first main result in this paper is as follows.

THEOREM 1.2. (Full Faithfulness Theorem) Suppose e(r —1) <p —1.
Then the restriction functor Repia  (Gr) — Repyor(Goo) is fully faithful.

Before this work, some results were already known. First, the full
faithfulness theorem was proved by Breuil for e=1 and r <p — 1 via the
Fontaine-Laffaille theory [Br2, the proof of Théorem 5.2]. He also proved
the theorem under the assumptions p > 2 and r <1 as a consequence of
a study of the category of finite flat group schemes [Br3, Theorem 3.4.3].
Later, his result was extended to the case p =2 in [Kim], [Lal, [Li4] (proved
independently). In particular, the case p = 2 of the full faithfulness theorem
is a consequence of their works. On the other hand, Abrashkin proved the
full faithfulness in the case where p > 2, r <p and K is a finite unramified
extension of Q, [Ab2, Section 8.3.3]. His proof is based on calculations of
ramification bounds for torsion crystalline representations. In [0z2], a proof
of Theorem 1.2 under the assumption er < p — 1 is given via (¢, G)—modules
(which was introduced by Tong Liu [Li2] to classify lattices in semistable
representations). We should remark that Abrashkin’s approach implies
that calculations of ramification bounds induce full faithfulness results on
restriction functors such as our theorems. However, known results on
ramification bounds for torsion crystalline representations are not sufficient
to obtain our results. Conversely, our results possibly help us to study
ramification bounds for them.

Our proof of Theorem 1.2 is similar to the proof for the main result
of [0z2], but we need more careful considerations for (¢, G)-modules. In
fact, we prove a full faithfulness theorem for torsion representations arising

from certain classes of (¢, G)-modules (cf. Theorem 4.9), which immediately
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gives our main theorem. In addition, our study gives a result as below which
is the second main result of this paper (here, we define log, () := —oc for
any real number = < 0).

THEOREM 1.3.  Suppose that p is odd and s > n—1+log,(r—(p—1)/e).
Let T and T" be objects of Repi: ™ (Gk) which are killed by p™. Then any

tor
G oo -equivariant homomorphism T — T' is G-equivariant.

For torsion semistable representations, a similar result was shown in [CL2,
Theorem 3], which was a consequence of a study of ramification bounds.
The bound appearing in their theorem was n — 1 +log,(nr). By applying
our arguments given in this paper, we can obtain a generalization of their
result; our refined condition is n — 1 + log,r (see Theorem 4.17). Some other
consequences of our study are described in Section 4.7. Motivated by the
full faithfulness theorem (= Theorem 1.2) and Theorem 1.3, we raise the
following question.

QUESTION 1.4. Does there exist a constant ¢ depending on e,r
and p so that any Gs-equivariant homomorphism in the category

Repq, " (Gk) is Gs-equivariant for s > ¢? Moreover, can we choose ¢ to be

log,(r —(p—1)/e)?

On the other hand, there exist counter examples of the full faithfulness
theorem when we ignore the condition e(r — 1) < p — 1. Let Rep,.,(G1) be
the category of torsion Z,-representations of G'y.

THEOREM 1.5. (= Special case of Corollary 5.15)  Suppose that K is
a finite extension of Qp, and also suppose e|(p—1) or (p—1)|e. If
e(r —1) > p — 1, the restriction functor Repiy  (Gr) — Repio, (G1) is not

full (in particular, the restriction functor Rep:(’;ris(GK) — Repio, (Goo) s
not full).

In particular, if p =2, then the full faithfulness never hold for any finite
extension K of Q2 and any r > 2. Theorem 1.5 implies that the condition
“e(r —1) <p—1" in Theorem 1.2 is optimal for many finite extensions K
of Qp.

Now we describe the organization of this paper. In Section 2, we set
up notations and summarize facts we need later. In Section 3, we define
variant notions of (¢, C’)—modules and give some basic properties. They are
needed to study certain classes of potentially crystalline representations and

restrictions of semistable representations. In Section 4, we study technical
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~

torsion (¢, G)-modules which are related with torsion (potentially) crys-
talline representations. The key result in this section is the full faithfulness
result Theorem 4.9 on them, which allows us to prove our main results
immediately. Finally, in Section 5, we calculate the smallest integer r for
a given torsion representation 71" such that 7" admits a crystalline lift with
Hodge-Tate weights in [0, r]. We mainly study the rank two case. We use
our full faithfulness theorem to assure the nonexistence of crystalline lifts
with small Hodge-Tate weights. Theorem 1.5 is a consequence of studies of
this section.

Notation and convention: Throughout this paper, we fix a prime number p.
Except in Section 5, we always assume that p is odd.

For any topological group H, we denote by Repy, (H) (resp. Repr(H )
resp. Repg (H)) the category of torsion Zj-representations of H (resp. the
category of free Zy,-representations of H, resp. the category of Q-
representations of H). All Z,-representations (resp. Q,-representations) in
this paper are always assumed to be finitely generated over Z, (resp. Q)
and continuous.

For any field F', we denote by G the absolute Galois group of F' (for a
fixed separable closure of F').

§2. Preliminaries

In this section, we recall definitions and basic properties for Kisin modules
and (¢, G)-modules. Throughout Sections 2-4, we always assume that p is
an odd prime.

2.1 Basic notations

Let k be a perfect field of characteristic p, W (k) the ring of Witt vectors
with coefficients in k, Ko =W (k)[1/p], K a finite totally ramified extension
of K of degree e, K a fixed algebraic closure of K. Throughout this paper,
we fix a uniformizer m of K. Let E(u) be the minimal polynomial of 7
over Ky. Then F(u) is an Eisenstein polynomial. For any integer n > 0,
we fix a system (mp)n>0 of p"th roots of 7 in K such that 7, =m,.
Let R= @ O%/p, where O is the integer ring of K and the transition
maps are given by the pth power map. For any integer s > 0, we write
Ts := (Tsn)n>0 € R and 7 := mp € R. Note that we have &ps =T.

Let L be the completion of an unramified algebraic extension of K
with residue field kz. Then 75 is a uniformizer of Ly := L(ms) and Ly
is a totally ramified degree ep® extension of Lg:= W (kr)[1/p]. We set

https://doi.org/10.1017/nmj.2016.68 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.68

174 Y. OZEKI

Lo = Un>0 L(n) We put GL,s = GL(S) = Gal(L/L(S)) and GL,oo =G, =
Gal(L/Ls). By definitions, we have L= L) and GLo=Gr. Put 6, =
W (kr)[us] (resp. & =W(kr)[u]) with an indeterminate us (resp. u).
We equip a Frobenius endomorphism ¢ of & s (resp. &) by us— ub
(resp. u+>uP) and the Frobenius on W(kr). We embed the W(kp)-
algebra W (kp)[us] (resp. W(kp)[u]) into W(R) via the map us— [m]
(resp. u+ [x]), where [x] stands for the Teichmiiller representative. This
embedding extends to an embedding &, s — W(R) (resp. &, — W(R)).
By identifying u with ugs, we regard &7, as a subalgebra of & ;. It is
readily seen that the embedding &7, — &1, ¢ — W(R) is compatible with the
Frobenius endomorphisms. If we denote by Es(us) the minimal polynomial
of ms over Ky, with indeterminate wug, then we have Es(us):E(ugé).
Therefore, we have Es(us) =E(u) in & . We note that the minimal
polynomial of 7s over Ly is Fg(us).

Let Silflot’S (resp. SE:;) be the p-adic completion of the divided power
envelope of W (kr)[us] (resp. W (kr)[u]) with respect to the ideal generated
by Es(us) (resp. E(u)). There exist a unique Frobenius map ¢ : S}jlot’s — S}jlot’s
(resp. ¢ : SP¥ — SP') and monodromy N : Siﬁis — Siﬁis defined by p(us) =
uf (resp. p(u)=uP) and N(us)=—us (resp. N(u)=—u). Put Sp,s=
Sll?ot’s[l/p] = LO ®W(kL) Sanot’s (resp. SLO = Sll?ot[l/p] = L() ®W(I<:L) Sgl;) We
equip SiLnot,S and Sr,s (resp. Sanot and Sr,) with decreasing filtrations
FiliS}flg’s and Fil'Sr, s (resp. FiliSiLnOt’s and Fil'Sr, ;) by the p-adic com-
pletion of the ideal generated by EI(u,)/j! (resp. Ei(u)/j!) for all j > 0.
The inclusion W (kr)[us] <= W (R) (resp. W(kr)[u] — W (R)) via the map
us —> [ms] (resp. u— [x]) induces ¢-compatible inclusions &y, 5 — S}—ft)t’ s
Acris and S5 — B:;is (resp. 6 — Sflot — Acris and S, — Bctis). By these
inclusions, we often regard these rings as subrings of B;is. By identifying
u with uf” as before, we regard SiLrt)t (resp. SL,) as a ¢-stable (but
not N-stable) subalgebra of Siﬁis (resp. Sp,s). By definitions, we have

&L =6, SiLn;,o = Sil?ot and S, 0= Sr, (cf. Figure 1).

Convention: For simplicity, if L = K, then we often omit the subscript “L”
from various notations (e.g., Gx, = Gs, G, = Goo, Ok =6, 6 s = 6;).

2.2 Kisin modules

Let 7,5 >0 be integers. A ¢-module over &p ¢ is an &y, -module M
equipped with a -semilinear map ¢ : 9T — 91. A morphism between two
¢p-modules (M1, 1) and (Mo, @2) over &, ¢ is an S, s-linear map Ny — Ny
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W(R) Acris B:;is
Grs Sﬁs Sto,s
&L S}j}f St
S, S SKo.s
/ Y /
S Sy SKo
Figure 1.

Ring extensions.

compatible with ¢ and 9. Denote by 'Mod’, 6L the category of ¢-modules
(M, ) over &, 5 of height <r in the sense that M is of finite type over
S5 and the cokernel of 1 ® ¢ : &L s ®yp e, , M — M is killed by Eq(us)".

Let Mod? &L be the full subcategory of / Mod’, 6L ~ consisting of finite free
&1, s-modules. We call an object of Mod/6 a fr’ee Kisin module of height
<r (over & ).

Let Mod’, /6L be the full subcategory of 'Mod’, /6L consisting of finite
S s-modules which are killed by some power of p and have projective
dimension 1 in the sense that 91 has a two term resolution by finite free
S s-modules. We call an object of Mod;gL ... a torsion Kisin module of
height <r (over Sy ). h

For any free or torsion Kisin module 9t over &, ,, we define a Z, |G, o |-
module T, ,(9M) by

Homg, , (9, W(R)) it 9 is free,

T M) :=
&, (M) {HOmGL,s,w(fma Qp/Zy @z, W(R)) if M is torsion.

Here a G -action on Tg, (M) is given by (0.g)(x) =o(g(z)) for o€
GL,oo; gc T@(gﬁ), x eM.

Convention: For simplicity, if L = K, then we often omit the subscript “L”
rs = Ts,). Also,
if s=0, we often omit the subscrlpt “s” from various notations (e.g.,
Mod?GL’Om = Mod’/“GLm, Tepo,=Ts,, Mod?GK’Om = Mod76007 Teyo=
Ts).

from various notations (e.g., Mod/GK =Mod)g ., Te
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—

Gr/ GLP% \
Lo . |
L
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Figure 2.

Galois groups of field extensions.

ProposITION 2.1. (1) [Kis, Corollary 2.1.4 and Proposition 2.1.12] The
functor Ts,, , - Mod;em — RepZP(GOO) is exact and fully faithful.

(2) [CL1, Corollaries 2.1.6, 3.3.10 and 3.3.15] The functor Tg, , :
MOd;GL,s,oo — Repior (Goo) 18 exact and faithful. Furthermore, it is full if
er <p-—1.

2.3 (¢, G)-modules

The notion of (¢, G)-modules is introduced by Liu in [Li2] to classify
lattices in semistable representations. We recall definitions and properties
of them. We continue to use same notations as above.

Let Ly~ be the field obtained by adjoining all p-power roots of unity to
L. We denote by L the composite field of Lo, and Ly~. We define Hy, :=
Gal(L/Loo), Hp 0o := Gal(K /L) Gp, poo := Gal(L/Ly=) and Gy, := Gal(L/L)
(cf. Figure 2). Furthermore, putting L) peo = L(s)Lp, we define GLS =
Gal(L/L(y)) and G pee i= Gal(L/Lg) poo ).

