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De toute façon, les considérations exposées ici se prêtent à des généralisations
variées, qu’il n’entrait pas dans notre propos d’examiner pour l’instant.

A. Weil [Wei62]

Abstract

An integer may be represented by a quadratic form over each ring of p-adic integers
and over the reals without being represented by this quadratic form over the integers.
More generally, such failure of a local-global principle may occur for the representation
of one integral quadratic form by another integral quadratic form. We show that many
such examples may be accounted for by a Brauer–Manin obstruction for the existence of
integral points on schemes defined over the integers. For several types of homogeneous
spaces of linear algebraic groups, this obstruction is shown to be the only obstruction
to the existence of integral points.

Résumé

Une forme quadratique entière peut être représentée par une autre forme quadratique
entière sur tous les anneaux d’entiers p-adiques et sur les réels, sans l’être sur les entiers.
On en trouve de nombreux exemples dans la littérature. Nous montrons qu’une partie
de ces exemples s’explique au moyen d’une obstruction de type Brauer–Manin pour
les points entiers. Pour plusieurs types d’espaces homogènes de groupes algébriques
linéaires, cette obstruction est la seule obstruction à l’existence d’un point entier.

Introduction

Representation of an integral quadratic form, of rank n, by another integral quadratic form, of
rank m≥ n, has been a subject of investigation for many years. The most natural question is
that of the representation of an integer by a given integral quadratic form (n= 1, m arbitrary).

Scattered in the literature one finds many examples where the problem can be solved locally,
that is over the reals and over all the rings Zp of p-adic integers, but the problem cannot be
solved over Z: these are counterexamples to a local-global principle for the problem of integral
representation. One here encounters such concepts as that of ‘spinor exceptions’.

It is the purpose of the present paper to give a conceptual framework for entire series of such
counterexamples.
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The situation resembles the one which Manin encountered in 1970 regarding the classical
Hasse principle, namely the question of existence of a rational point on a variety defined over
the rationals when one knows that there are points in each completion of Q. Manin analyzed
most of the then known counterexamples by means of the Brauer group of varieties.

Our key tool is a straightforward variation on the Brauer–Manin obstruction, which we call
the integral Brauer–Manin obstruction. We are over a number field k, with ring of integers O, and
we are interested in the integral points of a certain O-scheme X associated to the representation
problem. An important point is that, even though we are interested in the set of integral points of
the scheme X, the Brauer group which we use is the Brauer group of the k-variety X = X×O k,
and not the Brauer group of X, as one would naively imagine. This obstruction is defined in § 1.

In this paper we restrict attention to the problem of representation of a form g of rank n≥ 1
by a form f of rank m≥ 3. Then the k-varieties which underly the problem are homogeneous
spaces of spinor groups.

In § 2 we discuss Brauer groups and Brauer pairings on homogeneous spaces of connected
linear algebraic groups over an arbitrary field.

In the next two sections we discuss rational and integral points on homogeneous spaces under
an arbitrary connected linear group G. There are two types of results, depending on whether
the geometric stabilizer is connected (§ 3) or whether it is a finite commutative group (§ 4). For
integral points, the main results, Theorems 3.7 and 4.5, assert that the integral Brauer–Manin
obstruction to the existence of an integral point is the only obstruction provided the group G is
simply connected and satisfies an isotropy condition at the archimedean places. These conditions
ensure that the group G satisfies the strong approximation theorem.

The tools we use have already been used most efficiently in the study of rational points, by
Sansuc [San81] and Borovoi [Bor96]. Our results on rational points are very slight extensions
of their results. Some results on integral points already appear in a paper by Borovoi and
Rudnick [BR95]. It has recently come to our attention that further related results appear in
the appendix of a paper by Erovenko and Rapinchuk [ER06].

