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Abstract

We study the properties of the multivariate skew normal distribution as an approximation
to the distribution of the sum of n independent, identically distributed random vectors.
More precisely, we establish conditions ensuring that the uniform distance between the
two distribution functions converges to 0 at a rate of n−2/3. The advantage over the
corresponding normal approximation is particularly relevant when the summands are
skewed and n is small, as illustrated for the special case of exponentially distributed
random variables. Applications to some well-known multivariate distributions are also
discussed.
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1. Introduction

The normal distribution is often used as an approximating distribution, due to the central
limit theorem. Unfortunately, the speed of convergence cannot be faster than n−1/2 in the
general case. More precisely, let X1, X2, . . . be independent, identically distributed (i.i.d.)
and standardized random vectors with values in R

d . Let Qn denote the distribution of Yn =
n−1/2(X1 + · · · + Xn). According to the Berry–Esseen Theorem (see, e.g. Theorem 13.3 of
Bhattacharya and Ranga Rao (1986)), there exists a finite constant C > 0 such that, for every
Borel set A ⊂ R

d , we have

|Qn(A)−�(A)| ≤ n−1/2C (1)

if the random vectors X1, X2, . . . have finite fourth-order moments, where � is the d-
dimensional standardized normal distribution. Now consider the two-point distributed random
variables X1, X2, . . . with P(Xi = −1) = 1

2 = P(Xi = 1). Then, for n = 2m, we have

lim
2m→∞(2m)

1/2Q2m({0}) =
√

2

π
,

which means that, for even n, the distribution Qn has points with probability mass of order
n−1/2. Since � is absolutely continuous, the absolute difference |Qn − �| also has points
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Improved approximation of the sum of random vectors 467

with mass of order n−1/2, and, consequently, the speed of convergence in (1) cannot be faster
than n−1/2.

In order to rule out purely discrete distributions, in particular the above mentioned two-point
distributions, we might impose Cramer’s condition, which holds for a probability measure Q
on R

d satisfying
lim sup
‖t‖→∞

|Q̂(t)| < 1,

where Q̂ is the characteristic function of a random vector with distribution Q. Cramer’s
condition is equivalent to

sup
‖t‖>b

|Q̂(t)| < 1

for all positive b; see, e.g. Bhattacharya and Ranga Rao (1986, Section 20). If the random
vectors X1, X2, . . . satisfy Cramer’s condition and have finite fourth-order moments, the first-
order Edgeworth expansion (see, e.g Theorem 20.1 of Bhattacharya and Ranga Rao (1986))
yields a finite constant C > 0 such that, for every Borel set A ⊂ R

d , we have∣∣∣∣Qn(A)−�(A)− n−1/2 1

6

∫
A

( ∑
(i,j,k)∈{1,...,d}3

mijkxixj xk −
∑

(i,j)∈{1,...,d}2

3miij xj

)
φ(x) dx

∣∣∣∣
≤ n−1C,

wheremijk = E(X1iX1jX1k) for i, j, k ∈ {1, . . . , d} and whereX1i is the ith entry of random
vector X1. The absolute difference |Qn(A) − �(A)| converges to 0 as n goes to ∞, but the
speed of convergence is not faster than n−1/2, unless we further assume that the random vectors
X1, X2, . . . are nonskewed, which happens whenmijk = 0 for all triples (i, j, k) ∈ {1, . . . , d}3.
However, the assumption that X1, X2, . . . are nonskewed is too strong for many applications;
see, e.g. financial applications (Adcock (2007)). Another solution is to approximateQn(A) by

�(A)+ n−1/2 1

6

∫
A

( ∑
(i,j,k)∈{1,...,d}3

mijkxixj xk −
∑

(i,j)∈{1,...,d}2

3miij xj

)
φ(x) dx

instead of �(A), which is the original intention of Edgeworth’s expansion. Unfortunately,
the elements of the approximating series are not necessarily probability distributions, and the
approximation deteriorates in the distribution’s tails, where it can even become negative; see
Field and Ronchetti (1990, p. 14).

Since the problem lies in the skewness of Qn, it is intuitively appealing to approximate Qn

with another skewed distribution. The skew normal distribution, being a simple and skewed
generalization of the normal distribution, makes a natural candidate for this task. A random
variable Z ∈ R

1 has a skew normal distribution with location parameter ξ , scale parameter ψ,
and shape parameter λ if its probability density function is

f (z; ξ, ψ, λ) = 2

ψ
φ

(
z− ξ

ψ

)
�

(
λ
z− ξ

ψ

)
, (2)

where λ, ξ, z ∈ R, ψ ∈ R
+, and φ(·) and �(·) denote the probability density function (PDF)

and the cumulative distribution function (CDF) of a standard normal distribution, respectively
(Azzalini (1985)). When (2) is the PDF of Z we shall write Z ∼ SN(ξ, ψ, λ). The parameters
ξ , ψ , λ do not in general equal the expectation μ, the standard deviation σ , skewness γ1, or
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kurtosis β2. However, μ, σ , γ1, and β2 are simple functions of ξ , ψ , λ. Azzalini and Dalla
Valle (1996) generalized the skew normal distribution to the multivariate case by introducing
the multivariate skew normal distribution. The distribution of a random vector Z ∈ R

