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Abstract

In inductive inference, a strong prediction is the lesmgre effect: Less information can lead to more accuracy.
For the task of inferring which one of two objects has a higlaue on a numerical criterion, there exist necessary and
sufficient conditions under which the effect is predictestaming that recognition memory is perfect. Based on a simpl
model of imperfect recognition memory, | derive a more gahehnaracterization of the less-is-more effect, which show
the important role of the probabilities of hits and falseris for predicting the effect. From this characterizatiibn,
follows that the less-is-more effect can be predicted ef/kaliristics (enabled when little information is availgitteve
relatively low accuracy; this result contradicts currexpilanations of the effect. A new effect, the below-chanss-is-
more effect, is also predicted. Even though the less-israffect is predicted to occur frequently, its average ntagei
is predicted to be small, as has been found empirically.lFjifahow that current empirical tests of less-is-morteef
predictions have methodological problems and propose anmetivod. | conclude by examining the assumptions of the
imperfect-recognition-memory model used here and of attedels in the literature, and by speculating about future
research.

Keywords: less-is-more effect, recognition heuristicognition memory.

1 A strong prediction: The less-is- This violation is particularly interesting because it s
us to sometimes throw away information. This invita-
more effect tion flies in the face of epistemic responsibility, a maxim

In psychology’s quest for general laws, thaffort- cherished by philosophers and practitioners of science

accuracy tradeoff (Garrett, 1922; Hick, 1952) is a top (BiShop, 2000). ~Some violations of the information-
candidate: The claim is that a person cannot put less @ecuracy tradeoff, where information refers to recogni-

fort in a task and increase accuracy. Because it is Wideﬂpn'_ have been predicted and_ observed in tasks of induc-
accepted, the tradeoff provides an opportunity for theor&'/ve inference, an_d are collectively referred to asltdss-
development. If a theory implies that the e1’“fort-accurac§ﬁ'more effect (Gigerenzer, Todd, & the ABC research

tradeoff can be violated, this is a strong prediction. BWrouP: 1999).

strong prediction of a theory I mean a prediction that does €€, | make two kinds of contributions to the study

not follow from most competing theories (see Trafimo of the less-is-more effect: to the theoretical predictions

2003). A strong prediction provides for informative tests©f the effect, and to the empirical tests of the predictions.

Itis unlikely that the data will confirm the prediction, but SPecifically, in the next section, | define the inference task
and the less-is-more effect, and present Goldstein and

if they do, support for the theory will increase greatly.” , . ;
For example, Busemeyer (1993) provided support for g&2igerenzer’s (2002) characterization of the less-is-more

cision field theory by showing that it is consistent with®fféct for the case of perfect memory. In Section 3, for
violations of the speed-accuracy tradeoff. imperfect memory, | derive a more general characteriza-

The speed-accuracy tradeoff is one instantiation dion of the conditions under which the less-is-more effect
is predicted. The predictions are illustrated numerically

the effort-accuracy tradeoff in which the effort a per-~, 4 .
son puts into performing a task is measured by the timuith parameter estimates from the recognition memory

she uses. Effort can also be measured by the amodkgrature. Furthermore, | discuss implications for theo-

of other resources that are expended, such as infornf&tical explanations of the effect. A new type of less-is-

tion or computation. In this paper, | consider viola-more effect i_s al§o pred?cted. I.n.the nexts_ection, I_discuss
tions of the tradeoff between information and accuracynethodologicalissues in empirically testing less-is-enor
effect predictions, and present a method for doing so by
*1 would like to thank Jason Dana, Rob Nosofsky, Mike Smith-ysing data from recognition experiments. In Section 5, |
son, Thorsten Pachur, Tim Pleskac, and Ruediger Pohl fpfuielom- conclude by examining the assumptions of the imperfect-

ments, and Christian Weber for programming the simulatidaislress: . .
Max Planck Institute for Human Development, Lentzeallee B#95 Memory model used here and of other models in the lit-

Berlin. Email: katsikop@mpib-berlin.mpg.de. erature, and by speculating about future research.
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2 A characterization of the less-is- of objects out of the same set (e.g., American cities), or

. (ii) the same agent who recognizes different amounts of
more effect: Perfect memory objects in two different sets (e.g., American and German
. . cities).
2.1 The inference task and the less-is-more Pachur (in press) reviewed a number of studies and
effect concluded that there is some evidence for the less-is-more

| first define the inference task: There exist N objects thae[ﬁeCt in some experiments, but not in others. | agree

are ranked, without ties, according to a numerical cri‘—Nith this conclusion: Goldstein and Gigerenzer (2002)

terion. For example, the objects may be cities and th%ad about a dozen American and German students infer
cterion may be populton. A i of objects i ran 1" 97 6 S Diego r S Antoni = e pop
doml led and the task is to inf hich object h ’ :

omly samped and the tasx 1S 1o infer which object ha 1.0 vs. .67). They also found that 52 American stu-

the higher criterion value. When recognition memory i ¢ I te (71)] Kina 100 |
perfect, a person’s information is modeled by the numb ents were equally accurate (71)in making 10U popuia-
lon comparisons of German, or American cities. Reimer

of objects she recognizes, where0 < n < N. The .
perscin’s accuracy isgthe probability of a correct im‘erenc%nOI Katsikopoulos (2004) had three-member groups of
and it is a function of her informatior}r(n). | next de- erman stu_d_ents perf?rm 105 pqpul?tlon comphansons of
fine the less-is-more effect. American cities. Outo seven pairs of groups, the groups
who recognized fewer cities were more accurate in five
cases, by .04 on the average. Pohl (2006) had 60 Ger-
Definition 1. When recognition memory is perfect, theman students compare the populations of 11 German, 11
less-is-more effect occurs if and only if there exist Italian, and 11 Belgian cities. The students recognized
andng such thaty; < ng andPr(ny) > Pr(ns). more German than Italian cities and more Italian than
Belgian cities, and their accuracies had the same order:
The less-is-more effect may at first appear to be/8 for German, .76 for Italian, and .75 for Belgian cities.
impossible: Of course, whatever processing can be doR&chur and Biele (2007) asked laypeople and soccer ex-
with less information (recognizing, objects), could perts to forecast the winners of matches in the 2004 Eu-
also be done when adding information (recognizing theopean national-teams soccer tournament. In 16 matches,
samen, objects and an extra, — n; objects); so, how experts were more accurate than laypeople (.77 vs. .65).
can less information lead to more accuracy? The catckhe correlation between the accuracy of 79 laypeople and
is that different amounts of information may lead tothe number of teams they recognized was positive (.34).
different processing. For example, when the population | believe that all of these tests of less-is-more-effect
of two cities is compared, recognizing the name opredictions have methodological problems and | will
one of the two cities enables thiecognition heuristic  make this point and suggest a new method in Section 4.
(Goldstein & Gigerenzer, 2002):

“If one object is recognized and the other object i£-2 The perfect-memory model

”QL t_he recogTized object is inferred to have the high%oldstein and Gigerenzer (2002) derived an equation for
criterion value. Pr(n) based on a model of how a person makes infer-

N o ences, which | now describe. The first assumption of the
The recognition heuristic cannot be used when bot er fect-memory model is the following:

objects are recognized so that some other inference rule
has to be used, such as a linear rule with unit weights
(Dawes & Corrigan, 1974). The processing done witfAssumption 1. The person recognizes all objects she
less information may be more accurate than the procedsas experienced, and does not recognize any object she
ing done with more information. For example, the recoghas not experienced.
nition heuristic uses one cue (recognition) and there are
conditions under which using one cue is more accurate It is easy to criticize this assumption as it is known
than summing many cues (Hogarth & Karelaia, 2005that recognition memory is not perfect (Shepard, 1967).
Katsikopoulos & Martignon, 2006; this point has alsoPleskac (2007) and Smithson (2010) proposed models of
been made specifically for the recognition cue by Davismperfect recognition memory, and | will discuss them
Stober, Dana, & Budescu, 2010). together with a new model, in Section 3.

