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Enriques Diagrams and Adjacency of
Planar Curve Singularities

Maria Alberich-Carramiñana and Joaquim Roé

Abstract. We study adjacency of equisingularity types of planar complex curve singularities in terms

of their Enriques diagrams. The goal is, given two equisingularity types, to determine whether one of

them is adjacent to the other. For linear adjacency a complete answer is obtained, whereas for arbitrary

(analytic) adjacency a necessary condition and a sufficient condition are proved. We also obtain new

examples of exceptional deformations, i.e, singular curves of type D′ that can be deformed to a curve

of type Dwithout D′ being adjacent to D.

Introduction

A class of reduced (germs of) planar curve singularities D
′ is said to be adjacent to

the class D when every member of the class D
′ can be deformed into a member of

the class D by an arbitrarily small deformation. If this can be done with a linear

deformation, then we say that D
′ is linearly adjacent to D. We shall focus on the

equisingularity (or topological equivalence, see for instance [3, 26, 28]) classes, and
we will call them simply types. The Enriques diagrams introduced by Enriques in [7,
IV.I] represent the types: two reduced curves are equisingular at O if and only if their

associated Enriques diagrams are isomorphic (see [3, 3.9]).
In [1] Arnold classified critical points of functions with modality at most two and

described some adjacencies between them, introducing the so-called series of types
A, D, E, J, W , X and Z. This was later generalized to other sequences of singularities

(see [23, 27]). Apart from the sequences of adjacencies satisfied by singularities in
these, only some particular cases of adjacency seem to be known, obtained using
explicit deformations (see for instance [6], and references therein). On the other
hand, the semicontinuity of some numerical invariants such as the genus discrepancy

δ, the Milnor number µ or the singularity spectrum (see [24]) provide necessary
conditions for adjacency. These are topological invariants which do not determine
the type of the singularity [25]. Here, instead of numerical invariants, the Enriques
diagram (which does determine the type) is used, providing a necessary condition

and a sufficient condition for adjacency. In some cases we can show two types not to
be adjacent as a consequence of our results, although their adjacency is not discarded
by their numerical invariants (such as the spectrum, as in example 3).

In the case of linear adjacency we obtain a complete answer, namely, we deter-

mine all linear adjacencies in terms of Enriques diagrams. Non-linear adjacencies are
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a much subtler subject, as shown by the fact that the types do not form a stratification
of C[[x, y]] (see [6, 13, 18] or example 4 below); this suggests that a complete under-

standing of analytic adjacencies can only be achieved by considering analytic moduli
of singularities, rather than equisingularity classes alone. Non-linear deformations
also allow us to consider the possibility of adjacencies from germs to multigerms; our
method works equally well in the more general setting (one just needs to consider

Enriques diagrams with several roots, as in [19]). However, we shall skip this in the
exposition in order to keep notations simpler.

We close the paper giving a sufficient condition for adjacency of ordinary sin-
gularities to arbitrary singularities (Corollary 3.5). This condition is “asymptoti-

cally proper”, by which we mean that it can be equivalently stated as an inequality
µ0 ≥ cµ−terms of lower order, where µ0 is the Milnor number of the ordinary sin-
gularity, µ is the Milnor number of the singularity to which it deforms, and c is a
universal constant.

We present a purely combinatorial definition of Enriques diagrams that was used
by Kleiman and Piene [15] to list all equisingularity types with codimension up to 8,
which is needed for the enumeration of 8-nodal curves (see also [11]).

A tree is a finite directed graph without loops; it has a single initial vertex or root

and every other vertex has a unique immediate predecessor. If p is the immediate
predecessor of the vertex q, we say that q is a successor of p. If p has no successors,
then it is an extremal vertex. An Enriques diagram is a tree with a binary relation
between vertices, called proximity, which satisfies:

1. The root is proximate to no vertex.

2. Every vertex that is not the root is proximate to its immediate predecessor.
3. No vertex is proximate to more than two vertices.
4. If a vertex q is proximate to two vertices, then one of them is the immediate pre-

decessor of q and it is proximate to the other.

5. Given two vertices p, q with q proximate to p, there is at most one vertex proximate
to both of them.

The vertices which are proximate to two points are called satellite, the other vertices
are called free. We usually denote the set of vertices of an Enriques diagram D with

the same letter D.
To show graphically the proximity relation, Enriques diagrams are drawn accord-

ing to the following rules:

1. If q is a free successor of p, then the edge going from p to q is smooth and curved
and, if p is not the root, it has at p the same tangent as the edge joining p to its

predecessor.
2. The sequence of edges connecting a maximal succession of vertices proximate to

the same vertex p are shaped into a line segment, orthogonal to the edge joining
p to the first vertex of the sequence.

