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Abstract

We give some explicit constructions of type III product measures with various properties, resolving some
conjectures of Brown, Dooley and Lake. We also define a family of Markov odometers of type Mo and
show that the associated flow is approximately transitive.
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0. Introduction

Dye's celebrated theorem [8] states that any ergodic non-singular action of a count-
able amenable group is orbit equivalent to a measured odometer action. Hence, a
complete classification of these amenable group actions up to orbit equivalence will
follow from a classification up to orbit equivalence of measured odometer actions.

There is a well-known classification of ergodic non-singular group actions into
classes I, II and III respectively according to whether the measure is concentrated on
a single orbit, the measure is equivalent to an invariant measure (finite or a-finite) or
neither of the above holds. The case I is a relatively trivial case. The case II is fairly
well understood, so the remaining interesting case (which in some sense is the most
prevalent) is case III.

Krieger introduced a subdivision of case III using an invariant which he called the
ratio set (see [13] and [14]). The ratio set may be informally defined as the set of limits
of ratios d/x o y/d/x for y in the group F of transformations and it may be shown to
be a closed subset of R+ U {0, oo} which is closed under multiplication. There are
then three possibilities for the ratio set. It can be {0, 1, oo}, R or {X" : n € 1} for
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[2] Product and Markov measures of type III 85

a fixed X € (0, 1). The corresponding classes of transformations are known as IIIo,
III! and IIIX- It may be shown that any two systems in IIIi are orbit equivalent (see
[13]). Similarly for any fixed X e (0,1), any two IIIx systems are orbit equivalent.
The situation for IIIo is much less well understood and it is this category upon which
we shall focus.

We will, as described above, be considering measured odometer actions. A natural
class of examples is given by the actions where the measure is a product measure.
An action which is orbit equivalent to one of this type is said to be product type. A
necessary and sufficient condition for an odometer action to be of product type was
introduced by Connes and Woods [5] who use a proof based on operator algebras.
The condition which they introduced is that the Poincare flow associated to the action
has a property which they call approximately transitive or AT. Hawkins [12] showed
necessity of Connes and Woods' condition with a simpler ergodic theoretic proof and
Hamachi [10] was able to show sufficiency, by using purely ergodic techniques.

It nevertheless remains a difficult task to give examples of measures of type IIIo or,
given a product measure to decide whether it is of type IIIo- (Moore's criterion [16]
allows us readily to decide when a product measure is of type 1,11,, II^ or III.)

Hamachi, Oka and Osikawa [11] produced examples of product measures of type
IIIo and Krieger [15] gave an example of a non-AT action.

Brown and Dooley [2] introduced the notion of a G-measure. (Their formalism
favoured the use of the groups of finite coordinate changes over the odometer; these
two actions have the same orbits.) These provide an explicit description of in some
senses the most general quasi-invariant measure. In [3], it was shown how to compute
the ratio sets of G-measures in some cases, and the machinery was applied to product
measures. However, there were some unresolved conjectures and some rather sketchy
proofs.

In this paper, we aim to refine the techniques of [3], resolve some conjectures
therein and give full details of some results on product measures. At the same time,
we are able to somewhat sharpen the examples of type IIIo product measures in
[11]. From the perspective of G-measures, the next most complicated measures after
product measures are Markov measures. A second aim is to consider a class of Markov
measures on the infinite product of two point spaces, where the transition probabilities
remain constant on long blocks. We are able to explicitly compute the Poincare flow
of such a measure and show that it is AT.

A detailed description of the results follows. Consider the infinite product measure
H = ®M, on X = I~[Z2, where /*,({0}) = {(I +a,), /*/({U) = j d - a,) (-1 <
a, < 1). In section 2, we give an example of a measure of type III, but not of type IIIo
with a, / 1, disproving a conjecture in [3]. We also give a relatively easy example
of a family of product measures of type III0 on X. The example itself is similar to
one found in [10], but we give a short and direct proof that the ratio set is [0, 1, oo}.
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Examples are found by taking a suitable sequence {a,} which is constant on blocks of
increasing length. In section 3, we give a detailed proof that if a, -*• 0 and ^ af = oo
then /x is of type III,, providing full details of a claim made in [3]. The essential
technique in these two sections is Lemma 2.1, a generalization of [3, Theorem 3.1]
and a primitive version of [10, Theorem 1].

The final section considers Markov measures on the infinite product of two point
spaces, which have the property that their transition probabilities are constant on long
blocks, behaving in the same way as the probabilities in the examples of section 2.
We are able to compute the Poincare flow explicitly as an odometer with parity bit.
These flows are AT, and hence the measures are orbit equivalent to product measures
(although they are certainly far from being equivalent to products).

More recent work of Dooley and Hamachi [7] finds examples of non-AT Markov
measures. These are realized on f] %tw where l(n) increases rapidly.

1. Definitions and notation

We consider transformations of finite or cr-finite measure spaces. The transforma-
tions which we consider will be measurable and invertible, with measurable inverses
and be non-singular: that is a set has measure 0 if and only if its image has measure
0. These transformations will be known as isomorphisms. In the case where the
transformation is from a measure space X to itself, it will be called an automorphism
of X. F will denote a countable group of automorphisms of (X, 88, \JL). The full group
[P] of F consists of those automorphisms 9 of X which have the property that for
almost every x e X, 9{x) = y(x) for some y € F. Note that we use similar notation
for the orbit of a point. Namely, [x] is the orbit of the point x under the group F of
transformations.

As an example, define X to be {0, 1 }z+ and F to be the group generated by the maps
yn which reverses the nth coordinate (so (yn (*)), = <5,n +JC, mod 2). Then defining 9 to
be the standard odometer mapping obtained by regarding points of x as 2-adic integers
and adding 1 (with carry) (so 6>(... 10110) = . . . 10111; 0(. . . 10111) = . . . 11000),
we see that 9 e [F]. In this context, let Fn (respectively Xn) be the elements of F
(respectively X) whose coordinates after the nth are zero and let F" (respectively X")
be those elements whose first n coordinates are zero.

