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Abstract

In inductive inference, a strong prediction is the less-is-more effect: Less information can lead to more accuracy.
For the task of inferring which one of two objects has a highervalue on a numerical criterion, there exist necessary and
sufficient conditions under which the effect is predicted, assuming that recognition memory is perfect. Based on a simple
model of imperfect recognition memory, I derive a more general characterization of the less-is-more effect, which shows
the important role of the probabilities of hits and false alarms for predicting the effect. From this characterization,it
follows that the less-is-more effect can be predicted even if heuristics (enabled when little information is available) have
relatively low accuracy; this result contradicts current explanations of the effect. A new effect, the below-chance less-is-
more effect, is also predicted. Even though the less-is-more effect is predicted to occur frequently, its average magnitude
is predicted to be small, as has been found empirically. Finally, I show that current empirical tests of less-is-more-effect
predictions have methodological problems and propose a newmethod. I conclude by examining the assumptions of the
imperfect-recognition-memory model used here and of othermodels in the literature, and by speculating about future
research.
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1 A strong prediction: The less-is-
more effect

In psychology’s quest for general laws, theeffort-
accuracy tradeoff (Garrett, 1922; Hick, 1952) is a top
candidate: The claim is that a person cannot put less ef-
fort in a task and increase accuracy. Because it is widely
accepted, the tradeoff provides an opportunity for theory
development. If a theory implies that the effort-accuracy
tradeoff can be violated, this is a strong prediction. By
strong prediction of a theory I mean a prediction that does
not follow from most competing theories (see Trafimow,
2003). A strong prediction provides for informative tests.
It is unlikely that the data will confirm the prediction, but
if they do, support for the theory will increase greatly.
For example, Busemeyer (1993) provided support for de-
cision field theory by showing that it is consistent with
violations of the speed-accuracy tradeoff.

The speed-accuracy tradeoff is one instantiation of
the effort-accuracy tradeoff in which the effort a per-
son puts into performing a task is measured by the time
she uses. Effort can also be measured by the amount
of other resources that are expended, such as informa-
tion or computation. In this paper, I consider viola-
tions of the tradeoff between information and accuracy.

∗I would like to thank Jason Dana, Rob Nosofsky, Mike Smith-
son, Thorsten Pachur, Tim Pleskac, and Ruediger Pohl for helpful com-
ments, and Christian Weber for programming the simulations. Address:
Max Planck Institute for Human Development, Lentzeallee 94, 14195
Berlin. Email: katsikop@mpib-berlin.mpg.de.

This violation is particularly interesting because it invites
us to sometimes throw away information. This invita-
tion flies in the face of epistemic responsibility, a maxim
cherished by philosophers and practitioners of science
(Bishop, 2000). Some violations of the information-
accuracy tradeoff, where information refers to recogni-
tion, have been predicted and observed in tasks of induc-
tive inference, and are collectively referred to as theless-
is-more effect (Gigerenzer, Todd, & the ABC research
group, 1999).

Here, I make two kinds of contributions to the study
of the less-is-more effect: to the theoretical predictions
of the effect, and to the empirical tests of the predictions.
Specifically, in the next section, I define the inference task
and the less-is-more effect, and present Goldstein and
Gigerenzer’s (2002) characterization of the less-is-more
effect for the case of perfect memory. In Section 3, for
imperfect memory, I derive a more general characteriza-
tion of the conditions under which the less-is-more effect
is predicted. The predictions are illustrated numerically
with parameter estimates from the recognition memory
literature. Furthermore, I discuss implications for theo-
retical explanations of the effect. A new type of less-is-
more effect is also predicted. In the next section, I discuss
methodological issues in empirically testing less-is-more
effect predictions, and present a method for doing so by
using data from recognition experiments. In Section 5, I
conclude by examining the assumptions of the imperfect-
memory model used here and of other models in the lit-
erature, and by speculating about future research.
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2 A characterization of the less-is-
more effect: Perfect memory

2.1 The inference task and the less-is-more
effect

I first define the inference task: There exist N objects that
are ranked, without ties, according to a numerical cri-
terion. For example, the objects may be cities and the
criterion may be population. A pair of objects is ran-
domly sampled and the task is to infer which object has
the higher criterion value. When recognition memory is
perfect, a person’s information is modeled by the number
of objects she recognizes,n, where0 ≤ n ≤ N . The
person’s accuracy is the probability of a correct inference
and it is a function of her information,Pr(n). I next de-
fine the less-is-more effect.

Definition 1. When recognition memory is perfect, the
less-is-more effect occurs if and only if there existn1

andn2 such thatn1 < n2 andPr(n1) > Pr(n2).

The less-is-more effect may at first appear to be
impossible: Of course, whatever processing can be done
with less information (recognizingn1 objects), could
also be done when adding information (recognizing the
samen1 objects and an extran2 − n1 objects); so, how
can less information lead to more accuracy? The catch
is that different amounts of information may lead to
different processing. For example, when the population
of two cities is compared, recognizing the name of
one of the two cities enables therecognition heuristic
(Goldstein & Gigerenzer, 2002):

“If one object is recognized and the other object is
not, the recognized object is inferred to have the higher
criterion value.”

The recognition heuristic cannot be used when both
objects are recognized so that some other inference rule
has to be used, such as a linear rule with unit weights
(Dawes & Corrigan, 1974). The processing done with
less information may be more accurate than the process-
ing done with more information. For example, the recog-
nition heuristic uses one cue (recognition) and there are
conditions under which using one cue is more accurate
than summing many cues (Hogarth & Karelaia, 2005;
Katsikopoulos & Martignon, 2006; this point has also
been made specifically for the recognition cue by Davis-
Stober, Dana, & Budescu, 2010).

To test empirically the occurrence of the less-is-more
effect, one can compare the accuracy of (i) two agents
(individuals or groups) who recognize different amounts

of objects out of the same set (e.g., American cities), or
(ii) the same agent who recognizes different amounts of
objects in two different sets (e.g., American and German
cities).

Pachur (in press) reviewed a number of studies and
concluded that there is some evidence for the less-is-more
effect in some experiments, but not in others. I agree
with this conclusion: Goldstein and Gigerenzer (2002)
had about a dozen American and German students infer
which one of San Diego or San Antonio is more pop-
ulous, and found that the Germans were more accurate
(1.0 vs. .67). They also found that 52 American stu-
dents were equally accurate (.71) in making 100 popula-
tion comparisons of German, or American cities. Reimer
and Katsikopoulos (2004) had three-member groups of
German students perform 105 population comparisons of
American cities. Out of seven pairs of groups, the groups
who recognized fewer cities were more accurate in five
cases, by .04 on the average. Pohl (2006) had 60 Ger-
man students compare the populations of 11 German, 11
Italian, and 11 Belgian cities. The students recognized
more German than Italian cities and more Italian than
Belgian cities, and their accuracies had the same order:
.78 for German, .76 for Italian, and .75 for Belgian cities.
Pachur and Biele (2007) asked laypeople and soccer ex-
perts to forecast the winners of matches in the 2004 Eu-
ropean national-teams soccer tournament. In 16 matches,
experts were more accurate than laypeople (.77 vs. .65).
The correlation between the accuracy of 79 laypeople and
the number of teams they recognized was positive (.34).