An isomorphism of Enriques diagrams is a bijection i between the sets of vertices of

the two diagrams so that q is proximate to p if and only if i(q) is proximate to i(p).
A subdiagram of an Enriques diagram D is a subtree D0 ⊂ D together with the

induced proximity relation, such that the predecessors of every vertex q ∈ D0 belong
to D0. An admissible ordering for an Enriques diagram D is a total ordering � for its
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set of vertices refining the natural ordering of D.
Given an Enriques diagram D of n vertices with an admissible ordering �, let

p1, p2, . . . , pn denote its vertices, numbered according to �. The proximity matrix of
D is a square matrix P = (pi, j) of order n, with

pi, j =





1 if i = j,

−1 if pi is proximate to p j ,

0 otherwise.

A system of multiplicities for (the vertices of) an Enriques diagram D is any map
ν : D → Z. We will usually write νp = ν(p). A pair (D, ν), where D is an Enriques
diagram and ν a system of multiplicities for it, is called a weighted Enriques diagram,
and its degree is deg(D, ν) =

∑
p∈D

νp(νp + 1)/2. A consistent Enriques diagram is a

weighted Enriques diagram such that, for all p ∈ D,

νp ≥
∑

q prox. to p

νq.

Note that if (D,�) is an Enriques diagram of n vertices with an admissible ordering,
then a system of multiplicities for D may be identified with a vector

ν = (νp1
, νp2

, . . . , νpn
) ∈ Z

n,

i = 1, . . . , n; we shall use the notation (D,�, ν) for a weighted ordered Enriques
diagram, where ν ∈ Z

n.
To every system of multiplicities ν for a diagram D we associate a system of values,

which is another map v : D → Z, defined recursively as

(1) vp =

{
νp if p is the root,

νp +
∑

p prox. to q vq otherwise.

Giving a system of multiplicities for an Enriques diagram is equivalent to giving a
system of values, as obviously one recovers vp from νp using (1).

It is well-known that there exists a bijection {types} ↔ {consistent Enriques di-
agrams with no extremal free vertices of multiplicity νp ≤ 1}. Next we recall the
basics on this, referring the reader to [3] for proofs.

Assume that O is a smooth point on a complex surface S, whose local ring’s com-

pletion is isomorphic to C[[x, y]], and let f ∈ C[[x, y]] be the equation of a (germ
of) curve with an isolated singularity at O.

Let K be a finite set of points equal or infinitely near to the smooth point O, such
that for each p ∈ K, K contains all points to which p is infinitely near. Such a set is

called a cluster of points infinitely near to O. A point p ∈ K is said to be proximate

to another q ∈ K if it is infinitely near to q and lies on the strict transform of the
exceptional divisor of blowing up q. One encodes all the (combinatorial) information
on proximities between the points of a cluster in its Enriques diagram.
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The value of a germ of curve at a point p of a cluster K is the multiplicity at p

of the pullback of the germ of curve in the blown up surface containing p. Given a

cluster K and a system of values v : K → Z (associated to the system of multiplicities
ν), the set HK,ν ⊂ C[[x, y]] of all equations of the germs of curve which have at every
point p ∈ K value at least vp is a complete ideal.

If C ⊂ S is a reduced curve going through O, then the set of singular points of C

equal or infinitely near to O is a cluster K. The Enriques diagram of K, weighted with
the multiplicities of C at the points of K, is a consistent Enriques diagram, with no
extremal free vertices of multiplicity νp ≤ 1. Conversely, if D is a consistent Enriques

diagram with no extremal free vertices of multiplicity νp ≤ 1, then there are germs of
curve at O whose cluster of singular points has Enriques diagram isomorphic to D,
and two reduced curves are equisingular at O if and only if their associated Enriques
diagrams are isomorphic.

1 Linear Adjacency

Let I ⊂ C[[x, y]] be an ideal. According to [3, 7.2.13], general members of I (by the
Zariski topology of the coefficients of the series) define equisingular germs.

Lemma 1.1 (D
′, ν ′) is linearly adjacent to (D, ν) if and only if for every f ∈ C[[x, y]]

defining a reduced germ of curve of type (D
′, ν ′), there exists an ideal I ⊂ C[[x, y]] with

f ∈ I and whose general member defines a reduced germ of type (D, ν).

Proof The “if” part of the claim is evident. To see the “only if” part, assume that
f defines a reduced germ of type (D

′, ν ′) that can be deformed to a reduced germ of
type (D, ν) by a linear deformation f + tg, g ∈ C[[x, y]]. This means that general

members of the pencil f + tg define reduced germs of type (D, ν). Hence general
members of the ideal I = ( f , g) define germs of type (D, ν) as well ([3, 7.2]).

Proposition 1.2 Let (D, µ) and (D
′, µ ′) be weighted Enriques diagrams, with

(D
′, µ ′) consistent. The following are equivalent:

1. There are two clusters, K and K ′, whose Enriques diagrams are D and D
′, respec-

tively, such that HK ′,µ ′ ⊆ HK,µ.

2. For every cluster K with Enriques diagram D, there is a cluster K ′ with Enriques

diagram D
′ such that HK ′,µ ′ ⊆ HK,µ.

3. For every cluster K ′ with Enriques diagram D
′, there is a cluster K with Enriques

diagram D such that HK ′,µ ′ ⊆ HK,µ.