Two group actions F acting on a measure space (X\, 88 \, ix{) and V acting on
(X2, 882, ii-i) are orbit equivalent (sometimes also called weakly equivalent) if there
exists an isomorphism 4> from Xx to X2 such that for almost every x € Xu 4>([x]) =
[$(;c)]. In the example above, the actions of F on X and {9n : n € 2} on X are orbit
equivalent.

The ratio set R^ = r{X, F, fi), as defined in [14], is the set of r in [0, oo] such
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that for each e > 0 and set A of positive measure, there exists a subset B c A of
positive measure and a 6 € [F] such that 0(B) c A and \dix o 8/dfj. — r\ < € on B.
In our case, where F is a countable group, it is equivalent to define r € R if and only
if for each € > 0 and set A of positive measure, there exists a subset fi of positive
measure and y € F such that y(B) c A and |rf/i o y/dfi — r\ < e on B (that is the
automorphism 6 may be chosen from the group itself, not the full group). We use this
latter definition in what follows.

Given an action of a group F on a space X, we define an action o f P o n X x R . For
y € F, define y(x, t) = (y(x), t - \og{dfx o y/dix(x))). Then form Y = X x R/ F,
the set of F-orbits in X x R. There is a natural projection n from X x R t o K. The
measure on Y is taken to be the projection o f ^ x u where dv(x) = expx dX(x). The
projection can be used to give Y a cr-algebra by defining a subset to be measurable if
and only if its inverse image under n is a measurable subset of X. Since the action of
R o n X x R given by 6s(x, t) = (x, s + /) commutes with the action o f f o n X x R,
it follows that the action of R may be pushed down to an action on Y. This is the
associated flow (or Poincare flow) of the action of F on X.

An important property which the associated flow may or may not possess is ap-
proximate transitivity (abbreviated to the AT property, so we often say if this property
holds that the associated flow is AT). An action of a group G on a measure space X is
AT if for all € > 0 and any sequence / , , / 2 , . . . , /„ of functions in V (X)+, the space
of positive integrable functions, there exists a function / e L'(X)+, finitely many
elements g,; of G and constants kjj such that

< €

for each /. We will write Jzfgif) for the function defined by

P(x).
dfi

Note that for positive functions / , S£g is an L' norm-preserving operator. The AT
condition may be re-expressed as ||/- — YLj h.j^gLlf\\\ < *•

2. Product measures of type IIIo

EXAMPLE 1. In the notation of [3], we give an example with a, / 1 such that the
ratio set is not a subset of {0, 1, oo}. This disproves [3, Conjecture 6.3].

Fix p > 0. Let {cr,} be a sequence of the form

p , p , . . . ,p,2p,2p,... , 2p ,3 /£> , . . .
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such that if nk denotes the number of terms of type kp, then

nk > ekp and nk+l > nk.

The {a,} are then determined as in [3] by

1 + a , _ a, _ e"' - 1
- — e , so a, — — • - f i.
1 — a, e"' + 1

Let fj. denote the resulting measure. We prove:

PROPOSITION 2.1. e~" e /?„.

We need the following sufficient condition. It is a generalization of [3, Theorem
(3.2) (i)] to the case of more than one y € F". In this case, we need to assume the
disjointness of the sets of u's for these y's, and that of their images under the y 's:

LEMMA 2.1. Letr € (0, oo). Suppose that Ve > 0, 3yS > 0 JMC/I that Vn, Vy0 €
Tn there exists an integer K and there exist

Yu Yi, • • • , YK € T" and %, ty2,... , WK C y0X"

such that:

(i) the {%} are disjoint,

(ii) the {Yjtyj} are disjoint,

(iii) niU^&j) > Pix(y0X
n),

(iv) V/\ u 6 %;=> \((dfi o YjXu)/dii) - r\ < e;

r € r(X, T, /i).

PROOF OF LEMMA 2.1. The proof is based on the method of proof of [3, Theorem

Let r > 0 and let c < r (this will be specified). Let fi > 0 be fixed as in the
statement. Let A be an arbitrary set of positive /LA-measure. Then there exists n and
y0 € Fn such that

where c is to be specified.

For this n and y0, there exist {y;} and {<&}} as stated. It is given that [J fy fills up a
proportion ^ of yoX". We check that (J y ; ^ also has this property for some constant

Since \((dfx o yj)(u)/dfi) - r\ < e on <&}, it follows that for all y,
(r — e) / i , (^) . So by disjointness,
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Thus we can take f}' = (r - e)fi.
We now claim that for at least one index j = j 0 , we have

/*(A n [yjo(A n %) ] ) > 0.

We have M(A n ((J %)) > /i(\J %) - fi([y0X"]\A) > (fi - c)n(nX»).
Hence, using disjointness:

(r " O(^ - c)n(y0X
n).

By definition, the set 5 = IJ Yj(A n ^ ) is contained in / 0 ^ n and we have shown
that

> (r - e)(^

Hence

n S ) > /x(S) - (i([YoX"]\A) > ((r - €)(^ - c) -

This is positive if we ensure that e < r and c < min(/J/2, (r — e)fi/2).
But the statement /A (A f~l 5) > 0 gives

0 < fi (A n U,y,(^ n ^;)) = Z ^ ( A n t ^ ^ n ®jW b y d i sJo i n t n e s s o f Yj%-
j

Hence there exists j = j0 with

At(A n [yjo(A n %) ] ) > 0.

It follows that letting

B = {a € AD <frjo: yha e A) C A

we get yyo£ = A n [y;0(A n ^ 0 ) ] c A and fJ-(yJoB) > 0, which also implies

0.
Also, since B c ^ 0 , we have

Yja (u)-r <€ WueB.

Since e > 0 was arbitrary, we have r €r(X, r, ii). D
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PROOF OF PROPOSITION 2.1. We shall in effect take e = 0 and find some /8 > 0.
Let any n, y0 € F,, be given. Then, in {Vi}°ln there is a block of the form

a, = pk,... , pk, p(k + 1), p(k + 1) , . . .

for some k. Fix such a block and k. Since «t+i > nk, there are available at least nk

terms of the next constant, p(k + 1), to the right of this block.
The following table defines our choices of {/;} and {<2̂ } (K = nk) (below K = 4)

= . . . , pk, pk pk pk p(k+l), p(k+l), p(k+l), p(k+l) ...