I believe that all of these tests of less-is-more-effect
predictions have methodological problems and I will
make this point and suggest a new method in Section 4.

2.2 The perfect-memory model

Goldstein and Gigerenzer (2002) derived an equation for
Pr(n) based on a model of how a person makes infer-
ences, which I now describe. The first assumption of the
perfect-memory model is the following:

Assumption 1. The person recognizes all objects she
has experienced, and does not recognize any object she
has not experienced.

It is easy to criticize this assumption as it is known
that recognition memory is not perfect (Shepard, 1967).
Pleskac (2007) and Smithson (2010) proposed models of
imperfect recognition memory, and I will discuss them
together with a new model, in Section 3.

The following three assumptions specify the inference
rules used for the different amounts of recognition infor-
mation that may be available:
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Assumption 2. If the person does not recognize any of
the objects in the pair, she uses guessing to infer which
object has the higher criterion value.

Assumption 3. If the person recognizes one object, she
uses the recognition heuristic.

Assumption 4. If the person recognizes both objects,
she uses an inference rule other than guessing or the
recognition heuristic-this family of rules is labeled as
knowledge.

Based on Assumptions (2)–(4), if the person recog-
nizesn of theN objects, she uses guessing, recognition
heuristic, and knowledge with the following respective
probabilities:

g(n) = (N − n)(N − n − 1)/N(N − 1)

r(n) = 2n(N − n)/N(N − 1)

k(n) = n(n − 1)/N(N − 1) (1)

The last assumption of the perfect-memory model is
the following:

Assumption 5. The accuracy of the recognition
heuristic,α, and the accuracy of knowledge,β, are
constant acrossn (andα, β > 1

2
).

Smithson (2010) pointed out that Assumption 5 could
be potentially violated, and constructed plausible exam-
ples where this is the case.1 Pachur and Biele (2007) re-
ported that the correlation betweenα andn was .19 and
the correlation betweenβ andn was .22. Across ten ex-
periments, Pachur (in press) reported that the average of
the absolute value of the correlation betweenα andn was
.27 and the average of the absolute value of the correla-
tion betweenβ andn was .18. In Section 4, I will argue
that the estimates ofα andβ used in these studies are
incorrect, and the reported correlations should be inter-
preted with caution.

From Assumption 5 and Equation (1), it follows that
the accuracy of a person who recognizesn objects is
given as follows:

Pr(n) = g(n)(1

2
) + r(n)α + k(n)β (2)

1There are more criticisms of the perfect-memory model. For ex-
ample, Dougherty, Franco-Watkins, and Thomas (2008) have suggested
that the notion of familiarity should be incorporated in themodel and
that recognition is not an all-or-none variable.

Example 1. TakeN = 100. If α = .8 andβ = .6,
then Pr(50) = .68 and Pr(100) = .6, and a less-is-
more effect is predicted. Ifα = .8 andβ = .8, then
Pr(50) = .73 andPr(100) = .8, and more generally
Pr(n1) < Pr(n2) for all n1 < n2, and the effect is not
predicted.

It is straightforward to study Equation (2) and derive
the following characterization of the less-is-more effect
(Goldstein & Gigerenzer, 2002, p. 79):

Result 1. For the perfect-memory model, the less-is-
more effect is predicted if and only ifα > β.2

Remark 1. More specifically, it holds that ifα > β ,
there existsn∗ such thatPr(n∗) > Pr(N): There is a
person with an intermediate amount of information who
is more accurate than the person with all information.
And, if α ≤ β, thenPr(N) ≥ Pr(n) for all n < N ,
meaning that the person with all information makes the
most accurate inferences.

3 A characterization of the less-is-
more effect: Imperfect memory

The inference task is the same with that of Section 2:
There existN objects that are ranked, without ties, ac-
cording to a numerical criterion; for example, the objects
may be cities and the criterion may be population. A pair
of objects is randomly sampled and the person has to infer
which object has the higher criterion value. The person’s
information is modeled by the number of objects she has
experienced, ne, where0 ≤ ne ≤ N . The person’s ac-
curacy is the probability of a correct inference and it is
a function of her information,Pr(ne). We have the fol-
lowing definition of the less-is-more effect.

Definition 2. When recognition memory is imper-
fect, the less-is-more effect occurs if and only if
there existne,1 and ne,2 such thatne,1 < ne,2 and
Pr(ne,1) > Pr(ne,2).

I next propose a simple model of how people make in-
ferences when recognition memory is imperfect.

3.1 An imperfect-memory model

In this model, an experienced object that is recognized is
called ahit; an experienced object that is not recognized

2This result also holds for groups that decide by the simple majority
rule if the members (i) have the samen, α , andβ , and (ii) recognize
objects and make inferences independently of each other (Reimer &
Katsikopoulos, 2004, p. 1126).

https://doi.org/10.1017/S1930297500003491 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500003491


Judgment and Decision Making, Vol. 5, No. 4, July 2010 Tests of the less-is-more effect 247

is called amiss; a non-experienced object that is recog-
nized is called afalse alarm; and, a non-experienced ob-
ject that is not recognized is called acorrect rejection. A
main assumption of my imperfect-memory model is the
following:

Assumption 6. Each experienced object has probabil-
ity h of being a hit, and each non-experienced object has
probabilityf of being a false alarm.

Assumption 1 of the perfect-memory model can be
obtained from Assumption 6 by settingh = 1 andf = 0.
The differences between the other assumptions of the
imperfect- and perfect-memory models are due to the
fact that the role played by the recognition cue when
memory is perfect is played by the experience cue when
memory is imperfect. A person with imperfect memory
cannot use the experience cue (they have access only to
the recognition cue), but let us still define theexperience
heuristic:

“If one object is experienced and the other object is
not, the experienced object is inferred to have the higher
criterion value.”

The experience heuristic is a convenient device for ana-
lyzing the less-is-more effect. The following is assumed:

Assumption 7. The accuracy of the experience heuris-
tic, A, and the accuracy of knowledge when both objects
are experienced,B, are constant acrossne (and A,
B > 1

2
).

Assumption 7 generalizes Assumption 5 of the perfect-
memory model because when memory is perfect it holds
thatA = α andB = β.