Since p>2, it is known that L(S)7poo N Ly = L(S) and thus C;’LS =
Grspe X Hp s (cf. [Lil, Lemma 5.1.2]). Furthermore, G s~ is topolog-
ically isomorphic to Z,,.

LEMMA 2.2, The natural map G sp~ — Grspoo defined by g — g|p is
bijective.

Proof. By replacing L, with L, we may assume s = 0. It suffices to prove
K N Lyo = Kp~. Since Gk poo is isomorphic to Z,, we know that any finite

subextension of K [ Kpeo is of the form K4 0o for some s > 0. Assume that

s),p
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we have K N Ly # Kpeo. Then we have K1) C Kn Lyeo C Lpeo. Thus m
is contained in Ly N Loy = L. However, since L is unramified over K, this
contradicts the fact that 7 is a uniformizer of L. [

We fix a topological generator 7 of Gk peo. We also denote by 7 the
preimage of 7€ Gk p under the bijection G 0o ~ G peo of the above
lemma. Note that 77" is a topological generator of G L,s,p>-

For any g € Gk, we put £(g9) =g(m)/m € R, and define ¢ :=¢(7). Here,
7€ Gk is any lift of 7 € Gk and then g(7) is independent of the choice of
the lift of 7. With these notations, we also note that we have g(u) = [e(g)]u
(recall that & is embedded in W(R)). An easy computation shows that
7(x)/m = 7P" (ms)/7s = €. Therefore, we have 7(u)/u = 77" (us)/us = [g].

We put t = —log([g]) € Aeris- Denote by v : W(R) — W (k) the unique lift
of the projection R — k, which extends to a map v : Bf, — W (k)[1/p]. For
any subring A C BE., we put I A=Ker(v on BE, )N A. For any integer

tr!

n>0, let ti"} = tr(”)’yq(n)(T) where n = (p —1)G(n) + r(n) with g(n) >

0, 0<r(n)<p—1and(x)= f—: is the standard divided power. We define
a subring Ry, s (resp. Rr,) of B  as below:

cris

RLo,s = {i fﬂf{l} ‘ fZ S SLo,s and fz —0asi— OO}
=0

(resp. R, = {2 fit{i} | fi€ S, and f; » 0 asi— oo})

Put Rp.=Rrys NW(R) (resp. Rp =Rz, NW(R)) and I 1,=1 Rps
(resp. Iy = I+7/€L). By definitions, we have Rr,0=TRr,, ﬁL,o =
Ry and Iypo=1I,7. Lemma 221 in [Li2] shows that Ry,
(resp. Rp,s) is a ¢-stable &p s-subalgebra of W(R) (resp. BL.),
and v induces Rp,s/I+Rr,s~Lo and 7€L,s/1+,L,szS}fOt78/I+SiLn;78:
Srs/I1+61,s ~W(kp). Furthermore, ﬁL,s, It 1s;Rrys and I Ry, s are
G, s-stable, and G, s-actions on them factors through G L,s- For any torsion
Kisin module 9 over &, 5, we equip 7€L75 Rp6, . M with a Frobenius by
PR ® pop. It is known that the natural map 91 — 7€L,S Rp6, . I given
by z — 1 ® x is an injection (cf. [Oz1, Corollary 2.12]). By this injection, we
regard M as a (S, 5)-stable submodule of ﬁL’S Rp6.., M.

DEFINITION 2.3. A free (vesp. torsion) (@, G s)-module of height <r
over &, ¢ is a triple MM = (M, o, G1,s) where
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(1) (9, on) is a free (resp. torsion) Kisin module of height < 7 over & 4;
(2) CAJL,S is an ﬁgs—semﬂinear @L7S—action on ﬁL,S Rgp.6p., M which induces
a continuous G, s-action on W(FrR) ®,e, , MM;
(3) the GL,s—action commutes with YR. . ® Yo;
(4) MC (Res Dy, MM
(5) CA?L,S acts on the W (kp)-module (ﬁL,s ®y,6L. mt)/l+,L,s(7/€L,s Ry.61.
M) trivially.
A morphism between two (¢, CA}Lys)—modules My = (M4, o1, G’) and 9y =
(My, ¢2, G) is a morphism f:9 — My of p-modules over &y, such
that ﬁhs ® f: ﬁL,s Rp6y., M — ﬁL”g Rp,&y, , Mo is (A;Ls—equivariant. We

denote by Mod;’GGLL’S (resp. ModT’GLL’S ) the category of free (resp. torsion)

(¢, @L78)—modules of height < r over &, 5. We often regard ﬁL,s Q6. M
as a G s-module via the projection G, s — C;’Lﬁ.

For any free or torsion (¢, (A}'Lﬁ)—module M over Sprs, we define a
Z,|G1 s]-module T7, 4(9%) by

Ty (1) = HomﬁL’s’w(ﬁL’s Rp.e., M WR)) if 9 is free,
Lys Homg SD(RL,S ®pep., M, Qp/Zy @7, W(R)) if M is torsion.

Here, G s acts on Tr.s(M) by (0.f)(z) =o(f(oe (x))) for 0 € GLs, f€
T1s(M), v € R s @y, , M. Then, there exists a natural G 1, o-equivariant
map

OL,s: Te, (M) — T1 5(9)

defined by 0(f)(a ® z) = ap(f(z)) for fe€Ts, (M), ac ﬁLS, x € M. We
have the following theorem.

THEOREM 2.4. [Li2, Theorem 2.3.1(1)] and [CL2, Theorem 3.1.3(1)]
The map 01, s is an isomorphism of Zy[G, ]-modules.

Convention: For simplicity, if L = K, then we often omit the subscript
“a (p, Gk s)-module” = “a (¢, Gs)-
9 7G ,S ,G’s 70 ,8 7Gs 7~ 7
module”, Mod;GI’;S =ModJg", Mod;egsm = Modjgm, Trs="Ts, Ok.s =
0s). Furthermore, if s =0, we often omit the subscript “s” from various

. ,G $ ’é 3 7 T
notations (e.g., Mod < *° = Mod":S%, Mod, % = Mod" St | Tro="1r,

“L” from various notations (e.g.,

A . /GL‘O /GL /GL,O,oo /GL,oo
Mod;’g;:’; = Mod;’g, “a (¢, Gxp)-module” = “a (o, G)-module”, Txo =T,
OKk0= 93.

https://doi.org/10.1017/nmj.2016.68 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.68

GALOIS EQUIVARIANCE OF HOMOMORPHISMS 179

We denote by Rep&t(Ghs) (resp. Rep@;riS(GL,s), resp. Repgst(GL,s),
r,cris

resp. Rep;’ (GL,s)) the category of semistable Q,-representations of G'r, s
with Hodge-Tate weights in [0, 7] (resp. the category of crystalline Q-
representations of G, ¢ with Hodge-Tate weights in [0, ], resp. the category
of lattices in semistable QQ,-representations of G'1, s with Hodge-Tate weights
in [0, 7], resp. the category of lattices in crystalline Qp-representations of
G1,s with Hodge-Tate weights in [0, 7]).

There exists t € W(R) ~ pW (R) such that ¢(t) = pE(0) 1 E(u)t. Such t
is unique up to units of Z, (cf. [Li2, Example 2.3.5]). Now we define the

full subcategory Mod;’g’cris (resp. Mod;’g;jﬁs) of Mod;’g (resp. Mod;’goo)

consisting of objects M which satisfy the following condition; T(z) —x €
uPo(t)(W(R) @y e M) for any x € M.

The following results are important properties for the functor TL,s-

THEOREM 2.5. (1) [Li2, Theorem 2.3.1(2)] The functor T' induces an

anti-equivalence of categories between Mod"¢ and Repgst(G K)-

/6

(2) [GLS, Proposition 5.9] and [Oz2, Theorem 19] The functor T' induces
an anti-equivalence of categories between Modq/"’g’Cris and Rep%’;ris(G K)-
rvéL,s

(3) [Ozl, Corollaries 2.8 and 5.34] The functor TL,s : Mod/GL
Repio:(GL,s) is exact and faithful. Furthermore, it is full if er <p — 1.

%

A~

2.4 (¢, G)-modules, Breuil modules and filtered (¢, N)-modules

We recall some relations between Breuil modules and (¢, @)—modules.
Here we give a rough sketch only. For more precise information, see [Brl,
Section 6], [Lil, Section 5] and the proof of [Li2, Theorem 2.3.1(2)].

Let 9 be a free (¢, C;’Lﬁ)—module over & 5. If we put D:= S5, Q6 ,
9, then D has a structure of a Breuil module over Sp,,  which corresponds
to the semistable representation Q, ®z, Ty, «() of Gp s (for the definition
and properties of Breuil modules, see [Brl]). Thus D is equipped with a
Frobenius ¢p(= PSpy,s @ ©on), a decreasing filtration (Fil'D);>q of SLo.s
submodules of D and a Lg-linear monodromy operator N : D — D which
satisfy certain properties (for example, Griffiths transversality).

Putting D =D/1, 51, sD, we can associate a filtered (¢, N)-module over
L(S) as following: $D = ¢p mod I S1,sD, Np:= Np mod 1.5, D and
Fil'Dy, , := fx,(Fil'(D)). Here, fr,:D— Dy, is the projection defined
by D —» D/Fil'Sy, ¢D =~ Dy, Proposition 6.2.1.1 of [Brl] implies that
there exists a unique @-compatible section s: D < D of D — D. By this

https://doi.org/10.1017/nmj.2016.68 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.68

180 Y. OZEKI

embedding, we regard D as a submodule of D. Then we have Np|p =
Np and Np=Ng,  ®Idp+1Idg, ,® Np under the identification D =
SLo,s ®L(s) D.

The G, s-action on Ry s ®p e, , M extends to B;is ®7€L,s (RLs®pep.,
M) ~ BT

cris @81, P- This action is in fact explicitly written as follows:

slawz) =Y glayi(-tos(2L)) o Np(o)
=0

[s]
(1) for g€ G s,a€ BL, ,x€D.

cris?

By this explicit formula, we can obtain an easy relation between Np
and 7P -action on 9 as follows: first we recall that t = —log(7([x])/[x]) =
—log(77" ([ms])/[ms]). By the formula, for any n > 0 and = € D, an induction
on n shows that we have
o
s m!
- @ =3 ( Y ) m®) ® NE () € B, sy, D

iy
m=n {14+-ip=m 1 n
ijZO

and in particular we see W(:ﬂ) — 0 p-adically as n — oo. Hence we can
define
= (" 1"

log(r"") () == 3 (~1)"!

n=1

n (x) € B(—;is ®SL0,S D.

It is not difficult to check the equation
(2) log(7P")(z) =t ® Np(x).

2.5 Base changes for Kisin modules

Let 91 be a free or torsion Kisin module of height < r over &, (resp. over
S). We put My s =61 s Vs, M (resp. 6 =6 ®e M) and equip My, s
(resp. M) with a Frobenius by ¢ =g, , ® pm (resp. ¢ = ps, @ Pm).
Then it is not difficult to check that M ¢ (resp. M) is a free or torsion
Kisin module of height <7 over &, ¢ (resp. over &) (here we recall that

Ey(us) = E(u2) = E(u)). Hence we obtained natural functors

Mod’;GL — MOd;GL,S and Mod?GLoo — Mod?emm

(resp. Mod)g — Mod)g, and Mod)s = — MOd?/"GL,oo)'
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By definition, we immediately see that we have Tg, (M) ~=Ts, (ML s)
(resp. Te(M)|g, =Ts,(M)). In particular, it follows from Proposi-
tion 2.1(1) that the following holds:

ProprosITION 2.6. The functor Mod;GL — Mod’/"GL . s fully faithful.

