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The Kostrikin Radical and the Invariance
of the Core of Reduced Extended Affine
Lie Algebras

Maribel Tocón

Abstract. In this paper we prove that the Kostrikin radical of an extended affine Lie algebra of reduced

type coincides with the center of its core, and use this characterization to get a type-free description

of the core of such algebras. As a consequence we get that the core of an extended affine Lie algebra of

reduced type is invariant under the automorphisms of the algebra.

1 Introduction

Extended affine Lie algebras are a class of infinite dimensional Lie algebras that were

originally proposed by the physicists Hoegh-Krohn and Torresani [HT] under the

name of irreducible quasi-simple Lie algebras. They are natural generalizations of

finite-dimensional simple Lie algebras, affine Kac–Moody Lie algebras and toroidal

Lie algebras. Our main reference for this class of algebras is the AMS-memoirs

[AABGP]. Roughly speaking, extended affine Lie algebras are characterized by the

existence of an invariant nondegenerate form and the fact that they have a decom-

position into root spaces. The form gives rise to a partition of the root system into

isotropic and non-isotropic roots, and the subalgebra generated by the root spaces

corresponding to non-isotropic roots is called the core. The structure and represen-

tations of extended affine Lie algebras have been investigated in many papers, but it

turns out that the whole structure of an extended affine Lie algebra can be recovered

from its core as shown in [N2]. Moreover, for each extended affine Lie algebra, there

exists a finite irreducible (non necessarily reduced) root system called its type, and it

follows that the core of an extended affine Lie algebra is a so-called Lie torus of the

same type, whose precise structure is known for the reduced types and for types BC1

and BC2.

An important question regarding the core of an extended affine Lie algebra is that

of whether the core is invariant under the automorphisms of the algebra. A positive

answer to this question was given by Krylyuk for the particular case of extended affine

Lie algebras whose type is simply-laced of rank at least 2, by using notions of absolute

zero divisors and the Kostrikin radical. The aim of this paper is to extend this positive

answer to all extended affine Lie algebras of reduced type, and for that we also use

notions of absolute zero divisors and the Kostrikin radical.
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Let us recall that the Kostrikin radical of a Lie algebra is the smallest ideal whose

associated quotient algebra does not have absolute zero divisors, that is, elements sat-

isfying ad2
x = 0, and it is indeed a radical in the sense of Amitsur and Kurosh [Fi].

Absolute zero divisors of a Lie algebra have played an important role in several ques-

tions in mathematics, such as solving the restricted Burnside problem for a prime

exponent [K2] or the characterization of the classical modular Lie algebras [S]. The

main results of this paper are the following:

If E is an extended affine Lie algebra of reduced type, then

(i) K(E) = Z(Ec) (Theorem 3.3),

(ii) Ec = [CE(K(E)), E] (Theorem 5.1),

(iii) Ec is invariant under the automorphisms of E (Corollary 5.2),

where Ec is the core of E, Z(Ec) is its center, K(E) is the Kostrikin radical of E, and

CE(K(E)) is the centralizer of K(E) in E.

By using structure theory, Krylyuk proved the above (i) and (iii) and that Ec =

[CE(K(E)),CE(K(E))] for the particular case of E being an extended affine Lie algebra

of simply laced type and rank at least 2 [Kr, Proposition 4.2(i), (ii) and Corollary

4.26].

This paper is organized as follows. We devote Section 2 to characterizing the

Kostrikin radical of infinite dimensional Lie algebras that satisfy some fairly natu-

ral and not too restrictive conditions and we use this result in Section 3 to obtain (i)

of the above. We point out that our proofs up to Section 3 are completely indepen-

dent of structure theory, thus we also provide an alternative proof of [Kr, Proposition

4.2(i)]. On the other hand, in Section 4, we make use of the general construction of

extended affine Lie algebras given in [N2] in order to prove that the core of any ex-

tended affine Lie algebra E is Ec = [CE(Z(Ec)), E], where Z(Ec) = K(Ec). In the last

section, we specialize the previous characterization to extended affine Lie algebras

of reduced type, which combined with (i) of the above, gives (ii). As an immediate

consequence, we obtain the central result of this paper, namely, that the core of an

extended affine Lie algebra of reduced type is invariant under the automorphisms of

the algebra ((iii) of the above).

2 The Kostrikin Radical of a Lie Algebra

Throughout this section, L will be a Lie algebra over a ring of scalars Φ. We recall

that an element x ∈ L is called an absolute zero divisor of L if ad2
x = 0, where as usual

adx(y) := [x, y], for y ∈ L. We denote by c(L) the set of all absolute zero divisors

of L. Absolute zero divisors are also known as crust of thin sandwiches [K], since they

satisfy the following property, whose proof is included here for completeness.

Lemma 2.1 Suppose that 1
2
∈ Φ and let L ′ be a subalgebra of L. If x ∈ L is such that

ad2
x(L ′) = 0, then adx ady adx(L ′) = 0 for all y ∈ L ′.