To test empirically the occurrence of the less-is-more The following three assumptions specify the inference
effect, one can compare the accuracy of (i) two agentsiles used for the different amounts of recognition infor-
(individuals or groups) who recognize different amountsnation that may be available:
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Assumption 2. If the person does not recognize any ofExample 1. Take N = 100. If « = .8 andg = .6,

the objects in the pair, she uses guessing to infer whichen Pr(50) = .68 and Pr(100) = .6, and a less-is-

object has the higher criterion value. more effect is predicted. I = .8 and = .8, then
Pr(50) = .73 and Pr(100) = .8, and more generally

Pr(ny) < Pr(ng)forallny < ns, and the effect is not
Assumption 3. If the person recognizes one object, sheyredicted.

uses the recognition heuristic.
It is straightforward to study Equation (2) and derive

) ) ) the following characterization of the less-is-more effect
Assumption 4. If the person recognizes both objects,Gol|dstein & Gigerenzer, 2002, p. 79):

she uses an inference rule other than guessing or the
recognition heuristic-this family of rules is labeled a

SResult 1. For the perfect-memory model, the less-is-
knowledge.

more effect is predicted if and onlydf > 3.2

Based on Assumptions (2)—(4), if the person reC0%emark 1. More specifically, it holds that it > g

nizesn of the N objects, she uses guessing, recognitiog1ere existsy+ such thatPr(n) > Pr(N): There is a

heuristic, and knowledge with the following reSpeCtIveperson with an intermediate amount of information who

probabilities: is more accurate than the person with all information.
And, if « < 8, thenPr(N) > Pr(n) foralln < N,
meaning that the person with all information makes the
g(n) = (N-n)(N-n-1)/NN-1) most accurate inferences.
r(n) = 2n(N —n)/N(N -1)
k(n) = n(n—-1)/N(N-1) 1)

3 A characterization of the less-is-

The last assumption of the perfect-memory model is  more effect: Imperfect memory

the following:
The inference task is the same with that of Section 2:

There existN objects that are ranked, without ties, ac-
Assumption 5. The accuracy of the recognition cordingto a numerical criterion; for example, the objects

heuristico, and the accuracy of knowledged, are may be cities and the criterion may be population. A pair
constant across (anda, 3 > %), of objects is randomly sampled and the person has to infer

which object has the higher criterion value. The person’s

Smithson (2010) pointed out that Assumption 5 couldnformation is modeled by the number of objects she has
be potentially violated, and constructed plausible exanfXperienced, n., where0 < n. < N. The person’s ac-
ples where this is the cadePachur and Biele (2007) re- curacy is the probability of a correct inference and it is
ported that the correlation betwearandn was .19 and @ function of her informationPr(n.). We have the fol-
the correlation betweefi andn was .22. Across ten ex- lowing definition of the less-is-more effect.
periments, Pachur (in press) reported that the average of
the absolute value of the correlation betwesandn was Definition 2. When recognition memory is imper-
.27 and the average of the absolute value of the correltect, the less-is-more effect occurs if and only if
tion between3 andn was .18. In Section 4, | will argue there existn.; andn.. such thatn.; < n. and
that the estimates af and 3 used in these studies are Pr(n¢,1) > Pr(nez2).
incorrect, and the reported correlations should be inter-
preted with caution. | next propose a simple model of how people make in-

From Assumption 5 and Equation (1), it follows thatferences when recognition memory is imperfect.
the accuracy of a person who recognize®bjects is

given as follows: 3.1 Animperfect-memory model

Pr(n) = g(n)(%) +r(n)a + k(n)8 ) In this m(_)(?lel, an expenenced pbject th(_’;\t is recognlz_ed is
called ahit; an experienced object that is not recognized

1There are more criticisms of the perfect-memory model. Ker e 2This result also holds for groups that decide by the simplirita
ample, Dougherty, Franco-Watkins, and Thomas (2008) haygested rule if the members (i) have the samea , and3 , and (ii) recognize
that the notion of familiarity should be incorporated in thedel and objects and make inferences independently of each othem@Rek
that recognition is not an all-or-none variable. Katsikopoulos, 2004, p. 1126).
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is called amiss; a non-experienced object that is recoginference because she recognizes only object 1. Because

nized is called dalse alarm; and, a nhon-experienced ob-in this case the recognition and experience cues have the

ject that is not recognized is calledtarrect rejection. A same value on both objects, it is as if the agent used the

main assumption of my imperfect-memory model is th@xperience heuristic, and her accuracy equyals

following: Similarly, Pleskac (2007, p. 384-385) showed that ac-
curacy equals — Ain (iv),  in (iii), and zA+ (1—2)(3)

Assumption 6. Each experienced object has probabilin (i) (= is the probability that an experienced object has

ity 1 of being a hit, and each non-experienced object ha least one positive value on a cue other than experience).
probability f of being a false alarm. Similarly, when the agent has experienced both objects, it
can be shown that accuracy equaisf both objects are
Assumption 1 of the perfect-memory model can bdits and% otherwise. When none of the two objects is
obtained from Assumption 6 by settifig= 1 andf = 0.  €xperienced, it can be shown that accuracy always equals
The differences between the other assumptions of tr}p
imperfect- and perfect-memory models are due to the Pleskac interpretetd as the proportion of experienced
fact that the role played by the recognition cue whe®bjects that are recognized arfdas the proportion of
memory is perfect is played by the experience cue whekpn-experienced objects that are recognized, and did not
memory is imperfect. A person with imperfect memoryderive a simple equation fdPr(n.). Whenh and f are
cannot use the experience cue (they have access onlyiféerpreted as probabilities, it is straightforward to do s
the recognition cue), but let us still define tagerience  according to the logic above, as follows:

heuristic:
Pr(ne) =r(ne)[h(1 — f)A+hf(zA+ (1 —2)(3)+
“If one object is experienced and the other object is (1=h)(1—=f)E)+Q=h)f(1-A)+
not, the experienced object is inferred to have the higher k(ne)[h2B + (1 — h2)(3)] + g(ne)(2)
e 2 e/\2/"