d is d-
dimensional skew normal with location parameter ξ , scale parameter �, and shape parameter
α, that is Z ∼ SN(ξ,�, α), if its PDF is

f (z; ξ,�, α) = 2φd(z− ξ ;�)�(α
(z− ξ)), z, ξ, α ∈ R
d , � ∈ R

d×d , (3)

where�(·) is the CDF of a standardized normal variable andφd(z−ξ ;�) is the density function
of a d-dimensional normal distribution with mean ξ and variance �; see Azzalini and Dalla
Valle (1996). It is easy to check that (3) reduces to (2) in the univariate case, by lettingψ = �1/2

and λ = αψ . Also, all univariate marginals of (3) are of the form (2). Basic distributional
properties of multivariate skew normal distributions are reviewed in De Luca et al. (2006).
Applications and extensions of the skew normal distribution are discussed in the survey papers
by Azzalini (2005), (2006), and Kotz and Vicari (2005). According to Kotz and Vicari (2005),
‘the field of skewed distributions has become—in our opinion—one of the most fruitful and
promising areas in the development of statistical distribution theory and applications, during
the last 20 years which does not so far require using advanced mathematical tools’.

In the literature several authors argue that the skew normal distribution offers a better
approximation for Qn than the normal distribution if Q is skewed. Gupta and Kollo (2003)
propose a density expansion based on the multivariate skew normal distribution. Bartoletti
and Loperfido (2010) present a similar expansion in the univariate case, for the mean of
dependent data. However, both expansions are accurate up to an error which vanishes with
speed n−1/2, which is no faster than the approximation speed in the normal approximation.
Chang et al. (2008) show some examples of binomial distributions which can be much
better approximated by skew normal distributions than by normal distributions. However,
no theoretical results are given to support their intriguing numerical results.

In the present paper we overcome the above mentioned problems by constructing an
approximating series for Qn(A) from the class of skew normal distributions. We prove that,
under Cramer’s condition and with existing fourth-order moments, the speed of convergence is
at least n−2/3. The rest of the paper is organized as follows. In Section 2 we introduce some
basic concepts and notation. Sections 3 and 4 show some preliminary results and the main
convergence result, respectively. In Section 5 we discuss a financial application. In Section 6
we use the sum of exponentially distributed random variables to illustrate the theoretical results
in the previous sections. Section 7 contains some concluding remarks and hints for future
research.

2. Tensor notation for third moments and third cumulants

Third-order tensors provide a natural tool for representing the skewness of a random vector.
A (real) tensor A = {ai1···ip } ∈ R

n1×···×np is a multidimensional array of numerical values
identified by a vector of subscripts. We call p the order of A and dim(A) = (n1, . . . , np)



the dimension of A. Up to a choice of bases, a tensor is an element of a tensor product of
vector spaces. Comon et al. (2008) and Qi et al. (2007) extensively review tensor properties
and applications. Good reviews of basic concepts can also be found in Comon et al. (2008),
Kolda and Bader (2009), and Kilmer and Martin (2011).

Intuitively, tensors generalize matrices. Up to a choice of bases, each matrix represents
a linear transformation acting on a vector space. Similarly, up to a choice of bases, each
tensor represents a multilinear transformation simultaneously acting on several vector spaces.
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A multilinear operator is a function of several elements belonging to possibly different vector
spaces, which is linear in each one of the elements themselves. For example, the determinant
of a square matrix is a multilinear function of its columns. Similarities between matrices and
tensors might be better appreciated by looking at third-order tensors and symmetric tensors.
Third-order tensors might be regarded as linear operators acting on spaces of matrices; see
Braman (2010). Similarly, matrices represent linear operators acting on spaces of vectors.
Each symmetric tensor is uniquely associated to a polynomial in several variables; see Comon
et al. (2008). Similarly, each quadratic form in several variables is uniquely associated to a
symmetric matrix. As a statistical application, the third cumulant of a linear function a
x of a
d-dimensional random vector x is a third degree polynomial in a1,…, ad , characterized by the
third cumulant of x.

Some tensors are of special interest; for example, symmetric, rank-one, and third-order
tensors. A tensor is symmetric if it is invariant under permuting indices; see Comon et
al. (2008) and Brachat et al. (2010). A tensor is of rank one if it may be represented as
the Kronecker product of several vectors. In probability and statistics, third-order tensors are
the natural tool for representing the skewness of a random vector X = (X1, . . . , Xd)


 with
mean μ = (μ1, . . . , μd)


 which satisfies E(|X3
i |) < ∞ for i = 1, . . . , d. The third cumulant

of X is K3 = {κijk}, where κijk = E((Xi − μi)(Xj − μj )(Xk − μk)) for i, j, k = 1, . . . , d;
see McCullagh (1987, p. 25). In order to use standard matrix techniques, it is often convenient
to ‘flatten’ K3 into the matrix

κ3(X) = E((X − μ)⊗ (X − μ)
 ⊗ (X − μ)),

which is also referred to as the third cumulant ofX. The symbol ‘⊗’ denotes the Kronecker (or
tensor) product, and acts on matrices A = {aij } ∈ R

p×q and B = {bij } ∈ R
h×k by obtaining

a block matrix A ⊗ B ∈ R
ph×qk whose i, j th block is the matrix aijB (see, e.g Mardia et al

(1979, p. 459). Third cumulants are symmetric tensors of order 3. De Luca and Loperfido
(2012) review the main properties of third cumulants and also examine some third cumulants
of rank one.