A~

2.6 Base changes for (p, G)-modules

Let 9 be a free or torsion (¢, G )-module (resp. (¢, G)-module) of height
< over &, (resp. over &). The G s action onAﬁL ®p,e, M (resp. the G
action on R ®,.¢ M) extends to Rps Dz, (R ®pe, M) ~RLs D6,
My s (resp. R ®% (ﬁ Ry, M) ~ RL ®p.e, Mr), which factors through
CAT’L’S (resp. @L) Then it is not difficult to check that 9y, s (resp. M) has a
structure of a (i, G,s)-module (resp. (¢, G'r,)-module). Hence we obtained
natural functors

. Gr,s ¢ Grs
Mod"SL — Mod " S™ and Mod” St s Mod"S™

/GL /GL,S /GL,OO /GL,S,OO
.G .G G G
(resp. Modq/"6 — Mod?GLL and Modjew — Mod;eim).

By definition, we immediately see that we have TL(gijL,s ~Tp.o(Mp.5)
(resp. T(9M)|@, ~T1(9My)). Similar to Proposition 2.6, we can prove the
following.

PROPOSITION 2.7. The functor Mod}"’gLL — Mod;’gLL’S is fully faithful.

The proposition immediately follows from the full faithfulness property
of Theorem 2.5(1) and the lemma below.

LEMMA 2.8. Let K' be a finite totally ramified extension of K. Then the
restriction functor from the category of semistable Q,-representations of G
into the category of semistable Qp-representations of G is fully faithful.

Proof. Let V and V' be semistable Qp-representations of Gk and let
f:V = V' be a Ggr-equivariant homomorphism. Considering the morphism
of filtered (p, N)-modules over K’ corresponding to f, we can check without
difficulty that f is in fact a morphism of filtered (¢, N)-modules over K.
This is because K’ is totally ramified over K as same as K. This gives the
desired result. [
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§3. Variants of free (¢, G)-modules

In this section, we define some variant notions of (¢, é)—modules. We
continue to use same notation as in the previous section. In particular, p is
odd.

3.1 Definitions
We start with some definitions which are our main concern in this and
the next section.

’I‘GLS

DEFINITION 3.1. We define the categoryAMod;’gLL’s (resp. Mod/GL ) as
follows. An object is a triple M = (IM, pon, G1,s) where

(1) (M, on) is a free Kisin module of height < over &p;

(2) GL s 1s an RL semilinear GL s-action on RL Ry, M (resp. an R, s
semilinear G, s-action on RL s ®p.&, M) which induces a continuous
G s-action on W (FrR) ®, e, M;

(3) the G s-action commutes with Pr, @ pm (resp. PR, © om);

(4) 9:7( C(RL®p&, )AL (resp. M C (RL s Dp.6L o) ey, R

(5) Gr,s acts on the W(kg)-module (RL Rpe, M) /11 L(RL Rype, M)
(resp. (Rr,s ®@p,e, M) /14 1, S(RL s Qp,e, M)) trivially.

Morphisms are defined by the obvious way. By replacing “free” of (1)

’I‘,GLY TGL s

with “torsion”, we define the category Mod /& “* (resp. Modg, ).

REMARK 3.2. The categor ModT’GL’S is very similar to the category
gory /61

Mod’, /& Lf from Definition 2.3, and so it may give the reader a little
confusion. The differences between these categories are as follows.

G s G s

MOd/GLLS Mo d/G

the base ring G S

coefficients of G, s-actions Rrs Ry,

For any object 9t of Mod/G “re or Mod/’ LL *, we define a Z,[G, s]-module
TL7S(9JI) by
Ty () = HomﬁL’chEL Ry, M, W(R)) %f m ?s free,.
HomﬁLM(RL ®pe;, M, Qp/Zy @z, W(R)) if I is torsion.
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Here, G5 acts on Tr.s(M) by (0.f)(z) =0 (f(oe" (x))) for 0 € Gps, f€
Tr. (M), zeRy ®¢ s, M. Similar to the above, for any object 9 of

— .G s s
Mod/GLL’ or Mod/GL we define a Z,[G,s]-module T}, ,(9) by

Ty (1) = HomﬁL,s,e@<RL’s R, M W(R)) if 9 is free,
bs Hompg (Rp.®pe, M, Qp/Zy @z, W(R)) if D is torsion.
On the other hand, we have natural functors Mod;g L Mo d;g "
Mod)S Mod/$** and
a e — r,Gp GL s
Mod;6 Lo Modj6 Los Modg, " — MOd;GLL,S,OO

and it is readily seen that these functors are compatible with TL and TL s In

particular, the functors 17 s on Mod;g 2 and Mod /6 * take their values in

T?GL,S
/GL,S

r,st

RepZ

Rep%St(GLS) by Theorem 2.5.
In the rest of this section, we study free cases. We leave studies for torsion
cases to the next section.

(GL,s) since we have an equivalence of categories 77, : Mod 5

Convention: For simplicity, if L = K, then we often omit the subscript “L”

GK.s ,G's
from various notations (e.g., Mod; Grcs o d; Mod;e e Mod;g )
Furthermore, if s = 0, we often omit the subscript “s” from various notations

.G G r,GL.o rGr
(e.g., ModZGL0 Mo d;GL Mod/G = Mod/G ).

3.2 The functors Modr’ — Mod'2* — Mod/G — Mod”;

/6 /é /6
Now we consider the functors Mod’, /’ — Mod;6 — Mod, /G C Mod;g
G

At first, by Proposition 2.6, we see that the functor Mod, /C * — Mod”; /6.

is fully faithful. It follows from this fact and Theorem 2.5(1) that the
- o 1éS . .

functor TS:Mod;G %Rep%St(Gs) is fully faithful. It is clear that the

functor Mod;’gg — Mod /GS is fully faithful and thus so is T} : Mod;g s

Rep%St(G ). Combining this with Theorem 2.5(1) and Lemma 2.8, we obtain

that the functor Mod;g — Mod;g is also fully faithful. Furthermore, we

prove the following.
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g - 7Gs . .
ProrosiTiON 3.3. The functor Mod;’gs — Mod;e is an equivalence of
categories.

Summary, we obtained the following commutative diagram.

Mod}$ & Mod/* —~ Nod), /G s ModS"

vl 7

restriction r,st

Rep%St (Gk) S RepZ

REMARK 3.4. The functor Mod ), /G * < Mod’, /6 ? may not be possibly
essentially surjective. In fact, under some condltlons there exists a rep-
resentation of G which is crystalline over K but not of finite height. For
more precise information, see [Li2, Example 4.2.3].

Before starting the proof of Proposition 3.3, we give an explicit formula

NT7GS
such as (1) for an object of Mod s . The argument below follows the
" — 7,Gs -
method of [Li2]. Let 9 be an object of Mod,s . Let M5 be the image

of 9 for the functor Mod/g — Mod/’ Put D= Sk, ®,,c M and also
put Dy = Sk,,s @p.6, Ms = Sko,s RSk, D. Then D, has a structure of a
Breuil module and also D =D /I+SKO sDs has a structure of a filtered
(¢, N)-module corresponding to Q, ®z, T (9M,) (see Section 2.4), which is
isomorphic to D/I1Sk,D as a p-module over Ky. By [Lil, Lemma 7.3.1],
we have a unique @-compatible section D <— D and we regard D as a
submodule of D C Dy by this section. Then we have D = Sk, ®k, D and
Ds = Sk,,s @K, D. By the explicit formula (1) for iﬁTS, we know that

G4(D) C (Ko[t] N Riq.s) @K, D-

(Note that R, s can be regarded as a subring of Ko[t, us] via [Lil, Lemma
7.1.2 ].) Hence, taking any Ky-basis ej,...,eq of D, there exist As(t) €
Mgya(Ko[t]) such that 727 (eq, . .., eq) = (e1, . . . , eq) As(t). Since A4(0) =1,
we see that log(As(t)) € Myxa(Kop[t]) is well defined. On the other hand,
choose gg € G such that x,(go) # 1, where x, is the p-adic cyclotomic
character. Since gom?" = (77°)Xr(90) gy we have A,(x,(go)t) = As(t)X»(90) and
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thus we also have log(As(xp(90)t)) = xp(g0)log(As(t)). Since log(As(0)) =
log(1;) =0, we can write log(As(t)) as tB(t) for some B(t) € Mgyq(Kolt]).

Then we have x,(90)tB(xp(90)t) = xp(90)tB(t), that is, B(x,(g0)t) = B(t).
Hence the assumption x,(go) # 1 implies that B(t) is a constant. Putting

Ny = B(t) € Myxq(Kp), we obtain

™ (e1, ..., eq)=(e1,..., e (ZNZ% )

Now we define Np:D — D by N(ey,...,eq)=(e1,...,eq)p *Ns and
also define Np := NSKO ® Idp + IdSKO ® Np. (Note that we have Nppp =
pepNp and thus Np is nilpotent.) It is a routine work to check the
following:

(3)

Zg (—log(] ()]))@N}‘J(x) forgeGs,aEB;IS, €D.
i=0

.

Since we have

(4) Z,’Y’L log ))NSKO (f)

for any g € Gk and f € Sk,, we obtain the following explicit formula:

(5)
e .
)= gla)vi(-log([e(9)])) ® Np(x) for g € Gs,a € Bl z €D,
=0

In particular, as in Section 2.4, we can show that

(6) log(r"") () = p°t ® Np()
for any = € D.

Proof of Proposition 3.3. We contlnue to use the above notatlon It
suffices to prove that the Gs-action on R Ry, M preserves R®¢,G .
Note that we have R Rp,6 M= (RK, @K, D) N (W(R) ®p,e M), Gs(M) C
R Rpe MCW(R) ®p,e M and G4(Rk,) C Rk,- Thus it is enough to
show G5(D) C Rk, ®k, D. This quickly follows from (3). In fact, we have

=3 ni(~log([=(9))) ® Nj(x) € Ry ®, D forz € D, g€ G [
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3.3 Relations with crystalline representations
We know that Q, ®z, Ts(ifﬁ) is semistable over K for any object M of

g T 7Gs ~
Mod;’gS or Mod;e . This subsection is devoted to prove a criterion, for 91,
that describes when Q, ®z, Ts(fﬁt) becomes crystalline.

Following [Fo2, Section 5] we set I™MBY :={ze Bl |o"(z)€

cris cris
Fil™ Bl for all n>0}. For any subring A C B!, , we put ImA=AnN

cris?
I[m]BCtis. Furthermore, we also put I"HA=71MmAT, A (here, ILA is
defined in Section 2.3). By [Fo2, Proposition 5.1.3] and the proof of [Li2,
Lemma 3.2.2], we know that II™/W (R) is a principal ideal which is generated
by @(t)™. )

Now we recall Theorem 2.5(2): if 9 is an object of Mod;’g:, then Q, ®z,
Ts(9M) is crystalline if and only if 77" (z) — z € WZ(INW (R) ®, e, M) for
any x € 9. However, if such 9t descends to a Kisin module over &, then
we can show the following.

~ A —— r,és
THEOREM 3.5. Let M be an object of Mod;’gs or Mod,s . Then the
following is equivalent:

(1) Q®gz, Ts(i)jt) is crystalline;
(2) 7 (z) —z € uwP(INW(R) ®,6 M) for any x € M;
(3) 7 (x) —z € IMW(R) ®,6 M for any x € M.

Proof. (1) = (2): The proof here mainly follows that of [GLS, Proposition

4.7]. We may suppose M is an object of l\fo/d;gg Put D= Sk, @, e M
and D =D/I;Sk,D as in the previous subsection. We fix a ¢(&)-basis
(é1,...,éq) of M C D and denote by (e1, ..., eq) the image of (é1,...,¢éy)
for the projection D — D. Then (eq, . . ., eq) is a Ko-basis of D. As described
before the proof of Proposition 3.3, we regard D as a (p-stable submodule
of D, and we have Np : D — D and Np : Dp — Dp.

Now we consider a matrix X € GLgxa(Sk,) such that (é,...,¢éq) =
(e1,...,eq)X. We define S = W (k)[u?, u? /p] as in [GLS, Section 4], which
is a sub W (k)-algebra of S% with the property Ng, (S) C uPS. By an casy
computation we have U = X"'BX + X_leKO (X). Here, B € Myxq(Ko)
and U € Myxq(Sk,) are defined by Np(ey,...,eq)=(e1,...,eq)B and
Np(é1,...,€éq) = (€1,...,€q)U. By the same proof as in the former half part
of the proof of [GLS, Proposition 4.7], we obtain X, X! € Mgy4(S[1/p]).
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A~ ~ o 7és
On the other hand, let M be the image of MM for the functor Mod;6 —

Modgfs. Now we recall that D;= Sk, @y e, Ms has a structure of
the Breuil module corresponding to Q, ®z, Ts(i)st) Denote by Np, its
monodromy operator. By the formula (2) for 9, and the formula (6) for
M, we see that p°*Np = Np, on D. Therefore, Q) ®z, T 5(951) is crystalline
if and only if Np, mod I, Sk, sD; is zero, which is equivalent to say that
Np = (Np mod I,Sk,D) is zero, that is, B = 0. Therefore, the latter half
part of the proof [GLS, Proposition 4.7] gives the assertion (2).