Proof Let x ∈ L such that ad2
x(L ′) = 0 and y ∈ L ′. Then

0 = ad[x,[x,y]] = [adx, [adx, ady]] = ad2
x ady −2 adx ady adx + ady ad2

x .
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But since ad2
x(L ′) = 0, we have

0 = (ad2
x ady −2 adx ady adx + ady ad2

x)(L ′) = −2 adx ady adx(L ′).

Hence adx ady adx(L ′) = 0.

As a consequence, if the base ring contains 1
2
, then the set c(L) is closed under

the Lie product and therefore generates a subalgebra which is invariant under the

automorphism group of L. A Lie algebra without nonzero absolute zero divisors is

called strongly nondegenerate.

The Kostrikin radical of L, denoted K(L), can be constructed as follows: put

K0(L) = 0, and let K1(L) be the ideal of L generated by c(L). Using transfinite induc-

tion we define a nondecreasing chain of ideals Kα(L) by putting Kα(L) =
⋃

β<α Kβ(L)

for a limit ordinal α, and Kα(L)/Kα−1(L) = K1(L/Kα−1(L)) otherwise. Then

K(L) :=
⋃

α Kα(L) and K(L) is the smallest ideal of L whose associated quotient al-

gebra is strongly nondegenerate. The following trivial observation will be used later.

Remark 2.2 If c(L) is an ideal of L, then K1(L) = c(L). If moreover c(L/c(L)) = 0,

then K(L) = c(L). Indeed, c(L/K1(L)) = 0 implies that K1(L/K1(L)) = 0, that is,

K2(L) = K1(L) and then K(L) = K1(L).

Remark 2.3 If L is finite dimensional and the base ring is a field of characteristic

0, then L is semisimple if and only if it is strongly nondegenerate. Notice that if L

is semisimple, then by Lemma 2.1, we have that if x ∈ c(L), then (adx adL)2
= 0,

hence c(L) is contained in the radical of the killing form of L. Conversely, if L is not

semisimple, then it contains a nonzero abelian ideal I. Hence 0 6= I ⊆ c(L) since for

all x ∈ I, it follows that [x, [x, L]] ⊆ [I, I] = 0.

However, we are more interested in Lie algebras of infinite dimension.

Setting From now on and up to Theorem 2.9, L =
⊕

δ∈G Lδ will be graded by an

abelian group G. Put R := {δ ∈ G : Lδ 6= 0} ∪ {0}. Then L =
⊕

δ∈R Lδ . We

assume that there exists Ra ⊆ R and denote R0 := R \ Ra. For L as before, La will

denote the subalgebra of L generated by {Lα : α ∈ Ra}. Also, for any subset L ′ ⊆ L,

we will use the following standard notation: c(L ′) := {x ∈ L ′ : ad2
x(L ′) = 0},

CL(L ′) := {x ∈ L : adx(L ′) = 0} and Z(L ′) := CL(L ′) ∩ L ′.

Remark 2.4 Let δ ∈ R.

(a) If 1
2
∈ Φ and {eδ, [eδ, e−δ], e−δ} is an sl2-triple, where e±δ ∈ L±δ , then e±δ ∈

ad2
e±δ

(L).

(b) If eδ ∈ ad2
eδ

(L) for all eδ ∈ Lδ , then c(L) ∩ Lδ = 0.

(c) Z(I) ⊆ c(L) for all ideals I of L (note that if x ∈ Z(I), then [x, [x, L]] ⊆
[x, I] = 0). In particular, if c(L) ∩ Lδ = 0, then Z(I) ∩ Lδ = 0.

Lemma 2.5 If (R0 + Ra) ∩ R ⊆ Ra, then Ra
= −Ra is nonempty and the subalgebra

La is an ideal of L. If moreover, eα ∈ ad2
eα

(L) for all eα ∈ Lα, α ∈ Ra, then the ideal La

is perfect, i.e., La
= [La, La].
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Proof That Ra 6= ∅ is clear since otherwise R0
= R = ∅. Also, if Ra 6= −Ra, then

0 ∈ Ra and then ∅ 6= R0 ⊆ Ra, which is a contradiction. Let x =
∑

λ∈Fx xλ ∈ L,

where xλ ∈ Lλ, with Fx being a finite subset of R, and let eα ∈ Lα with α ∈ Ra.