The following lemma shows in tensor notation how the third moment

μ3(X) = E(X ⊗X
 ⊗X)

of a random vector X relates to the third moment of its linear transformation Y = AX.

Lemma 1. Let X be a d-dimensional random vector with finite third moment μ3(X), and let
A be a k × d real matrix. Then the third moment of AX is μ3(AX) = (A⊗ A)μ3(X)A


.

Proof. We first recall some fundamental properties of the Kronecker product (see, e.g.
Mardia et al. (1979, p. 460)).

(P1) The Kronecker product is associative, (A⊗ B)⊗ C = A⊗ (B ⊗ C) = A⊗ B ⊗ C.

(P2) If A, B, C, and D are matrices of such size that we can form the matrix products AC
and BD then (A⊗ B)(C ⊗D) = AC ⊗ BD.

(P3) If a and b are two vectors then ab
, a ⊗ b
, and b
 ⊗ a denote the same matrix.

(P4) If A, B, and C are matrices of such size that we can form the matrix product BC then
A⊗ BC = (A⊗ B)C and C(A⊗ B) = CA⊗ B.

https://doi.org/10.1239/jap/1402578637 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1402578637


470 M. C. CHRISTIANSEN AND N. LOPERFIDO

By definition, the third moment of AX is

μ3(AX) = E(AX ⊗X
A
 ⊗ AX).

As a direct consequence of P1 and P3, μ3(AX) equals

E(AX ⊗ (X
A
 ⊗ AX)) = E(AX ⊗ AX ⊗X
A
).

We now use properties P1, P2, and P4 to represent μ3(AX) as

E((AX ⊗ AX)⊗X
A
) = E((A⊗ A)(X ⊗X)⊗X
A
)
= E((A⊗ A)(X ⊗X ⊗X
)A
).

Linear properties of the expected value and further application of P1 and P3 lead to

μ3(AX) = (A⊗ A)E(X ⊗X ⊗X
)A
 = (A⊗ A)E(X ⊗X
 ⊗X)A
.

The expected value in the above equation is the third moment of X, that is μ3(X). Hence, we
can write μ3(AX) = (A⊗ A)μ3(X)A


 and complete the proof.

3. Preliminary results on the skew normal distribution

The following lemmas are instrumental in proving the main convergence theorem, which
will be presented in the next section.

LetX1, X2, . . . be i.i.d. and standardized random variables with values in R
d . LetQn denote

the distribution of Yn = n−1/2(X1 + · · · +Xn). Let SN(·; ξ,�, α) denote the d-dimensional
distribution of a multivariate skew normal random vector.

Lemma 2. The third cumulant of X1 is a third-order tensor of rank at most one, i.e.

κ3(X1) = γ ⊗ γ
 ⊗ γ

for some γ ∈ R
d , if and only if there exist parameters ξn, �n, and αn such that, for all

n > ‖γ ‖6 (π − 2)3

2(4 − π)2
, (4)

the first three cumulants and the first three moments of SN(ξn,�n, αn) and Yn are equal. The
parameters are

δn = n−1/6 π1/2

(
√

2(4 − π))1/3
γ, �n = I + 2

π
δnδ



n , ξn = −

√
2

π
δn,

and

αn = �−1
n δn√

1 − δ
n �−1
n δn

.

Proof. The d-dimensional skew normal random vector Zn ∼ SN(ξn,�n, αn) has third
cumulant

κ3(Zn) =
√

2

π

(
4

π
− 1

)
δn ⊗ δ
n ⊗ δn,

where δn = �nαn/
√

1 + α

n �nαn; see, e.g. De Luca and Loperfido (2012). Since κ3(Yn) =

n−1/2κ3(X1), for the equality of κ3(Zn) and κ3(Yn) we necessarily need κ3(X1) to be a
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third-order tensor of rank at most one and

δn = n−1/6 π1/2

(
√

2(4 − π))1/3
γ. (5)

The first two cumulants of Yn and Zn are equal if and only if the first two moments are equal.
Since Yn has expectation 0 and a covariance matrix that equals the identity matrix, we have
E(Yn) = E(Zn) and E(YnY



n ) = E(ZnZ



n ) if and only if

ξn +
√

2

π
δn = 0 and �n − 2

π
δnδ



n = I ;

see, e.g. De Luca et al. (2006). It remains to show that there exists an αn such that δn =
�nαn/

√
1 + α


n �nαn has the form (5). The αn we are looking for can be defined by

αn = �−1
n δn√

1 − δ
n �−1
n δn

if�−1
n exists and 1 − δ
n �−1

n δn is strictly positive. By applying Sylvester’s determinat theorem,
the determinant of�n equals 1 + 2/πδ
n δn, which is strictly positive since δ
n δn is nonnegative.
Also, with the help of Sylvester’s determinat theorem we can show that

1 − δ
n �−1
n δn = det(�n − δnδ



n )

det(�n)
.