(yi), =

(Y2)i =

(n)i =
(YKY, =

% =
% =
% =

0
0
0
0

X

X

X

1
0
0
0

1
0
0

0
1
0
0

X

1
0

0
0
1
0

X

X

1

0
0
0
1

X

X

X

1
0
0
0

0
0
0

0
1
0
0

X

0
0

0
0
1
0

X

X

0

0
0
0
1

X

X

X

0
0
0
0

X

X

X

Here the convention is that ^y consists of all u having the coordinates shown, and
x denotes either 0 or 1. (And we assume all this in y0X

n.)
Clearly, applying the y/s to the <&}'s gives

x 0 x x x
x 0 0 x x
x 0 0 0 x
* 0 0 0 0

1 X X X X

0 1 JC x x
0 0 1 x x
0 0 0 1 *

The disjointness of the {^}"L| is guaranteed by the l's on the diagonal, preceded
by the 0's. Similarly for the \y} %}.

Next, let us verify that

dfi

[We are following the convention

:= 1 - p, := qt
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Thus if u € % then

d\x

where aV), a(2) denote kp and (& + l)p for convenience.
It remains to estimate the measures //.(%)/(i(yoXn). We get

)' and so on,

where jiZ denotes n/ii(y0X"). Thus, using the notation p(1) = e~kp/(l + e~kp),

= P<!)<7<1) I i _ 2 I

2 n ^

[Note: the infinite series gives ^(i,/l + ^<D ~ 5. Therefore we could have defined nk

more conveniently by taking it such that the sum of the first nk terms is > |.]
Now nk > ekp, so

— for k2

Thus we can define

Hence Lemma 2.1 applies and the proposition is proved. D

REMARK 1. It turns out that Example 1 would have been easier if [3, Theorem
4.4(a)] implied [3, Theorem 4.4(b)]. In particular, this application implies the truth of
the above Lemma 2.1, and moreover the condition that the {yy ^ } be disjoint appears
unnecessary. Unfortunately, [3, Theorem 4.4(b)] does not follow from [3, Theorem
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4.4(a)]. We give a counterexample, which was motivated by this observation. It was
in fact found by first looking for a situation where the {y, <&}} are not disjoint.

We present this counterexample after presenting a method for constructing /n's
with ratio set contained in {0, 1, oo}. (This method will also be needed for the
counterexample.)

REMARK 2. Here is a special case of Example 1.
Let e" = 2.
Let <r, = k log 2 for i € [2*, 2*+1) (thus nk = 2k+] - 2" = 2* = epk).
This gives a, = (2* - l)/(2* + 1) = 1 - 2/(2* + 1), i € [2k, 2k+i).
We have 1/2 e r{X, T, fi) by the above.
It is easy to verify that any (dfj, o y)/dfj, takes on only the values 2m, m e Z (or

possibly 0, oo).
Thus in fact ix is type III;,, with A. = 1/2.

REMARK 3. By choosing rationally independent p\, fa and including infinitely
many block pairs (kp,, kpt, (k + 1 )p , , . . . (it + 1 )p,) of both types, we get a fu. of type
III,.

We give two examples of product measure of type IIIo on an infinite product of
two-point spaces.

Example 2 is similar to the type IIIo example in [11], but we give a short and direct
proof that its ratio set is {0, 1, oo}.

EXAMPLE 2. In the notation of [3], it is clear that everything is determined if the
sequence {<7i} is specified. Let {a,} be of the form

2* 2* 9* 2k+l 2k+1 2

where the nk are chosen large enough, to ensure that:

For example, since 1 — a, =2 / (1 + eCl) = 2/(1 + e2") on the kth block, the choice

nk> -(e* + l),(nt € N)

will do. By Moore's criterion [16], this ensures fi is of type III, for eventually,

min I —, 11 = 1 (since a, / 1).
\ 1 - a, )
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So

*-" V1 - a,' ) °' ^

PROPOSITION 2.2. The ratio set offx is contained in {0, 1, oo}.

PROOF. Suppose not. Let r € r(X, I \ fi), r > 2. Let € = 1. Choose k such
that exp(2*) > r + 1. Choose n such that {<r,}~n takes values in {2*, 2 * + l , . . . } . Let
A = y0X" for this n and am y,, (say y0 = 0).

Clearly for any u e A. and y such that yu G A we get

du-Y, x

for some m depending on > and a 6 {—1, 0, 1}. Thus

Yct.o, € {0}U 2*N,

and so

iu i - r > 1 (since r > 2).

Thus there is no \e\ 8 as rrviuiraJ h> the definition of /?M. D

EXAMPLE 3. (CKuntcrcvarTiplc to (3, Theorem 4.4(a)] ==>• [3, Theorem 4.4(b)]
and to [4, Lemma 2 211

To define (a, J. take M.vks as in example 2 and insert the value 2* — 1 in front of
the k\h block for each L Thus \n \ is a sequence of the form

2 ~ , 24"' 2' . 2' — 1. 24, 2 * , . . . , 2*, 2*+l — 1, 2 t + 1 , 2k+],...

The condition on nk is the same as before, for example

nk > exp(2*).

or, more conveniently, define nk instead by considering the series

where q = M/({0}) = 1/(1 + exp(—2*)) (on the block k) and let nk be the number of
terms needed to get a partial sum of say at least ^(1 —?)" ' . The idea in the form of
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the sequence is that it is essentially like example 2, but with a tiny nick on each big
step.

For consistency with the notation of [3] we will use the notation of G-measures in
the statement below. Recall that for any measure fi we have

We then have gn = Gn/Gn-\. In the case of a product measure [i = ® ^ , /xn,
gn(x) = fin({xn}).

PROPOSITION 2.3. Let /z be the resulting measure. Then

(i) the ratio set of [i is contained in {0, 1, oo};
(ii) Ve > 0, 3/S > 0, such that V« € M, Vj/0 € Vn 3L > n such that.

/x({u e y0X" : 3v e yoX", eventually equal to u, such that I > L implies

I n L 8i(.v)/g,(u) -e\< €}) >

REMARK 1. (ii) is the case r = e of [3, Theorem (4.4)(a)]. But by (i), e is not in
the ratio set of fj., contradicting [3, Theorem (4.4) (b)].