For the representation problem of quadratic forms over the integers, the isotropy condition is
that the form f is ‘indefinite’, i.e. isotropic at some archimedean completion of the number field k.
In this case, if there is no integral Brauer–Manin obstruction, as defined in the present paper,
then the form g is represented by f over the integers. As may be expected, the cases m− n≥ 3
(Theorem 6.1), m− n= 2 (Theorem 6.3) and 1≥m− n≥ 0 (Theorem 6.4) each require a
separate discussion. For m− n≥ 3, the geometric stabilizer is simply connected, there are no
Brauer–Manin obstructions, the result on representation by indefinite forms is classical. For
m− n= 2, the geometric stabilizer is a one-dimensional torus. For 1≥m− n≥ 0, the geometric
stabilizer is Z/2.

In § 7 we compare the results obtained in § 6 with classical results in terms of genera and
spinor genera. We take a new look at the notion of ‘spinor exception’.

In § 8 we show how various examples in the literature can all be interpreted in terms of the
integral Brauer–Manin obstruction. We also illustrate the general results by a theorem, a special
case of which is: Let f(x1, . . . , xn), respectively l(x1, . . . , xn), be a polynomial of total degree 2,
respectively total degree 1, with coefficients in Z. Assume that l does not divide f , that the
affine Q-variety defined by f = l = 0 is smooth, and that its set of real points is noncompact. For
n≥ 5, the existence of solutions to f = l = 0 in all Zp implies the existence of solutions in Z.
For n= 4, this is so if and only if there is no Brauer–Manin obstruction (a condition which in
this case can easily be checked).
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In § 9 we apply the technique to recover a theorem characterizing sums of three squares in the
ring of integers of an imaginary quadratic field – without using computation of integral spinor
norms and Gauss genus theory. In Appendix A, this kind of argument also enables Dasheng Wei
and the second named author to establish a local-global principle for sums of three squares in
the ring of integers of an arbitrary cyclotomic field.

1. Notation; the integral Brauer–Manin obstruction

For an arbitrary scheme X, with structural sheaf OX , we let PicX =H1
Zar(X, O

∗
X) denote the

Picard group of X. Given a sheaf F on the étale site of X, we let Hr
ét(X, F) denote the étale

cohomology groups of the sheaf F . There is a natural isomorphism PicX 'H1
ét(X,Gm), where

Gm is the étale sheaf associated to the multiplicative group Gm over X. The Brauer group
of X is BrX =H2

ét(X,Gm). For background on the Brauer group, we refer to Grothendieck’s
exposés [Gro68].

Let k be a field. A k-variety is a separated k-scheme of finite type. Given a k-variety X
and a field extension K/k we set XK =X ×k K. For K = k a separable closure of k we write
X =X ×k k. We let K[X] =H0(XK , OXK ) be the ring of global functions on XK . We let K[X]∗

be the group of units in that ring. We let X(K) be the set of K-rational points of X, that is
X(K) = Homk(SpecK, X).

Let k be a number field and O its ring of integers. Let Ωk denote the set of places of k. For
v ∈ Ωk we let kv denote the completion of k at v. For v nonarchimedean we let Ov denote the ring
of integers in kv. For each place v, class field theory yields an embedding invv : Br kv ↪→Q/Z.

Let S be a finite set of places of k containing all archimedean places. Let OS ⊂ k be the rings
of elements which are integral outside of S, also known as the ring of S-integers. Let X be a
scheme separated and of finite type over the ring OS . The set X(OS) is the set of S-integral
points of X.

Let X = X×OS k. For any commutative integral OS-algebra A with field of fractions F , the
natural map

X(A) = HomOS (SpecA,X)→X(F ) = Homk(Spec F, X)

is an injection. If Y ⊂X denotes the schematic closure of X in X then Y(A) = X(A). For all
problems considered here, we could thus replace X (which may have very bad special fibres) by
the flat O-scheme Y.