(2) = (3): This is clear.

(3) = (1): Suppose that (3) holds. We denote by 9, the image of 9
for the functor m;gs — Modgfs as above. We claim that, for any x €
M;, we have 77" (z) — 2 € IMW(R) ®@,, M. Let 1 =a @ y € M; = 65 Vg
M where a € S5 and y € M. Then

™ (2) =z =7 (p(a)) (77 (y) —y) + (77" (p(a)) — p(a))y

and thus it suffices to show 77" (¢(a)) — ¢(a) € IMW (R). This follows from
the lemma below and thus we obtained the claim. By the claim and [Oz2,
Theorem 21], we know that Q, ®z, T,(M,) ~Q, ®z, T,(9M) is crystalline.

i

LEMMA 3.6. (1) We have INW(R) Nu’BY, = u'TMNW(R) for ¢ > 0.
(2) We have g(a) — a € ul™ W (R) for g € G and a € &.

Proof. This is due to [GLS, the proof of Proposition 7] but we write a
proof here.

(1) Take z =u‘y € INW(R) with y € Bf, . By [Li4, Lemma 3.2.2] we
have y € W(R). Now we remark that uz € Fil"W (R) with z € W(R) implies
z € FilI"W(R) since u is a unit of BJ;. Hence u‘y € TMW(R) implies y €
MW (R).

(2) By the relation (4), we see that g(a) —a € IINW(R). On the other
hand, if ¢ >0, we can write NgKo (a) =ub; for some b; € S. Thus by the
relation (4) again we obtain g(a) —a € uBL.. Then the result follows
from (1). [
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§4. Variants of torsion (p, ()-modules

In this section, we mainly study full subcategories of m;g; defined
below and also study representations associated with them. As a conse-
quence, we prove theorems in Introduction. We use same notation as in
Sections 2 and 3. In particular, p is odd. In below, let vr be the valuation
of R normalized such that vg(xw) =1/e and, for any real number x > 0, we
denote by m  the ideal of R consisting of elements a with vg(a) > .

Let J be an ideal of W (R) which satisfies the following conditions:

o J ¢ pW(R);
e J is a principal ideal;
e J is p-stable and Gs-stable in W (R).

By the above first and second assumptions for J, the image of J under
the projection W(R) — R is of the form ml/%c" for some real number c; > 0.

7 87

DEFINITION 4.1. We denote by Mod/G the full subcategory of

. aéé‘ . . . . . . oy
MOd;(Soo consisting of objects M which satisfy the following condition:

' (2) —x € JW(R) ®pe M for any = € M.

Gst . . -
We  denote by Reptor (Gs) the essential image of the functor Tj:

Gs .G, J
Mod/Goo — Repyo, (Gs) restricted to Mod/G

By definition, we have relations

r,Gs,J rGs,J’' rGs,J /
Mod/G C Mod/G and Repyr  (Gs) CRepor  (Gs)

for J C J'.

4.1 Full faithfulness for Mod)s”

? 9’

For the beginning of a study of Mod /G
faithfulness result.

, we prove the following full

PROPOSITION 4.2. Let r and r' be nonnegative integers with cj >

7 S?

— 1/ ,Gs,J
pr/(p—1). Let M and N be objects of Mod/G and Mod g __, respec-
tively. Then we have Hom(9, M) = Hom(M, N). (Here, two “Hom”s are
defined by obvious manners.)
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7 67

In particular, if c; > pr/(p — 1), then the forgetful functor Mod/G —
Mod 1s fully faithful.

Proof A very similar proof of [Oz2, Lemma 7] proceeds, and hence

rGS,J
we only give a sketch here. Let M and N be objects of Mod /6. and

r'Gs,J

Mod s, respectively. Let f: 9t — 91 be a morphism of Kisin modules
over 6. Put f=W(R)® f: W(R) Rpe M — W(R) @, e M. Choose any
lift of 7€ G to Gg; we denote it also by 7. Since the Gs—action for M
is continuous, it suffices to prove that A(1 ® x) =0 for any x € 9 where
A:=7Po0 f — fo 7P°. We use induction on n such that p"9t = 0.

Suppose n=1. Since A= (7" —1)o f— fo (r?" —1), we obtain the
following;:

(0): Forany zeMM, A(l®zx)e mZC(O)(R Ry N)

where ¢(0) = ¢;. Since M is of height < r, we further obtain the following
for any ¢ > 1 inductively:

(1): ForanyzeM, A(l®z)e m?(i) (R®y,eMN)

where ¢(i) = pe(i — 1) —pr=(cj —pr/(p —1))p* + pr/(p — 1). The condi-
tion ¢ > pr/(p — 1) implies that ¢(i) — oo as i — oo and thus A(l ®x)=0.

Suppose n > 1. Consider the exact sequence 0 — Ker(p) — 0N Lpn—o
of ¢-modules over &. It is not difficult to check that 9 :=Ker(p) and
N := pN are torsion Kisin modules of height <1 over & (cf. [Lil, Lemma
2.3.1]). Moreover, we can check that 97 and 91” have natural structures

T lvGS . < > .
of objects of Modjgw (which are denoted by 9V and 0", respectively)

such that the sequence 0 — 9 — 912 N’ — 0 induces an exact sequence
0= —MN—-N"—0. By the lemma below, we know that 9" and N”

are in fact contained in Mod;é: . By the induction hypothesis, we see
that A(1 ® z) has values in (W(R) @, W) N (JW(R) @y, MN). By [0z2,
Lemma 6] and the assumption that J ¢ pW (R) is principal, we obtain that
A(l®z) € JW(R) ®,,6 . Since pMt' =0, an analogous argument in the
case n =1 proceeds and we have A(1 ® x) =0 as desired. [

LEMMA 4.3. Let 0—=9M =M —M' =0 be an exact sequence in

Mod/e Suppose that M is an object of Mod/’es’ Then O and M are

r,Gs,J
also objects of Mod/g
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A o 7ést .
Proof. The fact M" € Mod;gm is clear. Take any x € 9. Then we have
™ (2) — 2 € (JW(R) ®pe M) N (W(R) ®pe M). Since J is a principal
ideal which is not contained in pW (R), we obtain 7‘1”8( )—z e JW(R)®Qye

—— r,Gls,J
M’ by [0z2, Lemma 6]. This implies M’ € Mod /G - 0

r,Gs,J
4.2 The category Reptor (Gs)

r,Gs,J
In this subsection, we study some categorical properties of Reptor (Gs).

Let 9t be an object of Mod ), /6 . Following [Li2, Section 3.2] (note that
arguments in [Li2] is the “free case”), we construct a map i which connects

M and T,(9M) as follows. Observe that there exists a natural isomorphism
of Z,[Gs]-modules

T, () ~ Homyy gy »(W(R) ®p.e M, Qy/Zy, @z, W(R))

where G5 acts on Homyy(g) ,(W(R) ®pe M, Qp/Zy @z, W(R)) by
(o.f)(z) =o(f(c7(x))) for o € Gy,

VRS HomW(R),cp(W(R) X6 om, QP/ZP ®Zp W(R))a

7 EW(R) ®pe M=W(R) @5 (RsDpeM).
Thus we can define a morphism
il :W(R) Ry, M — Homy, ( ( ), Qp/Zy @7, W(R))

by

x> (fe f(2), z€W(R)®us M, feTy(M).
Since T (9) ~ @Ze] p/p”'Z as Zpy-modules, we have a natural
isomorphism Homzp( (M), Qp/Zp @z, W(R)) ~W(R) @z, TV (9M) where

S
Y (M) = Homg, (Ts(9M), Qp/Zy) is the dual representation of Ty (). Com-
posing this isomorphism with 7}, we obtain the desired map

is : W(R) ®p 6 M — W(R) @z, T (M).

It follows from a direct calculation that 75 is (-equivariant andA G-
~ A o 7Gs
equivariant. If we denote by 9ts the image of 1 for the functor Mod;gm —

Mod;gS (cf. Section 3.1), then the above i, is isomorphic to “ for 90,
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in [Oz1, Section 4.1]”. Hence [Oz1, Lemma 4.2(4)] implies that
W(Fr R) @ is: W(Fr R) ®w (r) (W(R) ®p,e M)
— W(Fr R) @w(r) (W(R) @z, T/ ()
is bijective.
PROPOSITION 4.4. Let (R):0 =T —T —T" —> 0 be an eract sequence

in Repyo, (Gs). Assume that there exists MM € Mod), /6 7 such that Ty(9M) ~
T'. Then there exists an exact sequence (M):0— M — M — M =0 in

such that Ts((M)) ~ (R).

7 S7

MOd/G

Proof. The same proof as [Oz1, Theorem 4.5, except using not ¢ in the
proof of [Oz1, Theorem 4.5] but i, as above, gives an exact sequence (M) :

0— M =M — M -0 in Mod g such that T5((M)) ~ (R). Therefore,
Lemma 4.3, gives the desired result. [

r,Gs,J .
COROLLARY 4.5. The full subcategory Reptor (Gs) of Repio,(Gs) s

stable under subquotients.

Let L be as in Section 2, that is, the completion of an unramified algebraic
extension of K with residue field k1. We prove the following base change
lemma.

LEMMA 4.6. Assume that J D upI[l]W(R) or L is a finite unramified

rGs,J

extension of K. If T is an object of Reptor (Gs), then T|q, , is an object

TGst

Of Reptor (GL S) .

AS G S
By an obvious way, we define a functor Mod/G —>M0d/bL The

underlying Kisin module of the image of M € Mod /6:0 for this functor is
M, =61 ®s M. Lemma 4.6 immediately follows from the lemma below.

LEMMA 4.7. Assume that J D upI[l]W(R) or L is a finite unramified

— 1,Gs — nGLs .
extension of K. Then the functor Mod;eoo — Mod;GLL’m induces a functor
— 1r,Gs,J — r,GL s
MOd/G —)MOd/bL
G A
Proof. Let M be an obJect of Modjg and let M be the image

GrL.s .
of M for the functor Mod/g —>Mod;6LL . In the rest of this proof,
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to avoid confusions, we denote the image of x € My in W(R) ®, e, My,
by 1® x. Recall that we abuse notations by writing 7 for the preim-
age of 7€ Ggypo under the bijection Gppo ~ Ggpe of Lemma 2.2
Then 77" is a topological generator of G spe- It suffices to show the

G,

~ — T J s
following: if M is an object of Mod s, then we have 77 (1®xz) — (1®

™ - 7é57J
z) € JW(R) @&, My, for any x € M. Now we suppose M € Mod;goo :

Take any a € &1 and z € 9. Note that we have 7" (1 ® az) — (1 ® ax) =
™ (p(@)(T" (1@ ) — 1@ 2)) + (77 (p(a) — ¢(a)) (1 @ 2) n W(R) @pe,

o — r,Gs,J s s
M. Since M is an object of Mod s, we have 77 (¢(a)) (P (1 @ x) —

(1®z)) € JIW(R) ®ye, M. Therefore, it is enough to show (77" (¢(a)) —
pla))1®z) e JW(R) ®pe, Mr. This follows from Lemma 3.6 imme-
diately in the case where J D uPl [”W(R). Next we consider the case
where L is a finite unramified extension of K. Let ¢1,...,c, € W(kr) be
generators of W(kr) as a W(k)-module. Then we have &, :Z§:1 c;6

and thus we can write a22§:1 ajc; for some a; € &. Hence it suf-
fices to show (77" (p(a;)) — ¢(a;))(1 ® z) € IW(R) ®, &, M, but this in
fact immediately follows from the equation (77" (¢(a;)) — ¢(a;))(1 ® x) =

(T (1 ®aj2) — (1® aja)) — (77 (p(a;)) (7 (1@ 2) — (1® 2))). il

REMARK 4.8. For a general L, the author does not know whether the
statement of the above lemma is true or not.