criterion value.”
Rewriting this, we get the main equation of the
The experience heuristic is a convenient device for angnperfect-memory model:
lyzing the less-is-more effect. The following is assumed:
Pr(ne) = g(ne)(3) + r(ne)ae + k(ne)Be,  (3)
Assumption 7. The accuracy of the experience heuris-
tic, A, and the accuracy of knowledge when both object¢hereac = (b — f + hf2)A+ (1 —h+ f — hfz)(3),
are experienced, are constant across. (and A, andg. = h?B + (1 - h2)(%)-
B> 1.
> 2) Equation (3) says that the inference task with imper-
Assumption 7 generalizes Assumption 5 of the perfectect recognition memory can be viewed as an inference
memory model because when memory is perfect it holdgSk with perfect recognition memory where (i) the accu-
thatA = a andB = 3. racy of the recognition heuristie, equals a linear com-
Now | specify the processing used for the differenPination of the accuracy of the experience heuristic
amounts of experience information that may be availabl@nd 3, and (ii) the accuracy of recognition-based knowl-
There are three types of pairs of objects that can be sa®d9ef. equals a linear combination of the accuracy of
pled, according to whether the number of experienced o§xPerience-based knowledgeand 3. It holds thata.
jects in the pair equals zero, one, or two. As in (1), thesandg. are well defined in the sense that they lie between
types occur with respective probabilitigén.), r(n.), 0andl.
andk(n.). As Pleskac (2007) pointed out, accuracy de-
pends not only on which of guessing, experience heuri€xample 2. Take N = 100. If A = 8, B = .8,
tic, or experience-based knowledge is used, but also onif= .64, f = .02, andz = .5, thenPr(70) = .64 and
each objectin the pair is a hit, miss, false alarm, or correger(100) = .62, and a less-is-more effect is predicted.
rejection.
FOI’ ex_ample, assu_me that object 1 is eXpe”en.C?.d. ar "“3Note that for this and the following claims to hold, it has te b
object 2 is not experienced. There are four poss'b'“t'e%ssumed that the experience and recognition cues are icowadlit in-
(i) object 1 is a hit and object 2 is a correct rejectiongependent given the criterion. This means that if the doitevalue of
(i) object 1 is a hit and object 2 is a false alarm, (iii)an objectis known, the probability that the object has bepeigenced

: : : : : P es not change depending on whether the object will be nimed or
ObJECt 1is amiss and Objem 2 Is a correct rejection, arﬁgt. Pleskac (2007) justifies this assumption by sayingttirevalue of

('V) object 1 is a miss and 0bj§9t 2isa _fa!se alarm. 1Ny reflects the true correlation between environmental mediand the
(i), the agent uses the recognition heuristic to make aditerion.
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Forh = 1 and f = 0, condition (i) is always violated.
Fromh =1 and f = 0, condition (i) reduces té > 0,
)thich, becausé = 1, is equivalenttcd > B, ora > (.

Figure 1: The conditions under which the less-is-mor
effect is and is not predicted for the imperfect-memor
model (A is the accuracy of the experience heuristic,
is the accuracy of experience-based knowledgis, the
probability of a hit, f is the probability of a false alarm, Example 2 (continued). Consistently with Result 2, if
z is the probability that an experienced object has at least = .8, B = .8, h = .64, f = .02, andz = .5, condition
one positive value on a cue other than experience). Fj is satisfied: f = .02 < .34 = Kh/(1 — hz), and

simplicity, the figure was drawn assuming tiiéh /(1 — a less-is-more effect is predicted. Af = .8, B = .8,

hz) > 0andh/(1 — hz) < 1, but this is not necessarily h = .64, f = .64, andz = .5, then conditions (i) and

the case. (i) in Result 2 are violated and a less-is-more effect is
I not predicted. IfA = .8, B = .8, h = .37, [ = .64,

andz = .5, then condition (ii) in Result 2 is satisfied:
f=.64 > .45 = h/(1 — hz), and a less-is-more effect
is predicted; for example?r(0) = .5 > .48 = Pr(30).
In paragraph 3.3, | discuss the meaning of this example
“Less-is-mote” effect? in more detail. But first | differentiate between the two
Yes No Yes types of less-is-more effects in Result 2.

Kh/(1 — hz) hi (1 = hz) ]
K=1-hB-":)/(A- ) 3.2 Full-experience and below-chance less-

is-more effects

The predicted less-is-more effect is qualitatively difer

More generally, Figure 1 depicts graphically the conent in each one of the two conditions in Result 2. If (i)

ditions under which the less-is-more effect is predicteds satisfied,Pr(n.) has a maximum and there exists a
and Result 2 states and proves this characterization.  p, x such thatPr(n.x) > Pr(N), whereas if (i) is satis-
fied, Pr(n.) has a minimum and there existsig« such

Result 2. For the imperfect-memory model, the lessthat Pr(0) > Pr(ncx)*. In other words, in (i), there
is-more effect is predicted if and only if either () < IS & person with an intermediate amount of experience
Kh/(1—hz),whereK = 1—h(B—1)/(A-1), or (ii) who is more accurate than the person with all experience,

f>h/(1— hz). 2 and in (i), there is a person with no experience who is

more accurate than a person with an intermediate amount
] o of experience. | call the formerfall-experience less-is-
Proof. Notethatifh—f+hfz >0, (3)impliesa. > 3 more effect and the latter laelow-chance less-is-more-
Also, note that it always holds that > 3. _ effect. The effects studied in the literature so far were of
Assumeh — f + hfz > 0. Result 1 applies and the the fyll-experience (or full-recognition) type, interped
less-is-more effect is predicted if and onlydf > fSe. a5 saying that there are beneficial degrees of ignorance
The conditiony. > 3. can be rewritten ag < K'h/(1 - (Schooler & Hertwig, 2005). The below-chance effect
hz), whereK =1 — h(B — 3)/(A—3). The condition  says that there could be a benefitin complete ignorance.
h—[f+hfz> 0is equivalenttof < h/(1—hz), which, Result 2 tells us that the less-is-more effect is pre-
becausdt < 1, is weaker tharf < Kh/(1—hz). Thus, icted, but not its magnitude. To get a first sense of this,
if f < Kh/(1— hz),the less-is-more effect is predicted.| (4 4 computer simulation varying and B from .55
The above reasoning also implies thatAfh/(1 — 4 1 in increments of .05, antl, f, and > from .05 to
hz) < f < h/(1 = hz), the less-is-more effect is not g5 iy increments of .05 (an& = 100). There were
predicted. Also, iff = /(1 — hz), thena, = 0,andthe 132003 — 800,000 combinations of parameter values.
effectis not predicted. _ For each combination, | checked whether the less-is-more
Assumef > h/(1 — hz). Then, itholds that. < 5 effect was predicted, and, if yes, of which type. The fre-
and Result 1 does not apply. The second derivative @fyency of a less-is-more effect type equals the proportion
Pr(ne) equals(l — 2ae) 4 2(fe — ae), whichis strictly  of parameter combinations for which it is predicted. For

1 . . . . .
greater than zero because < 5 anda. < (.. Thus,  the combinations where an effect is predicted, two addi-
Pr(n.) is convex, and a less-is-more effect is predictedsjgnal indexes were calculated.