We may thus view the set X(OS) as a subset of X(k) and for each place v /∈ S of k we may
view X(Ov) as a subset of X(kv). The latter space is given the topology induced by that of the
local field kv. As one easily checks, X(Ov) is open in X(kv). If U ⊂X is a dense Zariski open
set of X, if X/k is smooth, the implicit function theorem implies that U(kv) is dense in X(kv).
This implies that X(Ov) ∩ U(kv) is dense in X(Ov).

An adèle of the k-variety X is a family {xv} ∈
∏
v∈Ωk

X(kv) such that, for almost all v, the
point xv belongs to X(Ov). This definition does not depend on the model X/OS . The set of
adèles of X is denoted X(Ak). There is a natural diagonal embedding X(k)⊂X(Ak).

There is a natural pairing between X(Ak) and the Brauer group BrX =H2
ét(X,Gm) of X:

X(Ak)× BrX →Q/Z,
({xv}, α) 7→

∑
v

invv(α(xv)).

This pairing is known as the Brauer–Manin pairing.
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Any element of X(k) is in the left kernel of that pairing. The image of Br k→ BrX is in the
right kernel of that pairing.

When X/k is proper, for a given element α ∈ BrX, there exists a finite set Sα of places of k
such that, for v /∈ Sα and any Mv ∈X(kv), α(Mv) = 0. This enables one to produce and analyze
counterexamples to the Hasse principle. For background on the Brauer–Manin obstruction, we
refer the reader to [Sko01] and the literature cited there.

When X/k is not proper, for α ∈ BrX, there is in general no such finite set Sα of places;
the pairing seems to be useless. The situation changes when one restricts attention to integral
points.

The above pairing induces a pairing[∏
v∈S

X(kv)×
∏
v/∈S

X(Ov)
]
× BrX →Q/Z,

which vanishes on the image of X(k) on the left hand side and vanishes on the image of
Br k→ BrX on the right hand side. That is, we have an induced pairing[∏

v∈S
X(kv)×

∏
v/∈S

X(Ov)
]
× BrX/Br k→Q/Z.

In the present context, the Brauer–Manin set(∏
v∈S

X(kv)×
∏
v/∈S

X(Ov)
)BrX

is by definition the left kernel of either of the above pairings. We have the inclusions

X(OS)⊂
(∏
v∈S

X(kv)×
∏
v/∈S

X(Ov)
)BrX

⊂
(∏
v∈S

X(kv)×
∏
v/∈S

X(Ov)
)
.

If the product (
∏
v∈S X(kv)×

∏
v/∈S X(Ov)) is not empty but the Brauer–Manin set is empty,

we say there is a Brauer–Manin obstruction to the existence of an S-integral point on X.
For a given α ∈ BrX, there exists a finite set Sα,X of places v of k with S ⊂ Sα,X such that,

for any v /∈ Sα,X and Mv ∈X(Ov), we have α(Mv) = 0 (see [Sko01, § 5.2, p. 101]). For a given
α ∈ BrX, computing the image of the evaluation map

ev(α) :
(∏
v∈S

X(kv)×
∏
v/∈S

X(Ov)
)
→Q/Z

is thus reduced to a finite amount of computations.
If the quotient BrX/Br k is finite, only finitely many computations are needed to decide if

the Brauer–Manin set is empty or not.
Cohomology in this paper will mostly be étale cohomology. Over a field k with separable

closure k and Galois group g = Gal(k/k), étale cohomology is just Galois cohomology. For
a continuous discrete g-module M , we shall denote by Hr(g, M) or Hr(k, M) the Galois
cohomology groups. Given a linear algebraic group H over k, one has the pointed cohomology
set H1(k, H). This set classifies (right) principal homogeneous spaces under H, up to nonunique
isomorphism. Over an arbitrary k-schemeX, one has the pointed cohomology setH1

ét(X, H). This
set classifies (right) principal homogeneous spaces over X under the group H, up to nonunique
isomorphism. In this relative context, (right) principal homogeneous spaces will be referred to
as torsors.
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2. Brauer groups and Brauer–Manin pairing for homogeneous spaces

In this whole section, k denotes a field of characteristic zero, k an algebraic closure of k, and g
the Galois group of k over k.