4. There exist isomorphic subdiagrams D0 ⊂ D, D
′
0 ⊂ D

′ and an isomorphism

i : D0 −→ D
′
0

such that the system of multiplicities ν for D defined as

ν(p) =

{
µ ′(i(p)) if p ∈ D0,

0 otherwise
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has the property that the values v and v ′ associated with the multiplicities µ and ν
respectively satisfy v(p) ≤ v ′(p) ∀p ∈ D.

Proof Clearly both 3 and 2 imply 1. We shall prove that 1 implies 4 and that 4
implies both 2 and 3.

Let us first prove that 1 implies 4. So assume there are two clusters, K and K ′,

whose Enriques diagrams are D and D
′ respectively, such that HK ′,µ ′ ⊆ HK,µ. The

points common to K and K ′ clearly form a cluster, which we call K0. The vertices
in D and D

′ corresponding to points in K0 form subdiagrams D0 and D
′
0, and the

coincidence of points in K0 determines an isomorphism i : D0 −→ D
′
0. It only re-

mains to be seen that the values v and v ′ associated with the multiplicities µ and ν
respectively (with ν as in the claim) satisfy v(p) ≤ v ′(p) ∀p ∈ D. Now choose a germ
f ∈ HK ′,µ ′ having multiplicity exactly µ ′

p at each point p ∈ K ′ (such an f exists be-
cause (D

′, µ ′) is consistent, see [3, 4.2.7]). This implies that f has value exactly v ′(p)

at each point p ∈ K. Then f ∈ HK,µ because HK ′,µ ′ ⊆ HK,µ, and the claim follows
by the definition of HK,µ.

Let us now prove that 4 implies 3. Assume that 4 holds, and let K ′ be a cluster

whose Enriques diagram is D
′. We must prove the existence of a cluster K with

Enriques diagram D such that HK ′,µ ′ ⊆ HK,µ. Let K0 be the cluster formed by the
points corresponding to vertices in D

′
0. Add to K0 the points necessary to get a cluster

K with Enriques diagram D. Because of the hypothesis on the values v and v ′ and the

characterization of HK,µ (see for instance [3, 4.5.4]), HK ′,µ ′ ⊆ HK,µ.

In the same way it is proved that 4 implies 2.

If the conditions of Proposition 1.2 are satisfied, we shall write (D
′, µ ′) ≥ (D, µ).

Now we can prove our main result on linear adjacency. The interest of Proposition

1.2 and Theorem 1.3 lies in the fact that condition 4 of Proposition 1.2 can be checked
directly on the Enriques diagrams, using their combinatorial properties, thus giving
a practical means to decide whether a type is or is not linearly adjacent to another.

Theorem 1.3 Let (D, µ), (D̃, µ̃) be types. (D̃, µ̃) is linearly adjacent to (D, µ) if

and only if there exists a weighted consistent Enriques diagram (D
′, µ ′), differing from

(D̃, µ̃) at most in some free vertices of multiplicity one, satisfying (D
′, µ ′) ≥ (D, µ).

Proof To prove the “if” part, given a reduced germ f ∈ C[[x, y]] defining a curve
singularity of type (D̃, µ̃) we have to show the existence of an ideal I ⊂ C[[x, y]] con-
taining f and whose general member defines a reduced germ of type (D, µ), provided

that (D
′, µ ′) ≥ (D, µ). Let K̃ be the cluster of singular points of f (whose Enriques

diagram is D̃). For each vertex p of D
′ not in D̃, whose predecessor is denoted by q,

choose a point on f = 0 on the first neighbourhood of the point corresponding to
the vertex q. Then K̃ together with all these additional points (which are nonsingu-

lar, therefore free of multiplicity 1) form a cluster K ′ with Enriques diagram D
′, with

f ∈ HK ′,µ ′ . As (D
′, µ ′) ≥ (D, µ), Proposition 1.2 says that there is a cluster K with

Enriques diagram D such that f ∈ HK ′,µ ′ ⊆ HK,µ. On the other hand [3, 4.2.7] says
that the general member of HK,µ defines a germ of type (D, µ), so we are done.
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Figure 1: In white, the vertices of the isomorphic subdiagrams, in bold shape, the systems of

multiplicities and, in italics, the systems of values. With notations as in Proposition 1.2, the

top right diagram is (D, µ), the bottom left is (D
′, µ′) and the bottom right is (D, ν).

Let us now prove the “only if” part. So assume that for every f ∈ C[[x, y]] defin-
ing a reduced germ of type (D̃, µ̃), there exists an ideal I ⊂ C[[x, y]] with f ∈ I

whose general member defines a reduced germ of type (D, µ). We first reduce to the

case that I has no fixed part. Indeed, for n big enough and h ∈ (x, y)n, the types of
f and f + h coincide (see for instance [3, 7.4.2]), and also the types of g and g + h

for g general in I, so we can take I + (x, y)n instead of I, and this has no fixed part.
Then by [3, 7.2.13] the Enriques diagram of the weighted cluster BP(I) of base points

of I is (D, µ) plus some free vertices of multiplicity one. Let K be the subcluster of
BP(I) whose Enriques diagram is D. As f ∈ I, f goes through the weighted cluster
BP(I), and therefore f ∈ HK,µ. By [3, 4.5.4] this means that the value of f at each
point p ∈ K is at least vp. Add to the cluster (K̃, µ̃) of singular points of f all points

on f = 0 which belong to K, weighted with multiplicity 1 (these are all infinitely
near points at which f = 0 is smooth). Then the resulting cluster (K ′, µ ′) satisfies
HK ′,µ ′ ⊆ HK,µ and by Proposition 1.2 we obtain (D

′, µ ′) ≥ (D, µ), where D
′ is the

Enriques diagram of K ′.