REMARK 2. It will be evident from the proof that if [3, Theorem (4.4) (a)] is
altered to read, instead of Vn 3L, to ' 3LVn. . . / > n + L...', then this would
not be a counterexample. In fact, the proof given in [3] is valid with this change.
Furthermore, this is the version adopted later, in [3, Theorem (5.2)] (where it should
read supn(N{n) - n) < K(e)).

PROOF (of Proposition 2.3(i)). Suppose not. Let r > 2 be in the ratio set. Choose
k such that exp(2*) > r + 1. Now consider the set A defined as follows. Choose
n e N such that {cr,}°tn is the tail starting from block k. Let / = // be the indices
where the nicks occur, that is, where

or,, = 2 ' - l , / = 1 , 2 , . . .

Fix a y0 € Fn, and define

A = {u € y 0 X " : 0 = u h = « , l + 1 = • • • } = {u € y 0 X n : u , , = 0 V / > * } .

Let us first observe that if u e A and yu e A then
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because by the definition of A, there can be no change in the coordinates / = /;,
I = k,k + I,... (that is, all those it which are > n).

Here m > n and a, e {—1, 0, 1} depend on y and u.
So, since these CT, take values in {2*, 2*+1,...} (that is, no 2' — 1 type values), we

have, as in example 2,

d/j, o y
(u)-r > 1 for all such u.

Hence for this set A, and for e = 1, there is no set B as required in the definition of
r € flM.

It remains to check that ju.(/4) > 0. Clearly

l=k

ButM,,({0}) = l/[l +exp(-a,,)] = l/[l +exp(-(2' - 1))] since this is the definition
of a, on the 'nicks'. This certainly gives a convergent product (since Yl'Zk exp(—2') <
oo.)

Thus ix(A) > 0 as required. •

PROOF OF 2.3(ii). Fix 6 > 0. Fix n e N and y0 e Fn. Consider a k such that the
fcth block, including its 'nick' occurs inside the tail {a,-},->„. We shall do coordinate
changes within this block k only, hence we can take the L to be the end of block k.

Consider u € y0X" of the following types:

x x 0

x x 0

x x 0

* x 0

nk)

1 x

0 1

0 0

0 0

x

X

1

0

X

X

X

1

X

X

X

X

x x 0 0

For each ^ consider the j/,- shown below:

0 1

0 0 1
0 0 1
0 0 1
0 0 1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

Yi

Ynk
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— • J/;M = : v € y0X" since we have agreed that all our <&} are inClearly « e ^ —•
YoX".

Let us compute (dfi o yj)(u)/d(i for u € <2̂ . This is just

where * denotes an irrelevant index between ik and L (that is, in the block k). This
coincides with

r r 8i(v) . . . . « - " i
I I ——, which reduces to

;=n+i gi(u) 1

In other words, it is true, for all u € UT=i ^0 '

3D in yo*"> eventually equal to u, such that / > L implies

holds. It remains to check that the measure satisfies

P- (U"L\^j) — P f°r some absolute /J > 0.

We have

e ' = e.

and the ^ are all disjoint. Thus, we get a total of

where qh = /^.
We agreed that nk was large enough to give us at least

1 1 1 1

since <?it = 1/[1 + exp(-(2* - 1))] is nearly equal to 1.
Hence we can take /3 = 5. This proves 2.3 (ii). D

https://doi.org/10.1017/S1446788700039410 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039410


[14] Product and Markov measures of type III 97

REMARK. Notice how this fits in with Lemma 2.1. There it was required also that
{Yj%} be disjoint. Here we can check directly how badly they fail to be disjoint (of
course, they must fail, because otherwise Lemma 2.1 would be contradicted).

The Yj % are:

1
1

1

1

and so

0
0

0

0

on.

X

0

0

0

X

X

0

0

Clearly

X

X

X

0

all

Y\
Yi

are subsets of the first one, which has very small

3. Proof of a proposition

The following proposition was given as [3, Proposition 6.2]. Unfortunately, its
proof used [3, Theorem 4.4], which we have just disproved! Here is a corrected proof,
not without interest in its own right.

PROPOSITION 3.1. If a,• -*• 0 and Ylal — °°> t^ien l^e measure (i is of type III,,
that is, its ratio set is [0, oo].

We need the following probabilistic lemma. First let us fix some notation as in
[3, pp. 11-12]. For given 0 < a, < 1/2, / = 1 ,2 , . . . we associate the sequence
<7, = log{(l + a,)/( l — a,)} (a, < <r, < 4a,) and vice versa (that is, if a statement
refers to {a,} first, we assume {a,} defined in terms of {a,}).

We also associate with a given {a,} independent random variables as follows. These
are {w,} and {t>,}, where

P(u, =0) = P(vt = 0) = i ^ L , P(u, = 1) = />(«, = 1) = i ^ i ,

and all are taken to be independent (thus {M, } are independent and {u,} is an independent
copy of the sequence {M,}). Here as usual P(*) is the probability of the event *.

Now put A, = Vi — Uj. Then A, e {—1,0, l}and£(A, ) = 0. A simple calculation
shows that £(A?) = ±(1 - af).

Also define for 1 < n < m, (and for given {a,}),

= 53a/A, =
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LEMMA 3.1. Given —oo < a < b < oo, there exist p := p(a,b) > 0 and
1 > 8 := 8(a, b) > 0 SMC/I fnaf given any {a,} and any m e N satisfying: 0 < a, <
<$, 1 < / < m, and 2 < £7=i of < 2 + 82, it follows that:

<S <b)>

REMARKS. (1) We emphasize that p and 8 depend only on the given interval
[a, b]. So the conclusion holds 'uniformly', whenever {a, }T=i has the stated properties.
(2) Obviously, if instead of ' 1 < / < ni1 we consider 'n < i < m', we get the same

result (applying the lemma): If 0 < a,•. < 8, n < i < m, and 2 < £™=n a
2 < 2 + 82,

then

P(a <S™<b)>p,

since the index i plays no role in the statement. (Here 8 = 8(a, b), p — p(a, b)).
(3) The {A,} are independent, but not identically distributed; the distribution of A,

is given by a,. However, the distributions are all 'comparable' since a, < 1/2 (in fact
a, < 0, < <$ imposes an even stronger uniformity on them if 8 is small.)
(4) If 8 is small, then m must be large (at least 1/82). Thus S™ is an essentially

normalized sum of a large number of independent random variables.