. “In both cases, the optimum & is achieved atex = [(1 —
Remark 2. Result 2 generalizes Result 1: For a perfecf, \n 1 5, — 1/l _p2ae) + 2?(37:6)_ ae)], and it holds th[é(] <

memory, it holdsthat =1, f =0, A = a,andB = 3. nex < N.
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Table 1: The frequency, average prevalence, and averageitonde of the full-experience and below-chance less-is-
more effects (see text for definitions), for the imperfe@mory model (varyingd and B from .55 to 1 in increments
of .05, andh, f, andz from .05 to .95 in increments of .05; ard = 100), and for the perfect-memory modél & 1

andf = 0).
Frequency Frequency Avg. Prev. Avg. Prev. Avg. Mag. Avg. Mag
(Full Exp.) (B.Chance) (Full Exp.) (B.Chance) (Full ExpB.Chance)
Imperfect memory 29% 37% 23% 36% .01 .01
Perfect memory 50% 0% 23% 0% .02 .00

Theprevalence of a less-is-more effect equals the pro+tant in the “real world”, as, for example, in business con-
portion of pairs {1, ne2) suchthad < n.; <n.2 < texts.

N and Pr(ne,1) > Pr(nez2) (Reimer & Katsikopoulos,
2094). | report the average, across all parameter comlg—_3 The accurate-heuristics explanation
nations, prevalence of the two less-is-more-effect types.

Themagnitude of a less-is-more effect equals the averin the predictions of the less-is-more effect in Example
age value ofPr(n.,1) — Pr(n.z2) across all pairsi.,1, 2, we hadA = B. This seems curious because a nec-
Ne,2) such that) < n.; < n.2 < N andPr(n.1) > essary and sufficient condition for predicting the effect
Pr(n.2). | report the average, across all parameter conwhen memory is perfect ias > 3 (see Result 1 and
binations, magnitude of the two less-is-more-effect typegxample 1). In fact, Pleskac (2007) has argued that the

The simulation was run for both imperfect- andconditionA > B is necessary for the less-is-more effect
perfect-memory (wheré = 1 and f = 0) models. The when memory is imperfect.
results are provided in Table 1. Before I discuss the re- The conditionsy > 3 or A > B express that a heuris-
sults, | emphasize that the simulation assumes that ai¢ (recognition or experience), is more accurate than the
combinations of parameters are equally likely. This asknowledge used when more information is available. If
sumption is unlikely to be true, and is made because @f > 5 or A > B, the less-is-more effect can be explained
the absence of knowledge about which parameter comkis follows: “Less information can make more likely the
nations are more likely than others. use of a heuristic, which is more accurate than knowl-

The first result of the simulation is that the imperfectedge.” This is an explanation commonly, albeit implic-
memory model predicts a less-is-more effect ofteritly, proposed for the effect (e.g., Hertwig & Todd, 2003,
abo3ut two-thirds of the time, 29% for the full-experiencerheses 2 & 3), and | call it thaccurate-heuristics expla-
effect plus 37% for the below-chance effect. The perfectation.
memory model cannot predict a below-chance effect, and Result 2 speaks against the accurate-heuristics expla-
it predicts a lower frequency of the less-is-more effechation because it shows that > B is neither nec-
(50%) than the imperfect-memory model. The second resssary nor sufficient for predicting the less-is-more ef-
sult is that, according to the imperfect-memory modeliect. The condition for the full-experience effegt, <
the below-chance effect is predicted to have higher avefch /(1 — hz), can be interpreted as indicating a small
age prevalence than the full-experience effect. Note alsoand a mediunt,, where f andh can compensate for
that the distribution of the prevalence of the below-chancg < B.® The condition for the below-chance effect,
effectis skewed: almost 50% of the prevalence values afe> h/(1 — hz), is independent ot and B, and can be
higher than 45% (the prevalence distribution was close t@iterpreted as indicating a largeanda small A7 (simu-
uniform for the full-experience effect). The third resuit o ' _ _ _
the simulation is that the average magnitude of both less- °All else being equal, increasing and decreasings does make

. . s condition easier to satisfy because it increaes= 1 — h(B —
is-more-effect types is small (.01 or .02); for example,y, 4, _ 1 b (

: . 2 2/
in the imperfect-memory model, only about 5% of the™ 7a sketch of the role of misses and false alarms for predictivey
predicted less-is-more effects have a magnitude hightess-is-more effects has as follows: For the full-expexéeeffect, as
than .05 This result is consistent with conclusions fromthe number of objects experienced increases from some theté are

.. . . nore pairs of objects where both objects are miskés nedium), and
emplrlcal research (POhI’ 2006; Pachur & Biele, 200 guessing is used inappropriately instead of the experibeoeistic or

Pachur, in press). | would like to emphasize, howevegnowledge. For the below-chance effect, as the number @fctdbiex-
that even small differences in accuracy could be impoperienced increases from zero to some, there are more paibjects
where one object is a mis# (s small, but nonzero) and the other ob-

5For both effects, maximum magnitude equals .25, and maximurject is a false alarmf{is large) and the experience heuristic is used
prevalence equals 50%. inappropriately.
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lations showed that has a minor influence on both con-effect. In the two graphs of the upper panel, the full-
ditions). experience effect is predicted: Accuracy is maximized at
In sum, Result 2 shows that it is the imperfections osome amount of experienegx, between 60 and 80, that
memory (probabilities of misses and false alarms) thas smaller than the full amount of experiente= 100.
seem to drive the less-is-more effect, rather than whethbr the left graph of the lower panel, no less-is-more ef-
the enabled heuristic (the experience heuristic) is reldect is predicted. In the right graph of the lower panel,
tively accurate or not. the below-chance effect is predicted: Accuracy is higher
lillustrate the evidence against the accurate-heuristié$ no experience. ; = 0 than at a largen. » > 0, until
explanation by using parameter values from the recogni-,2 €quals approximately 50.
tion memory literature. Jacoby, Woloshyn, and Kelley | now discuss other less-is-more effect predictions in
(1989) provide estimates fdrand f for the recognition the literature. Smithson (2010) analyzed a perfect- and
of nameg In each of two experiments, a condition ofan imperfect-memory model where knowledge consists
full attention and a condition of divided attention wereof one cue. This implies thatt and B are not neces-
run. In the divided-attention condition, participants @er sarily constant across., contradicting Assumption 7;
distracted by having to listen long strings of numbers andn the other hand, Smithson modele@nd f as prob-
identify target sequences. In the full-attention conditio abilities constant across,, agreeing with Assumption 6.
the average value df was (.65 + .63)/2 = .64, and | He showed that the less-is-more effect can be predicted
used this value as an estimate of a high probability of aven ifo. < 3 or A < B. These results speak against
hit. In the divided-attention condition, the averdge/as  the accurate-heuristics explanation. More specifically,
(.43 +.30)/2 = .37, and this is my estimate of a low hit Smithson also showed that the prediction of the less-is-
probability. more effect is largely influenced by aspects of memory
As an estimate of a low probability of a false alarm, Isuch as the order in which objects are experienced and
used the average value pfn the full-attention condition, recognized and not so much on whether, or not, the expe-
(.04 +0)/2 = .02. I did not, however, use the averagerience and recognition heuristics are more accurate than
value Off in the divided-attention condition as an esti'recognition_based_ or experience_based know'edge_
mate of a high probability of a false alarm. This value oy can one reconcile Smithson’s and my results with
(:11) does not seem to represent situations where recogagkac’s (2007) conclusion thdt> B is necessary for
nition accuracy approaches below-chance performangg, jess-is-more effect when memory is imperfect? There
(Roediger, 1996). Koutstaal and Schacter (1997) arguge ot |east two ways. First, Pleskac studied a differ-