— .G,
4.3 Full faithfulness theorem for Rep,,, J(Gs)

Our goal in this subsection is to prove the following full faithfulness
theorem, which plays an important role in our proofs of main theorems.

THEOREM 4.9. Assume that J D> uPTMW(R) or k is algebraically

closed. If p*t2/(p—1)>=cy>pr/(p—1), then the restriction functor
NT,GS,J

Repio,  (Gs) = Repio, (Goo) s fully faithful.

First we give a very rough sketch of the theory of maximal models for
Kisin modules (cf. [CL1]). For any Mt € Mod/_, put M[1/u] = 6[1/u] ®s
9 and denote by FE(9M[1/u]) the (partially) ordered set (by inclusion) of
torsion Kisin modules DN of height <7 which are contained in 9[1/u] and
N[1/u] = M[1/u] as p-modules. The set FE(IM[1/u]) has a greatest element
(cf. [CL1, Corollary 3.2.6]). We denote this element by Max"(91). We say
that 9 is mazximal of height <r (or, mazimal for simplicity) if it is the
greatest element of FE(9M[1/u]). The association M +— Max" () defines
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a functor “Max”” from the category MOd?Gx of torsion Kisin modules
of height <r into the category MaX?Goo of maximal Kisin modules of
height <r. The category Max)g is abelian (cf. [CL1, Theorem 3.3.8]).
Furthermore, the functor T : Max)g  — Repyo,(Goo), defined by T (M) =
Homg (M, Qp/Zy @z, W(R)), is exact and fully faithful (cf. [CL1, Corol-
lary 3.3.10]). It is not difficult to check that T (Max"(9t)) is canonically
isomorphic to T (9N) as representations of G, for any torsion Kisin module
M of height < r

DEFINITION 4.10. [CL1, Section 3.6.1] Let d be a positive integer. Let
n = (n;)iez/az be a sequence of nonnegative integers of smallest period d.
We define a torsion Kisin module 9t(n) as below:

e as a k[u]-module, M(n) = DB,cy/47 klules;
o for all i € Z/dZ, p(e;) = u™ejtq.

We denote by Sj,. the set of sequences n = (n;);cz/q4z of integers 0 <
n; < min{er, p — 1} with smallest period d for some integer d except the
constant sequence with value p — 1 (if necessary). By definition, we see that
M(n) is of height <r for any n € 8], .. Putting ro = max{r’ € Z¢; e(r’ —
1) <p— 1}, we also see that M(n) is of height < ro for any n€ S} .. It is
known that 9(n) is maximal for any n € S}, [CL1, Proposition 3.6.7]. If

k is algebraically closed, then 9(n) is simple in Ma}(?GoO for any n e S .«
(cf. [CL1, Propositions 3.6.7 and 3.6.12]) and furthermore, the converse
holds; any simple object in Max}"eoo is of the form 2 (n) for some n € S},

max
(cf. [CL1, Propositions 3.6.8 and 3.6.12]).

LEMMA 4.11. Assume that p*™2/(p — 1) = c;. Let d be a positive integer.

Letn = (n;)icz/az be a sequence of nonnegative integers of smallest period d.

— 7 Gg,J
IfM(n) is of height < r, then M(n) has a structure of an object ofMod/G

Proof. Choose any (p? — 1)th root € R of £. Since [n] - exp(t/(p? —
1)) is a (p? — 1)th root of unity, it is of the form [a] for some a € F;d
Replacing na ~1 with 7, we obtain [] = exp(—t/(p? — 1)) € R*. Put x; =
(7)™ € R* and &; = 5™ € (R/pR)* C R* for any i€ c Z/dZ, where m; =
Z;-l:é n,ﬂpd J. We see that x; — 1 is contained in I+R In the rest of this

proof, to avoid confusions, we denote the image of x € M(n) in 7§3 Ryp.&
M(n) C R Dy g M(n) by 1 ®x. Now we define a G,-action on Ry ®, e
M(n) by 77" (1®¢;) :=z¥ "(1®e;) for the basis {eitiezjaz of M(n) as in

https://doi.org/10.1017/nmj.2016.68 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.68

194 Y. OZEKI

Definition 4.10. We claim that g = g on R, Ry, M(n) for any g € Gj.
For this, it suffices to check that the equality 77 (1 ® €;) = 77 (1 ® ¢;)
holds for any 7. Note that we have

P o(1®e) =77 (P (1@ ei1)) = 201 1 (€7 u)P™ (1 © eip1)

and
] S s+1 X
e’ (1@e) =@} 1®e))=7; v (1@ eip1).
Hence it is enough to check 2 al ::Lfil[g]psﬂni but we can show this

equality without difficulty. In fact, we have equivalences

s+1 S s+1,,. t
v =aigl e eXP(—ps“mi A1 1)
t
= eXp<*Psmi+1]ﬁ - psﬂmt) < pm;
=mis1 + (P = p)n

and the last equality can be checked immediately by definition of m;.
By the claim above, we see that 9t(n) has a structure of an object of

— 1,Gs . . A . . W
Mod;ew via this Gs-action; we denote it by M(n). It suffices to prove that

M(n) is in fact an object of B?[&i;g;J Recall that vg is the valuation of R
normalized such that vg(r) = 1/e. Define t = t mod pW (R) an element of R.
We denote by v, the usual p-adic valuation normalized by v,(p) = 1. Note
that we have vr(e — 1) =p/(p — 1) and vg(t) =1/(p — 1) (here, the latter
equation follows from the relation ¢(t) =pE(0)~'E(u)t). Moreover, we
have vg(e™ — 1) = vr(n™ — 1) = p*»(™+1/(p — 1) for any m € Z, by [GLS,
Lemma 6.6(1)]. Thus we have

s+vp(m;)+1 s+2

or(El 1) = vp(P™ ~ 1) ="

>
p—1 p—1

Since p**t2/(p — 1) > ¢; and the image of J in R is m?“’, we obtain

™1®e)—(1®e)e m?"R @ k] M(n) = JW(R) @, e M(n).
Finally we have to show that 77" (1® ae;) — (1 ® ae;) € m?“’R R kfu]

2)3?(:1) for any a€k[u]. Since ™ (1 ® ae;) — (1 @ ae;) = 77" (p(a))
(TP (1®e) — (1®e)) + (TP (0(a)) — p(a))(1 ®e;), it suffices to show
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zcg

" (¢(a)) — ¢(a) € my,
we have 77" (p(a)) — ¢(a) = D st a;(e”""'" — 1)uP'. Since we have

. Write @(a) =Y, auP" for some a; € k. Then

ps+1,i s+2

vR((g

— Dby = pHlug(el — 1) + op(uf?) > L

p_1>CJ

for any 7 > 1, we have done. [
Recall that ro = max{r’ € Z=g; e(r’ — 1) <p —1}. Put 1 := min{r, 7o }.
COROLLARY 4.12.  Assume that p*™2/(p—1) >cy. If ne€ Sh,,, then

T /7G57J
M(n) has a structure of an object ofMod; _ foranyr' >ry. Furthermore,

if cg>pri/(p—1), it is uniquely determined. We denote this object by

M(n).
Proof. We should remark that 9t(n) is of height < r; for any n € S) ..
The uniqueness assertion follows from Proposition 4.2. [

Before the lemma below, we remark that any semisimple [F-
representation of G is automatically tame.

LEMMA 4.13. (1) The restriction functor from the category of tamely
ramified torsion Zp-representations of G to the category of torsion Z,-
representations of Geo s fully faithful.

(2) The restriction functor in (1) induces an equivalence between the
category of semisimple (resp. irreducible) Fp,-representations of Gk and the
category of semisimple (resp. irreducible) Fp-representations of G .

Proof. (1) The result immediately follows from the fact that Gk is
topologically generated by G, and the wild inertia subgroup of G .

(2) It suffices to show the assertion for irreducible representations.
Denote by RepIiFr;(GK) and Rep%;(Goo) the category of irreducible F)-
representations of G and G, respectively. First we show that the

irr

restriction of the action of G to G induces a functor Repr (Gg) —
Repg;(Goo). Let T be an irreducible F,-representation of Gg. Take a
Goo-stable submodule 7" of T. Let K' be the maximal tamely ramified
extension of K and I, = Gal(K/K") the wild inertia subgroup of G.
Then I, acts on T trivially. In particular, 7" is stable under I,-action.
Since G is topologically generated by Go and I,, we know that 7" is
a G-stable submodule of T. Hence T =0 or T and this implies that

T|q., is irreducible. Thus the restriction functor Rep]iﬁ;(G K)— RepE(GOO)
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is well defined. This is fully faithful by (1). It is enough to show that this
functor is essentially surjective. Let T" be an irreducible F,-representation
of Go. Since G N1, acts on T trivially, the G-action on T factors
through Goo/Goo N I,. We define a Gi-action on T' via natural maps Gx —
Gal(K'/K) ~ Gal(Ko K"/ Koo) =~ Goo/Goo N I. The restriction of this G-
action on T to G coincides with the original G -action on T" and thus we
finish a proof. 0

LEMMA 4.14.  Assume that J D wPIMW(R) or k is algebraically closed.

Let T € Repyo, (Gs) and T' € ﬁ&)zﬁs7‘](Gs). Suppose that T is tame, pT' =0
and T|g, ~Ts(IM) for some M e Mod)g . Furthermore, we suppose
pt2/(p—1)=cy>pr/(p—1). Then all Guo-equivariant homomorphisms
T — T are Gg-equivariant.

Proof. Let L be the completion of the maximal unramified extension
K™ of K. By identifying G, with Ggur, we may regard G as a subgroup
of G . Note that L) = K4 L is the completion of the maximal unramified
extension of K(), and Gy is topologically generated by G s and Goo.
Consider the following commutative diagram:

Homg, (T, Te——> Homg, (T, T

J J

Homg, (T, T") ——— Homg (T, T").

erGL,S7J

Since T'|g,, is contained in Repy, (Grs) if JouPIMW(R)
(cf. Lemma 4.6), the above diagram allows us to reduce a proof to the
case where k is algebraically closed. In the rest of this proof, we assume
that k is algebraically closed. Under this assumption, an [Fj)-representation
of Gy is tame if and only if it is semisimple by Maschke’s theorem. Thus
we may also assume that T is irreducible (here, we remark that any
subquotient of T is tame and, also remark that the essential image of
Ts : Mod)g  — Repyo,(Goo) is stable under subquotients in Repy, (Goo))-
By the assumption on 7', we have T|g, ~Tg(IM)~Ts(Max"(9M)) for
some 9 € Mod)g_ . Since T'|q,, is irreducible (cf. By Lemma 4.13(2)) and
Ts : Max)s  — Repy(Goo) s exact and fully faithful, we know that
Max"(90) is a simple object in the abelian category Max;Gw. Therefore,
since k is algebraically closed, we have Max" (90t) >~ 9t(n) for some n € S},

max
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(cf. [CLl Propositions 3.6.8 and 3.6.12]). Let 9i(n) be the object of

7 -57

Od/e

as in Corollary 4.12. We recall that Tg(9%(n)) is isomorphic to
Ty (M (n ))|G (see Theorem 2.5(1)), and hence we have an isomorphism
T|g.. ~ Ts(M(n))|c., . Here, we note that T and T,(9M(n)) are irreducible
as representations of G (cf. [CL1, Theorem 3.6.11]). Applying Lemma 4.13
again, we obtain an isomorphism T ~ T,(90(n)) as representations of Gj.
On the other hand, we can take 9 = (M, ¢, G,) € M&i;g:j such that

T' ~ Ty (). We consider the following commutative diagram:

Homg, (T, T") ¢ Homg  (T,T")

TST T@T

~ ~ forgetful <"
Hom(9V, M(n) > Home, OV, M) — Home,(Max"(9V'), M(n))

Here, Hom(fﬁl’ M(n)) is the set of morphisms N’ — M(n) in the category

Mod /G The first arrow in the bottom line is bijective by Proposition 4.2
and so is the second (this follows from the fact that 9t(n) is maximal
by [CL1, Proposition 3.6.7]). Since the right vertical arrow is bijective, the
top horizontal arrow must be bijective. 0

Now we are ready to prove Theorem 4.9.