PROOF OF LEMMA. The lemma follows from an exercise in [6, problem 5, page
205]. This exercise asserts the following: For every e > 0 there isa5 = 8(e) > Osuch
that whenever H e N and Xu . . . , Xk are independent zero mean random variables
with

— - k k

')<<$, and 5 : =

then sup,e R |P(S < x) - <£(JC)| < e where <t>(x) = /*TC e~r'l2dt/y/2n is the standard
normal distribution function.

This is simply a quantitative version of Liapunov's Central Limit Theorem and can
be verified by following the steps in the proof of it given in [6, Theorem 7.1.2]. (A
more direct proof can be given for our random variables A, but we omit it).

Given the above result, the lemma follows by normalizing S™ and substituting it
for the 5 in the above result from [6]: (indeed Sj" is almost normalized, but not quite,
because of the 8).

Given —oo < a < b < oo, choose a < a' < b' < b (say a' = \a + \b,

b' = \a 4- \b to be definite). Let p' = <f>(b') - O(a') = f" e"2/2dt/'JlH and put

e' = p'/100, S' = S(€').
To obtain the lemma, choose 80 < 1 and small enough to ensure

a <
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and put
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We shall compute the resulting p = p(a,b). Assume a, < 8{a,b) :=: 8 and
2 - £r=i °f < 2 + <52 as in the statement of the lemma.

To normalize S™, we need the variance

Since a, < S(a, &) =: 8, and 2 < J^ . , of < 2 + 82, we have af < a} < 8(a, bf.
Thus

1 m m / I rfi\ 1 m 1 "

I=I 1=1 x ' 1=1 1=1

that is,

Putting X, = Oj A,

|X,|3 = IIX/lloo • |X,|2 <max(cr,)-

Thus

1 — b < £,((i, ) ) < I + jd .

™)2) and S = XXi ^ " w e n a v e ^ a t

1 — 8
Xf.J==Xf

1 — o

- 5 2 <28<8' =

Hence Chung's exercise applies with e = e'. Thus

P(a' < S <b') = P(S < V) - P(S < a')

> (<t>(b') - <t>(a')) - 2e'

= p'-2p'/\00 = 0.9%p'.

If S < fe', then S^ = Sy/E(S?)2) < b'^/l +d2/2 < b'y/l +8% < b. If a' < 5, then
a'Vl -82 < S™, so a < 5^. It follows that if a' < S < b' then a < S™ <b, and we
conclude that

P(a <S™ <b)> P(a' < S <b')> 0.98/?'.
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Thus we can take

p(a, b) = 0.9$p' = 0.98 / e~'/2 dt/Vln

and the lemma is proved. •

PROOF OF PROPOSITION 3.1. It suffices to show the following, which is a version
of [3, Proposition 2.3 (i)]:

For any 0 < r < oo, e > 0, put p = log r. Then for every A C X with fi(A) > 0,
there exists y € T such that

(3.1) / i [ L t e A : ^ e ^ a n d log fX°Y(x)-p < e 1 ) > 0.

Recall that if u = («,•)£„ Y* = ((/«),),=, :=: («,-)", then

l o g — (M) = -

so that

" • ^ 1 = 1

Thus, consider the interval, (for given p, e), [—p — e, — p + e] =: [a, b].
Lei the set A c X be given, /A(A) > 0. Let K = p(a, b)/200 where p(a, b) is

Jchned in Lemma 3.1. Let n, e N be large enough to ensure that

if n > ri\ then an < 5(a, 6)

where h(a,b) is also defined in Lemma 3.1.
Since ix{A) > 0, we can find n > nt and y0 e Pn such that the cylinder ybX"

satisfies

Put /i = n/n(y0X") restricted to y0X", Ao = AD y0X
n, Xo = y0X".

Consider Xo x Xo with measure ju x pi. Observe that

Ao x Ao C Xo x Xo and (/I x /x)(A0 x Ao) > (1 — K)2 > I —2K.

Let (M, V) e Xo x Xo, and identify

u = (un,un+u...) and u = (vn, vn+l,...).
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Then {u, }°ln, {v, }fLn are independent random variables on the probability space (Xo x
Xo, /I x Jl) satisfying all the conditions of the Lemma (in the same notation). Since

a, < S(a,b), i >n,

we can also choose m > n large enough (but not too large) so that

J2? <2 + 8(a,b)2.

Since £ " „ af = ° ° ' ^ s IS achieved by letting m be the smallest integer such that

Thus, applying the Lemma to

we have

Let Gm
n denote the 'good set'

G ; = {(«, v) e Xo x Xo : a < 5n
m(«, v) < b}

so that

Since S™ depends only on the coordinates n,... ,m, then G™ is a disjoint union of
cylinder sets

G: = \J(U°x v^
a

where each Ua, Va is of the form

U . = K , u a
n + l , . . . , u ° m ) x { 0 , l } x { 0 , 1 } X - . .

Va = « , < + 1 , . . . , va
m) x {0, 1} x {0, 1} x • • •

(where the u°, v" i = n,... ,m are the 'good' choices of zeros and ones).
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Our problem is to show that there is an a = or0 such that the y = yaa, determined
by sending u"° •-»• v"°, i =n,... ,m, satisfies property (3.1).

Put P = JA x Ji for convenience. We have

: n (Ao x Ao)) = P(G;> - P ( G : \ ( A O x Ao))

" ) - P((X0 x Xo)\(Ao x Ao))

") -2K = P(G?) - 0.0lp(a, b)

= 0.99P(G"),

that is, Ao x Ao covers 99% or more of the good set, G™.
Consequently, Ao x Ao covers 99% or more of at least one of the Ua x Va (whose

disjoint union is G").
Thus, there exists a0 such that

P((A0 x Ao) n (Ua, x VaJ) > 0.99P(Uw> x VaJ

where Uao x Vai> c G™.
Put Uo = Uan, VQ = Vao. We have

n uo)fi(Ao n v0) P((A0 n u0) x (Ao n vo» _ ~ ~,
> 0.99 (since P = n x n).P(U0 x Vo)

It follows that

and «+> ° Vp) > 0.99.
(V)

Define the proposed y 6 F by the conditions
(yx), = x, if i < n or i > m,
(yx)i = v°"> i f x ; = M f a n d n < i < m .