Now I specify the processing used for the different
amounts of experience information that may be available.
There are three types of pairs of objects that can be sam-
pled, according to whether the number of experienced ob-
jects in the pair equals zero, one, or two. As in (1), these
types occur with respective probabilitiesg(ne), r(ne),
andk(ne). As Pleskac (2007) pointed out, accuracy de-
pends not only on which of guessing, experience heuris-
tic, or experience-based knowledge is used, but also on if
each object in the pair is a hit, miss, false alarm, or correct
rejection.

For example, assume that object 1 is experienced and
object 2 is not experienced. There are four possibilities:
(i) object 1 is a hit and object 2 is a correct rejection,
(ii) object 1 is a hit and object 2 is a false alarm, (iii)
object 1 is a miss and object 2 is a correct rejection, and
(iv) object 1 is a miss and object 2 is a false alarm. In
(i), the agent uses the recognition heuristic to make an

inference because she recognizes only object 1. Because
in this case the recognition and experience cues have the
same value on both objects, it is as if the agent used the
experience heuristic, and her accuracy equalsA3.

Similarly, Pleskac (2007, p. 384-385) showed that ac-
curacy equals1−A in (iv), 1

2
in (iii), andzA+(1−z)(1

2
)

in (ii) (z is the probability that an experienced object has
at least one positive value on a cue other than experience).
Similarly, when the agent has experienced both objects, it
can be shown that accuracy equalsB if both objects are
hits and 1

2
otherwise. When none of the two objects is

experienced, it can be shown that accuracy always equals
1

2
.
Pleskac interpretedh as the proportion of experienced

objects that are recognized andf as the proportion of
non-experienced objects that are recognized, and did not
derive a simple equation forPr(ne). Whenh andf are
interpreted as probabilities, it is straightforward to do so
according to the logic above, as follows:

Pr(ne) = r(ne)[h(1 − f)A + hf(zA + (1 − z)(1

2
))+

(1 − h)(1 − f)(1

2
) + (1 − h)f(1 − A)]+

k(ne)[h
2B + (1 − h2)(1

2
)] + g(ne)(

1

2
).

Rewriting this, we get the main equation of the
imperfect-memory model:

Pr(ne) = g(ne)(
1

2
) + r(ne)αe + k(ne)βe, (3)

whereαe = (h − f + hfz)A + (1 − h + f − hfz)(1

2
),

andβe = h2B + (1 − h2)(1

2
).

Equation (3) says that the inference task with imper-
fect recognition memory can be viewed as an inference
task with perfect recognition memory where (i) the accu-
racy of the recognition heuristicαe equals a linear com-
bination of the accuracy of the experience heuristicA
and 1

2
, and (ii) the accuracy of recognition-based knowl-

edgeβe equals a linear combination of the accuracy of
experience-based knowledgeB and 1

2
. It holds thatαe

andβe are well defined in the sense that they lie between
0 and 1.

Example 2. Take N = 100. If A = .8, B = .8,
h = .64, f = .02, andz = .5, thenPr(70) = .64 and
Pr(100) = .62, and a less-is-more effect is predicted.

3Note that for this and the following claims to hold, it has to be
assumed that the experience and recognition cues are conditionally in-
dependent given the criterion. This means that if the criterion value of
an object is known, the probability that the object has been experienced
does not change depending on whether the object will be recognized or
not. Pleskac (2007) justifies this assumption by saying thatthe value of
A reflects the true correlation between environmental mediators and the
criterion.
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Figure 1: The conditions under which the less-is-more
effect is and is not predicted for the imperfect-memory
model (A is the accuracy of the experience heuristic,B
is the accuracy of experience-based knowledge,h is the
probability of a hit,f is the probability of a false alarm,
z is the probability that an experienced object has at least
one positive value on a cue other than experience). For
simplicity, the figure was drawn assuming thatKh/(1 −
hz) > 0 andh/(1 − hz) < 1, but this is not necessarily
the case.

More generally, Figure 1 depicts graphically the con-
ditions under which the less-is-more effect is predicted,
and Result 2 states and proves this characterization.

Result 2. For the imperfect-memory model, the less-
is-more effect is predicted if and only if either (i)f <
Kh/(1−hz), whereK = 1−h(B− 1

2
)/(A− 1

2
), or (ii)

f > h/(1 − hz).

Proof. Note that ifh−f+hfz > 0, (3) impliesαe > 1

2
.

Also, note that it always holds thatβe > 1

2
.

Assumeh − f + hfz > 0. Result 1 applies and the
less-is-more effect is predicted if and only ifαe > βe.
The conditionαe > βe can be rewritten asf < Kh/(1−
hz), whereK = 1 − h(B − 1

2
)/(A − 1

2
). The condition

h−f +hfz > 0 is equivalent tof < h/(1−hz), which,
becauseK < 1, is weaker thanf < Kh/(1−hz). Thus,
if f < Kh/(1− hz), the less-is-more effect is predicted.

The above reasoning also implies that ifKh/(1 −
hz) ≤ f < h/(1 − hz), the less-is-more effect is not
predicted. Also, iff = h/(1− hz), thenαe = 0, and the
effect is not predicted.

Assumef > h/(1 − hz). Then, it holds thatαe < 1

2

and Result 1 does not apply. The second derivative of
Pr(ne) equals(1 − 2αe) + 2(βe − αe), which is strictly
greater than zero becauseαe < 1

2
andαe < βe. Thus,

Pr(ne) is convex, and a less-is-more effect is predicted.

Remark 2. Result 2 generalizes Result 1: For a perfect
memory, it holds thath = 1, f = 0, A = α, andB = β.

For h = 1 andf = 0, condition (ii) is always violated.
Fromh = 1 andf = 0, condition (i) reduces toK > 0,
which, becauseh = 1, is equivalent toA > B, orα > β.

Example 2 (continued). Consistently with Result 2, if
A = .8, B = .8, h = .64, f = .02, andz = .5, condition
(i) is satisfied: f = .02 < .34 = Kh/(1 − hz), and
a less-is-more effect is predicted. IfA = .8, B = .8,
h = .64, f = .64, andz = .5, then conditions (i) and
(ii) in Result 2 are violated and a less-is-more effect is
not predicted. IfA = .8, B = .8, h = .37, f = .64,
andz = .5, then condition (ii) in Result 2 is satisfied:
f = .64 > .45 = h/(1 − hz), and a less-is-more effect
is predicted; for example,Pr(0) = .5 > .48 = Pr(30).
In paragraph 3.3, I discuss the meaning of this example
in more detail. But first I differentiate between the two
types of less-is-more effects in Result 2.