7,Gs,J
Proof of Theorem 4.9. At first, we note that the category Reptor (Gy)

is an exact category in the sense of Qulllen [Qu, Section 2] by Corollary 4.5.

r,Gs,J . .
Hence short exact sequences in Reptor " (Gs) give rise to exact sequences of

Hom’s and Ext!’s in the usual way. (This property holds for any exact cat-

T, Sv‘] .
egory.) Let T and T” be ObJeCtS of Reptor (Gs). Take any Jordan—-Holder

sequence 0 =Ty CTy C--- CT, =T of T in Rep,(Gs). By Corollary 4.5
rGg,J
(Gs)

again, we know that 7} and T; ;1 :=T;/T;—; are contained in Rep,,,

for any i. By Lemma 4.14, if an exact sequence 0 » 17" =V — T; ;-1 — 0 in

Gs,J . . . .
Rep:Or (Gs) splits as representations of G, then it splits as a sequence

of representations of GG5. This shows that the fourth column in the diagram
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below is injective:

0 = Homg, (T},i—1,T") = Homg,(T;, T') = Homg, (Ti—1,T') — Ext'(T;i—1,T")

| | | |

0 > Homg,, (Ti,i-1,T") > Home, (T3, T") > Homeg, (Ti—1,T") > Extg, (Tii-1, T")

Here, the extension Extl(Ti,i,l, T') in the above diagram is taken in the

category ﬁ&):ﬁs’J(Gs). In addition, it follows from Lemma 4.14 that the
first column is an isomorphism. Therefore, we obtain an implication that, if
the third column is an isomorphism, then the second one is an isomorphism.
Hence a dévissage argument works and the desired full faithfulness follows.

i

4.4 Proof of Theorem 1.2

Now we are ready to prove our main theorems. First we prove The-
orem 1.2. Recall that a torsion Zy,-representation 7" of Gk is torsion
crystalline with Hodge-Tate weights in [0, 7] if it can be written as the
quotient of lattices in some crystalline Q,-representation of G'x with Hodge—
Tate weights in [0, 7]. Let Repl"®™(Gx) be the category of them. We apply
our arguments given in previous subsections with the following J:

J =uPTMW(R) = uPo() W (R).

Then we have c; =p/e + p/(p — 1) and thus the inequalities p**2/(p — 1) >
cyg>pr/(p—1) are satisfied if e(r — 1) < p — 1. Therefore, Theorem 1.2 is
an easy consequence of the following proposition and Theorem 4.9.

r,Cris
tor

PROPOSITION 4.15. The category Repy).  (Gk) is a subcategory of the

—,Gs,J
category Rep:Or (Gs) when s=0.
Proof. In this proof, we put s =0. So we omit subscript s in various
A A T 7GS T 7G .
notations (e.g., Gs =G, Mod;ew:ModZGOO). Let T be an object of
Rep, ™ (Gk) and let L C L' be lattices in a crystalline Q,-representation

tor
with Hodge—Tate weights in [0, 7] such that L'/L ~T. By Theorem 2.5(1),
there exists an injection £ < £ of (¢, G)-modules over & which corresponds
to the injection L < L'. Now we put 9 = £/¢£. Since L'/L is killed by a

power of p, 91 is an object of Mod?Gw. We equip a G-action with R Ry, M
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by a natural isomorphism R Ry, M~ (R Rp,6 2)/(R Rp,e £'). Then we

T 7G . \
see that 91 has a structure of an object of Modjgoo; denote it by 1.
~ — G, J
Moreover, Theorem 3.5 implies that 9 is in fact contained in Mod;gm . By
a similar argument to the proof of [CL2, Lemma 3.1.4], we have an exact
sequence 0 — T'(£) = T(£") — T(M) — 0 of representations of G which is

isomorphic to 0 =+ L — L' — T — 0. This finishes a proof. [

4.5 Proof of Theorem 1.3
We give a proof of Theorem 1.3. If s > n — 1, then we put

s—n+1

J =PIV (R) = ()7 W(R).
Note that we have c;y=p/e+p*""?/(p—1) and thus the inequalities
p*t2/(p—1)>cy>pr/(p — 1) are satisfied if

s>n—1+log,(r—(p—1)/e).

PROPOSITION 4.16. Suppose s >n — 1. If T is an object of Rep| <™ (G)

tor
—r,Gs,J
which is killed by p"™, then T|q, is contained in Rep:Or (Gs).

Proof. Let L be an object of Repggris(GK). Take a (¢, G)-module £ over
S such that L ~T'(£). It is known that (7 — 1)i(z) € w?IHW (R) Ry, L for
any ¢ > 1 and any = € £ (cf. the latter half part of the proof of [GLS, Propo-
sition 4.7]). Take any z € £. Since (77" —1)(z) =>_0_, (p:)(T —1)¥(z), we
obtain that

S

pS
—1)(z) e > prOurTIW(R) 0,6 L.
=1

(7) ("

Now let T" be an object of Repr’criS(G k) which is killed by p™. Take an exact

tor

sequence (R):0— Ly — Ly =T — 0 of Zj-representations of G with
Ly, Ly e Repggns(GK). By [CL2, Theorem 3.1.3 and Lemma 3.1.4], there

exists an exact sequence (M):0— £o— £, =M — 0 of (¢, G)-modules
over & such that T'((M)) ~ (R). By (7), we see that

pS
(" = D(z) € Y p* POl TIW (R) @, 6 M
i=1
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for any x € 91. Since M is killed by p™ and s > n — 1, we have

S

p
Zpsfvp(i)upl[i]W(R) Do M = Z pS*’Up(i)upI[’L']W(R) Rpe M

i—1 i=1,....p°
s—vp(i)<n

n—1
= Z peupI[pS_E]W(R) Ry, M
=0

c wP 1P TIW(R) ®,6 M.

Therefore, we obtained the desired result. 0

Proof of Theorem 1.3. By Theorem 1.2, we may suppose logp(r —(p—
1)/e) = 0, that is, e(r — 1) > p — 1. Suppose s >n — 1 +log,(r — (p — 1)/e).
Note that the condition s >n — 1 is now satisfied. Let T and 7’ be as
in the statement of Theorem 1.3. Let f:T — T’ be a Gs-equivariant
homomorphism. Denote by L the completion of K" and identify G with
the inertia subgroup of Gg. We note that T'|g, and T'|g, are objects
of Rep’™(G1). By Proposition 4.16, Tlg,, and T'|g,, are objects of

tor
/\/nGLJJ

Repyo, (GL,s). Hence we have that f is G, s-equivariant by Theorem 4.9.
Since G is topologically generated by G, s and G, we see that f is G-
equivariant. 0

4.6 Galois equivariance for torsion semistable representations
In this subsection, we prove a Galois equivariance theorem for torsion
semistable representations. A torsion Z,-representation 1" of Gk is torsion
semistable with Hodge—Tate weights in [0,7] if it can be written as the
quotient of lattices in some semistable Q)-representation of G’ with Hodge—-
Tate weights in [0,7]. We denote by Rep ™ (Gk) the category of them.

tor

Note that Repi=*(Gx) = RepY™(Gk). Similar to Theorem 1.3, we show

tor tor
the following, which is the main result of this subsection.
THEOREM 4.17. Suppose that s >n — 1 +log,r. Let T" and T’ be objects
of RepT’St(GK) which are killed by p". Then any G« -equivariant homomor-

tor
phism T — T is Gs-equivariant.

If s>n — 1, then we put

s—n-+1

J=1P""W(R) = o) T W(R).
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Then we have c; = p*~"2/(p — 1). To show Theorem 4.17, we use similar
arguments to those in the proof of Theorem 1.3.

PROPOSITION 4.18. Suppose s >n — 1. If T is an object of Rep|> (G )
—7 GS,J
which is killed by p™, then T|gq, is contained in Repy,,  (Gs).

Proof. Let L be a lattice in a semistable Qp)-representation of G g with
Hodge—Tate weights in [0, r]. Take a (¢, G)-module £ over & such that
L~T(£). It is known that (7 — 1)(z) € I/W(R) ®,¢ £ for any i > 1 and
any = € £ (cf. the proof of [Li3, Proposition 2.4.1]). Thus the same proof
proceeds as that of Proposition 4.16. 0

Proof of Theorem, 4.17. We have Repy™ (G ) = Repi®™ (G k) and thus
Theorem 1.3 for r = 0 is an easy consequence of Theorem 1.2. Hence we may

assume 1 > 1. The rest of a proof is similar to the proof of Theorem 1.3. []

4.7 Some consequences

In this subsection, we generalize some results proved in [Br3, Section 3.4].
First of all, we show the following elementary lemma, which should be well
known to experts, but we include a proof here for the sake of completeness.

LEMMA 4.19. The full subcategories Rep:gis(GK) and RepZOS;(GK)
of Repio;(GK) are stable under formation of subquotients, direct sums
and the association T — TV (r). Here TV =Homg, (T, Q,/Z,) is the dual

representation of T.

Proof. We prove the statement only for the category Repl’™™(G k). Let

tor

T € Repy, lms(G k) be killed by p™ for some n > 0. Assertions for quotients

tor .
and direct sums are clear. We prove that TV (r) is contained in Repgi: = (G k).

tor
There exist lattices L1 C Lz in some crystalline Qp)-representation of G g
and an exact sequence 0 — L; — Ly — T — 0 of Z,[Gx]-modules. This
exact sequence induces an exact sequence 0 — T — L1 /p™L1 — Lo /p" Lo —
T — 0 of finite Z,|G g]-modules. By duality, we obtain an exact sequence
0—TY = (Lo/p"L2)Y — (L1/p"L1)" — TV — 0 of finite Z,[Gk]-modules.
Then we obtain a Gk-equivariant surjection Ly — TV by the composite
LY — LY /p"LY = (L1 /p"L1)" —»TV of natural maps (here, for any free
Zy-representation L of G, LY :=Homg, (L,Zy,) stands for the dual of
L). Therefore, we obtain le(r) — TV (r) and thus TV(r) € Rep| <™ (G k).
Finally, we prove the stability assertion for subobjects. Let 7" be a G i-stable
submodule of T'. We have a Gk-equivariant surjection f: LY — TV — (T")V.
Let L5 be a free Zy-representation of G such that its dual is the kernel
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of f. We have an exact sequence 0 — (L)Y — LY ER (T")Y — 0 of Z,[Gk]-
modules. Repeating the construction of the surjection LY — TV, we obtain
a G g-equivariant surjection L) = (L5)VV — (T')VV =T’ and thus we have

T’ € Repp™™(G). il

tor

In the case where r =1, the assertion (1) of the following corollary was
shown in [Br3, Theorem 3.4.3].

COROLLARY 4.20. Let T be an object of Rep:(’)crris(GK) which is killed by
p" for some n > 0. Let T' be a Guo-stable subquotient of T

(1) Ife(r — 1) <p—1, then T' is G -stable (with respect to T).

(2) If s>n —1+log,(r — (p—1)/e), then T" is Gs-stable (with respect

toT).

Proof. By the duality assertion of Lemma 4.19, it is enough to show the
case where T is a G -stable submodule of T'. Take any sequence T" =T C
T, C---CT, =T of torsion Gu-stable submodules of T such that T;/7T;_1
is irreducible for any i. As explained in the proof of Proposition 4.14, the
Goo-action on T;/T;—; can be (uniquely) extended to Gx. By Theorem 5.3
given in the next section, we know that T;/7T;_1 is an object of Rep:g;criS(G K)
where 79 := max{r’ € Zp;e(r' — 1) <p —1}.

(1) We may suppose r =rg. The G-equivariant projection T = T, —
Tn/Tm-1 is Gg-equivariant by the full faithfulness theorem (= Theo-
rem 1.2). Thus we know that T},,_1 is Gx-stable in 7', and also know that

r,Ccris
tor

for the G-equivariant projection Ty,—1 — Typ—1/Tm—2, we know that T,,,—o

is Gi-stable in T, and also know that T},_o is contained in Rep:(’;ris (Gk).