Clearly y(t/0) = Vo and

fl(U0) fJL(V0)

Thus

n t/0)

whenever E c Uo.

Combining this knowledge with the above fact that M(^O ^ ^O)/M(^O) > 0.99, we get
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Put B = y-\y(A0 n Vo) n (Ao n Vo)). Then

fj.(B) > 0, BcA0nl7oCAoC/i, y(B) cAonVoCAoCA,

and B x y(B) C J70 x Vo c G™, that is, if u € B, then

), - M,)CT, € [logr - e, logr + e]

which is the required property (3.1) •

4. Markov measures of type III0

We now present a class of examples which are measured odometers, but with
measures which are not product measures, but rather Markov measures.

We use the Daniell-Kolmogorov consistency theorem to define a measure on X =
{0, 1}Z+ by specifying the measure of each cylinder. To be specific, let [xox, ... xn]
denote the set of points in X whose first n + 1 coordinates are x0, x\,... , xn. A set
of this kind will be called an n-cylinder and will also be denoted [x]". Then define

u(\xnx, x 11 — - P ( l ) P(2) P(n) where P(k) — I ~ ^k J'

This gives a measure on X. We then define the transformation group on the space:
T is the group of all finite coordinate rotations of X generated by the yn as introduced
above.

We will now demonstrate briefly an orbit equivalent system which in some ways
resembles the more familiar systems. Define a second measure v on X which is just
a product measure:

We then define a second transformation group on the space: F" is the group of all
finite coordinate changes on X which change an even number of coordinates (this is
generated by the ym o yn). Then we can show that the F action on (X, /x) is orbit
equivalent to the F" action on (X, v). The equivalence is given by a map which is
in fact a measure-preserving homeomorphism. Namely, define $ : X —> X by
<P(x)n = *0 + x, + • • • + xn mod 2. If JC0, -. - , xn are given, define y0,... ,yn by
yk = x0 + JCI H \-xk (mod 2). Then a quick check shows that Py*\yt = q™ so it
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follows that v([xo...xn]) = fi([yo •. - yn])- This shows that <J> is measure-preserving
as required. We can write down an explicit inverse * as follows: ty(y)n — yn-\ + yn

mod 2, thereby showing that 4> is a homeomorphism (and in particular is invertible).
To check that 4> is an orbit equivalence, from (X, v, F') to (X, \x, F), pick an x € X
and note that 4>(ym o yn(x)) differs from <P(x) in all coordinates between the with and
the n-lst. So the image of a F orbit under 4> is exactly a F orbit as required.

Note that the system (X, v, F) is known to have an associated flow with the AT
property by Hawkins' result. (In fact, more is true: the flow on X x R prior to forming
the quotient also has the AT property.) But the system which we are considering,
(X, \x, F), is not orbit equivalent to the above, but rather to (X, v, F') which appears
at first sight to be very similar to (X, v, F) (F' is a subgroup of F of index 2), but
Hawkins' proof does not seem to work in this situation where there is more dependence.

The system as defined so far has a number of parameters qn. We now show how
to choose them in such a way that the system is a III0 system by analogy with the
construction in Section 2. We will construct an increasing sequence of integers n, and
a rapidly decreasing sequence of real numbers p, and define

ifn = 0

[pt ifn,_, < n <n, .

Defining n0 = 0 and wi, = n, — n,-_|, the sequences are chosen so that

(4.1)

(4.2) Rj > 1 and lim Rj = oo where / ?= ] " " [ ( Pl ) —.
/-oo f<; V1 - Pi) Pi

We remark that it is possible to simultaneously satisfy these conditions by an inductive
construction. Supposing nu ... ,nk and pu ... , pk are chosen. Then pk+l may be
chosen to ensure that Rk+i > k + 1 and subsequently, mk+l may be chosen so that
mk+\ pk+\ > 1.

The first condition, (4.1) is to ensure that the system is not of type I. The condition
is that the expected number of transitions (that is, places at which x-, ^ x, _ i) is infinite.
By the Kolmogorov 0-1 law, this ensures that the probability of having a sequence
which is eventually all Is or eventually all Os is 0 and this is sufficient to guarantee
that the system is not of type I.

The second condition, (4.2) is to ensure that the only ratios occurring in the ratio
set are 0, 1 and oo. Further, it can be checked as in Section 2, that all these occur so
that the system really is of type IIIo- Given y € F and x € X, we see that the ratio
d/x o y/d/x is constant on any nk -cylinder about x where y only affects coordinates
before the n*th and so dfi o y/d/x(x) = ix,(.[y(x)]nk)/fi([x]"k).
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Given x € X, define its block type as follows: the block type is a sequence of
numbers {ao,a\»o2, •. •) where OQ = x0 and a, denotes the number of transitions in
block i (that is the number of n with n,_i < n < n, such that an ^ an_i, where n0 is
taken to be 0). The number a<, is to be interpreted as the number of transitions in the
Oth block (that is, we have a notional initial state of 0 and then a0 denotes the number
of transitions from 0 in the Oth block.) Next, we note that the measure of a cylinder set
of the form [x]"1 is deiermined by its block type. If the block type is (ao, aua2...)
then the measure of [x ]"• is [T)_, p°' (1 — p,)m>-<». If y is as above and y (x) has block
type (b0, b fc,.a,,..a..:. . . . ) then we see that

dfi o y ( V\ \

-Pk

We then see that cither all of the terms bt — a, are 0 (in which case the ratio is 1) or
there is a largest i fix which b - a, is non-zero. It is then straightforward to check
that the ratio is cither larger than Rk or smaller than 1//?* according to whether b, — a,
is negative or positive Si rue in the definition of a ratio set, the ratios are required to
be found in an> set A i>t r>»Mii\c measure, letting A be an /zt-cylinder, if B is a subset
of A and y (B) c .A. tr»cr> the ratio d/x o y/d/x on B is either 1 or larger than Rk or
smaller than 1, R. Conversely inside any set of positive measure, there are ratios
which are arbitranl> 1.1> *«• i. > (» and 3C. This proves that the system is of class IIIo-

We use a construction ft Hamachi and Osikawa [9] to give an explicit description
of the associated He* o'. tr*- w stem t X. v, T) and show that it still has the AT property.
To construct the flu* n h trst necessary to get an explicit description of a quotient
space which artsc-> in tho- t ,»n\tnjction. We now give this description.