Then [x, eα] =
∑

λ∈Fx∩Ra [xλ, eα] +
∑

λ∈Fx∩R0 [xλ, eα]. Clearly
∑

λ∈Fx∩Ra [xλ, eα] ∈
La by definition of La, and

∑

λ∈Fx∩R0 [xλ, eα] ∈ La because (R0 + Ra) ∩ R ⊆ Ra,

therefore [x, eα] ∈ La. Now, by using the Jacobi identity we have that [x, [eβ , eη]] =

[[x, eβ], eη] + [eβ , [x, eη]] ∈ La for all eβ ∈ Lβ , eη ∈ Lη , with β, η ∈ Ra, hence

[L, La] ⊆ La. Note that La
=

⊕

δ∈R(La ∩ Lδ), where if δ ∈ R0, then

La ∩ Lδ =

∑

α,β∈Ra

α+β=δ

[Lα, Lβ] ⊆ [La, La].

If, on the contrary, δ ∈ Ra, then La ∩ Lδ = Lδ . Suppose that eα ∈ ad2
eα

(L) for all

eα ∈ Lα, α ∈ Ra. Let eδ ∈ Lδ , δ ∈ Ra. Then because of the grading, there exists

f−δ ∈ L−δ such that eδ = [eδ, [eδ, f−δ]]. Hence Lδ = [Lδ, [Lδ, L−δ]] ⊆ [La, La] and

therefore La
= [La, La].

Proposition 2.6 Assume that the abelian group G is ordered and satisfies

(a) c(L) ∩ Lα = 0 for all α ∈ Ra,

(b) if δ1, δ2 ∈ R0 and α ∈ R with δ1 < α < δ2, then α ∈ R0.

Then

(i) c(L) ⊆ ⊕δ∈R0 Lδ .

(ii) If (R0 + Ra) ∩ R ⊆ Ra, then

Z(La) ⊆ {x ∈ c(L) : adx ad2
eα

adx(La) = 0, ∀eα ∈ Lα, α ∈ Ra}.

If, moreover, 1
2
∈ Φ, then

{x ∈ c(L) : adx ad2
eα

adx(La) = 0, ∀eα ∈ Lα, α ∈ Ra} ⊆ CL(La).

Proof (i) It suffices to assume that c(L) 6= 0. Let 0 6= x ∈ c(L) and write x =
∑

λ∈Fx xλ, where 0 6= xλ ∈ Lλ, with Fx ⊆ R. Let λm := min(Fx) and λM :=

max(Fx). For each δ ∈ R, we have that [xλm
, [xλm

, Lδ]] ⊆ Lδ+2λm
, and by minimality

of λm, this is the only term in Lδ+2λm
of the expansion of [x, [x, Lδ]]. Therefore, since

[x, [x, Lδ]] = 0, we have that [xλm
, [xλm

, Lδ]] = 0 for all δ ∈ R, that is, xλm
∈ c(L).

So, if λm ∈ Ra , then xλm
= 0 by (a), which is a contradiction. Similarly, λM ∈ Ra

leads to a contradiction. Thus, λm, λM ∈ R0 and Fx ⊆ R0 by (b).

(ii) Suppose that (R0 + Ra) ∩ R ⊆ Ra. Then La is an ideal of L by Lemma 2.5 and

hence Z(La) ⊆ c(L) by Remark 2.4(c). Clearly adx ad2
eα

adx(La) = 0 for all eα ∈ Lα,

α ∈ Ra, x ∈ Z(La).

Suppose now that 1
2
∈ Φ and let x ∈ c(L) such that adx ad2

eα
adx(La) = 0 for all

eα ∈ Lα, α ∈ Ra. If x = 0, then x ∈ CL(La). If x 6= 0, then x =
∑

λ∈Fx xλ ∈
⊕

δ∈R0 Lδ
by (i). Let eα ∈ Lα, α ∈ Ra. Then

ad2
[x,eα] = (adx adeα − adeα adx)2

= adx adeα adx adeα − adx ad2
eα

adx − adeα ad2
x adeα + adeα adx adeα adx,
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and since ad2
x = 0, then adx adeα adx = 0 by Lemma 2.1. So

ad2
[x,eα](La) = − adx ad2

eα
adx(La) = 0.

Then we have that ad2
[x,eα](La) = 0. Therefore, [x, eα] ∈ c(La) with [x, eα] =

∑

λ∈Fx [xλ, eα] ∈
⊕

δ∈Ra Lδ because (R0 + Ra) ∩ R ⊆ Ra . But now, applying (i)

to La
=

⊕

δ∈R(La ∩ Lδ) as L with respect to the same Ra, we get that [x, eα] ∈
⊕

δ∈R0 (La ∩ Lδ). Hence [x, eα] = 0, that is, [x, Lα] = 0 for all α ∈ Ra. Then, since

CL(La) =
⋂

α∈Ra CL(Lα), we have that x ∈ CL(La).

Corollary 2.7 Suppose that 1
2
∈ Φ. Let L be as in Proposition 2.6 and suppose that

(R0 + Ra) ∩ R ⊆ Ra . If ad2
eα

(Lδ) = 0 for all eα ∈ Lα with α ∈ Ra and δ ∈ R0, then

c(L) ⊆ CL(La).