Since we already know that det(�n) is strictly positive, we have 1 − δ
n �−1
n δn > 0 if and only

if

0 < det(�n − δnδ


n ) = det

(
I +

(
2

π
− 1

)
δnδ



n

)
= 1 +

(
2

π
− 1

)
δ
n δn,

where the second equality is again an application of Sylvester’s determinat theorem. By
substituting δn with (5), we can show that the positivity of 1 + (2/π − 1)δ
n δn is equivalent
to (4). This completes the proof.

Note that (ξn,�n, αn) → (0, I, 0) as n → ∞ and that SN(0, I, 0) is the d-dimensional
standard normal distribution.

Remark 1. The constant in (4) is slightly smaller than 1.01.

Lemma 3. Under the assumptions of Lemma 2 but with the stronger condition

n > m‖γ ‖6 (π − 2)3

2(4 − π)2
(6)

for an arbitrary but fixed m > 1, the characteristic function of SN(ξn,�n, αn) has the form

e−t
t/2
(

1 − i
(t
γ )3

6n1/2 + (t
γ )4

n2/3

π − 3

3(
√

2(4 − π))4/3

)
+ R(t, n), t ∈ R

d , (7)

where the remainder has an upper bound of

|R(t, n)| ≤ C

n5/6
e−εt
t (‖t‖5 + · · · + ‖t‖23)

for positive constants C and ε.
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Proof. The characteristic function of SN(ξn, ωn, αn) is

�n(t) = eit

ξn−t
�nt/2

(
1 + i

∫ t
δn

0

√
2

π
eu

2/2 du

)
, t ∈ R

d .

Using the representations of ξn and �n according to Lemma 2, we obtain

�n(t) = e−i√2/πt
δne−t
t/2e−(1/π)(t
δn)2
(

1 + i

∫ t
δn

0

√
2

π
eu

2/2 du

)
.

Since, for any real number x and nonnegative integer r , we have∣∣∣∣eix −
r∑
k=0

(ix)k

k!
∣∣∣∣ ≤ |x|r+1

(r + 1)!

(see, e.g. Corollary 8.2 of Bhattacharya and Ranga Rao (1986)), we can show that

e−i√2/πt
δn = 1 − i

(
2

π

)1/2
(t
δn)1

1
−

(
2

π

)2/2
(t
δn)2

2

+ i

(
2

π

)3/2
(t
δn)3

6
+

(
2

π

)4/2
(t
δn)4

24
+ R1(t, n),

where the remainder R1(t, n) has an upper bound of

|R1(t, n)| ≤
(

2

π

)5/2 |t
δn|5
120

.

From Taylor’s theorem we obtain

e−(1/π)(t
δn)2 = 1 − 1

π
(t
δn)2 + 1

2π2 (t

δn)4 + R2(t, n),(

1 + i

∫ t
δn

0

√
2

π
eu

2/2 du

)
= 1 + i

√
2

π

(t
δn)1

1
+ i

√
2

π

(t
δn)3

6
+ R3(t, n),

where the remainders R2(t, n) and R3(t, n) have upper bounds of

|R2(t, n)| ≤ |t
δn|7 + |t
δn|9,

|R3(t, n)| ≤ e(t

δn)2/2(3 + 6|t
δn|2 + |t
δn|4)

√
2

π

|t
δn|5
120

.

Thus, by multiplying all three series, we can show that

�n(t) = e−t
t/2
(

1 − i
(t
γ )3

6n1/2 + (t
γ )4

n2/3

π − 3

3(
√

2(4 − π))4/3
+ R(t, n)

)
,

where the remainder R(t, n) has an upper bound of

|R(t, n)| ≤ C1(|t
δn|5 + · · · + |t
δn|23)e|t
δn|2/2
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for some finite constant C1. The definition of δn, according to Lemma 2, and the Cauchy–
Schwarz inequality lead to

|t
δn|2 ≤ ‖t‖2n−2/6 π2/2

(
√

2(4 − π))2/3
‖γ ‖2 < ‖t‖2m−2/6

for all n that satisfy (6), and, hence, we have

e−t
t/2|R(t, n)| ≤ C3

n5/6
(‖t‖5 + · · · + ‖t‖23)e−(1−m−1/3)t
t/2.

Since we assumed thatm is strictly greater than 1, the difference (1−m−1/3) is strictly positive.

4. Main result

In this section we establish conditions ensuring that the uniform distance, with respect to
convex Borel sets, between the distribution function of multivariate skew normal random vectors
and the distribution of the sum of n i.i.d. random vectors converges to 0 at a rate of n−2/3. The
univariate case follows as a special case.

Theorem 1. Assume that the random vectorsX1, X2, . . . satisfy Cramer’s condition, have finite
fourth-order moments, and a third-order tensor of rank at most one. Then there exists a finite
constant C > 0 such that, for all convex Borel sets A ⊂ R

d , we have

|Qn(A)− SN(A; ξn,�n, αn)| ≤ C

n2/3

for all n that satisfy (6), where ξn, �n, αn, and γ are defined as in Lemma 2.

Proof. Let U1
n and U2

n be the signed Borel measures on R
d that have the characteristic

functions

ϒ1
n(t) = e−t
t/2

(
1 − i

(t
γ )3

6n1/2 + (t
γ )4

n2/3

π − 3

3(
√

2(4 − π))4/3

)
,

ϒ2
n(t) = e−t
t/2

(
1 − i

(t
γ )3

6n1/2

)
, t ∈ R

d .