that high probabillities of false alarms can occur Whglém model of imperfect memory from Smithson’s and the
non-experienced items are “...broadly consistent wit odel presented here. In Pleskac's model, recognition

tudied | I tching th Il th d Fﬁemory is assumed to be a Bayesian signal detection pro-
studied, fargely matching the overall themes o”r Predoniess. As a result of this assumption, the false alarm and
inant categories of earlier encountered words” (p. 555

For example. false recoanition rates as highsdshave it rates are not constant acress thus contradicting As-
beenre or;te’d (Roedi e?& McDermott 1985) with falsesumption 6 (which both models of Smithson and myself
b 9 ' ’ Satisfy). On the other hand, in Pleskac’s mode&nd

recognition rates approaching the level of true recogniz, independent of,, thus agreeing with Assumption

tion rates (Koutstaal_& Sch_acter, 1997). | chose a valu? (which Smithson's model does not satisfy). Second
of .64 (equal to the high estimate fin the Jacoby et al Pleskac (2007) studied his model via simulations, and it

experiments) as a high estimate fof This choice is ad- Id be that dicti fthe | . ffect
hoc and serves to numerically illustrate the below-chandgy'd D€ thal SOme predictions ot the 1ess-1s-more efiect,
where it was the case thdt< B, were not identified.

less-is-more effect. Ifl1 were chosen as a high estimate ) ! ; i
for f, then a full-experience effect would be predicted in- This concludes the discussion of the theoretical pre-

stead of a below-chance effect (see right graph of lowdlictions of the Iess-is—mo_re effect. In thg next section, |
panel in Figure 2 below). develop a method for testing them empirically.

To allow comparison with the perfect-memory case

where predictions were illustrated far= 8, | setA = ) ) .
8 B was set to.75, .8, and.85. Results were robust 4 Testing less-is-more-effect predic-

acrossz, so | setz = .5. In Figure 2, there are illus- tions: Methodological problems
trations of predicting and not predicting the less-is-more )
and a new method

8] acknowledge that estimates Afand f are often influenced by

experimental factors such as payoff structure and instmetBroeder | task of f fi hich f twi fi |
& Schuetz, 2009), but | ignore this issue in order to use edtmthat n a task or forecasting which one o 0 national soc-

have some basis in empirical research. cer teams in the 2004 European championship would win
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Figure 2: lllustrations of conditions under which the léssnore effect is and is not predicted. In all grapNs= 100,

z = .5 (results are robust across different values)pfA = .8, and B equals.75, .8, or .85. In the two graphs of
the upper panel, a full-experience effect is predictedffer .02 andh = .64 or .37 (the squares denote maximum
accuracy). In the left graph of the lower panel, no less-igareffect is predicted fof = h = .64. In the right
graph of the lower panel, a below-chance effect is predifded = .64 andh = .37 (the squares denote minimum
accuracy).
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a match, Pachur and Biele (2007) did not observe thé.1 What do estimates ofr and /3 in the lit-
less-is-more effect even though “...the conditions for a erature (ar;; and (.;;) measure?

less-is-more effect specified by Goldstein and Gigerer'||:-0IIOWing Goldstein and Gigerenzer (2002), thg;; of
zer were fulfilled” (p. 99). Pohl (2006, Exp. 3) drew thea participant in an experiment has been estimated by the

same conclusion in a city-population-comparison taskyrqnortion of pairs where she recognized only one object,
The condition these authors meaniis>  (both values  and in which the recognized object had a higher criterion
were averages across participants). Are these conclusiapgue; ands;;; has been estimated by the proportion of
justified? pairs where the participant recognized both objects, and
in which she correctly inferred which object had a higher
I do not think so, for at least two reasons. Firstcriterion value (the definitions are formalized in the re-
a > (3 is not the condition that should be tested. Secsult that follows). Result 3 shows what these estimates
ond, even if it were, the estimates of and used are incom€asure.

rect. Both complaints rely on the assumption that recogResult 3. For the imperfect-memory model, @y;; =
nition memory is imperfect. If this assumption is granted(p — q) A + pgB + (1 — p)(1 + ) (3); (ii) Brit = p*B +
according to the analyses presented here one could tékt— p)(1 +3p)(3), wherep = he/[he + f(1 —€)], q =
f< Kh/(1—h2)orf > h/(1—hz),butnota > 8. (I=h)e/[(L=h)e+(1—=f)(1—e)le=(r=f)/(h=f),
Furthermore, the quantities used as estimatesafids 214" = n/N.
are estimates of complicated functions that invalye3, ~ Proof. Consider a participant. LeR be a recognized
h, f, n, andN. In the next paragraph | prove and il- object andU an _un_recognized object (both randqmly
lustrate this fact, and in the paragraph after that | use ﬁampled), with criterion valueS(R) andC'(U). Then, it

: . olds that:
to construct a new method for testing less-is-more-effec
predictions. ary = Pr[C(R) > C(U)]. 4
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Using the logic preceding the derivation of Equatiordefine e =

(3), it also holds that:

Pr(C(R) > C(U) |

Ris experienced] is experienced= B,
Pr(C(R) > C(U) |

R is experienced/ is not experienced= A,
Pr(C(R) > C(U) |

R is not experienced] is experienced= 1 — A,
Pr(C(R) > C(U) |

R is not experienced] is not experienced= % (5)

Let also:

Pr(R is experienced
Pr(U is experienced

p =

q = (6)

Equations (4), (5), and (8)mply ari; = pgB +p(1 —
q)A+ (1—p)g(1—A)+ (1 —p)(1—q)(3), and this can
be rewritten as in part (i) of the result.

TeBth®less-is-more effect 252

Pr(Ois experienced Let alsor =
Pr(O is recognizey which, by definition, equals/N.
It holds that:

Pr
Pr

O is recognizeyl

O is recognized O is experiencepx
Pr(0O is experienced +
Pr(O is recognized O is not experiencedx
Pr(O is not experienced

= he+ f(l—e).

~ o~~~

Solving the above equation fer we gete = (r —
1)/ (h = f).

Note thatp = Pr(O is experiencedO is recognized
By Bayes' rule, this probability equals
Pr(O is recognized O is experiencepk
Pr(O is experiencelf Pr(O is recognizey
which turns out to bée/[he + f(1 — ¢e)].