Example 1 Let Ak, Dk, Ek, Jk,p and so on denote the types of germs of curve of

Arnold’s lists (cf. [1]). Then for every k, d > 0, Ak+d is linearly adjacent to Ak, Dk+d is
linearly adjacent to Dk, Ek+d is linearly adjacent to Ek, Jk+d,p+d is linearly adjacent to
Jk+d,p and to Jk,p+d and so on. To see this from Theorem 1.3, without the need of ex-
plicit formulae, just take the weighted Enriques diagrams corresponding to each type,

and apply Theorem 1.3. For instance, Figure 1 shows the Enriques diagrams corre-
sponding to types A2k and A2k+1 with the corresponding isomorphic subdiagrams,
the multiplicities and the values involved. All other cases are handled similarly.
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Figure 2: Diagrams corresponding to example 2.

Example 2 The simplest example in which one needs to consider (D
′, µ ′) 6= (D̃, µ̃)

is to prove that a triple point (D4 in Arnold’s notation) is linearly adjacent to the
tacnode of type A3 in Arnold’s notation. Indeed, in this case (D

′, µ ′) is obtained
from the triple point by adding a free point with multiplicity 1 to it (see Figure 2).

Remark 1.4 In the proof of the “only if” part of Theorem 1.3 one just needs to
assume that there exists a f ∈ C[[x, y]] defining a reduced germ of type (D̃, µ̃) and
an ideal I ⊂ C[[x, y]], with f ∈ I, whose general member defines a reduced germ of
type (D, µ). It follows therefore that if a germ of curve of type (D̃, µ̃) can be deformed

linearly to a germ of type (D, µ), then (D̃, µ̃) is linearly adjacent to (D, µ). In other
words, there are no exceptional linear deformations.

Remark 1.5 In Theorem 1.3 the linear adjacency of the type (D̃, µ̃) to (D, µ) is
characterized through a third Enriques diagram (D

′, µ ′) which differs from (D̃, µ̃)

at most in some free simple vertices. A coarse a priori upper bound to the number
of such extra vertices is the number of free vertices of D minus one. A finer upper
bound can be given if we examine how to proceed in practise. The subdiagrams of
D which are isomorphic to some subdiagram of D̃ are partially ordered by inclusion.

Consider a maximal subdiagram D1 of D such that there exists i : D1
∼= D̃1, D̃1

subdiagram of D̃, satisfying the inequalities of values v(p) ≤ ṽ(i(p)) for all p ∈ D1,
where v and ṽ are the values associated with the multiplicities µ and µ̃ respectively.
Then D1 defines a unique maximal (by inclusion) subdiagram D0 of D, D1 ⊆ D0

and such that D0 − D1 are free vertices. Check whether (D0, µ
′) ≥ (D, µ), where

µ ′(p) = µ̃(i(p)) if p ∈ D1, and µ ′(p) = 1 if p ∈ D0 − D1. From Theorem 1.3 we
obtain that there is linear adjacency if and only if (D0, µ

′) ≥ (D, µ) for some D1, and
in this case the diagrams D̃ and D0, joined along D1

∼= D̃1, give the diagram D
′ we

are looking for. Therefore an upper bound of the number of vertices in D
′ − D̃ is

the maximum over such D1 of the number of free vertices of D − D1 which are not
preceded by any satellite vertex of D − D1.

2 Non-Linear Adjacency

We have shown in the preceding section a criterion to decide whether a type is or is
not linearly adjacent to another. Non-linear adjacencies are a much subtler subject,
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as shown by Example 4 below, and we cannot give a criterion to decide in all cases.
However, we are able to give a necessary condition and a sufficient condition.

We say that a weighted Enriques diagram (D, µ) is tame whenever it is consistent

or the sequence of unloadings that determines, leading to a consistent Enriques dia-
gram (D, µ ′) is tame (see [3, 4.7]); the fact that (D, µ) is tame or not depends on the
multiplicities and the proximities between vertices of D, i.e., on the combinatorial
properties of the weighted cluster. Moreover, (D, µ) is tame if and only if for every

cluster K with Enriques diagram D the condition dim C[[x, y]]/HK,µ = deg(D, µ)
holds (see [3, 4.7.3]).