3.2 Full-experience and below-chance less-
is-more effects

The predicted less-is-more effect is qualitatively differ-
ent in each one of the two conditions in Result 2. If (i)
is satisfied,Pr(ne) has a maximum and there exists a
ne∗ such thatPr(ne∗) > Pr(N), whereas if (ii) is satis-
fied,Pr(ne) has a minimum and there exists ane∗ such
that Pr(0) > Pr(ne∗)

4. In other words, in (i), there
is a person with an intermediate amount of experience
who is more accurate than the person with all experience,
and in (ii), there is a person with no experience who is
more accurate than a person with an intermediate amount
of experience. I call the former afull-experience less-is-
more effect and the latter abelow-chance less-is-more-
effect. The effects studied in the literature so far were of
the full-experience (or full-recognition) type, interpreted
as saying that there are beneficial degrees of ignorance
(Schooler & Hertwig, 2005). The below-chance effect
says that there could be a benefit in complete ignorance.

Result 2 tells us that the less-is-more effect is pre-
dicted, but not its magnitude. To get a first sense of this,
I ran a computer simulation varyingA andB from .55
to 1 in increments of .05, andh, f , andz from .05 to
.95 in increments of .05 (andN = 100). There were
102203 = 800, 000 combinations of parameter values.
For each combination, I checked whether the less-is-more
effect was predicted, and, if yes, of which type. The fre-
quency of a less-is-more effect type equals the proportion
of parameter combinations for which it is predicted. For
the combinations where an effect is predicted, two addi-
tional indexes were calculated.

4In both cases, the optimum ofPr(ne) is achieved atne∗ = [(1−

2αe)N + βe − 1

2
]/[(1 − 2αe) + 2(βe − αe)], and it holds that0 <

ne∗ < N .
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Table 1: The frequency, average prevalence, and average magnitude of the full-experience and below-chance less-is-
more effects (see text for definitions), for the imperfect-memory model (varyingA andB from .55 to 1 in increments
of .05, andh, f , andz from .05 to .95 in increments of .05; andN = 100), and for the perfect-memory model (h = 1
andf = 0).

Frequency Frequency Avg. Prev. Avg. Prev. Avg. Mag. Avg. Mag.

(Full Exp.) (B.Chance) (Full Exp.) (B.Chance) (Full Exp.) (B.Chance)

Imperfect memory 29% 37% 23% 36% .01 .01

Perfect memory 50% 0% 23% 0% .02 .00

Theprevalence of a less-is-more effect equals the pro-
portion of pairs (ne,1, ne,2) such that0 ≤ ne,1 < ne,2 ≤
N andPr(ne,1) > Pr(ne,2) (Reimer & Katsikopoulos,
2004). I report the average, across all parameter combi-
nations, prevalence of the two less-is-more-effect types.

Themagnitude of a less-is-more effect equals the aver-
age value ofPr(ne,1) − Pr(ne,2) across all pairs (ne,1,
ne,2) such that0 ≤ ne,1 < ne,2 ≤ N andPr(ne,1) >
Pr(ne,2). I report the average, across all parameter com-
binations, magnitude of the two less-is-more-effect types.

The simulation was run for both imperfect- and
perfect-memory (whereh = 1 andf = 0) models. The
results are provided in Table 1. Before I discuss the re-
sults, I emphasize that the simulation assumes that all
combinations of parameters are equally likely. This as-
sumption is unlikely to be true, and is made because of
the absence of knowledge about which parameter combi-
nations are more likely than others.

The first result of the simulation is that the imperfect-
memory model predicts a less-is-more effect often,
abo3ut two-thirds of the time, 29% for the full-experience
effect plus 37% for the below-chance effect. The perfect-
memory model cannot predict a below-chance effect, and
it predicts a lower frequency of the less-is-more effect
(50%) than the imperfect-memory model. The second re-
sult is that, according to the imperfect-memory model,
the below-chance effect is predicted to have higher aver-
age prevalence than the full-experience effect. Note also
that the distribution of the prevalence of the below-chance
effect is skewed: almost 50% of the prevalence values are
higher than 45% (the prevalence distribution was close to
uniform for the full-experience effect). The third result of
the simulation is that the average magnitude of both less-
is-more-effect types is small (.01 or .02); for example,
in the imperfect-memory model, only about 5% of the
predicted less-is-more effects have a magnitude higher
than .05.5 This result is consistent with conclusions from
empirical research (Pohl, 2006; Pachur & Biele, 2007;
Pachur, in press). I would like to emphasize, however,
that even small differences in accuracy could be impor-

5For both effects, maximum magnitude equals .25, and maximum
prevalence equals 50%.

tant in the “real world”, as, for example, in business con-
texts.

3.3 The accurate-heuristics explanation

In the predictions of the less-is-more effect in Example
2, we hadA = B. This seems curious because a nec-
essary and sufficient condition for predicting the effect
when memory is perfect isα > β (see Result 1 and
Example 1). In fact, Pleskac (2007) has argued that the
conditionA > B is necessary for the less-is-more effect
when memory is imperfect.

The conditionsα > β or A > B express that a heuris-
tic (recognition or experience), is more accurate than the
knowledge used when more information is available. If
α > β or A > B, the less-is-more effect can be explained
as follows: “Less information can make more likely the
use of a heuristic, which is more accurate than knowl-
edge.” This is an explanation commonly, albeit implic-
itly, proposed for the effect (e.g., Hertwig & Todd, 2003,
Theses 2 & 3), and I call it theaccurate-heuristics expla-
nation.

Result 2 speaks against the accurate-heuristics expla-
nation because it shows thatA > B is neither nec-
essary nor sufficient for predicting the less-is-more ef-
fect. The condition for the full-experience effect,f <
Kh/(1 − hz), can be interpreted as indicating a small
f and a mediumh, wheref andh can compensate for
A ≤ B.6 The condition for the below-chance effect,
f > h/(1 − hz), is independent ofA andB, and can be
interpreted as indicating a largef anda smallh7 (simu-

6All else being equal, increasingA and decreasingB does make
this condition easier to satisfy because it increasesK = 1 − h(B −
1

2
)/(A − 1

2
).

7A sketch of the role of misses and false alarms for predictingthe
less-is-more effects has as follows: For the full-experience effect, as
the number of objects experienced increases from some to all, there are
more pairs of objects where both objects are misses (h is medium), and
guessing is used inappropriately instead of the experienceheuristic or
knowledge. For the below-chance effect, as the number of objects ex-
perienced increases from zero to some, there are more pairs of objects
where one object is a miss (h is small, but nonzero) and the other ob-
ject is a false alarm (f is large) and the experience heuristic is used
inappropriately.
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lations showed thatz has a minor influence on both con-
ditions).

In sum, Result 2 shows that it is the imperfections of
memory (probabilities of misses and false alarms) that
seem to drive the less-is-more effect, rather than whether
the enabled heuristic (the experience heuristic) is rela-
tively accurate or not.