Similarly, ¢ = Pr(U is experienced=
Pr(O is experienced | O is notrecognized and this
turns outto bé1 — h)e/[(1 — h)e + (1 — f)(1 —€)].

Let R and R’ be recognized objects (both randomly

sampled), with criterion value§(R) andC(R’). Also,
assume that the participant infers tig¢R) > C(R').
Then it holds that:

Bri = Pr[C(R) > C(R')].

As in deriving (5), it holds that
Pr(C(R) > C(R) |

Ris experiencedR?’ is experienced= B
and
Pr(C(R) > C(R) |

R is not experiencedy’ is not experienced= %
But we do not know
Pr(C(R) > C(R) |

R is experienced, R’ is not experienced
and
Pr(C(R) > C(R) |

R is not experiencedy’ is experienced

(7)

because we do not know which BfandR’ has the higher

Remark 3. Because the estimates used can be deter-
mined from different experiments, it may be that some
estimates are not well defined. For example, if> r,
thene > 1.

Example 3. Result 3 says that the estimatescofind

(3 used in the literaturey;; and 3y ;;, are not straight-
forward to interpret. If memory is perfect, the estimates
measure what they were intended t¢: = 0 implies
p=1,andf; = B = 3 = f3,; ifalsoh = 1, then

q = 0,andapy = A = a = «.. Butif memory is
imperfect,ar;; may differ froma., and 3p;; may dif-
fer from .. Numerical illustrations of the difference be-
tweenar;; anda,, andf8y;; andS., are given in Table
2.

In Table 2, | used the average oy, and (g, for
each one of 14 groups in an experiment by Reimer and
Katsikopoulos (2004) where participants had to compare
the populations ofV = 15 American cities. | also set
h =.9, f = .1, andz = .5'° To computen, andg,,
| followed three steps: First, | computedand g as in

criterion value. We can, however, reason that one of thi€sult 3. Second, I solved fof and B from (i) and (i)

probabilities equalst and the other one equals- A.
From the above and Equation (7), it follows ti¥at, =
p?B+ (1 —p)*(L) +2p(1 — p)(A+ 1 — A), which can
be rewritten as part (ii) of the result.
To complete the proof, | compute andg¢. To do

10The choice ofk and f was based on the constraint thahas to
be higher than all observed in the experiment, so that> 1 (see
Remark 3). This led tdv > .87, which | rounded up toh = .9.
This estimate is also higher than the observéu other experiments on
the population-comparison task with American cities andigpants
from Germany and German-speaking Switzerland (.53 in Hertval.,

this, first let O be a randomly sampled object, and2008 and .63 in Pachur et al., 2009; in Pohl's experimentitivalved

European cities; = .82). For f, | chose a value of .1 as indicating very

%It is also assumed that objects are experienced indepépdent good recognition memory, as also ddes= .9. | setz = .5 because

each other.
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Table 2: Numerical illustration of the difference betweety; anda., andgy;; andg., based on the average oy,
and gy, for each one of 14 groups in an experiment by Reimer and Kaisildos (2004), where participants had to
compare the populations & = 15 American cities. | also sét = .9, f = .1, andz = .5. For two groups, the
estimates ofr, were not between 0 and 1. On the averagewas larger thamy;; by .05, and3. smaller thansy,;;

by .04.
n 9 12 10.3 12 11.3 13 11.3 12.3 9.3 12.3 10.7 12 8 9.7
ary 79 .79 .78 .81 .88 .87 .72 .70 .68 .66 .79 .81 .77 .79
a .81 .90 8 91 - - .75 .77 .68 .67 .83 .92 .79 .82
Bri: 60 .58 .64 .62 .64 .66 .61 .60 .62 .64 .58 .60 .53 .54
B. .54 55 59 59 .60 .63 .57 .57 56 .61 .54 .57 .45 .49

of Result 3, andB = [B;x — (1 — p)(1 + 3p)(3)]/p?,
A= lagi —pgB — (1 - p)(1+9)(3)]/(p — q). Third,
| used Equation (3) to compute, andg..

The difference between;;; anda,, or Gr;; and 3,

As can be seen in Table 3, correlations can be very
substantial, varying from-.59 to .85. The average of the
absolute value of the correlation betwegn,; andn is
.65 (two correlations were negative and four were posi-

exceeded .01 in 24 out of 26 cases. The difference wéise) and betweemv;;; andn is .24 (all six correlations

as large as .11. On the average,was larger thamvy;;
by .05, andB, was smaller tharBz;; by .04%. 1 also
performed a sensitivity analysis, varyihgfrom .9 to 1
in increments of .01 and from .1 to 0 in decrements of

.01. There wer¢14)11%2 = 1694 cases. On the average,

a. Was larger thamvy,;; by .04, ands, was smaller than

were negative).

4.2 A method for testing less-is-more-effect
predictions

B by .02. One may expect these differences to increa®sed on the points made in the previous paragraph, |
if h and f are less indicative of a very good recognitiorP'alm that, unless it can be established that recognition

memory than they were here.

Remark 4. Importantly, Result 3 implies that it is not
straightforward to interpret the reported correlations b
tweenay,;; andn, or 51, andn (Pachur & Biele, 2007;

Pachur, in press). It is not clear that these correlatioA

suggest substantial, or any, correlations betwdesnd
n, or B andn, because both,;, and3.;; are compli-
cated functions of.

In fact, correlations betweemn;;; andn, or 5.;; and
n, are predicted even ifi, B, h, and f are constant

acrossn. For example, | computed the correlations be

tweenay,;; andn, andfr;; andn with the six parameter
combinations used in the upper panel of Figure 2, whe
A=.8,B=.75,.8,0r.85 h = .64 or.37, andf = .02
(N = 100). For eachn from 0 to 100, | used the equa-
tions in the statement of Result 3 in order to computg
andfz;, and then computed their correlations with?

Uinterestingly, it was always the case that;; < ae andBr;; >
Be. This means thaky ;; > B+ would imply ae > SBe, which in turn
would imply a less-is-more effect. So, it would end up beingect to
claim that ifay,;; > Brit, then the less-is-more effect is predicted.
It should be studied further under what conditions does ghigtion
occur.

12For somen, the estimates oftr;; or Br;; were not between 0
and 1. On the average, this happened for eight valuespar parame-
ter combination. These cases were excluded from the cotgngaof
correlations.
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memory was perfectin an experiment, a correct empirical
test of the less-is-more effect in that experiment should
not use the estimates of and 3 in the literature .
andfrit).

There is one more problem with empirical tests of the
ss-is-more effect in the literature. The way some of
t%ese tests are carried out often provides no evidence for
or against any theory of the conditions under which the
less-is-more effect is predicted. To provide such evi-
dence, it does not suffice to just check if an effect is found
when the conditions in Results 1 or 2 are satisfied: Even
if a condition for predicting the less-is-more effect holds
the prediction is not that all pairs of agents that have

@mounts of informatiom; andn, such thatn; < no

would also havePr(ni) < Pr(nz). For example, in
the upper left panel of Figure 2, the less-is-more effect is
predicted but it is also predicted that an agent who has ex-
perienced 40 objects would be less accurate than an agent
who has experienced 100 objects. One cannot conclude
that “no evidence for the less-is-more effect is found even
if a condition that is sufficient for the effect holds”, in the
case that a person who has experienced 40 objects is less
accurate than another person who has experienced 100
objects.