For every Enriques diagram D, endowed with an admissible ordering � of the
vertices, there is a variety Cl(D,�) parameterizing all ordered clusters with ordered

Enriques diagram (D,�) (see [19]). In the sequel we shall make use of these spaces
and the results on their relative positions in the variety of all clusters obtained in [19].
In particular, we write (D,�) (D

′,� ′) to mean Cl(D
′,� ′) ⊂ Cl(D,�).

We begin with a sufficient condition for adjacency.

Proposition 2.1 Let (D, µ), (D̃, µ̃) be types, and assume that there exist a weighted

consistent Enriques diagram (D
′, µ ′), differing from (D̃, µ̃) at most in some free vertices

of multiplicity one, an Enriques diagram D0 with the same number of vertices as D, and

admissible orderings � and �0 of D and D0 respectively satisfying

1. (D,�) (D0,�0),

2. (D0,�0, µ) is tame, and

3. (D
′, µ ′) ≥ (D0,�0, µ),

where µ is the vector of multiplicities of (D, µ) for the ordering � of D. Then the type

(D̃, µ̃) is adjacent to the type (D, µ).

Proof Let C be a germ of curve of type (D̃, µ̃); we have to see that there is a family
of germs containing C whose general member is of type (D, µ). Let f ∈ C[[x, y]] be

an equation of C , and let K̃ be the cluster of singular points of C . For each vertex p

of D
′ not in D̃, whose predecessor is denoted by q, choose a point on C on the first

neighbourhood of the point corresponding to the vertex q. Then K̃, together with all
these additional points (which are nonsingular, therefore free of multiplicity 1) form

a cluster K ′ with Enriques diagram D
′, with f ∈ HK ′,µ ′ . As (D

′, µ ′) ≥ (D0,�0, µ),
Proposition 1.2 says that there is a cluster K0 with Enriques diagram D0 such that
f ∈ HK ′,µ ′ ⊆ HK0,�0,µ. The hypothesis D  D0 says that we can deform K0 to
a family Kt of clusters, t ∈ ∆ ⊂ C, where ∆ is a suitably small disc, such that for

t 6= 0 the cluster Kt has Enriques diagram D. Now the HKt ,µ form a family of linear
subspaces of C[[x, y]] with constant codimension (because (D0,�0, µ) is tame and
(D, µ) is consistent) and therefore determine a family of germs which contain f and
whose general member has type (D, µ), as wanted.

If needed, it is not hard to obtain from the family described in the proof of Propo-
sition 2.1 a one-dimensional family Ct with the desired properties and C0 = C , even
explicitly. For the particular case when D is unibranched, the reader may find details
on the family HKt ,µ, with explicit equations, in [20, 3].
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Note that, as in the linear case, the interest of Proposition 2.1 lies in the fact that
the conditions can be checked directly on the Enriques diagrams using their combi-

natorial properties. This is always true for the conditions that (D0,�0, µ) is tame and
(D̃, µ̃) ≥ (D0,�0, µ). The condition (D,�) (D0,�0) is more difficult to handle,
but in some cases (such as when D has no satellite points or when it is unibranched)
it can also be determined from the combinatorial properties of D and D0 (see [19])

using proximity matrices.

It is not to be expected that Proposition 2.1 gives all existing adjacencies; on the
other hand, it simplifies a great deal the search for such adjacencies without the need
for explicit equations, and this for singularities of arbitarily high multiplicity. Con-

fining ourselves to the easier cases, it may be interesting to note that by checking
E. Brieskorn’s lists [2], one sees that Proposition 2.1 implies all adjacencies between
1-modular singularities of curves except one (namely, that S2,5,6 = W13 is adjacent to
T2,3,8 = J2,2).

Next we prove a necessary condition for adjacency.

Proposition 2.2 Let (D, µ), (D̃, µ̃) be types such that there exists a family of curves Ct ,

t ∈ ∆ ⊂ C, whose general members are of type (D, µ) and with C0 of type (D̃, µ̃), and

let � be any admissible ordering of D. Then there exist a weighted consistent Enriques

diagram (D
′, µ ′) differing from (D̃, µ̃) at most in some free vertices of multiplicity one,

an Enriques diagram D0 with the same number of vertices as D and an admissible or-

dering �0 of D0, such that

1. (D
′, µ ′) ≥ (D0,�0, µ), and

2. the matrix P−1
0 P, where P and P0 are the proximity matrices of (D,�) and (D0,�0)

respectively, has no negative entries.

Proof Let St −→ Spec C[[x, y]] be a desingularization of the family Ct , t 6= 0 ([29],
see also [26]). Because of the universal property of the space Xn−1 of all ordered

clusters of n points (see [14, 19]) this induces a family of clusters Kt (parameterized
by a possibly smaller punctured disc ∆

′\{0}) which can be uniquely extended taking
K0 = limt→0 Kt (Xn−1 is projective and therefore complete). All clusters of this family
except maybe K0 have type D, and for all t ∈ ∆

′, it is easy to see that Ct goes through

the weighted cluster (Kt , µ). Taking D0 to be the Enriques diagram of K0, both claims
follow (see [19] for the second claim).