I illustrate the evidence against the accurate-heuristics
explanation by using parameter values from the recogni-
tion memory literature. Jacoby, Woloshyn, and Kelley
(1989) provide estimates forh andf for the recognition
of names.8 In each of two experiments, a condition of
full attention and a condition of divided attention were
run. In the divided-attention condition, participants were
distracted by having to listen long strings of numbers and
identify target sequences. In the full-attention condition,
the average value ofh was(.65 + .63)/2 = .64, and I
used this value as an estimate of a high probability of a
hit. In the divided-attention condition, the averageh was
(.43 + .30)/2 = .37, and this is my estimate of a low hit
probability.

As an estimate of a low probability of a false alarm, I
used the average value off in the full-attention condition,
(.04 + 0)/2 = .02. I did not, however, use the average
value off in the divided-attention condition as an esti-
mate of a high probability of a false alarm. This value
(.11) does not seem to represent situations where recog-
nition accuracy approaches below-chance performance
(Roediger, 1996). Koutstaal and Schacter (1997) argue
that high probabilities of false alarms can occur when
non-experienced items are “. . . broadly consistent with
the conceptual or perceptual features of things that were
studied, largely matching the overall themes or predom-
inant categories of earlier encountered words” (p. 555).
For example, false recognition rates as high as.84 have
been reported (Roediger & McDermott, 1995), with false
recognition rates approaching the level of true recogni-
tion rates (Koutstaal & Schacter, 1997). I chose a value
of .64 (equal to the high estimate ofh in the Jacoby et al.
experiments) as a high estimate off . This choice is ad-
hoc and serves to numerically illustrate the below-chance
less-is-more effect. If.11 were chosen as a high estimate
for f , then a full-experience effect would be predicted in-
stead of a below-chance effect (see right graph of lower
panel in Figure 2 below).

To allow comparison with the perfect-memory case
where predictions were illustrated forα = 8, I setA =
.8; B was set to.75, .8, and .85. Results were robust
acrossz, so I setz = .5 . In Figure 2, there are illus-
trations of predicting and not predicting the less-is-more

8I acknowledge that estimates ofh andf are often influenced by
experimental factors such as payoff structure and instructions (Broeder
& Schuetz, 2009), but I ignore this issue in order to use estimates that
have some basis in empirical research.

effect. In the two graphs of the upper panel, the full-
experience effect is predicted: Accuracy is maximized at
some amount of experiencene∗, between 60 and 80, that
is smaller than the full amount of experienceN = 100.
In the left graph of the lower panel, no less-is-more ef-
fect is predicted. In the right graph of the lower panel,
the below-chance effect is predicted: Accuracy is higher
at no experiencene,1 = 0 than at a largerne,2 > 0, until
ne,2 equals approximately 50.

I now discuss other less-is-more effect predictions in
the literature. Smithson (2010) analyzed a perfect- and
an imperfect-memory model where knowledge consists
of one cue. This implies thatA and B are not neces-
sarily constant acrossne, contradicting Assumption 7;
on the other hand, Smithson modeledh andf as prob-
abilities constant acrossne, agreeing with Assumption 6.
He showed that the less-is-more effect can be predicted
even if α ≤ β or A ≤ B. These results speak against
the accurate-heuristics explanation. More specifically,
Smithson also showed that the prediction of the less-is-
more effect is largely influenced by aspects of memory
such as the order in which objects are experienced and
recognized and not so much on whether, or not, the expe-
rience and recognition heuristics are more accurate than
recognition-based- or experience-based knowledge.

How can one reconcile Smithson’s and my results with
Pleskac’s (2007) conclusion thatA > B is necessary for
the less-is-more effect when memory is imperfect? There
are at least two ways. First, Pleskac studied a differ-
ent model of imperfect memory from Smithson’s and the
model presented here. In Pleskac’s model, recognition
memory is assumed to be a Bayesian signal detection pro-
cess. As a result of this assumption, the false alarm and
hit rates are not constant acrossne, thus contradicting As-
sumption 6 (which both models of Smithson and myself
satisfy). On the other hand, in Pleskac’s modelA and
B are independent ofne, thus agreeing with Assumption
7 (which Smithson’s model does not satisfy). Second,
Pleskac (2007) studied his model via simulations, and it
could be that some predictions of the less-is-more effect,
where it was the case thatA ≤ B, were not identified.

This concludes the discussion of the theoretical pre-
dictions of the less-is-more effect. In the next section, I
develop a method for testing them empirically.

4 Testing less-is-more-effect predic-
tions: Methodological problems
and a new method

In a task of forecasting which one of two national soc-
cer teams in the 2004 European championship would win
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Figure 2: Illustrations of conditions under which the less-is-more effect is and is not predicted. In all graphs,N = 100,
z = .5 (results are robust across different values ofz), A = .8, andB equals.75, .8, or .85. In the two graphs of
the upper panel, a full-experience effect is predicted forf = .02 andh = .64 or .37 (the squares denote maximum
accuracy). In the left graph of the lower panel, no less-is-more effect is predicted forf = h = .64. In the right
graph of the lower panel, a below-chance effect is predictedfor f = .64 andh = .37 (the squares denote minimum
accuracy).
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a match, Pachur and Biele (2007) did not observe the
less-is-more effect even though “. . . the conditions for a
less-is-more effect specified by Goldstein and Gigeren-
zer were fulfilled” (p. 99). Pohl (2006, Exp. 3) drew the
same conclusion in a city-population-comparison task.
The condition these authors mean isα > β (both values
were averages across participants). Are these conclusions
justified?

I do not think so, for at least two reasons. First,
α > β is not the condition that should be tested. Sec-
ond, even if it were, the estimates of and used are incor-
rect. Both complaints rely on the assumption that recog-
nition memory is imperfect. If this assumption is granted,
according to the analyses presented here one could test
f < Kh/(1 − hz) or f > h/(1 − hz), but notα > β.
Furthermore, the quantities used as estimates ofα andβ

are estimates of complicated functions that involveA, B,
h, f , n, andN . In the next paragraph I prove and il-
lustrate this fact, and in the paragraph after that I use it
to construct a new method for testing less-is-more-effect
predictions.

4.1 What do estimates ofα and β in the lit-
erature (αLit and βLit) measure?

Following Goldstein and Gigerenzer (2002), theαLit of
a participant in an experiment has been estimated by the
proportion of pairs where she recognized only one object,
and in which the recognized object had a higher criterion
value; andβLit has been estimated by the proportion of
pairs where the participant recognized both objects, and
in which she correctly inferred which object had a higher
criterion value (the definitions are formalized in the re-
sult that follows). Result 3 shows what these estimates
measure.

Result 3. For the imperfect-memory model, (i)αLit =
(p− q)A + pqB + (1− p)(1 + q)(1

2
); (ii) βLit = p2B +

(1 − p)(1 + 3p)(1

2
), wherep = he/[he + f(1− e)], q =

(1−h)e/[(1−h)e+(1−f)(1−e)], e = (r−f)/(h−f),
andr = n/N .