Proof Let x ∈ c(L). Then x ∈
⊕

δ∈R0 Lδ by Proposition 2.6(i). Note that

ad2
eα

(Lδ) = 0 for all δ ∈ R0 implies that ad2
eα

(x) = 0. Now by Proposition 2.6(ii),

to see that x ∈ CL(La), it is enough to show that adx ad2
eα

adx(La) = 0 for all eα ∈ Lα,

α ∈ Ra. Let y ∈ La. Then by using the Jacobi identity we get

adx ad2
eα

adx(y) = adx

(

[eα, [[eα, x], y]] + [eα, [x, [eα, y]]]
)

= adx

(

[[eα, [eα, x]], y] + 2[[eα, x], [eα, y]] + [x, [eα, [eα, y]]]
)

= adx

(

[[eα, [eα, x]], y]
)

+ 2 adx([[eα, x], [eα, y]]).

But we have that adx([[eα, x], [eα, y]]) = adx ad[eα,y] adx(eα) = 0 by Lemma 2.1.

Hence

adx ad2
eα

adx(y) = adx([[eα, [eα, x]], y]) = adx adad2
eα

(x)(y) = 0,

since ad2
eα

(x) = 0.

As we will see in the next section, extended affine Lie algebras of reduced type are

in the setting of the above corollary and we will be able to describe their Kostrikin

radical. The next theorem goes in this direction, but first we need a lemma.

Lemma 2.8 Suppose that (R0 + Ra) ∩ R ⊆ Ra . Then Z(La) is an ideal of L and,

for L → L := L/Z(La) being the canonical epimorphism, L =
⊕

δ∈R Lδ , where Lδ =

Lδ/(Z(La ) ∩ Lδ) and R = {δ ∈ R : Lδ 6= 0} ∪ {0}. If Z(La) ∩ Lα = 0 for all α ∈ Ra,

then Ra
= R

a
⊆ R and L

a
= La. If we replace the hypothesis Z(La) ∩ Lα = 0 by the

stronger one, eα ∈ ad2
eα

(L) for all eα ∈ Lα, then CL(L
a
) = CL(La) and eα ∈ ad2

eα
(L) for

all eα ∈ Lα. In particular, c(L) ∩ Lα = 0, for all α ∈ Ra.

Proof In general for Lie algebras, the center of an ideal is an ideal. By Lemma 2.5,

La and hence Z(La) are ideals of L. Since Z(La) is a graded ideal, L =
⊕

δ∈R Lδ ,

where Lδ = Lδ/(Z(La) ∩ Lδ). Moreover, if Z(La) ∩ Lα = 0 for all α ∈ Ra, then
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Ra
= R

a
⊆ R and L

a
= La/Z(La) = La . Suppose eα ∈ ad2

eα
(L) for all eα ∈ Lα,

α ∈ Ra. If x ∈ CL(L
a
), then [x, La ] ⊆ Z(La) and since La is perfect by Lemma 2.5,

[x, La] = [x, [La, La]] ⊆ [[x, La], La] + [La, [x, La ]] = 0,

so x ∈ CL(La). Thus, CL(L
a
) ⊆ CL(La), while the reverse inclusion is obvious. Now

for α ∈ Ra, since eα ∈ ad2
eα

(L) for all eα ∈ Lα, then eα ∈ ad2
eα

(L) for all eα ∈ Lα.

Then by Remark 2.4(b), we have that c(L) ∩ Lα = 0.

Theorem 2.9 Suppose that 1
2
∈ Φ. Let L be as in Proposition 2.6 and suppose that

(R0 + Ra) ∩ R ⊆ Ra. If

(i) ad2
eα

(Lδ) = 0 for all eα ∈ Lα, α ∈ Ra and δ ∈ R0,

(ii) L is tame, that is, CL(La) = Z(La),

then c(L) = K1(L) = Z(La). If moreover, eα ∈ ad2
eα

(L) for all eα ∈ Lα, α ∈ Ra, then

c(L) = K(L) = Z(La) = K(La) = c(La).

Proof By Proposition 2.6(ii) and Corollary 2.7, we have that Z(La) ⊆ c(L) ⊆ CL(La).

Then by (ii), Z(La) = c(L) = CL(La), which is an ideal of L by Lemma 2.8. Then

K1(L) = c(L) = Z(La) by Remark 2.2. Now let L := L/Z(La).

Suppose that eα ∈ ad2
eα

(L) for all eα ∈ Lα, α ∈ Ra. We next check that L is in the

setting of Corollary 2.7. By Lemma 2.8, L is as in Proposition 2.6 with respect to R

and Ra, with CL(L
a
) = CL(La). Also (R0 + Ra) ∩ R ⊆ Ra and 1

2
∈ Φ by assumption.