Obviously this implies:

Corollary 2.3 Let (D, µ), (D̃, µ̃) be types such that (D̃, µ̃) is adjacent to (D, µ), and

let � be any admissible ordering of D. Then there exist a weighted consistent Enriques

diagram (D
′, µ ′), differing from (D̃, µ̃) at most in some free vertices of multiplicity

one, an Enriques diagram D0 with the same number of vertices as D and an admissible

ordering �0 of D0, such that

1. (D
′, µ ′) ≥ (D0,�0, µ), and

2. the matrix P−1
0 P, where P and P0 are the proximity matrices of (D,�) and (D0,�0)

respectively, has no negative entries.
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Again, the interest of Corollary 2.3 lies in the fact that the conditions can be
checked directly on the Enriques diagrams, using their combinatorial properties.

Thus we prove, for example, that some types (including all irreducible curve singu-
larities with a single characteristic exponent m/n with n < m < 2n) allow only linear
adjacencies (which in turn implies that they allow no exceptional deformations, after
Remark 1.4):

Corollary 2.4 Let (D, µ), (D̃, µ̃) be types such that (D̃, µ̃) is adjacent to (D, µ), and

suppose that D has at most two free vertices. Then (D̃, µ̃) is linearly adjacent to (D, µ).

Proof If p is a satellite vertex of D, then there are at least two vertices in D preceding
it (namely, the two vertices to which p is proximate). Therefore, if D has only one
free vertex, then it consists of the root alone, and if it has two free vertices, they
must be the root and another vertex which is the unique one which has the root as

immediate predecessor. Under these conditions, it is not hard to see that, given any
admissible ordering � on D, if (D0,�0) is an ordered Enriques diagram such that
the matrix P−1

0 P has no negative entries where P and P0 are the proximity matrices
of (D,�) and (D0,�0) respectively, then (D,�) = (D0,�0). Now the claim follows

from Corollary 2.3 and Theorem 1.3.

Example 3 Let (D̃, µ̃) be a single point of multiplicity 7, i.e., the type of an ordinary
singularity of multiplicity 7, and let (D, µ) be the Enriques diagram of the type of a

singularity with two tangent branches, each one with a single characteristic exponent
3
2

and 5
3
, respectively. Applying Theorem 1.3, (D̃, µ̃) is not linearly adjacent to (D, µ)

and hence neither is it adjacent by Corollary 2.4. However their adjacency is not
discarded by their spectra.

It is well known (see [6, 13, 18]) that the equisingularity classes do not form a
stratification of C[[x, y]] (i.e., there exist types (D, µ), (D̃, µ̃) and curves of type

(D̃, µ̃) that can be deformed to curves of type (D, µ) without (D̃, µ̃) being adjacent
to (D, µ), which are called exceptional deformations). This fact can be proved using
the result, proved in [19], that the varieties Cl(D) do not form a stratification of the
space of all clusters (i.e., there exist D, D

′ with Cl(D
′) ∩ Cl(D) 6= ∅ and D 6 D

′).

In the example explicitly stated in [19, 3], D has two roots; this would correspond
to adjacencies from germs to 2-germs. Here we present another example which deals
with clusters with only one root, and provides infinitely many new exceptional defor-
mations of germs of plane curve singularities:

Example 4 Let (D, µ), (D
′, µ ′), (D̃, µ̃) be the Enriques diagrams of Figure 3 (all

systems of multiplicities µ and µ ′ such that (D, µ) is consistent and (D
′, µ ′) is tame

work). It is not hard to prove, using the method of [19, 3], that there exist clusters
K and K ′ with Enriques diagram D

′ such that K ′ can be deformed to clusters with

Enriques diagram D and K can not. If C is a curve of type (D̃, µ̃), and (K ′, µ ′) is
the cluster (of type (D

′, µ ′)) formed by the singular points and the two first nonsin-
gular points on each branch of C , then it can be deformed to curves of type (D, µ),
using the method of the proof of Proposition 2.1. On the other hand, (D̃, µ̃) is not
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(D, µ) (D̃, µ̃) (D
′, µ ′)

1 1

1 1
22

4

6

6

4

2 2

2

2

6

4
1

1

1

1

Figure 3: Enriques diagrams corresponding to the types of example 4.

adjacent to (D, µ); this can be proved using that K cannot be deformed to clusters
with Enriques diagram D or, more easily, by observing that both types have the same

codimension.

3 Non-Linear Adjacency via Hilbert Schemes

Non-linear adjacency can be approached using Hilbert schemes instead of varieties
of clusters. In fact, it is possible to give a characterization of all adjacencies in terms
of the relative positions of some subschemes of the Hilbert scheme of points on a
surface. However, these relative positions are in general not known, so the answer

obtained using Hilbert schemes is theoretical and not easy to put into practice, in
contrast with the criteria given above, which are combinatorial and can be effectively
applied.