Repeating this argument, we have that 77 =Ty is Gk-stable in T'.
(2) Put J =wPIP" " IW(R). By (1) we may assume e(r — 1) >p — 1.
Under this assumption we have 7 > rg and s >n — 1 +log,(r — (p—1)/e) >

n —1. In particular, T|g, and (7;/Ti—1)|c,, for any i, are contained in

——1,Gs,J oL . .
Rep:Or (Gs) by Proposition 4.16. First we consider the case where k

is algebraically closed. By Theorem 4.9, the Go.-equivariant projection

T =T, — Tp/Tn-1is Gs-stable. Thus we know that T,,,_1 is Gs-stable in T,

——— 7GS7J
and also know that 7},,_1 is contained in Rep:Or (Gs) by Corollary 4.5. By

T.n—1 is contained in Rep (Gk) by Lemma 4.19. By the same argument

the same argument for the G-equivariant projection Ty,—1 — Tpy—1/Tm—2,

we know that T;,_o is Gs-stable in T, and also know that T},,_o is contained

—— 7G37J . . .
in Rep:()r (Gs). Repeating this argument, we have that T’ = Ty is Gs-stable
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in T'. Next we consider the case where k is not necessary algebraically closed.
Let L be the completion of the maximal unramified extension K" of K, and
we identify G, with the inertia subgroup of Gk . Clearly T'|¢, is contained
in Rep"®®(G) and T is Gp__-stable submodule of T. We have already

shown that 7" is G s-stable in T'. Since G, is topologically generated by
Gr.s and G, we conclude that 7" is Gg-stable in T'. N

Now let V' be a Qp-representation of G and T" a Z,-lattice of V which is
stable under G,. Then we know that T is automatically G-stable for some
5 > 0. Indeed we can check this as follows. Take any G k-stable Z,-lattice
T’ of V which contains T, and take an integer n > 0 with the property that
p"T" C T. Furthermore, we take a finite extension K’ of K such that G g
acts trivially on T"/p™T’. Then T /p"T" is Go-stable and also G/-stable
in 7" /p™T". If we take any integer s > 0 with the property K' N Ko, C K,
we know that T'/p"T" is Gs-stable. This implies that T is Gs-stable in T".

The following corollary, which was shown in [Br3, Corollary 3.4.4] in the
case where r = 1, is related with the above property.

COROLLARY 4.21. Let V be a crystalline Qp-representation of G with
Hodge—Tate weights in [0,7] and T a Zy-submodule of V' which is stable
under Goo. If e(r —1) <p —1, then T is stable under G .

Proof. We follow the method of the proof of [Br3, Corollary 3.4.4]. First
we suppose that 7" is finitely generated over Z,. Take any Gi-stable Z,-
lattice T" of V which contains T. Since T"/p™T" is contained in Rep} "™ (G )
for any n > 0, Corollary 4.20(1) implies that any G.o-stable submodule of
T'/p™T" is in fact G-stable. Thus (T + p"T")/p"T" is Gi-stable in T /p"T".
Therefore, we obtain g(T) C (s (T + p"T") =T for any g € G. Next we
consider general case; so T' is not necessary finitely generated over Z,. We
may suppose 1' # 0. Denote by T, the smallest Z,-submodule of 7" which
contains x and is stable under G Since T}, is contained in some (G i-stable)
Zy-lattice of V, we see that T}, is finitely generated over Z,, and hence it is
stable under G . Then the relation T'=J . T, gives the desired result.

i

zeT

§5. Crystalline lifts and c-weights

We continue to use the same notation except for that we may allow p = 2.
We remark that a torsion Z,-representation of G'i is torsion crystalline with
Hodge—Tate weights in [0, r| if there exists a lattice L in some crystalline
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Qp-representation of G with Hodge Tate weights in [0,7] and a G-
equivariant surjection f: L — T. We call f a crystalline lift (of T) of weight
< r. Our interest in this section is to determine the minimum integer r (if
it exists) such that 7" admits crystalline lifts of weight <r. We call this
minimum integer the c-weight of T and denote it by w.(T). If T does not
have crystalline lifts of weight < r for any integer r, then we define the c-
weight w.(T") of T to be co. For the existence of crystalline lifts of various
torsion representations, for example, it is useful for the readers to refer the
Muller’s PhD Thesis [Mu]. Motivated by [CL2, Question 5.5], we pose the
following question.

QUESTION 5.1. For a torsion Zjy-representation 1" of G, is the c-weight
we(T') of T finite? Furthermore, can we calculate w.(7")?

This question strongly related to the weight part of Serre’s conjecture. It
is dated to Serre, when raised Serre’s conjecture over Q, he had already
considered the question to lift a 2-dimensional mod p representation of
Gq, to a 2-dimensional crystalline representation with “optimal” weights
(which is very close to minimum weights considered here). He obtained some
partial results that contained in Proposition 5.6 and Corollary 5.7. We do
not go into details here but the recent developments of the weight part
of Serre’s conjecture (e.g., [GLS]) also contribute (explicitly or implicitly)
partial results in this section.

5.1 General properties of c-weights

We study general properties of c-weights. At first, by ramification
estimates, it is known that c-weights may have infinitely large values [CL2,
Theorem 5.4]; for any ¢ > 0, there exists a torsion Z,-extension T of G
with w.(T') > ¢. In this paper, we mainly consider representations with
“small” c-weights. If c-weights are “small”, they are closely related with
tame inertia weights. Now we recall the definition of tame inertia weights.
Let Ix be the inertia subgroup of Gk . Let T be a d-dimensional irreducible
Fp-representation of Ix. Then T is isomorphic to

de(ﬁg’ll e 0%)

for one sequence of integers between 0 and p — 1, periodic of period d.
Here, 041, ...,044 are the fundamental characters of level d. The integers
ni/e,...,nq/e are called the tame inertia weights of T. For any IF,-
representation T' of G, the tame inertia weights of T are the tame inertia
weights of the Jordan-Hoélder quotients of 1|y, .
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Let x; : Gk — Z, be the p-adic cyclotomic character and Y, : Gk — F)
the mod p cyclotomic character. It is well known that Xp|r, =6{ where
01 : I — F is the fundamental character of level 1. In particular, denoting
by K" the maximal unramified extension of K, we have K" (u,) : K| =

(p—1)/ged(e,p—1).

PROPOSITION 5.2. (1) Minimum c-weights are invariant under finite
unramified extensions of the base field K.

(2) The c-weight of an unramified torsion Z,-representation of G is 0.

(3) Putv=(p—1)/ged(e,p—1). Let s be an integer such that v(s — 1) <
we(T) < vs. Then we have v(s — 1) < w(T") < wvs. In particular, if (p — 1) |
e, then we have we(T) = we(TV).

(4) Let T be an F,-representation of Gk and i the largest tame inertia
weight of T. Then we have w.(T') > 1.

Proof. (1) Let T be a torsion Z,-representation of Gk. Let K’ be a finite
unramified extension of K. It suffices to prove that T has crystalline lifts
of weight <r if and only if T'|g,, has crystalline lifts of weight <r. The

“only if” assertion is clear and thus it is enough to prove the “if” assertion.
Let f:L—T|g,, be a crystalline lift of T'|g,, of weight <r. Since K'/K
is unramified, Ind; Gr ,L is a lattice in some crystalline Q,-representation of
G i with Hodge— Tate weights in [0, 7]. Furthermore, the map

G L =2,[Gr] ©z,(6,) L+ T, 0@ 0(f(x)

is a G g-equivariant surjection and hence we have done.

(2) The result follows from (1) immediately.

(3) Taking a finite unramified extension K’ of K with the property
(K" (pp) : K] = [K'(up) : K'], it follows from Lemma 4.19 that we have
v(s — 1) <we(T|g; ) < vs if and only if we have v(s — 1) <we((T")|e, ) <
vs. Thus the result follows from the assertion (1).

(4) If ew.(T) > p — 1, then there is nothing to prove, and thus we may
suppose that ew.(T) <p— 1. Let L — T be a crystalline lift of T" of weight
< we(T). Since the tame inertia polygon of L lies on the Hodge polygon of
L [CS, Théoreme 1], the largest slope of the former polygon is less than or
equal to that of the latter polygon. This implies w.(T") > 1. 0

THEOREM 5.3. LetT be a tamely ramified Fy,-representation of G . Let
i be the largest tame inertia weight of T. Then we have w.(T) = min{h €

Z;o; h > Z}
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Proof. The proof below is essentially due to Caruso and Liu [CL2,
Theorem 5.7], but we give a proof here for the sake of completeness.
Put ip = min{h € Z=o; h > i}. By Proposition 5.2(4), we have w.(T") = io.
Thus it suffices to show w.(T") <ip. We note that T, is semisimple.
Any irreducible component Tp of T'|r, is of the form Fja(0y - - - 0;%) for
one sequence of integers between 0 and p — 1, periodic of period d. We
decompose n; = em; + n; by integers 0 < m; <ip and 0 < n; < e. Now we
define an integer k;, by

e if 1<l<my,
k?jyg = n; iffzm]'—i-l,
0 ifl>m;+1.

Note that we have n; = 220:1 kj¢, and also have an Ix-equivariant surjec-
tion

T~ & de(efj}f---efjfg)k X de(efj}i‘---efjfj).

=1,..,i0,F g £=1,....i0,Fp
By a classical result of Raynaud, each F (HkM e de‘e) comes from a
y Y ) p*\Yqd 1 d,d

finite flat group scheme defined over K". We should remark that such a
finite flat group scheme is in fact defined over a finite unramified extension of
K. Since any finite flat group scheme can be embedded in a p-divisible group,
the above observation implies the following: there exist a finite unramified
extension K’ over K, a lattice L in some crystalline Q,-representation of
Gr with Hodge-Tate weights in [0, i9] and an Ix-equivariant surjection
f:L—T. The map f induces an Ix-equivariant surjection f : L/pL —T.
Since L/pL and T is finite, we see that f is in fact Ggr-equivariant for
some finite unramified extension K” over K’, and then so is f. Therefore,
we obtain w.(T'|q,.,, ) < io. By Proposition 5.2(1), we obtain w.(T) <io. []

5.2 Rank 2 cases
We give some computations of c-weights related with torsion represen-

tations of rank 2. We prove the following lemma by an almost identical
method with [GLS, Lemma 9.4].

LEMMA 5.4. Let K be a finite extension of Q,. Let E be a finite
extension of Q, with residue field F. Let ¢ and v be integers such that v is
divisible by [K () : K. Suppose that T is an F-representation of G i which
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sits in an ezact sequence (x):0—TF(i) T —F — 0 of F-representations
of Gik. Then there exist a ramified degree at most 2 extension E' over E,
with integer ring Ogr, and an unramified continuous character x : G —
F* with trivial reduction such that (%) is the reduction of some exact
sequence 0 — OE/(XXZZ',J“”) —A—Op —0 of free Opr-representations of
Gx. Furthermore, we have the followings:

() Ifi+v=1 orx i £1, then we can take E' = E and x = 1.

(2) If i + v =0 and T is unramified, then we can take E' = E, x =1 and
A to be unramified.

Proof. Suppose i +v =1 (resp. )Z}D*i #1). Then the map HY (K, Og(i +
v)) — H'Y(K,F(i)) arising from the exact sequence 0 — Og(i + v) = Og(i +
v) — F(i) — 0 is surjective since H?(K, Og(1)) ~ Og (resp. H*(K, Op(i +
v)) =0), where w is a uniformizer of E. Hence we obtained a proof of (1)
The assertion (2) follows immediately from the fact that the natural map
HY Gk /Ik,Op) — H (G /I, F) is surjective.

In the rest of this proof, we always assume that i + v # 1 and Xl i=1.
Let L € H'(K,F(i)) be a 1-cocycle corresponding to (x). We may suppose
L #0. For any unramified continuous character x : Gxg — F* with trivial
reduction, we denote by

dy - HY(K,F(i) — H*(K, Op(xx,™))
(resp. 52 cHY(K,E/Og(x~ 1X117 =)) —» HY(K,F))
the connection map arising from the exact sequence
0= O0p(xxpt) = 0p(xx,t") = F(i) = 0
(resp. 0 > F — E/Op(x~ 1x117 2 E/Op(x 1X]1) =) 5 0)

of Op|GK]-modules. Consider the following commutative diagram:

H' (K, F(i)) X HY (K, TF) E/Opg

(gl agT

H*(K,Op(xxpt")) x  HYK,E/Op(x"'x;~"™))

E/Op

Since we know that the above two pairings are perfect, we see that L
lifts to H'(Gk, Op(xx5t")) if and only if H is contained in the image of
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62. Here, H C H' (K, F) is the annihilator of L under the local Tate pairing
HYK,F(i)) x HY(K,F) = E/Og. Let n > 1 be the largest integer with the
property that Xflx}fi*” =1 mod w" (such n exists since )’(}ji =land1—
i — v #0). We define «, : Gg — O by the relation X_l)(})_i_” =1+ w"ay,
and denote (o, mod w):Gg —F by ay. By definition, &, is a nonzero
element of H'(K,F), and it is not difficult to check that the image of 5?( is
generated by &, . If @, is contained in H for some x, we are done. Suppose
this is not the case.