Note that ad2
eα

(Lδ) = 0 for all eα ∈ Lα with α ∈ Ra and δ ∈ R0 since ad2
eα

(Lδ) = 0

and Lδ = Lδ/(Z(La) ∩ Lδ). Hence by Corollary 2.7, c(L) ⊆ CL(L
a
). But CL(L

a
) =

CL(La) = Z(La) = 0. Then c(L) = 0 and therefore K(L) = K1(L) = Z(La) again by

Remark 2.2. Now again because La is an ideal of L, we have that K(La) = K(L)∩La
=

K(L) [Z, Corollary 1]. Hence c(La) ⊆ K(La) = Z(La). Finally, since Z(La) ⊆ c(La) is

clear, the proof is completed.

Example 2.10 Suppose Φ is a field of characteristic 0 and L =
⊕

µ∈∆,g∈G L
g
µ, where

the G and Q(∆)-gradings are compatible, G is a torsion free abelian group, ∆ is a

locally finite irreducible reduced (i.e., 0 6= µ ∈ ∆ ⇒ 2µ /∈ ∆) root system as defined

in [LN], and Q(∆) is the root lattice generated by ∆, such that Lµ 6= 0 for some

0 6= µ ∈ ∆. Assume also that

(i) L0 =
∑

µ∈∆×[Lµ, L−µ], where ∆
× := ∆ \ {0},

(ii) e
g
µ ∈ ad2

e
g
µ
(L) for all 0 6= µ ∈ ∆, g ∈ G.

For instance, the above condition (ii) is fulfilled if L is division, i.e., for any 0 6=
µ ∈ ∆ and any 0 6= e

g
µ ∈ L

g
µ, there exists f

−g
−µ ∈ L

−g
−µ such that [e

g
µ, f

−g
−µ ] ≡ hµ

modulo the center Z(L), where {hµ ∈ h : µ ∈ ∆} is the set of coroots (see Remark

2.4(a)).

Then K(L) = c(L) = Z(L). Hence, if L is centerless, we have that L is strongly

nondegenerate. To see this, consider

R := {(µ, g), µ ∈ ∆, g ∈ G, such that Lg
µ 6= 0},

Ra := {(µ, g) ∈ R, µ 6= 0}.
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Denote L
g
µ = L(µ,g). Then L =

⊕

(µ,g)∈R L(µ,g), where (0, 0) ∈ R by (ii) and

R ⊆ Q(∆) × G. In Q(∆) × G we consider the lexicographic order (both Q(∆) and

G can be ordered since Q(∆) is a free abelian group, see [LN, 7.5], and G is torsion

free by assumption). Clearly, for R0 := R \ Ra, (R0 + Ra) ∩ R ⊆ Ra. With respect

to the lexicographic order in Q(∆) × G, if (0, g1), (0, g2) ∈ R0 and (µ, g ′) ∈ R,

with (0, g1) < (µ, g ′) < (0, g2), then µ = 0 and (µ, g ′) ∈ R0. Moreover, L = La

by (i), which implies that L is tame, and because ∆ is reduced, we also have that

ad2
eg
µ
(L

g ′

0 ) = 0 for all e
g
µ ∈ L

g
µ with (µ, g) ∈ Ra and g ′ ∈ G. Then L is in the setting of

Theorem 2.9 satisfying that e
g
µ ∈ ad2

e
g
µ
(L) for all (µ, g) ∈ Ra by (ii), and we thus have

that K(L) = c(L) = Z(L).

Remark 2.11 If L is division ∆G-graded as introduced in [Y2] (recall that ∆ is then

a finite irreducible reduced root system), where G is torsion free, then L is in the

setting of the above example and K(L) = c(L) = Z(L).

3 The Kostrikin Radical of Extended Affine Lie Algebras of
Reduced Type

Throughout, F will be a field of characteristic 0 and Lie algebras are always considered

to be over F. Let E be a Lie algebra satisfying the following two properties:

(EA1) E has a nondegenerate symmetric bilinear form ( · ) : E × E → F which is

invariant in the sense that ([x, y] | z) = (x | [y, z]) for all x, y, z ∈ E,

(EA2) E contains a nontrivial finite-dimensional, self-centralizing subalgebra H

which is ad-diagonalizable.

Let H∗ be the dual space of H. Then E has a root space decomposition

E =

⊕

δ∈H∗

Eδ, E0 = H,

where, as usual, Eδ = {e ∈ E : [h, e] = δ(h)e for all h ∈ H}. The invariance of ( · )

implies that (Eδ | Eη) = 0 for δ + η 6= 0. It follows that ( · ) restricted to H × H

is nondegenerate. We can therefore transfer this restricted form to a nondegenerate

symmetric bilinear form on H∗ by setting (δ | η) = (tδ | tη), where tδ ∈ H is defined

by (tδ | h) = δ(h) for all h ∈ H. We define the root system of E as R = {δ ∈ H∗ :

Eδ 6= 0}, and

R0
= {δ ∈ R : (δ | δ) = 0} (isotropic roots),

Ran
= {δ ∈ R : (δ | δ) 6= 0} (anisotropic roots).