Proof. Consider a participant. LetR be a recognized
object andU an unrecognized object (both randomly
sampled), with criterion valuesC(R) andC(U). Then, it
holds that:

αLit = Pr[C(R) > C(U)]. (4)
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Using the logic preceding the derivation of Equation
(3), it also holds that:

Pr(C(R) > C(U) |

R is experienced,U is experienced) = B,

Pr(C(R) > C(U) |

R is experienced,U is not experienced) = A,

Pr(C(R) > C(U) |

R is not experienced,U is experienced) = 1 − A,

Pr(C(R) > C(U) |

R is not experienced,U is not experienced) = 1

2
. (5)

Let also:

p = Pr(R is experienced)

q = Pr(U is experienced). (6)

Equations (4), (5), and (6)9 imply αLit = pqB+p(1−
q)A+ (1− p)q(1−A) + (1− p)(1− q)(1

2
), and this can

be rewritten as in part (i) of the result.
Let R and R′ be recognized objects (both randomly

sampled), with criterion valuesC(R) andC(R′). Also,
assume that the participant infers thatC(R) > C(R′).
Then it holds that:

βLit = Pr[C(R) > C(R′)]. (7)

As in deriving (5), it holds that

Pr(C(R) > C(R′) |

R is experienced,R′ is experienced) = B

and

Pr(C(R) > C(R′) |

R is not experienced,R′ is not experienced) = 1

2
.

But we do not know

Pr(C(R) > C(R′) |

R is experienced,, R′ is not experienced)

and

Pr(C(R) > C(R′) |

R is not experienced,R′ is experienced),

because we do not know which ofR andR′ has the higher
criterion value. We can, however, reason that one of this
probabilities equalsA and the other one equals1 − A.

From the above and Equation (7), it follows thatβLit =
p2B + (1 − p)2(1

2
) + 2p(1 − p)(A + 1 − A), which can

be rewritten as part (ii) of the result.
To complete the proof, I computep and q. To do

this, first let O be a randomly sampled object, and

9It is also assumed that objects are experienced independently of
each other.

define e = Pr(O is experienced). Let also r =
Pr(O is recognized), which, by definition, equalsn/N .
It holds that:

r = Pr(O is recognized)

= Pr(O is recognized| O is experienced) ×

Pr(O is experienced) +

Pr(O is recognized| O is not experienced) ×

Pr(O is not experienced)

= he + f(1 − e).

Solving the above equation fore, we gete = (r −
f)/(h − f).

Note thatp = Pr(O is experienced| O is recognized).
By Bayes’ rule, this probability equals
Pr(O is recognized| O is experienced)×
Pr(O is experienced)/Pr(O is recognized),
which turns out to behe/[he + f(1 − e)].

Similarly, q = Pr(U is experienced) =
Pr(O is experienced | O is not recognized), and this
turns out to be(1 − h)e/[(1 − h)e + (1 − f)(1 − e)].

Remark 3. Because the estimates used can be deter-
mined from different experiments, it may be that some
estimates are not well defined. For example, ifh > r,
thene > 1.

Example 3. Result 3 says that the estimates ofα and
β used in the literature,αLit andβLit, are not straight-
forward to interpret. If memory is perfect, the estimates
measure what they were intended to:f = 0 implies
p = 1, andβLit = B = β = βe; if also h = 1, then
q = 0, andαLit = A = α = αe. But if memory is
imperfect,αLit may differ fromαe, andβLit may dif-
fer fromβe. Numerical illustrations of the difference be-
tweenαLit andαe, andβLit andβe, are given in Table
2.

In Table 2, I used the averagen, αLit, andβLit for
each one of 14 groups in an experiment by Reimer and
Katsikopoulos (2004) where participants had to compare
the populations ofN = 15 American cities. I also set
h = .9, f = .1, andz = .510. To computeαe andβe,
I followed three steps: First, I computedp andq as in
Result 3. Second, I solved forA andB from (i) and (ii)

10The choice ofh andf was based on the constraint thath has to
be higher than allr observed in the experiment, so thate > 1 (see
Remark 3). This led toh > .87, which I rounded up toh = .9.
This estimate is also higher than the observedr in other experiments on
the population-comparison task with American cities and participants
from Germany and German-speaking Switzerland (.53 in Hertwig et al.,
2008 and .63 in Pachur et al., 2009; in Pohl’s experiment thatinvolved
European cities,r = .82). Forf , I chose a value of .1 as indicating very
good recognition memory, as also doesh = .9. I setz = .5 because
results are robust acrossz.
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Table 2: Numerical illustration of the difference betweenαLit andαe, andβLit andβe, based on the averagen, αLit,
andβLit for each one of 14 groups in an experiment by Reimer and Katsikopoulos (2004), where participants had to
compare the populations ofN = 15 American cities. I also seth = .9, f = .1, andz = .5. For two groups, the
estimates ofαe were not between 0 and 1. On the average,αe was larger thanαLit by .05, andβe smaller thanβLit

by .04.

n 9 12 10.3 12 11.3 13 11.3 12.3 9.3 12.3 10.7 12 8 9.7

αLit .79 .79 .78 .81 .88 .87 .72 .70 .68 .66 .79 .81 .77 .79

αe .81 .90 .80 .91 - - .75 .77 .68 .67 .83 .92 .79 .82

βLit .60 .58 .64 .62 .64 .66 .61 .60 .62 .64 .58 .60 .53 .54

βe .54 .55 .59 .59 .60 .63 .57 .57 .56 .61 .54 .57 .45 .49

of Result 3, andB = [βLit − (1 − p)(1 + 3p)(1

2
)]/p2,

A = [αLit − pqB − (1 − p)(1 + q)(1

2
)]/(p − q). Third,

I used Equation (3) to computeαe andβe.
The difference betweenαLit andαe, or βLit andβe

exceeded .01 in 24 out of 26 cases. The difference was
as large as .11. On the average,αe was larger thanαLit

by .05, andβe was smaller thanβLit by .0411. I also
performed a sensitivity analysis, varyingh from .9 to 1
in increments of .01 andf from .1 to 0 in decrements of
.01. There were(14)112 = 1694 cases. On the average,
αe was larger thanαLit by .04, andβe was smaller than
βLit by .02. One may expect these differences to increase
if h andf are less indicative of a very good recognition
memory than they were here.

Remark 4. Importantly, Result 3 implies that it is not
straightforward to interpret the reported correlations be-
tweenαLit andn, or βLit andn (Pachur & Biele, 2007;
Pachur, in press). It is not clear that these correlations
suggest substantial, or any, correlations betweenA and
n, or B andn, because bothαLit andβLit are compli-
cated functions ofn.