For any k-variety X, let
Br1 X = Ker[BrX → BrX].

Let us first recall some known results.

Lemma 2.1. One has a natural exact sequence

0→H1(g, k[Y ]∗)→ Pic Y → (Pic Y )g → H2(g, k[Y ]∗)
→ Br1 Y →H1(g, Pic Y )→H3(g, k[Y ]∗)

and the last map in this sequence is zero if the natural map H3(g, k[Y ]∗)→H3
ét(Y,Gm) is

injective.

Proof. This is the exact sequence of terms of low degree attached to the spectral sequence
Epq2 =Hp(k, Hq

ét(Y ,Gm)) =⇒Hn
ét(Y,Gm). 2

Proposition 2.2 (Sansuc). Let H/k be a connected linear algebraic group. Let Ĥ denote the
(geometric) character group of H. This is a finitely generated, Z-free, discrete Galois module.
Let X be a smooth connected k-variety and p : Y →X be a torsor over X under H. There is a
natural exact sequence of abelian groups

0→ k[X]∗/k∗→ k[Y ]∗/k∗→ Ĥ(k)→ PicX → Pic Y → PicH → BrX → Br Y. (2.1)

In this sequence, the abelian groups k[X]∗/k∗, k[Y ]∗/k∗ and Ĥ(k) are finitely generated and
free, and the group PicH is finite.

Proof. This is [San81, Proposition 6.10]. 2

The map ν(Y )(k) : Ĥ(k)→ PicX is the obvious map: given a character χ of H and the H-
torsor Y over X, one produces a Gm-torsor over X by the change of structural group defined
by χ. We let ν(Y ) : Ĥ → PicX be the associated Galois-equivariant map over k.

Any extension
1→Gm→H1→H → 1

of a group H by the torus Gm defines a Gm-torsor over H, hence a class in PicH. The induced
map

Extk-gp(H,Gm)→ PicH
is functorial in the group H.

Assume that H is a connected linear algebraic group. Then the extension is automatically
central, and the above map is an isomorphism

Extck-gp(H,Gm,k)
'→ PicH

(see [Col08, Corollary 5.7]). Here Extck-gp(H,Gm) denotes the abelian group of isomorphism
classes of central extensions of k-algebraic groups of H by Gm.

Let H be an algebraic group over k, let X be a k-variety and p : Y →X be a torsor over
X under H. There is an associated class ξ in the cohomology set H1

ét(X, H). Given any central
extension of algebraic groups

1→Gm→H1→H → 1,

313

https://doi.org/10.1112/S0010437X0800376X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X0800376X


J.-L. Colliot-Thélène and F. Xu

there is a natural exact sequence of pointed sets

H1
ét(X, H1)→H1

ét(X, H)→H2
ét(X,Gm) = BrX.

We thus have a natural pairing

H1
ét(X, H)× Extck-gp(H,Gm)→ BrX

and this pairing is linear on the right hand side, functorial in the k-scheme X and functorial in
the k-group H. To the torsor Y there is thus associated a homomorphism of abelian groups

ρtors(Y ) : Extck-gp(H,Gm)→ BrX.

If H is connected this map induces a homomorphism

δtors(Y ) : PicH → BrX.

Proposition 2.3. Let H be a connected linear algebraic group over k. Let H1, X, Y be as
above. Assume Pic Y = 0 and Y (k) 6= ∅. Then ρtors(Y ) and δtors(Y ) are injective.