The subalgebra Ec of E generated by {Eδ : δ ∈ Ran} is called the core of E.

Definition 3.1 An extended affine Lie algebra of nullity n, or extended affine Lie

algebra (EALA) for short, is a Lie algebra E satisfying (EA1), (EA2) of above and, in

addition, the following axioms:

(EA3) For δ ∈ Ran and xδ ∈ Eδ , adxδ ∈ EndF E is locally nilpotent.
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(EA4) Ran is irreducible, i.e., Ran
= R1 ∪ R2 and (R1 | R2) = 0 imply R1 = ∅ or

R2 = ∅.

(EA5) E is tame in the sense that CE(Ec) = Z(Ec).

(EA6) If V is the real space spanned by R and Λ is the subgroup of V generated by

R0, denoted Λ = 〈R0〉, then Λ is a free abelian group of rank n.

If E is an EALA with root system R, and Λ = 〈R0〉, then there exists a finite (possi-

bly non-reduced) irreducible root system ∆ (containing 0), an imbedding ∆ind →֒ R,

where ∆ind = {0} ∪ {α ∈ ∆ \ 0 : α/2 /∈ ∆}, and a family (Λα : α ∈ ∆) ⊆ Λ such

that

V = span
Q

(∆) ⊕ span
Q

(R0) and R =
⋃

α∈∆

(α⊕ Λα)

and then E has a ∆-grading E =
⊕

α∈∆
Eα, where Eα :=

⊕

λ∈Λα
Eα⊕λ. If we denote

Eα⊕λ = Eλα, then E also has a Λ-grading E =
⊕

λ∈Λ
Eλ, where Eλ :=

⊕

α∈∆
Eλα. The

type of an extended affine Lie algebra E is said to be the type of its associated finite

irreducible root system ∆. The core Ec of an extended affine Lie algebra E is indeed a

perfect ideal of E and the subspaces (Ec)
λ
α := Ec ∩ Eα⊕λ give Ec the structure of a Lie

torus of type (∆,Λ) as defined in [N] (see Proposition 3.2 below).

Note that if F = C and E is an EALA such that its associated root system R is a

discrete subset of H∗, then E is a tame extended affine Lie algebra in the usual sense

[AABGP]. See [N2, 7] for a more detailed discussion on the relation between the two

definitions.

Let us recall the following properties of extended affine Lie algebras.

Proposition 3.2 ([N2, 3]) Let E =
⊕

α∈∆
Eα, where Eα :=

⊕

λ∈Λα
Eλα, be an EALA

as described above. Let α ∈ ∆
×

= ∆ \ {0} and λ ∈ Λα. Then dim Eλα = 1 and

Eλα ⊕ [Eλα, E
−λ
−α] ⊕ E−λ

−α is a Lie subalgebra of E isomorphic to sl2(F).

By using the above properties and as a corollary of Theorem 2.9, we can charac-

terize the Kostrikin radical of an EALA of reduced type as follows.

Theorem 3.3 If E is an extended affine Lie algebra of reduced type ∆, that is,

∆ 6= BCl, then K(E) = c(E) = Z(Ec) = K(Ec) = c(Ec), where Ec is the core of E.

Proof Let E be an EALA. In order to apply Theorem 2.9, consider

R := {(α, λ), α ∈ ∆, λ ∈ Λ, dim Eλα 6= 0},

Ra := {(α, λ) ∈ R, α 6= 0}.

Then E =
⊕

(α,λ)∈R E(α,λ) with the notation E(α,λ) = Eλα. By Proposition 3.2, for

all (α, λ) ∈ Ra, and every nonzero eλα ∈ Eλα, we can take f −λ−α ∈ L−λ
−α such that

{eλα, [eλα, f −λ−α ], f −λ−α } is an sl2-triple, hence eλα ∈ ad2
eλα

(E) and (0, 0) ∈ R. Next, we

argue as in Example 2.10. Clearly ((R \ Ra) + Ra) ∩ R ⊆ Ra and R ⊆ Q(∆) × Λ, for

Q(∆) being the root lattice generated by ∆. We consider the lexicographic order in

Q(∆) × Λ and, with respect to this order, if (0, δ1), (0, δ2) ∈ R \ Ra and (α, λ) ∈ R,

with (0, δ1) < (α, λ) < (0, δ2), then α = 0 and (α, λ) ∈ R \ Ra. Note that Ea
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as defined in the previous section is indeed Ec. Then E is tame by definition (EA5).

Finally, if E is of reduced type, then it also satisfies that ad2
eλα

(Eδ0) = 0 for all eλα ∈ Eλα
with (α, λ) ∈ Ra and δ ∈ Λ.

Hence for an EALA of reduced type, we have that c(E) = K(E) = Z(Ec) =

K(Ec) = c(Ec) by applying Theorem 2.9.