In fact, correlations betweenαLit andn, or βLit and
n, are predicted even ifA, B, h, and f are constant
acrossn. For example, I computed the correlations be-
tweenαLit andn, andβLit andn with the six parameter
combinations used in the upper panel of Figure 2, where
A = .8, B = .75, .8, or .85, h = .64 or .37, andf = .02
(N = 100). For eachn from 0 to 100, I used the equa-
tions in the statement of Result 3 in order to computeαLit

andβLit, and then computed their correlations withn.12

11Interestingly, it was always the case thatαLit ≤ αe andβLit >
βe. This means thatαLit > βLit would implyαe > βe, which in turn
would imply a less-is-more effect. So, it would end up being correct to
claim that if αLit > βLit, then the less-is-more effect is predicted.
It should be studied further under what conditions does thissituation
occur.

12For somen, the estimates ofαLit or βLit were not between 0
and 1. On the average, this happened for eight values ofn per parame-
ter combination. These cases were excluded from the computations of
correlations.

As can be seen in Table 3, correlations can be very
substantial, varying from−.59 to .85. The average of the
absolute value of the correlation betweenβLit andn is
.65 (two correlations were negative and four were posi-
tive) and betweenαLit andn is .24 (all six correlations
were negative).

4.2 A method for testing less-is-more-effect
predictions

Based on the points made in the previous paragraph, I
claim that, unless it can be established that recognition
memory was perfect in an experiment, a correct empirical
test of the less-is-more effect in that experiment should
not use the estimates ofα andβ in the literature (αLit

andβLit).
There is one more problem with empirical tests of the

less-is-more effect in the literature. The way some of
these tests are carried out often provides no evidence for
or against any theory of the conditions under which the
less-is-more effect is predicted. To provide such evi-
dence, it does not suffice to just check if an effect is found
when the conditions in Results 1 or 2 are satisfied: Even
if a condition for predicting the less-is-more effect holds,
the prediction is not that all pairs of agents that have
amounts of informationn1 andn2 such thatn1 < n2

would also havePr(n1) < Pr(n2). For example, in
the upper left panel of Figure 2, the less-is-more effect is
predicted but it is also predicted that an agent who has ex-
perienced 40 objects would be less accurate than an agent
who has experienced 100 objects. One cannot conclude
that “no evidence for the less-is-more effect is found even
if a condition that is sufficient for the effect holds”, in the
case that a person who has experienced 40 objects is less
accurate than another person who has experienced 100
objects.

For example, consider Pohl’s (2006) Experiment 3,
which he interpreted as providing “no evidence for a less-
is-more effect” (p. 262). For 11 German and 11 Italian
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Table 3: Numerical illustration of correlations betweenαLit andn, and LitβLit andn, even whenA, B, h, andf are
constant (N = 100). The average of the absolute value of the correlation betweenαLit andn is .65, and between
LitβLit andn is .24.

A B h f
αLit andn
correlation

βLit andn
correlation

.8 .75 .64 .02 –.35 –.40

.8 .80 .64 .02 .59 –.21

.8 .85 .64 .02 .78 –.02

.8 .75 .37 .02 –.59 –.46

.8 .80 .37 .02 .75 –.28

.8 .85 .37 .02 .83 –.08

cities, he measured the average, across participants,n,
αLit, andβLit. Pohl observed thatn was larger in Ger-
man (11) than in Italian (9.5) cities, andαLit = .82,
βLit = .74 for Italian cities; for German cities,αLit

was not defined andβLit = .79. The less-is-more ef-
fect was not found: The accuracy for German cities (.78)
was higher than the accuracy for Italian (.76) cities. But
this is not evidence against the theory that, under the con-
dition α > β, an effect is predicted: For the particular
values ofn, αLit, andβLit, applying Equation (2) does
not predict a less-is-more effect, but rather thatPr(n) is
higher for German (.79) than for Italian cities (.76), as it
was indeed found.

In order to determine whether there is evidence for the
less-is-more effect or not from an experiment, Snook and
Cullen (2006), and Pachur and his colleagues (Pachur
& Biele, 2007; Pachur, in press) searched for non-
monotonic trends in the best-fitting polynomial to all
data points{n, Pr(n)}. This partly addresses the issue
I raised above because typically a large number of data
points are considered, and it is likely that among them
there are some pairs for which the effect is predicted.
Remaining problems are that (i) the average prevalence
and magnitude of the full-experience less-is-more effect
are predicted to be small (see Table 1), and even the
best-fitting polynomials of idealized curves are basically
monotonic,13 and (ii) no out-of-sample-predictioncriteria
were used to identify these polynomials.

I now propose a method for testing the theoretical pre-
dictions of the less-is-more effect that avoids the issues
discussed above and in the previous paragraph. The
method consists of (i) computing the predicted accura-
cies of pairs of agents (individuals or groups), (ii) com-
paring the accuracies to determine whether a less-is-more
effect is predicted or not, and (iii) checking the predic-

13For the six curves in the upper panel of Figure 2, the best-fitting
polynomial is a quadratic function where the coefficients ofn2 are of
the order of10−4 , and the coefficients ofn are about 100 times larger.

tions against the observations. I first specify what data
are assumed to be available.

Definition 2. A recognition experiment is one in which
αLit, βLit, n, andN are available.

All experiments in the literature run to test the less-
is-more effect are recognition experiments. The method
uses the data of a recognition experiment for each partic-
ipant plus the values of three more parameters,h, f , and
z, which practically would often be assumed equal for all
participants. It may be fine to setz to a fixed value, say .5
(becausePr(n) is robust acrossz). Currently, estimates
of h andf are not available from experiments run to test
the less-is-more effect. This is so because these experi-
ments used natural stimuli (e.g., cities) that participants
had experienced outside the laboratory. Estimates ofh
andf have to be taken from the literature on tasks where
experience is controlled, that are similar to the task on
which the test is based (e.g., recognition of names, as in
Jacoby et al., 1989).

The computation of the accuracy of an agent,Pr(ne),
givenαLit, βLit, n, N , h, f , andz, is a straightforward,
albeit cumbersome, application of Result 3 and Equations
(1) and (3):

Input: αLit, βLit, n, N , h, f , andz.

Step 1: r = n/N, e = (r − f)/(h− f), p = he/[he +
f(1− e)], andq = (1−h)e/[(1−h)e+(1− f)(1− e)].

Step 2: B = [βLit − (1− p)(1 + 3p)(1

2
)]/p2, andA =

[αLit − pqB − (1 − p)(1 + q)(1

2
)]/(p − q).

Step 3: αe = (h−f +hfz)A+(1−h+f−hfz)(1

2
),

andβe = h2B + (1 − h2)(1

2
).
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Step 4: ne = (n − Nf)/(h− f),

Step 5: g(ne) = (N − ne)(N − ne − 1)/N(N − 1),
r(ne) = 2ne(N −ne)/N(N −1), andk(ne) = ne(ne −
1)/N(N − 1).