The Fourier inverse of ϒ1
n(t)− ϒ2

n(t) is of the form n−2/3 exp{−‖x‖2/2}p(x), x ∈ R
d ,

where p(x) is a multivariate polynomial over the coordinates of x and is of finite order; see,
e.g. Bhattacharya and Ranga Rao (1986, Section 2.7). Since this is an integrable function with
respect to X, we obtain

|U2
n (A)− U1

n (A)| ≤ C1

n2/3 , (8)

where C1 is a finite constant that does not depend on n and A. In the following we will denote
by C2, C3, . . . further finite constants, which are also independent of n and A. According to
Bhattacharya and Ranga Rao (1986, Equation (20.49)), we also have

|Qn(A)− U2
n (A)| ≤ C2

n1 (9)

for all convex Borel sets A. For every Borel set A and r ≥ 0, we write

A1 = A ∩ {x ∈ R
d : ‖x‖ ≤ r}, A2 = A \ A1.
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Since |ϒ1
n(t)| is integrable on R

d , the signed measureU1
n has a Radon–Nikodym derivative un.

Similarly, the absolute value of (7) is integrable, and, thus, SN(ξn,�n, αn) has a Radon–
Nikodym derivative sn. Hence, by inverse Fourier transformation, we obtain

|U1
n (A1)− SN(A1; ξn,�n, αn)| ≤

∫
A1

|un(x)− sn(x)| dx

≤ λd(A1)
1

(2π)d

∫
|ϒ1
n(t)−�1

n(t)| dt

≤ rd
C3

n5/6
,

where�n is the characteristic function of SN(ξn,�n, αn), and λd is the d-dimensional lebesgue
measure. The Fourier inverse of ϒ1

n(t) is of the form

e−‖x‖2/2
(

1 + q(x)

n1/2 + p(x)

n2/3

)
, x ∈ R

d ,

where q(x) and p(x) are multivariate polynomials over the coordinates of x and are of finite
order; see, e.g. Bhattacharya and Ranga Rao (1986, Section 2.7). Thus,

|U1
n (A2)| ≤

∫
{‖x‖>r}

e−‖x‖2/2
(

1 + q(x)

n1/2 + p(x)

n2/3

)
dx ≤ C4e−r2/4

for r ≥ r0, where r0 is a finite constant that does not depend on n and A. Let φ(x − ξ ;�) be
the PDF of a multivariate normal distribution with expectation ξ and covariance matrix�, and
let� be the CDF of a one-dimensional standard normal distribution. Since ξn and�n converge
monotonously to 0 and the identity matrix, respectively, we have

|SN(A2; ξn,�n, αn)| ≤
∫

{‖x‖>r}
2φ(x − ξn;�n)�(α


n (x − ξn)) dx

≤
∫

{‖x‖>r}
2φ(x − ξn;�n) dx

≤ C5e−r2/C6

for r ≥ r̃0 and n ≥ ñ0. Thus,

|U1
n (A)− SN(A; ξn,�n, αn)| ≤ rd

C3

n5/6
+ C4e−r2/4 + C5e−r2/C6 (10)

for all r ≥ max{r0, r̃0} and n ≥ ñ0. We now take

r = (max{4, C6} ln(n))1/2 + max{r0, r̃0}.
Then, from (8), (9), and (10), we obtain

|Qn(A)− SN(A; ξn,�n, αn)| ≤ C1

n2/3 + C2

n1 + (max{4, C6} ln(n))d/2
C3

n5/6
+ C4

n
+ C5

n

≤ C7

n2/3

for all n ≥ n0, where n0 is a finite constant that does not depend on A. Since the absolute
difference |Qn(A)− SN(A; ξn,�n, αn)| is bounded by 2, the above estimate is also true for
n < n0 if we replace C7 by max{2n2/3

0 , C7}. This completes the proof.

The proof uses the fact that the characteristic functions ofQn and SN(ξn,�n, αn) are equal
up to the terms of order n−1/2. The next higher order term in (7) is of order n−2/3. We have no
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free parameters left for the skew normal distribution, and so we are not able to fit the n−2/3-term
to a corresponding term in the characteristic function of Qn. This means that in general we
cannot improve the speed of convergence beyond n−2/3.

In the univariate case the rank-one assumption is satisfied for any random variable with finite
third moment. Hence, the above theorem simplifies as follows.

Corollary 1. Assume that the random variables X1, X2, . . . satisfy Cramer’s condition and
have finite fourth-order moments. Then there exists a finite constant C > 0 such that, for all
convex Borel sets A ⊂ R, we have

|Qn(A)− SN1(A; ξn, ψn, λn)| ≤ C

n2/3

for all n that satisfy (6), where ψn = �
1/2
n , λn = αnψn, and ξn, �n, αn, γ are defined as in

Lemma 2.