Note that it follows from the above corollary that the Kostrikin radical of an EALA

of reduced type is Λ-graded since it is the center of a graded algebra. We also want to

point out that the above result holds in the more general setting described in [Yo].

4 The Core of Extended Affine Lie Algebras

As mentioned in the previous section, the core of an EALA of type ∆ and nullity n

is a Lie torus of type (∆,Λ), where Λ is a free abelian group of rank n. Attending to

their type, the precise structure of Lie tori is known for the case of a reduced ∆ and

for BC1 and BC2 as shown in the following examples.

Examples 4.1 (i) By [BGK, Theorem 1.37], every Lie torus of type ∆ = Dl, l ≥ 4,

or El, l = 6, 7, 8 and nullity n is a central extension of g ⊗ F[t±1
1 , . . . , t±1

n ], where g

is a finite-dimensional split simple Lie algebra of type ∆ and F[t±1
1 , . . . , t±1

n ] is the

ring of Laurent polynomials in n variables. Actually g ⊗ F[t±1
1 , . . . , t±1

n ], where g is

a finite-dimensional split simple Lie algebra of type ∆ is always a Lie torus of type ∆

and nullity n.

(ii) Let q = (qi j) ∈ Mn(F) such that qii = 1 = qi jq ji for 1 ≤ i, j ≤ n and

let Fq be the associated quantum torus, which, by definition, is the unital associative

algebra with 2n generators t±1
1 , . . . , t±1

n and defining relations tit
−1
i = 1 = t−1

i ti

and tit j = qi jt jti for 1 ≤ i, j ≤ n. Denote by [Fq, Fq] the span of all commutators

[a, b] = ab − ba with a, b ∈ Fq. Then sll+1(Fq) = {x ∈ Ml+1(Fq) : tr(x) ∈ [Fq, Fq]}
is a Lie torus of type Al, l ≥ 1 and nullity n. Conversely, by [BGK, Theorem 2.65],

every Lie torus of type Al, l ≥ 3 and nullity n is a central extension of sll+1(Fq) for

some quantum torus Fq.

(iii) Lie tori of type A2 are classified in [BGK, BGKN]. The centerless Lie tori of

type A1 are the Tits–Kantor–Koecher algebras of the so-called Jordan tori, classified

in [Y]. Lie tori of type Bl,Cl, F4 or G2 are described in [AG], of type BC1 in [AFY,AY],

and of type BC2 in [F].

For a centerless Lie torus L of type (∆,Λ) and nullity n, recall that the skew cen-

troidal derivations of L form the subalgebra of DerF L defined by

SCDerF L =

⊕

µ∈Γ

tµ{∂θ ∈ D : θ(µ) = 0},

where Γ is the so-called centroidal grading group of L and is a subgroup of Λ of rank

m, so 0 ≤ m ≤ n, tµ = t
µ1

1 · · · tµm
m for µ = (µ1, . . . , µm) ∈ Zm, and D = {∂θ : θ ∈

HomZ(Λ, F)} ∼= Fn, with the product

[tµ∂θ, t
η∂ψ] = tµ+η(θ(η)∂ψ − ψ(µ)∂θ).
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Proposition 4.2 ([N2]) Let E be an EALA of nullity n with nondegenerate symmetric

bilinear form ( · ). Then there exists a unique subalgebra D of the algebra of skew cen-

troidal derivations of the centerless Lie torus L := Ec/Z(Ec) of nullity n inducing the

Λ-grading of L and a 2-cocycle τ : D×D → Dgr ∗ (the graded dual space of D) such that

E ∼= L ⊕ Z(Ec) ⊕ D,

where L := Ec/Z(Ec) and Z(Ec) ∼= Dgr ∗,

[x1 ⊕ f1 ⊕ d1, x2 ⊕ f2 ⊕ d2] = ([x1, x2] + d1(x2) − d2(x1))

⊕ (σD(x1, x2) + d1 · f2 − d2 · f1 + τ (d1, d2)) ⊕ [d1, d2]D,

where σD(x1, x2)(d) := (dx | y), d ∈ D, d · f is the contragredient action and [d1, d2]D

denotes the commutator of d1 and d2 in D. Moreover

(x1 ⊕ f1 ⊕ d1, x2 ⊕ f2 ⊕ d2) = (x1 | x2) + f1(d2) + f2(d1).

By using Neher’s results, we can compute the Kostrikin radical of the core of an

EALA without any assumptions on the type.

Proposition 4.3 If Ec is the core of an extended affine Lie algebra E, then

K(Ec) = c(Ec) = Z(Ec).