As customary, Hilbn R will denote the Hilbert scheme parameterizing ideals of
colength n in R = C[[x, y]]. We consider also the “nested Hilbert scheme” Zn1,n2

R ⊂
(Hilbn1 R)×(Hilbn2 R) studied by J. Cheah, which parameterizes pairs of ideals (I1, I2)
with I1 ⊃ I2 (see [4, 5]). For every type (D, µ), let Hilb

µ
D

R be the subset of Hilbn R

parameterizing the ideals HK,µ where K are clusters with Enriques diagram D, and
n = deg(D, µ). It is known that Hilb

µ
D

R is a locally closed irreducible subscheme of

Hilbn R (see [15, 17, 16], for example); Hilb
µ
D

R will denote its closure in Hilbn R.

Theorem 3.1 Let (D, µ), (D̃, µ̃) be types. (D̃, µ̃) is adjacent to (D, µ) if and only if

there exists a weighted consistent Enriques diagram (D
′, µ ′), differing from (D̃, µ̃) at

most in some free vertices of multiplicity one, satisfying Hilb
µ ′

D ′ R ⊂ π ′π−1(Hilb
µ
D

R),

where π and π ′ are the projections of Zn,n ′R onto Hilbn R and Hilbn ′

R respectively, and

n = deg(D, µ), n ′
= deg(D

′, µ ′).

To prove Theorem 3.1 we use the following lemma:

Lemma 3.2 Let (D, µ), (D
′, µ ′) be types such that (D

′, µ ′) is adjacent to (D, µ).
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Then for every f ∈ C[[x, y]] defining a reduced germ of curve of type (D
′, µ ′), there

exists an ideal I ∈ Hilb
µ
D

R with f ∈ I.

Proof Let f ∈ C[[x, y]] be a germ of equation of a curve of type (D
′, µ ′). Because

of the adjacency, there exists a family of germs ft , t ∈ ∆ ⊂ C, whose general members
are of type (D, µ) and with f0 = f . Let St −→ Spec C[[x, y]] be a desingularization
of the family ft , t 6= 0 ([29, 26]). Because of the universal property of the space
of all clusters (see [14, 19]) this induces a family of clusters Kt (parameterized by a

possibly smaller punctured disc ∆
′ \ {0}). Now the It = HKt ,µ form a (complex)

one-dimensional family inside Hilb
µ
D

S which can be uniquely extended with I0 =

limt→0 It . It is easy to see that, for all t ∈ ∆
′, ft ∈ It , so the claim follows for I = I0.

Proof of Theorem 3.1 The “if” part of the claim is proved in a similar way to the
proof of Proposition 2.1; we leave the details for the reader to check. For the “only if”
part of the claim, we show that assuming (D̃, µ̃) is adjacent to (D, µ) and that there

exists no consistent weighted Enriques diagram (D
′, µ ′) differing from (D̃, µ̃) only in

free vertices of multiplicity one, in the conditions of the claim, leads to contradiction.
The second assumption means that for every consistent Enriques diagram (D

′, µ ′)
differing from (D̃, µ̃) only in free vertices of multiplicity one, there are clusters K ′

with HK ′,µ ′ ∈ Hilbµ ′

D ′ R \ π ′π−1(Hilbµ
D

R). Consider the sequence of weighted En-

riques diagrams defined as follows. (D1, µ1) is obtained from (D̃, µ̃) by adding

µ̃p −
∑

q prox. to p

µ̃q

free successors of multiplicity 1 to each p ∈ D̃, and for k > 1, (Dk, µk) is obtained
from (Dk−1, µk−1) by adding a free successor of multiplicity 1 to each extremal vertex

(which will be free of multiplicity 1). Obviously (Dk−1, µk−1) is a subdiagram of
(Dk, µk) for all k > 1, and it is not hard to see that the map Fk : Hilb

µk

Dk
R −→

Hilb
µk−1

Dk−1
R defined by sending HK,µk

to HK̆,µk−1
, where K̆ is the subcluster of K with

diagram Dk−1, satisfies

Fk

(
Hilbµk

Dk
R \ πkπ

−1
(

Hilbµ
D

R
))

= Hilb
µk−1

Dk−1
R \ πk−1π

−1
(

Hilbµ
D

R
)
.

Therefore we can construct a sequence of clusters K1, K2, . . . such that HKk,µk
∈

Hilbµk

Dk
R \ πkπ

−1(Hilbµ
D

R) and each Kk is obtained from Kk−1 by adding in the first

neighbourhood of each extremal point a free point of multiplicity one. But then there
exists a reduced germ f of type (D̃, µ̃) belonging to all HKk,µk

(see [3, 5.7]]). Now by

Lemma 3.2, there exists an ideal I ∈ Hilb
µ
D

R with f ∈ I; as dimC C[[x, y]]/I = n,
we must have I ⊃ (x, y)n also. On the other hand, applying [3, 5.7.1] and [3, 7.2.16],
for k big enough, we infer that HKk,µk

⊂ ( f ) + (x, y)n, which implies HKk,µk
⊂ I, a

contradiction.