Since the function- Jn . du are continuous, they are defined on the whole
space and not just <wi set- <>t n>easure 1. This means that the following definition
makes sense. Given i anO v in .V. write x ~ y if y = y(x) for some y e F and
dfjioy /dii(x) = 1 Then let } denote the collection of equivalence classes X/ ~ a n d
let n denote the natural projection from X to Y. The cr-algebra on Y is then given by
J? = {A C Y : W A € .t*\ Let <£ denote the collection of measurable subsets of X
which are unions of —equivalence classes. Then we see that & = I~I(Sf).

We are then able to identify certain elements of ^ . We first note that if JC has block
type (do, a\, a2,. • •) and y has block type (b0, b\, b2, •..) then

M([>]
/*([*]«<) \ l - p

bk-ak

In particular, by the remarks made in the section on the IIIo property, we see that
x ~ y if and only if x and y lie in the same orbit and have a, = bt for all i > 1. We
now show that if x ~ y then OQ = b0 as well. To see this, suppose x ~ y. Then as
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noted above, a, = bx for each i > 1. This means that xn. = xKi_x + a, (mod 2) and
yn, = yn,.x + Gi (m°d 2) for each i > 1. In particular it follows that j n - xn. mod 2
is independent of / for / > 0. Since x and y live in the same orbit, we require that
x and y differ only in finitely many places, so in particular, xnj = yn. for all i > 0.
This implies that a0 = b0. Denote the block type of x by B(x). We have shown that
x ~ y =>• J?(J:) = B(y). This allows us to identify certain elements of & as follows.
Set Z = {(a0,«i, • • •) : 0 < ao < 1; 0 < a,- < m,-}. Given fc € Z, write Ck(b) for
{* : B (x,) = b,-., Vi < A:}. Then C* (b) is a finite union of cylinder sets of length nk so
is certainly a measurable set. If x e Ck(b) and JC ~ _y, then since y has the same block
type as x, we see y € C*(fe) so d ( b ) is a union of ~-equivalence classes as required.
It will be useful to note that by the above arguments, if x and y are members of Ck(b)
then *„, = yni for each / < k.

We have therefore identified a collection of cylinder type sets which belong to <£.
It is then possible to show that these sets generate &. We demonstrate this by showing
that the algebra consisting of finite unions of sets of the form Ck(b) may be used to
approximate any element of G.

Let A be any element of ^. We will show that A may be arbitrarily closely
approximated by taking a union of sets of the form Ck{b). Let € > 0 be given. Then
pick 8 < min(l, e/2). Then let si denote the algebra of all finite unions of cylinder
sets in X. Then since &/ generates the a-algebra S8, any element of SB may be
arbitrarily closely approximated by an element of si. In particular, there exists a finite
union of cylinders S such that /x(AA5) < Sz. Since 5 consists of a finite union of
cylinders, one of these cylinders has a maximum length and in particular, there exists
a k such that all of the cylinders forming S have length less than nk. We may then
assume that 5 is formed of disjoint cylinders of length exactly nk, say C\,... Cr. A
cylinder will be called good if it satisfies fi(C\A)/fi(C) < S and bad otherwise. We
let <£ be the union of the good cylinders forming S and let B be the union of the bad
cylinders forming S. Since the cylinders forming B are disjoint and for each, we have
H(C) < /i(C\A)/8, it follows that fi(B) < n(B\A)/S < n(S\A)/S < 8. Now, we
have that G = S\B consists of a finite disjoint union of good nk-cylinders. Further,
we have /x(GAA) < /x(G AS) + [i(SAA) <8 + 82 <€.

Now if C is an /^-cylinder forming part of G, then C is one of the n^-cylinders
forming Ck(b) for some b € Z. We now show that any other cylinder making up
Ck{b) is also good. To show this, let D be another nk-cylinder which is a subset of
Ck(b). Then there exists a y e F which only affects coordinates up to the rc*_ith
such that y(C) = D. Further, restricted to C, y is a measure-preserving map. Since
we assumed that A consisted of a union of ~-equivalence classes, it follows that
fj,(A n D) = fi(A n C) from which it follows that D is good as required.

Finally, let G be the union of those Ck(b) which intersect G. Then from the above,
it follows that fx(G n A)/(JL(G) > 1 - 5. In particular, (JL(G\A) < €. But we have
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also that n(A\G) < IA(A\G) < € so we see that fi(AAG) < 2e, proving the claim
that any element of ^ may be arbitrarily well approximated by unions of sets of the
form Ck(b). From this, it follows that these sets generated the a-algebra Sf.

We now show that the quotient space Y may be identified with Z. There is a natural
map from Y to Z and the above shows that any measurable subset of Y agrees with
the inverse image of a Borel measurable subset of Z up to a set of measure 0. This is
sufficient to guarantee the identification of Y and Z. We are also able to calculate the
quotient measure on Z. This is defined by

This is because the inverse under the projection of the cylinder set [b]k is the union of
FlLi ("I) cylinder sets in X of measure | H*,, (1 - p()"'"*" />?' •

Having identified the quotient space, define a function 4> on X by </>Qc) = min{log
d\i o y/dfj,(x) : log d\i o y/dix{x) > 0}. Since the Rt were taken to be greater than
1, we see that this is a strictly positive quantity (and in fact bounded below by min
/?/). Further, it is clear that if x ~ v, then <j>(x) = 0(v). This shows that (/> may be
regarded as a function on the quotient Z.