Suppose that H is not contained in the unramified line in H'(K, F). We
claim that we can choose x such that &, is ramified. Let m be the largest
integer with the property that (Xﬁllefl;””[,{ =1 mod w". Clearly, we
have m > n. If m =n, then we are done and thus we may assume m > n.
Fix a lift g € Gk of the Frobenius of K. We see that a,(g) #0. Let X’
be the unramified character sending ¢ to 1+ w"a,(g). Then x’ has trivial
reduction. After replacing x with )/, we reduce the case where m =n
and thus the claim follows. Suppose &, is ramified. Then there exists a
unique z € F* such that &, + uz € H where uz : Gg — F is the unramified
character sending g to Z. Denote by x” the unramified character sending g
to 1+ @™y (g). Replacing x with xx”, we have done.

Suppose that H is contained in the unramified line in H'(K,F) (thus
H and the unramified line coincide with each other). By replacing E with
E(y/w), we may assume that n > 1. Let xo be a character defined by x
times the unramified character sending our fixed g to 1 4+ w. Since n > 1, we

see that Xalleji*” =1 mod w and Xalxllfi*" # 1 mod w?. We define ay, :
Gk — Op by the relation Xalle,_i_” =1+ wa,,, and denote (o, mod w) :

Gk — F by a,,. By definition and the assumption n > 1, &,, is a nonzero
unramified element of H!(K,F), hence it is contained in H. Therefore, we
have done. []

LEMMA 5.5. Let K be a finite extension of Qp, n=>2 an integer and
X : Gk — E* an unramified character. Then any E-representation of G
which is an extension of E by E(XX;L) 1s crystalline.

Proof. This is well known; for example, see the argument of [BK,
Section 3]. il

PROPOSITION 5.6. Supposep > 2. Let K be a finite unramified extension
of Qp. Let T € Repy,,(GK) be killed by p and sit in an exvact sequence
0—=F,(i) =T —F, =0 of Fy-representations of Gx. Then we have the
followings:
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(1) If i =0 and T is unramified, then we have w.(T) = 0.
(2) If i =0 and T is not unramified, then we have w.(T) =p — 1.
(3) Ifi=2,...,p—2, then we have w.(T) =1.

Proof. (1) By Lemma 5.4(2), we know that 7" has unramified (and thus
crystalline) lift, which implies w.(T") = 0.

(2) By Lemmas 5.4 and 5.5, it suffices to prove that T is not torsion
crystalline with Hodge—Tate weights in [0,p — 2] if T is not unramified.
Let K7 be the definition field of the representation T of G and put G =
Gal(K7/K). Let G7 be the upper numbering jth ramification subgroup of
G (in the sense of [Se]). Since T is not unramified and killed by p, we see
that Kr is a totally ramified degree p extension over K. Thus G' is the wild
inertia subgroup of G and G' = G, which does not act on 7 trivial by the
definition of GG. Thus we obtain the desired result by ramification estimates
of [Fol] (or [Abl]) for torsion crystalline representations with Hodge—Tate
weights in [0, p — 2]: if T' is torsion crystalline with Hodge-Tate weights in
[0, p — 2], then G7 acts on T trivial for any j > (p —2)/(p — 1).

(3) The result follows immediately from Proposition 5.2(4), Lemmas 5.4
and 5.5. 0

COROLLARY 5.7. Let K be a finite unramified extension of Q,. Then any
2-dimensional F,-representation of Gk is torsion crystalline with Hodge—
Tate weights in [0, 2p — 2].

Proof. If T is irreducible, the result follows from Theorem 5.3. Assume
that T is reducible. Since K is unramified over Q,, any continuous
character G — F) is of the form xﬁ; for some unramified character y
and some integer ¢. Replacing K with its finite unramified extension, we
may assume that 7" sits in an exact sequence 0 — F,(i) =T — Fp(j) =0
of F)-representations of G, where ¢ and j are integers in the range
[0,p—2] (we remark that w.(T") is invariant under unramified exten-
sions of K by Proposition 5.2(1)). It follows from Lemmas 5.4 and 5.5
that we(T(—7)) < p. Therefore, we obtain w.(T) = w.(T(—j) ®r, Fy(j)) <
welT(~)) + welFy(7)) <p+ (p— 2) =2p — 2. 0

REMARK 5.8. The author does not know whether 2p — 2 in the state-
ment of Corollary 5.7 is optimal or not.
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5.3 Extensions of [, by F,(1) and nonfullness theorems

By Lemma 5.4, we know that the c-weight w.(T") of an [F,-representation
T of Gk which sits in an exact sequence 0 — F,(1) =T — F, — 0 of [F,-
representations of G, is less than or equal to p. Let us calculate w.(T") for
such T more precisely. We should remark that such T is written as p-torsion
points of a Tate curve. Hence we consider torsion representations coming
from Tate curves.

Let v be the valuation of K normalized such that vi (K*) = Z, and take
any ¢ € K* with vg (q) > 0. Let E, be the Tate curve over K associated with
q and E,[p"] the module of p"-torsion points of E, for any integer n > 0. It
is well known that there exists an exact sequence

(#) 0= ppn = E4[p"| = Z/p"Z — 0

of Z,|Gkl)-modules. Here, pyn is the group of p"th roots of unity in K.
Let z,:Gg — pupn be the 1-cocycle defined to be the image of 1 for
the connection map HO(K,Z/p"Z) — H' (K, jun) arising from the exact
sequence (#). Then x,, corresponds to ¢ mod (K*)P" via the isomorphism
KX /(KX ~ HY(K, py») of Kummer theory. Thus the exact sequence (#)
splits if and only if ¢ € (K *)P".

First we consider the case p | vk (q) (i-e., peu ramifié case).

LEMMA 5.9. Let K be a finite extension of Qp. If p| vk (q), then E4p]
is the reduction modulo p of a lattice in some 2-dimensional crystalline Q,-
representation with Hodge—Tate weights in [0, 1].

Proof. Since p | vk (q), there exists ¢ € K* such that vg (¢’ — 1) >0 and
¢=¢ mod (K*)P. Consider the exact sequence 0 — Zp(1) = L —Z, —0
of Z,-representations of G corresponding to ¢’ via the isomorphism
HY (K, Z,(1)) ~ l'ganX J(K*)P" of Kummer theory. By the condition ¢ = ¢/
mod (K *)P, the reduction modulo p of L is Ey[p]. Thus it suffices to
show that V' :=Q, ®z, L is crystalline. Take a system (q;,)n>0 of p-power
roots of ¢’ in O such that ¢) =¢ and (¢, ,)? = ¢, for any n>0. We
also take a system (e},)n>0 of p-power roots of unity in Oz such that
ep=1, €} #1 and (¢}, ) = ¢, for any n > 0. We define a map c¢: Gx — Z,
by g(qn) = (€,)%9q, for any n>0. Then we can choose a basis e, f of
V such that g(e) = x,(g)e and g(f) =c(g)e +f for any g€ Gg. Put ¢ =
(¢}, mod p)p>0 € R, &' = (¢}, mod p),>0 € R and t’ = — log[e/] € Auis. By the
condition vg (¢’ — 1) >0, we see ([¢'] — 1) € Fil'W(R) + pW (R) and thus
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log[¢'] converges in B, . With these notations, we see that the W (k)[1/p]-
vector space (Beris ®q, V)GK is of dimension 2 with basis e; :=t le and

es :=loglq'] - t~le 4 f. Therefore, V is crystalline. 0

COROLLARY 5.10. Suppose that K is a finite extension of Qp, (p — 1) 1e
and p | vi(q). Then we have w.(E,[p]) = 1.

Proof. By the assumption (p —1){e, we know that the largest tame
inertia weight of E,[p] is positive. Thus Proposition 5.2(4) shows w.(Eq[p]) >
1. The inequality w.(Eq[p]) < 1 follows from Lemma 5.9. [

Next we consider the case pfuvg(q) (i.e., trés ramifié case).

PROPOSITION 5.11. Ife(r—1) <p—1 and ptvk(q), then E4[p™] is not
torsion crystalline with Hodge—Tate weights in [0, r] for any n > 0.

REMARK 5.12. If e =1, the fact that E;[p"] is not torsion crystalline
with Hodge-Tate weights in [0, p — 1] immediately follows from the theory
of ramification bound as below. We may suppose n = 1. Suppose E[p] is
torsion crystalline with Hodge—Tate weights in [0, p — 1]. Then the upper
numbering jth ramification subgroup G]['( of Gk (in the sense of [Se]) acts
trivially on Ex[p] for any j > 1 [Abl, Section 6, Theorem 3.1]. However, this
contradicts the fact that the upper bound of the ramification of E[p] is
1+1/(p—1).

Proof of Proposition 5.11. We may suppose n=1. We choose any
uniformizer 7’ of K. Putting vk (q) =m, we can write ¢ = (7')™z with
some unit = of the integer ring of K. Since m is prime to p, we have a
decomposition x = (y™ in K* for some £ > 0 prime to p and y € K with
v (y — 1) > 0. Here (y is a (not necessary primitive) ¢th root of unity. Since
¢ is prime to p, we have {; = (}” for some integer s. We put = = 7’y. This is a
uniformizer of K. Choose any pth root 71 of 7 and put ¢ = (jn" € K(m)*.
Then we have ¢ = ¢} € (K (m1)*)? and in particular, the exact sequence (#)
(for n=1) splits as representations of Gal(K/K(71)). Now assume that
E,[p] is torsion crystalline with Hodge-Tate weights in [0, r]. Then (#) (for
n = 1) splits as representations of G by Theorem 1.2. This contradicts the
assumption p{vg(q) (and hence g ¢ (K*)P). [

Now we put r(, =min{r € Zxg; e(r —1) > p — 1}. Recall that we have
(K™ (pp) - K] = (p — 1) /ged(e, p — 1).

LEMMA 5.13. Let K be a finite extension of Q,. Then Eg4[p] is torsion
crystalline with Hodge—Tate weights in [0,1 4 (p —1)/ged(e, p — 1)].
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Proof. Taking a finite unramified extension K’ of K such that [K" (up) :
K] = [K' (1) : K], we obtain we((Eyfp])le,,) <1+ (p—1)/ged(e,p— 1)
by Lemma 5.4. Thus we have w.(Ey[p]) <1+ (p—1)/ged(e,p—1) by
Proposition 5.2(1). [

COROLLARY 5.14. Suppose that K is a finite extension of Q,, and also
supposee| (p—1) or (p — 1) | e. We further suppose that ptvi(q). Then we
have we(Eq[p]) = 1.

Proof. We have w¢(Eq4[p]) < r{, by Lemma 5.13. In addition, we also have
we(Ey[p]) = r{, by Proposition 5.11. [

Lemma 5.13 gives some nonfullness results on torsion crystalline repre-
sentations.

COROLLARY 5.15.  Suppose that K is a finite extension of Qp. If
r>1+(p—1)/ged(e,p— 1), then the restriction functor Repis  (Gk) —
Rep;o, (G1) is not full.

Proof. We consider two representations Er[p] and F,(1) ¢ Fp, which
are objects of Repf,.(Gx) by Lemma 5.13. They are not isomorphic as
representations of G but isomorphic as representations of Gi. Thus the
desired nonfullness follows. [

COROLLARY 5.16. Suppose that any one of the following holds:

e p=2 and K is a finite extension of Qa (in this case r{ =2);
e K is a finite unramified extension of Q, (in this case rj=p);
e K is a finite extension of Qp(up) (in this case rjy=2).

Then the restriction functor Repp™™(Gg) — Repyo, (G1) is not full.
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