5. A class of multivariate distributions with rank-one cumulants

Theorem 1 in Section 4 assumes that the third cumulant of the summands is a rank-one tensor.
A natural question to ask is whether this assumption is fulfilled for at least some multivariate
probability distributions commonly used in probability and statistics. In this section we shall
address the problem by considering some well-known statistical models purported to describe
financial data. More precisely, we consider models of the form X = W + λU , where λ
is a d-dimensional real vector, U is a random variable, and W is a d-dimensional, centrally
symmetric random vector, meaning thatW − E(W) and E(W)−W are identically distributed;
see Serfling (2006). Both W and U have finite third-order moments and are independent of
each other.

Lemma 4. LetX = W +λU , where λ is a d-dimensional real vector, U is a random variable,
andW is a d-dimensional, symmetric random vector. Also, letW and Z have finite third-order
moments and be stochastically independent of each other. Then the third cumulant of X is a
tensor of rank not greater than one.

Proof. Without loss of generality we can assume that E(W) is the null vector and that
E(U) = 0, so that the third cumulant of X equals its third moment: μ3(X) = κ3(X). The
ith cumulant of the sum of independent random vectors is the sum of the ith cumulants of the
random vectors themselves. Hence, the third cumulant of X is κ3(X) = κ3(W)+ κ3(λU). By
assumption, W and −W are identically distributed, implying that the third cumulant of W is a
null tensor and κ3(X) = κ3(λU). We now apply Lemma 1 to write κ3(λU) = (λ⊗ λ)κ3(U)λ


.
The same basic properties of the tensor product which we recalled in the proof of Lemma 1
lead to κ3(X) = κ3(U)λ⊗ λ
 ⊗ λ. Since κ3(U) is a scalar, κ3(X) is either of rank one or zero.
The latter case occurs when either λ is a null vector or κ3(U) is 0. This completes the proof.

We shall now consider three examples of multivariate probability distributions fullfilling the
assumptions of Lemma 4.

Example 1. (Generalized skew normal distribution.) The distribution of a d-dimensional
random vector X is extended skew normal with location parameter ξ , scale parameter �,
shape parameter δ, and normalizing parameter τ , that is, X ∼ ESN(ξ,�, δ, τ ) if the PDF of
X is

f (x; ξ,�, δ, τ ) = φ(x; ξ,�)
�(τ)

�

(
τ + δ
�−1(x − ξ)√

1 − δ
�−1δ

)
,
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where x, ξ, δ ∈ R
d , τ ∈ R,� is a d×d symmetric, positive definite matrix, and δT �−1δ < 1;

see, e.g. Arnold and Beaver (2002). The extended skew normal distribution fullfills the
assumptions of Lemma 4, withW being a d-dimensional normal vector andU being a truncated
normal random variable; see, e.g.Adcock (2010). Adcock (2007) thoroughly discusses financial
applications of the generalized skew normal distribution.

Example 2. (Normal gamma distribution.) The distribution of a d-dimensional random vector
X is normal gamma with parameters μ ∈ R

d , � a d × d positive definite matrix, λ ∈ R
d
0 ,

τ ∈ R, and υ ∈ R+, that is, X ∼ MNG(μ,�, λ, τ, υ), if the PDF of X is

f (x;μ,�, λ, υ) = E(Y υ)

�(υ)
�(τ)

√
exp[τ 2 − (x − μ)
�−1(x − μ)]

(λ
�−1λ)υ(2π)n−1|�| ,

where Y has the normal distribution N(τ, 1) truncated from below at 0, �(υ) is the gamma
function evaluated at υ, and τ = [λ
�−1(x − μ)− 1]/√λ
�−1λ. The normal gamma
distribution fulfills the assumptions of Lemma 4, when W is chosen to be a d-dimensional
normal vector with mean μ and variance �, while U is a gamma random variable with scale
parameter 1 and shape parameter υ; see Adcock and Shutes (2012).

Example 3. (Finite mixtures of normals.) Consider a d-dimensional random vector X whose
distribution is either N(μ1, �) with probability π1 or N(μ2, �) with probability π2 = 1 − π1,
that is a normal mixture with two homoscedastic components; see, e.g. McLachlan and Peel
(2000). Again, this model fullfills the assumptions of Lemma 4, with W ∼ N(μ1, �), λ =
μ2 − μ1, and U satisfying P(U = 0) = 1 − P(U = 1) = π1. Applications in financial
econometrics of normal mixture models are reviewed in Haas et al. (2009).

6. A simple numerical example

Suppose that X1, X2, . . . take values in R
1. Then the third cumulant of X1 always has a

rank of at most one since it is a 1 × 1 matrix. In order to apply Theorem 1 it is sufficient to
assume finite fourth-order moments and Cramer’s condition.

We now assess the adequacy of the skew normal approximation to the distribution of Sn =
X1 + · · · +Xn when X1, X2, . . . are i.i.d. exponential random variables with PDF

f (x) =
{
αe−αx for x > 0,

0 for x ≤ 0,

where α > 0. The exponential distribution is both very skewed and leptokurtic: its third and
fourth standardized moments are 2 and 9, respectively. Hence, the normal approximation to
the distribution of Sn might be unsatisfactory when the number of summands is small. We shall
overcome the problem by approximating the distribution of Sn with a skew normal distribution
with the same mean, variance, and skewness.