The final ingredient in the construction of Hamachi and Osikawa is the construction
of an automorphism U of X such that dfi o U/dfi = exp(f>(x). Again, it is clear that
if x ~ v then U(x) ~ U(y) so once again, U may be regarded as a map of Z. Clearly
from the construction of the measure on X, U(x) should be a point in the orbit of x
which has the transitions modified in such a way that

>]"') = /i-M"'"*1 /i
"<) \ Pi ) \MM"') \ Pi J \ Pi ) V Pk

is minimal but greater than 1, where nk is defined such that U(x) only disagrees with
x before the nkth terms and (ao, a\,...) and (b0, b\,...) are the block types of U(x)
and x. One can identify the effect of U on the cycle types. Namely, U increases b\ by
1 to a\ unless b\ is already maximal, in which case a.\ is set to 0 and b2 is increased
(unless b2 should happen to be maximal and so on). This is nothing other than an
odometer action where b, can range between 0 and m,. This determines U apart from
its effect on bo- This is determined by the requirement that x and U(x) should lie in
the same F-orbit which determines that the total number of transitions up to nk for x
and U(x) should have the same parity (even or odd). The digit a0 is then a 'parity bit'

which must be chosen to ensure that a0 + fli -I Yak differs from b0 + b\ H V bk

by an even number.
We call the automorphism U of Z an odometer with parity. The ergodicity of such

odometers with parity is not immediately apparent, but they turn out always to be
ergodic. This will in any case follow from results about the associated flow.
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Finally, the construction of Hamachi and Osikawa gives an explicit description of
the associated flow. Namely, it is isomorphic to the suspension flow of U : Z —• Z
with ceiling function <f>(z). To describe this, let Z0 denote the space {(z,t) : z €
Z, 0 < t < 4>{z)}. The flow on this space is given by the maps Ts where s > 0,

(z,s + t) if s + t<<p(z)
) , s + t - <f>{z)) if <f>(z) <s + t< <Hz)Ts((z,t)) =

Since the map U is invertible, the flow is also defined for negative time. An alternative
description of the flow is the following. An equivalence relation is defined on the
space Z x K, namely « i s the equivalence relation generated by (that is, the transitive
closure of) (z, t) % (f/(z), / — <j>{z)). Then letting [(z, t)] denote the ^-equivalence
class of (z, t), Ts acts on the quotient space Z x K/ % by Ts[(s, t)] = [(z, t + s)].
In particular, we see that if z and z' He in the same orbit, then we may pick x
and x' which lie in the same orbit and whose block types are respectively z and
z' which lie on the same orbit. There is then a y0 € F such that yo(x) = x'.
The ratio dfj. o y /d\i{x) is determined by the block types of x and x' (namely
z and z') alone so is independent of the particular values of x and x'. Forming
r = logrf/i, o yo/dix(x), we show that (z, /) % (z', t — r). Note that in doing this,
we may assume that x is positive. Since the ratios log dfj. o y/dfx(x) take values in a
discrete set, there can only be finitely many values of log dixoy/dfi between 0 and r (j
say). Write @(x) for {log d/ioy/dfx(x) : y € f} . Then by the chain rule, we see that
M(y(x)) = &(x) - \ogdfj. o y/dfx(x). It now follows that Uj(z) ~ i'• Now we see
T =0(z)+0(£ / (z ) )H \-<p(UJ-[(z)). In particular, w e have that (z,t) % {z',t-x).
This is extremely important as it shows that TT(z, t) = (z\ t). Letting Kj denote
log((l — Pj)/Pj), we see that in the case where Zj < mh TK.(z, t) = (z, t), where
% =Zi +&ij.

It remains to demonstrate that this flow has the AT property. We will let Xs denote
the characteristic function of a set S and use the notation [z]k or [b0 ... bk] for cylinder
sets in Z. Fix k > 0. Then we will show, taking sufficiently small S and letting
/ = X[o...oi*x[(uh that we can closely approximate arbitrarily closely any given finite
collection of functions of the form Xi^-b^xicd)- Since any positive integrable function
may be arbitrarily closely approximated by a finite linear combination of functions of
this form, it will follow from this that the flow has the AT property.

First, we observe that letting r = ]jT*=1 a, AT, where 0 < a, < miy we have

, t) = xIoo...ofxiw](7'-r(z, 0) diLO T~T (z, /).

But we see that Xioo...oi* x[o.j](7'-r (z, t)) is equal to XTAiao...o?x[o.s])(z, t) and it is straight-
forward to check that TT ( [ 0 0 . . . 0]* x [0, 8]) = [c{a)a^a2 ...ak] where c(a) is such
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that c(a) + ax + ... + ak = 0 (mod 2). This follows from the fact that if x has
block type in [ 0 0 . . . 0]* and y e T affect only the first nk coordinates, leaving
y (x) € [c(a)aiO2... ak] then logrf/x o y/dfi(x) = T. This means that -£?_T/ is just
Xic(a)a,ai...ak]x[o.s\- From this, it follows that we can approximate arbitrarily closely (by
taking small 8) any function of the form xw *[<%</] provided that ^=0 b> = ® (mod 2).
It remains to show that we can approximate cylinders where XlLo h = 1 (mod 2).

To this end, pick a very large M and consider S£-Ku f. Then as before, we have
f(T-KM{z, 0 ) = X7vw<[o...o]Mo.<s])(z, 0- Then we observe that if (v, s) € [ 0 . . . 0]* x
[0, 8] and yM ^ mM then T ^ (v, s) = (y, 5) where yo = 1 and ^ = y, +S,W for / > 1.
Setting B = {(z, 0 € [ 0 . . . 0]* x [0, 8] : zM # mM}, and B' = ( [ 0 . . . 0]* x [0, <5])\£,
we have that / = XB + XB>- NOW XB ° T_Ku = xr«w(B). We see that TKu{B) is
equal to S = {(z, r) € [100. . . 0]* x [0, 8]: zM ^ 0}. It follows that ^-.KUXB is equal
to Cxs where C is a constant. Since \\XB'\\\ = PMm"\\fh and J5f_*:M is linear and
norm-preserving, we have

uf — CX[100...0J*x(0.«]lll S

This shows that for large M, we can get an arbitrarily close approximation to
X[ioo...o]*x[cu] and then by a similar argument to that for the even parity cylinders,
we see that we can approximate any function of the desired type. This completes the
proof. •
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