Remark 3.3 Linear adjacencies may also be dealt with using Hilbert schemes; in-
deed, with notations as above, (D̃, µ̃) is linearly adjacent to (D, µ) if and only if there
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exists a weighted consistent Enriques diagram (D
′, µ ′), differing from (D̃, µ̃) at most

in some free vertices of multiplicity one, satisfying Hilb
µ ′

D ′ R ⊂ π ′π−1 Hilb
µ
D

R. Again
this criterion is hard to apply, in contrast to the purely combinatorial we gave before.

We skip the proof, which adds no new ideas to what was already done.

There exist a few cases in which the criterion of Theorem 3.1 can be effectively
applied. For types (D, µ) where D has three vertices or less, the closure of Hilbµ

D
R is

known, due to the works [9, 10] of Évain; so in this case the Hilbert scheme method
does give a characterization of adjacencies. Another particular situation which we
would like to mention is an example due to H. Russell (see [21]) in which the study
of the Hilbert scheme provides a previously known example of exceptional deforma-

tion, (cf. [6]).

Another case in which the criterion of Theorem 3.1 can be applied to obtain non-

trivial results is the study of adjacencies of ordinary singularities. Indeed, these are
related to linear systems of singular curves in the affine (or projective) plane and we
can use what is known on linear systems to obtain a significant sufficient condition.
Recall that the regularity of a scheme Z defined by an m-primary ideal I ⊂ C[[x, y]]

is the minimal d such that the natural map C[x, y]d −→ C[[x, y]]/IZ is onto, where
C[x, y]d denotes the vector space of all polynomials of degree ≤ d (corresponding to
the linear system of all degree d curves). By semicontinuity, we also know that the
regularity of the schemes Z ∈ Hilbµ

D
(P

2) achieves its minimum in a dense open set.

Then we have:

Proposition 3.4 Let (D, µ) be a type and let d be the minimal regularity of a scheme

Z ∈ Hilb
µ
D

. Then every singularity of multiplicity at least d + 1 is adjacent to (D, µ).

Proof Clearly it is enough to see that the ordinary point of multiplicity d + 1 is

adjacent to (D, µ). By Theorem 3.1 then, it will be enough to show that in Hilb
µ
D

there are schemes contained in a fat point of multiplicity d + 1. Now, [8, Proposition

4] shows how to construct a scheme C ∈ Hilbµ
D

, defined by an homogeneous ideal IC ,

with the same regularity as Z. IC being homogeneous, its regularity is the minimal d

such that IC ⊃ m
d+1, and the claim follows.

The abundant literature on linear systems allows us to obtain sufficient conditions
for adjacency which can be seen to be “asymptotically proper” (see [12, 22]) when
expressed in terms of the Milnor number. For instance, we get:

Corollary 3.5 An ordinary singularity of multiplicity m ≥ 5 is adjacent to

1. every Ak-singularity with
(

m+1

2

)
≥

⌊
3k
2

⌋
+ 2,

2. every Dk-singularity with
(

m+1

2

)
≥

⌊
3k+1

2

⌋
,

3. every singularity with Milnor number µ such that m ≥ 3
√

µ − 1.

Proof Use the regularity results of [20, 22] together with Proposition 3.4.
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1997.

[10] , Compactification of configuration spaces via Hilbert schemes, preprint (2001),
http://xxx.lanl.gov/abs/math/0107041.

[11] A. Granja and T. Sánchez-Giralda, Enriques graphs of plane curves., Comm. Algebra 20 (1992),
no. 2, 527–562.

[12] G.M. Greuel, C. Lossen, and E. Shustin, Plane curves of minimal degree with prescribed singularities,
Invent. Math. 133 (1998), 539–580.

[13] S. M. Guseı̆n-Zade and N. N. Nekhoroshev, Contiguities of singularities Ak to points of the
singularity stratum µ = constant, Functional Anal. Appl. 17 (1983), no. 4, 312–313.

[14] B. Harbourne, Complete linear systems on rational surfaces, Trans. A.M.S. 289 (1985), 213–226.
[15] S. Kleiman and R. Piene, Enumerating singular curves on surfaces, Proc. Conference on Algebraic

Geometry: Hirzebruch 70 (Warsaw 1998), vol. 241, A.M.S. Contemp. Math., 1999, pp. 209–238.
[16] C. Lossen, The geometry of equisingular and equianalytic families of curves on a surface, Ph.D. thesis,

Universität Kaiserslautern, 1998.
[17] A. Nobile and O. Villamayor, Equisingular stratifications associated to families of planar ideals, J.

Alg. 193 (1997), 239–259.
[18] F. Pham, Remarque sur l’équisingularité universelle, Preprint, Université de Nice (1970).
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(Luminy, 1987), Astérisque, vol. 179–180, 1989, pp. 163–184.
[26] J. Wahl, Equisingular deformations of plane algebroid curves, Trans. A.M.S. 193 (1974), 143–170.
[27] C. T. C. Wall, Notes on the classification of singularities, Proc. London Math. Soc. (3) 48 (1984),

no. 3, 461–513.
[28] O. Zariski, Studies in equisingularity I, Amer. J. Math. 87 (1965), 507–536.
[29] , Studies in equisingularity II, Amer. J. Math. 87 (1965), 972–1006.

Departament de Matemàtica Aplicada I
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