The distribution of Sn is gamma Ga(α, n) with PDF

fn(x) =

⎧⎪⎨⎪⎩
αnxn−1e−αx

�(n)
for x > 0,

0 for x ≤ 0.

https://doi.org/10.1239/jap/1402578637 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1402578637


Improved approximation of the sum of random vectors 477

Its mean, variance, and skewness are μn = n/α, σ 2
n = n/α2, and γ1,n = 2/

√
n, respectively.

The approximating distribution is SN(ξn, ψn, λn), where

ξn = n− √
nqn

α
, ψn =

√
n(1 + qn)

α
, λn =

√
πqn

2 + 2qn − πqn
, qn = 3

√
16

n(4 − π)2
.

Straightforward but tedious calculations show that the mean, variance, and skewness of Ga(α, n)
equal those of SN(ξn, ψn, λn). The lower bound (4) is smaller than 4.04/α6.

Figures 1 and 2 graphically display the skew normal approximation to Ga(3, 5). Figure 1
contains the PDF graphs of Ga(3, 5), SN(ξ5, ψ5, λ5), and N(μ5, σ

2
5 ). Figure 2 plots the

CDF of Ga(3, 5) versus the CDF of SN(ξ5, ψ5, λ5). Both figures show that the skew normal
approximation to the gamma distribution is quite satisfactory even when the number of
summands is very small. In particular, Figure 1 shows that the skew normal approximation
performs better than the normal approximation, especially in the tails. Following Chang et
al. (2008), we also compute the Kolmogorov distance between Ga(3, 5) and SN(ξ5, ψ5, λ5),
i.e. the maximum absolute difference between their CDFs. It was found to be 0.0201, which is
quite small and consistent with the above mentioned visual findings. The Kolmogorov distance
between Ga(3, 5) and N(μ5, σ

2
5 ) is almost three times bigger, being equal to 0.0596.

The skew normal approximation to the gamma distribution significantly improves when a
few summands are added, as shown in Figures 3 and 4. Figure 3 contains the PDF graphs of
Ga(3, 8), SN(ξ8, ψ8, λ8), and N(μ8, σ

2
8 ). Figure 4 plots the CDF of Ga(3, 8) versus the CDF of

SN(ξ8, ψ8, λ8). The Kolmogorov distance between the Ga(3, 8) and SN(ξ8, ψ8, λ8) is 0.0095,

0.7
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Figure 1: PDFs of Ga(3, 5), SN(ξ5, ψ5, λ5), and N(μ5, σ
2
5 ).
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Figure 2: The CDF of Ga(3, 5) versus the CDF of SN(ξ5, ψ5, λ5).
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Figure 3: PDFs of Ga(3, 8), SN(ξ8, ψ8, λ8), and N(μ8, σ
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Figure 4: The CDF of Ga(3, 8) versus the CDF of SN(ξ8, ψ8, λ8).

which is less than half the value in the previous case. On the other hand, the Kolmogorov
distance between Ga(3, 8) and N(μ8, σ

2
8 ) has decreased by a much smaller proportion, being

equal to 0.0471.

7. A simulation study

In this section we use Monte-Carlo simulation to compare the performance of the proposed
approximation with the normal approximation, when the sample mean comes from a lognormal
distributionX = exp(Z), whereZ is a standard normal random variable. Well-known properties
of the lognormal distribution imply that the mean, variance, skewness, and kurtosis of X
are μ = √

e ≈ 1.6487, σ 2 = (e − 1)e ≈ 4.6708, γ = (e + 2)
√

e − 1 ≈ 6.1849, and
β = e4 + 2e3 + 3e2 − 6 ≈ 110.94, respectively. Since X is very skewed and leptokurtic,
and much more so than the exponential distribution, many summands are needed to obtain a
satisfactory approximation. Unlike the exponential distribution, however, the PDF convolution
of i.i.d. lognormal variables does not have a simple analytical form. Hence the need for
simulation.

Simple but tedious calculations show that the skew normal approximation to the distribution
of the standardized mean

√
n(Xn − μ)/σ of n independent variables distributed as X is

SN(ξn, ψn, λn), where

ξn = −
√

2

π
γ̃ψn, ψn =

√
π

π − 2δn
, λn = δn√

1 − δ2
n

,
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Table 1: Results of the simulation study.

Mean Median Maximum
Number

Skew Normal Skew Normal Skew Normal

50 16.216 26.512 13.624 26.338 34.008 49.364
100 6.924 19.616 6.837 18.673 13.760 36.636
150 4.052 17.048 3.859 16.160 7.848 32.960
200 3.075 14.764 2.882 14.076 6.296 27.797
250 2.776 12.434 2.126 12.323 7.066 23.359
300 2.273 11.668 1.674 11.116 5.954 21.194
350 1.705 11.523 1.634 10.765 3.989 21.550

and

δn =
√
π/2 3

√
2γ /

√
n√

3
√
(4 − π)2 + 3

√
4γ 2/n

.

We shall denote by �n(x) the CDF of SN(ξn, ψn, λn) evaluated at the real value x.
We simulate 100 000 samples of size n = 50, 100, 150, 200, 250, 300, 350 from X; see

Table 1. We compute the empirical CDF Fn of the standardized means Yi = √
n(Xn,i − μ)/σ ,

where Xn,i is the mean of the n observations in the ith sample, for i = 1, . . . , 100 000.
Finally, for each n, we compute the mean, the median, and the maximum of the absolute
differences |Fn(Yi)−�(Yi)| and |Fn(Yi)−�n(Yi)|. Table 1 provides the simulations’ results,
multiplied by 1000 for better readability. As expected, both approximations improve with the
sample size. However, the skew normal approximation always performs better than the normal
approximation. The difference is more marked when considering the mean and the medians of
the absolute differences.