For example, consider Pohl's (2006) Experiment 3,
which he interpreted as providing “no evidence for a less-
is-more effect” (p. 262). For 11 German and 11 Italian
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Table 3: Numerical illustration of correlations betweer; andn, and Lit3;;; andn, even whem, B, h, andf are
constant Y = 100). The average of the absolute value of the correlation batwig,;; andn is .65, and between
Lit3r;: andn is .24.

arisandn  (r;; andn

A B h . !
correlation  correlation
.8 75 .64 .02 -.35 —-.40
.8 .80 .64 .02 .59 =21
.8 .85 .64 .02 .78 -.02
.8 75 .37 .02 -.59 —.46
.8 .80 .37 .02 75 -.28
.8 .85 .37 .02 .83 -.08

cities, he measured the average, across participants,tions against the observations. | first specify what data
arq, andBr;. Pohl observed that was larger in Ger- are assumed to be available.

man (11) than in Italian (9.5) cities, and,;; = .82,
Brir = .74 for Italian cities; for German citiesqy,;;
was not defined an@d;;; = .79. The less-is-more ef-
fect was not found: The accuracy for German cities (.78()““’
was higher than the accuracy for Italian (.76) cities. But

"y : . All experiments in the literature run to test the less-
this is not evidence against the theory that, under the con- - .

. . . ; : Is-more effect are recognition experiments. The method
dition o« > g, an effect is predicted: For the particular

values ofn, azi, and gy, applying Equation (2) does uses the data of a recognition experiment for each partic-

not predict a less-is-more effect, but rather tRa{n) is Ipant plus the values of three more parameters, and

higher for German (.79) than for Italian cities (.76), as it W.h'.Ch practically woulld often be as.sumed equal for all
was indeed found. participants. It may be fine to seto a fixed value, say .5

. . . becausd” is robust across). Currently, estimates
In order to determine whether there is evidence for th r(n) . s) - Y
f h and f are not available from experiments run to test

less-is-more effect or not from an experiment, Snook a . o .
P ' nt%e less-is-more effect. This is so because these experi-

Cullen (2006), and Pachur and his colleagues (Pach Co o .
& Biele 2007: Pachur, in press) searched for non}_ﬂents used natural stimuli (e.g., cities) that participant

. . e . had experienced outside the laboratory. Estimates of
monotonic trends in the best-fitting polynomial to all P Y

data points{n, Pr(n)}. This partly addresses the issueandf have to be taken from the literature on tasks where

. . {experience is controlled, that are similar to the task on
| raised above because typically a large number of OlaV\silhich the test is based (e.g., recognition of names, as in
points are considered, and it is likely that among the acoby et al., 1989) = '
there are some pairs for which the effect is predicted. Theycomp;l,Jtation 'of the accuracy of an agdht(n.)
Remaining problems are that (i) the average prevalenc«levena“ Brinu N, hy f, andz, is astraightforwfar,d
and mag_mtude of the full-experience less-is-more effea beit cumbersome, application of Result 3 and Equations
are predicted to be small (see Table 1), and even t ‘f) and (3):
best-fitting polynomials of idealized curves are basicall '
monotonict® and (i) no out-of-sample-prediction criteria
were used to identify these polynomials. Input:  ap, Bra,n, N, h, f, andz.

I now propose a method for testing the theoretical pre-
dictions of the less-is-more effect that avoids the issue§tep 1 r=n/N,e=(r—f)/(h—f),p=he/lhe +
discussed above and in the previous paragraph. The, —é)] andg — ’(1 —h)e/[(1—h)e+ (’1 — H1—e)
method consists of (i) computing the predicted accura- ' '
cies of pairs of agents (individuals or groups), (ii) com-
paring the accuracies to determine whether a less-is-mopéep 2: B = [Bri — (1 —p)(1+3p)(3)]/p* andA =

effect is predicted or not, and (jii) checking the predicieLit — pgB — (1 —p)(1+ ¢)(3)]/(p — @)

Definition 2. A recognition experimentis one in which
Brit, n, andN are available.

L3For the six curves in the upper panel of Figure 2, the bestgitt 1
polynomial is a quadratic function where the coefficients:éfare of Step3: ae = (h—f+hf2)A+(1—h+f— hfz)(i)’
the order ofl0~*, and the coefficients of are about 100 times larger. andj, = h?B + (1 — h?)(3).
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Step4: ne=(n—-Nf)/(h—f), study. This work made four contributions to the study of

the less-is-more effect: Three refer to the theoretical pre
Step5: g(ne) = (N — ne)(N —ne — 1)/N(N — 1), dictions of the effect and one refers to how to empirically
r(ne) = 2ne(N —ne)/N(N —1), andk(ne) = ne(n.—  testthese predictions.

1)/N(N —1). First, | presented a characterization of the conditions

under which the less-is-more effect is predicted (Re-

Step 6: Pr(ne) = g(ne)(3) + r(ne)ae + k(ne)8 sult 2; this generalized the characterization of Gold-
. € - € 2 € e € e-

stein & Gigerenzer, 2002). A main implication of the
characterization is that it provides evidence against an
implicit, but common explanation for the effect, the
. accurate-heuristics explanation (paragraph 3.3). The pre
I now illustrate the method. | use data from an exper-, P (paragrap ) P

. ) . dictions were illustrated with parameter estimates from
iment by Reimer and Katsikopoulos (2004) where three- b

. .~ a recognition-memory experiment (Figure 2). Second,
member groups had to perform a populatlon-comparlsoap new type of less-is-more effect, the below-chance ef-
task with V. = 15 American cities. In this research, seve '

. . . . . _.nfect, was predicted (paragraph 3.2). Third, | presented
pairs of groups were identified so that (i) the var|ab|I|tya simulati(r))n which éﬁowgd t?\at th)e Iess-is-mgre offect

inn, ary, andfrs: across the three group members wag, predicted to be frequent, but its average magnitude is

'small”, (ii) the difference in the averagey . ar:dﬁm ..predicted to be small (Table 1), as it has been found em-
between the two groups in a pair was “small”, and ('”)pirically

the difference in the averagebetween the two groups _— .
in a pair was “large” (Reimer & Katsikopoulos, 2004, pp. The foyrth contnbuuon was to pom.t outsome '.“eth"d'
ological issues in the empirical testing of less-is-more-

1018-1019). | used the averaggx,;¢, andSr;; for each o . .
one of 14 groups (the values are provided in Table 2). ffect predl(_:t_|ons. In ReSl.Jlt.3’ itwas shown that, grantlng
that recognition memory is imperfect, the parameter esti-

also seth = .9, f = .1, andz = .5 (Ssee comments in : .
/ N ( mates used in the tests are not measuring what they were