Step 6: Pr(ne) = g(ne)(
1

2
) + r(ne)αe + k(ne)βe.

Output: Pr(ne).

I now illustrate the method. I use data from an exper-
iment by Reimer and Katsikopoulos (2004) where three-
member groups had to perform a population-comparison
task withN = 15 American cities. In this research, seven
pairs of groups were identified so that (i) the variability
in n, αLit, andβLit across the three group members was
“small”, (ii) the difference in the averageαLit andβLit

between the two groups in a pair was “small”, and (iii)
the difference in the averagen between the two groups
in a pair was “large” (Reimer & Katsikopoulos, 2004, pp.
1018-1019). I used the averagen, αLit, andβLit for each
one of 14 groups (the values are provided in Table 2). I
also seth = .9, f = .1, andz = .5 (see comments in
Example 3).

In the Reimer-and-Katsikopoulos experiment, the less-
is-more effect was observed in five out of the seven pairs
(1-5) and not observed in two pairs (6, 7). As can be seen
in Table 4, according to the method, the theory of the
less-is-more effect, as summarized in Result 2, correctly
predicts the effect in four pairs (1, 2, 4) and correctly pre-
dicts that there would be no effect in both pairs 6 and 714

(for one pair (3), the estimates ofαe were not between
0 and 1, and the method was not applied). I also leth
vary from .9 to 1 in increments of .01 andf vary from .1
to 0 in decrements of .01. The theory correctly predicted
the effect in 402 out of 550 cases, correctly predicted no
effect in 203 out of 242 cases, and was not applied in 55
cases. More generally, it should be studied further how
robust the results of the method are when there is noise in
the parameter estimates. This is a concern because of the
nonlinear terms in various equations of the method.15

5 Conclusions

Strong predictions such as the less-is-more effect provide
opportunities for theory development and deserve further

14The average of the absolute value of the difference between the
observedPr(n) and predictedPr(ne) is .06, and the average of the
absolute value of the difference between the predicted and observed
size of the effect (i.e., accuracy difference between the two groups in a
pair) is .04.

15There may be room here for improving the quantitative predictions
by optimizingh, f , andz, but the point was to illustrate how the method
is applied.

study. This work made four contributions to the study of
the less-is-more effect: Three refer to the theoretical pre-
dictions of the effect and one refers to how to empirically
test these predictions.

First, I presented a characterization of the conditions
under which the less-is-more effect is predicted (Re-
sult 2; this generalized the characterization of Gold-
stein & Gigerenzer, 2002). A main implication of the
characterization is that it provides evidence against an
implicit, but common explanation for the effect, the
accurate-heuristics explanation (paragraph 3.3). The pre-
dictions were illustrated with parameter estimates from
a recognition-memory experiment (Figure 2). Second,
a new type of less-is-more effect, the below-chance ef-
fect, was predicted (paragraph 3.2). Third, I presented
a simulation which showed that the less-is-more effect
is predicted to be frequent, but its average magnitude is
predicted to be small (Table 1), as it has been found em-
pirically.

The fourth contribution was to point out some method-
ological issues in the empirical testing of less-is-more-
effect predictions. In Result 3, it was shown that, granting
that recognition memory is imperfect, the parameter esti-
mates used in the tests are not measuring what they were
intended to (Example 3). This result, however, allows
constructing a new method for testing less-is-more-effect
predictions (paragraph 4.2). Result 3 also has implica-
tions for the plausibility of the imperfect-memory model
used here and of other models (Pleskac, 2007; Smithson,
2010). The main assumptions of my model (Assump-
tions 6 and 7) are independence assumptions: The param-
eters of the model (accuracies of the experience heuristic
and knowledge,A andB, and probabilities of hits and
false alarms,h andf ) are constant across information
(the number of objects experienced,ne). These assump-
tions were made for mathematical convenience. Pleskac
(2007) makes the independence assumption only forA
andB and Smithson (in press) makes it only forh andf

Both authors have plausibility arguments against the
independence assumptions they do not make: Pleskac ap-
peals to a Bayesian signal detection model of recognition
memory (for which he also cites studies that provide em-
pirical support) that implies thath andf vary with ne,
and Smithson constructs counterexamples whereα andβ
vary withn, andA andB vary withne.

These arguments have a lot to recommend them. But
it is not clear how substantial the correlations have been
found to be. Empirical evidence is provided by Pachur
and colleagues (Pachur & Biele, 2007; Pachur, in press)
who, across ten experiments, report average correlations
betweenα andn, and betweenβ andn, that range from
.18 to .27. The problem is that the estimates ofα andβ
used in these studies are not straightforward to interpret
because they are estimates of complicated functions of
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Table 4: Numerical results of the method with data from Reimer and Katsikopoulos (2004; seven pairs of groups
compared populations ofN = 15 American cities). The method used then, αLit, andβLit of this study (see Table
2), andh = .9, f = .1, z = .5 (see comments in Example 3), to predictPr(ne). For one pair (3), the estimates ofαe

were not between 0 and 1, and the method was not applied. The less-is-more-effect predictions were correct for five
pairs (1, 2, 4, 6, and 7) and incorrect for one pair (5).

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7

n 9 12 10.3 12 11.3 13 11.3 12.3 9.3 12.3 10.7 12 8 9.7

ObservedPr(n) .83 .75 .73 .69 .78 .75 .67 .63 .66 .64 .67 .73 .56 .66

PredictedPr(ne) .67 .64 .67 .66 - - .63 .60 .61 .61 .66 .66 .64 .65

A, B, h, f , N , and importantly, ofn itself. In fact, I
numerically showed (Table 3) that settingA, B, h, f ,
andN to be constant still led to correlations between the
estimate ofα used in the literature andn (.65, across six
parameter combinations) and between the estimate ofβ
used in the literature andn (.24). It seems that there is
currently no definite evidence about which, if any, of the
independence assumptions should be revised.

Unsatisfying at it is, my conclusion is that new and
carefully controlled experiments are required in order to
test the independence assumptions made here. Other em-
pirical work I propose is to test the below-chance less-
is-more effect. This effect requires below-chance recog-
nition performance and it is not clear if it would be ob-
served with natural and representative stimuli (Brunswik,
1954).

I end with a list of open questions for models of recog-
nition memory that can be used in future theoretical
work (Smithson, 2010, also has a list). A main ques-
tion is which types of modeling assumptions are consis-
tent with the enabling-of-accurate-heuristics explanation,
and which are not. So far, we know that Pleskac’s as-
sumptions seem to be consistent with this explanation,
whereas the assumptions of Smithson and myself are not.
Thus, the independence of the probabilities of hits and
false alarms from experience could be key here. Other
concepts that could be modeled are cognitive architecture
(Schooler & Hertwig, 2005), familiarity (Dougherty et
al., 2008), and learning and forgetting (Smithson, 2010).
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