8. An empirical example

In this section we shall use a real data set to illustrate the practical relevance of the proposed
approximation.

Our application deals with particulate matter with an aerodynamic equivalent diameter of
up to 10 μm, commonly referred to as PM10, whose harmful effects on human health are
well documented ; see, e.g. Brunekreef and Holgate (2002). The data are annual means of
daily PM10 concentrations collected by the Italian Institute for Environmental Protection and
Research (ISPRA) during the year 2010 from 205 monitoring stations. All the selected stations
were located in rural, residential, or natural areas, in order to detect contributions to PM10
distinct from urban and industrial activities. Concentrations are expressed in micrograms per
cubic meter (μg/m3) and then rounded to the nearest integer, without appreciable loss of
accuracy.

Modelling the data by the normal distribution appears like a natural choice, motivated
by the central limit theorem, since each is the mean of 365 daily values, which in turn
are the means of intra-daily observations. However, a normality test based on the sample
skewness, which equals −0.4180, rejects the normality hypothesis at the 0.01 level. A possible
explanation for the negative skewness is that locations of the monitoring stations leads to
measurements which are biased towards low values of PM10. A similar skewing mechanism,
with the necessary modifications, was discussed by Loperfido and Guttorp (2008) with respect
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Figure 5: PP plot showing the empirical cumulative distribution versus the CDF of the approximating
skew normal distribution (dotted line), and the CDF of the approximating skew normal distribution versus

itself (solid line).
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Figure 6: PP plot showing the empirical cumulative distribution versus the CDF of the approxiamting
normal distribution (dotted line), and the CDF of the approximating normal distribution versus itself (solid

line).

to networks primarily aimed at finding large values of air pollution. Apparently, the daily data
are too skewed and the sample size too small for the normal approximation to be appropriate.

The Kolmogorov–Smirnov statistics for the skew normal and the normal fits are 0.0414 and
0.0648, respectively. Their values were obtained by substituting the true parameter values with
their maximum likelihood estimates, as done by Mateu-Figueras et al. (2007) who also gave
tables for the relevant quantiles of the sampling distributions of the above test statistics. Using
these tables, we found that the p-values for the skew normal fit and the normal fit were higher
than 0.25 and lower than 0.01, respectively. Visual comparison of the PP plots in Figure 5
(for the skew normal approximation) and Figure 6 (for the normal approximation) lead to
similar results. We conclude that the skew normal approximation, motivated by theorems in
the previous sections, improves upon the normal approximation, motivated by the central limit
theorem.

9. Conclusion

We showed that sums of i.i.d. random variables that are skewed, satisfy Cramer’s condition,
and have finite fourth-order moments are better approximated by skew normal distributions
than normal distributions. We proved that the minimal speed of convergence with respect to
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the uniform distance increases from n−1/2 to n−2/3. The results hold true for the multivariate
case, under the additional rank-one assumption. Rank-one tensors are a fundamental concept
in numerical linear algebra, where they are often used to approximate tensors of the same
dimension but with a more complicated structure; see Kofidis and Regalia (2002), Zhang and
Golub (2002), Wang and Ahuja (2004), and Qi (2011). It is interesting to note that rank-one
tensors play a role in probability theory too. At the present time, we are unable to prove that
the skew normal approximation is optimal. Rather, we conjecture that a distribution allowing
for wider ranges of skewness and kurtosis might offer a better approximation.

A relevant question for future research is whether the i.i.d. assumption can be weakened
to nonidentical random variables and/or dependent random variables. Such a result would
provide a unified theoretical explanation for some well-known stylized features of financial time
series. As an example, consider aggregational gaussianity, meaning that data taken at decreasing
sampling frequencies appear to be increasingly normal; see Cont (2001) and Rydberg (2000).
This feature is often explained by the central limit theorem. On the other hand, the multivariate
skew normal distribution satisfactorily models the skewness of multivariate financial returns;
see De Luca and Loperfido (2012) and Franceschini and Loperfido (2010). These empirical
features lead us to conjecture that results in this paper might be extended to random vectors
belonging to a multivariate stationary process under assumptions we are currently investigating.

Another interesting research topic concerns the way in which the adequacy of the
approximation is measured. In this paper we measured it by the absolute value of the difference
between the approximating and the approximated distribution, following Bhattacharya and
Ranga Rao (1986) and Chang et al. (2008). However, there are cases where the relative
difference between the two distributions appear to be more appropriate. The Kullback–Leibler
distance formalizes this concept, both in the univariate and in the multivariate case. Also, Van
Hulle (2005) showed how the third cumulant might be used to approximate the Kullback–Leibler
distance between a normal and another distribution with finite fourth-order moments. It would
then be interesting to investigate whether the skew normal approximation would be a significant
improvement over the normal approximation when the adequacy of the approximation is
measured by the Kullback–Leibler distance.
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