Example 3). grjtended to (Example 3). This result, however, allows

In the Reimer-and-Katsikopoulos experiment, the les onstructing a new method for testing less-is-more-effect
is-more effect was observed in five out of the seven pair% ructing 9 o
edictions (paragraph 4.2). Result 3 also has implica-

(1-5) and not observed in two pairs (6, 7). As can be seél o .
in Table 4, according to the method, the theory of thé'ons for the plausibility of the imperfect-memory mpdel
less-is-more effect, as summarized in Result 2, correct sed here and of other models (Pleskac, 2007; Smithson,

predicts the effectin four pairs (1, 2, 4) and correctly pre{.grllg)é azg%)rginn?jsesungg?\zse gi,sm% T%?]il_ Srﬁzsu;g;n-
dicts that there would be no effect in both pairs 6 atfd 7 ! Indep umptions. P

(for one pair (3), the estimates of, were not between eters of the model (accuracies of the experience heuristic
0 and 1, and thé method was not applied). | alscilet and knowledgeA and B, and probabilities of hits and

L false alarmsj and f ) are constant across information
vary from .9 to 1 in increments of .01 arfdvary from .1 h ber of obiect ienced). Th
to 0 in decrements of .01. The theory correctly predicte € number of objects experienced). These assump-

the effect in 402 out of 550 cases, correctly predicted n 0837\')\/?;;:22(1;;O.:];neatgﬁ;ngfslazzmﬁn;%rllci'nl';ll?srac
effect in 203 out of 242 cases, and was not applied in 5 indep umpt

cases. More generally, it should be studied further ho nd and Smithson (in press) makes it only foandf

robust the results of the method are when there is noise,inBOth authors have plausibility arguments against the

the parameter estimates. This is a concern because of {nglpendence as_sum_puor;(sjthey 9‘0 not rc‘jna}kef: PIESk"’}? ap-
nonlinear terms in various equations of the metod. ~ P€als to a Bayesian signal detection model of recognition
memory (for which he also cites studies that provide em-
pirical support) that implies thdt and f vary with n.,
5 Conclusions and Smithson constructs counterexamples wheard
vary withn, andA andB vary with ..
Strong predictions such as the less-is-more effect provide These arguments have a lot to recommend them. But
opportunities for theory development and deserve furthétris not clear how substantial the correlations have been
14The average of the absolute value of the difference between t]cound to be. Empirical eVId?nce 'S prgwded by.PaChur
observedPr(n) and predictedPr(n.) is .06, and the average of the and colleagues (PaChL.“‘ & Biele, 2007; Pachur, in prgss)
absolute value of the difference between the predicted &is¢reed WhO, across ten experiments, report average correlations
siz_e)(_)f tgi effect (i.e., accuracy difference between thedgwoupsina  petweenn andn, and betweers andn, that range from
pair) is .04. : :
15There may be room here for improving the quantitative pitetic 18 to_ .27. The prqblem Is that the. estlmatem(ﬂn_dﬁ
by optimizingh, f, andz, but the point was to illustrate how the method US€d in these StUd|eS_are not strmghtfgrward to m_terpret
is applied. because they are estimates of complicated functions of

Output:  Pr(ne).
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Table 4: Numerical results of the method with data from Reiared Katsikopoulos (2004; seven pairs of groups
compared populations @gf = 15 American cities). The method used theay,;;, and 5y, of this study (see Table
2),andh = .9, f = .1, z = .5 (see comments in Example 3), to predibt(ne). For one pair (3), the estimates of
were not between 0 and 1, and the method was not applied. $&dslenore-effect predictions were correct for five
pairs (1, 2, 4, 6, and 7) and incorrect for one pair (5).

Pair 1 Par 2 Par 3 Pair 4 Par 5 Par 6 Par 7

n 9 12 103 12 11.3 13 11.3 123 93 123 10.7 12 8 9.7
ObservedPr(n) .83 .75 .73 .69 .78 .75 .67 .63 .66 .64 .67 .73 .56 .66
PredictedPr(n.) .67 .64 .67 66 - - .63 .60 .61 .61 .66 .66 .64 .65

A, B, h, f, N, and importantly, ofn itself. In fact, | Brunswik, E. (1955). Representative design and proba-
numerically showed (Table 3) that settiny B, h, f, bilistic theory in a functional psycholog¥sychologi-
andN to be constant still led to correlations between the cal Review, 62, 193-217.
estimate ofx used in the literature and (.65, across six Busemeyer, J. R. (1993). Violations of the speed-
parameter combinations) and between the estimate of accuracy tradeoff relation: Decreases in decision accu-
used in the literature and (.24). It seems that there is  racy with increases in decision time. In O. Svenson and
currently no definite evidence about which, if any, of the A J. Maule (Eds.)Time Pressure and Stressin Human
independence assumptions should be revised. Judgement and Decision Making (pp. 181-193). New
Unsatisfying at it is, my conclusion is that new and York: Plenum Press.

carefully controlled experiments are required in order t@avis-Stober, C. P., Dana, J., & Budescu, D. V. (2010).
test the independence assumptions made here. Other emyhy recognition is rational: Optimality results on

pirical work | propose is to test the below-chance less- sjngle-variable decision rulegudgment and Decision-
is-more effect. This effect requires below-chance recog- making, 5, 216—229.

nition performance and it is not clear if it would be ob-p es R. M. & Corrigan, B. (1974). Linear models in
served with natural and representative stimuli (Brunswik, decis'ion ma;kingPQ/choI(')gical Bulletin. 81. 95-106.

1954). . . . Dougherty, M. R., Franco-Watkins, A. M., & Thomas,
I end with a list of open questions for models of recog- R. (2008). Psychological plausibility of the theory

hition memory that can be used m future th_eoretical of probabilistic mental models and the fast and frugal
work (Smithson, 2010, also has a list). A main ques- heuristics Psychological Review, 115, 119-213.

tion is which types of modeling assumptions are ConSiSGarrett H. E. (1922). A study of the relation of accuracy
tent with the enabling-of-accurate-heuristics explanati o spéed Afchives 0% Psychology, 56, 1104

and which are not. So far, we know that Pleskac’s as- .
Gigerenzer, G., Todd, P. M., and the ABC Research

sumptions seem to be consistent with this explanatiorr, , -
whereas the assumptions of Smithson and myself are not Sroup (1999).Smple Heuristics that Make us Smart.

Thus, the independence of the probabilities of hits and VéW York: Oxford University Press.

false alarms from experience could be key here. Oth&oldstein, D. G., & Gigerenzer, G. (2002). Models of

concepts that could be modeled are cognitive architecture€cological rationality: The recognition heuristiesy-

(Schooler & Hertwig, 2005), familiarity (Dougherty et ~ chological Review, 109, 75-90.

al., 2008), and learning and forgetting (Smithson, 2010)Hertwig, R., Herzog, S. M., Schooler, L. J., & Reimer, T.

(2008). Fluency heuristic: A model of how the mind
exploits a by-product of information retrievalour-
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