Proof Note that if E is of reduced type ∆, then Ec is a ∆Λ-division graded Lie al-

gebra as in Remark 2.11. Hence the result follows from that remark, so it only re-

mains to prove the nonreduced case. In general, if we prove that c(Ec) = Z(Ec) and

c(Ec/Z(Ec)) = 0, since Z(Ec) is an ideal of Ec, we get that K(Ec) = c(Ec) = Z(Ec) by

Remark 2.2. On the other hand, it is straightforward that Z(Ec) ⊆ c(Ec). Thus, the

proof reduces to showing that c(Ec) ⊆ Z(Ec) and c(Ec/Z(Ec)) = 0, where E is not of

reduced type.

Suppose that E is not of reduced type. Let L := Ec/Z(Ec). Then, since L is not

of type Al, it follows from [N, Remarks] that the centroid Cent(L) of L is an integral

domain acting without torsion on L and, if K is the quotient field of Cent(L), then

the central closure L̃ = L
⊗

Cent(L) K is a simple finite-dimensional Lie algebra over

K. Since L is torsion-free over Cent(L), we have that L embeds in L̃ via x 7→ x ⊗ 1.

Now let x ∈ c(Ec) and π : Ec → L be the canonical epimorphism. Then π(x) is an

absolute zero divisor of L and π(x)⊗ 1 is thus an absolute zero divisor of L̃. But L̃ has

no nonzero absolute zero divisors by Remark 2.3. Then π(x) = 0, that is, x ∈ Z(Ec).

Finally, by using the same argument we also get that c(L) = 0.

From Proposition 4.3 and as an immediate consequence of the fact that Lie tori

are central extensions of centerless cores of extended affine Lie algebras [Y3, Theo-

rem 7.3], we have the following.

Corollary 4.4 A Lie torus is centerless if and only if it is strongly nondegenerate.
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Since a Lie torus L has a (unique up to a nonzero scalar) nonzero invariant

Λ-graded symmetric bilinear form that is nondegenerate if and only if L is center-

less [Y3], then the above corollary can be seen as an infinite-dimensional version of

Remark 2.3.

On the other hand, Proposition 4.2 tells us that the portion of an EALA which lies

outside of the core is the part that is nondegenerately paired with the center of the

core under the invariant bilinear form on the algebra and this is the clue to prove the

following result.

Proposition 4.5 Let Ec be the core of an extended affine Lie algebra E ∼= L⊕Z(Ec)⊕D,

where Ec = L ⊕ Z(Ec) and Z(Ec) ∼= Dgr∗ as in Proposition 4.2. Then CE(Z(Ec)) ∼=
L ⊕ Z(Ec) ⊕ Z(D) and Ec = [CE(Z(Ec)), E], where Z(Ec) = K(Ec) = c(Ec).

Proof By the definition of Z(Ec), it is clear that Ec ⊆ CE(Z(Ec)). Using Proposi-

tion 4.2, we make the identifications E = L ⊕ Dgr ∗ ⊕ D, Ec = L ⊕ Dgr ∗ and Z(Ec) =

Dgr ∗. We claim that CE(Dgr ∗) = L⊕Dgr ∗⊕Z(D). Since Ec = L⊕Dgr ∗ ⊆ CE(Dgr ∗),

it suffices to show D ∩ CE(Dgr ∗) = Z(D). If d ∈ D, we have

([Dgr ∗, d] | D) = (Dgr ∗ | [d,D]).

Since pairing between Dgr ∗ and D is nondegenerate, we see that [Dgr ∗, d] = 0 if

and only if [d,D] = 0. Thus, D ∩ CE(Dgr ∗) = Z(D). Since Ec is perfect, we have

Ec = [Ec, Ec] ⊆ [CE(Z(Ec)),CE(Z(Ec))]

⊆ [CE(Z(Ec)), E] = [L ⊕ Dgr ∗ ⊕ Z(D), L ⊕ Dgr ∗ ⊕ D]

⊆ L ⊕ Dgr ∗
= Ec.

Finally, by Proposition 4.3, Z(Ec) = K(Ec) = c(Ec).

5 Invariance of the Core of Extended Affine Lie Algebras of
Reduced Type

In order to prove the invariance of the core of extended affine Lie algebras of reduced

type under the automorphism group of the algebra, we need to find a characteriza-

tion of the core which is independent of the data (H, ( · )). This characterization is

given in the next theorem.

Theorem 5.1 Let E be an extended affine Lie algebra of reduced type. Then

Ec = [CE(K(E)), E]

where K(E) = c(E).

Proof The proof follows directly from Theorem 3.3 and Proposition 4.5.

Hence, as a direct consequence of the above theorem and the fact that CE(K(E)) is

invariant under the automorphisms of E, we get the following.
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Corollary 5.2 If E and E ′ are extended affine Lie algebras of reduced type and f : E →
E ′ is an isomorphism of Lie algebras, then f , by restriction, induces an isomorphism

fc : Ec → E ′
c of the corresponding cores Ec and E ′

c of E and E ′. In particular, the core of

an extended affine Lie algebra E of reduced type is invariant under the automorphisms

of E.
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