Proof. If the class of the central extension

1→Gm→H1→H → 1

is in the kernel of ρtors(Y ) then the class of Y in H1
ét(X, H) is in the kernel of the map

H1
ét(X, H)→H2

ét(X,Gm) = BrX. There thus exists a torsor Z/X under the k-group H1 such
that the H-torsor Z ×H1 H/X is H-isomorphic to the H-torsor Y/X. The projection map Z→ Y
makes Z into a Gm-torsor over Y . Since Pic Y = 0, there exists a k-morphism σ : Y → Z which
is a section of the projection p : Z→ Y . Fix y ∈ Y (k). Let z = σ(y) ∈ Z(k) and let x ∈X(k) be
the image of y under Y →X. Taking fibres over x, we get an H1-torsor Zx over k with the
k-point z, an H-torsor Yx with the k-point y, a projection Zx→ Yx compatible with the actions
of H1 and H and a section σx : Yx→ Zx sending y to z. The k-homomorphism H1→H thus
admits a scheme-theoretic section τ :H →H1.

At this point we can appeal to the injectivity of Extck-gp(H,Gm,k)
'→ PicH (see

[Col08, Corollary 5.7]) to conclude. Alternatively, we observe that the section τ sends the
unit element of H to the unit element of H1. It is a priori just a k-morphism of varieties.
Because H1 is a central extension of the connected k-group H by a torus, this implies that
τ is a homomorphism of algebraic groups (this is a consequence of Rosenlicht’s lemma, see
[Col08, proof of Proposition 3.2]). Thus the central extension is split. 2

Remark 2.4. If we assume X is geometrically integral, hence also Y , or if H is characterfree,
one may dispense with the assumption Y (k) 6= ∅.

With notation as in the proposition, Sansuc’s Proposition 2.2 yields an exact sequence
Pic Y → PicH → BrX. If one could prove that the map PicH → BrX in that sequence coincides
(up to a sign) with the map δtors(Y ), this would give another proof of Proposition 2.3.

Proposition 2.5. Let G be a connected linear algebraic group over k and let H ⊂G be a closed
subgroup, not necessarily connected. Let X =G/H. Then there is a natural exact sequence

Ĝ(k)→ Ĥ(k)→ PicX → PicG.

Proof. See Proposition 3.2 of the paper The Picard group of a G-variety, by H. Knop, H.-P. Kraft
and T. Vust in [KSS89, pp. 77–87]. The proof there is given over an algebraically closed field.
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One checks that it extends to the above statement. The map Ĥ(k)→ PicX is the map ν(G)(k)
associated to the H-torsor G over X =G/H. 2

Proposition 2.6. Let G/k be a semisimple simply connected group. Let Y/k be a k-variety.
Assume there exists an isomorphism of k-varieties G' Y . We have

(i) the natural map k∗→ k[Y ]∗ is an isomorphism;

(ii) Pic Y = 0;

(iii) the natural map Br k→ Br Y is bijective.

Proof. First consider the case Y =G semisimple simply connected and k = k. In this case it is
well known that k∗ = k[G]∗ and that PicG= 0. Let us give details for the slightly less known
vanishing of BrG. One reduces to the case k = C and uses π1G= 0 and π2G= 0 (Élie Cartan).
The universal coefficient theorem then implies H2

top(G, Z/n) = 0 for any positive integer n.
The comparison theorem then implies H2

ét(G, µn) = 0 for all n, hence nBrG= 0 for all n,
hence BrG= 0 since that group is a torsion group (as is the Brauer group of any regular
scheme, see [Gro68, II, Proposition 1.4]). All statements now follow from the results over k
and Lemma 2.1. 2

Let H be a (not necessarily connected) linear algebraic group over k. Let M =Hmult denote
the maximal quotient of H which is a group of multiplicative type. Let M̂ = Ĥ denote the
(geometric) character group of H. This is a finitely generated discrete g-module, which we view
as a commutative k-group scheme locally of finite type. It coincides with the (geometric) character
group of Hmult. If H is connected, M =Hmult is a k-torus, which is then denoted Htor, and Ĥ
is Z-torsionfree.

Proposition 2.7. Let Y →X be an H-torsor. With notation as above, the diagram

X(k)

evY
��

× BrX // Br k

H1(k, H)

��

× Extck-gp(H,Gm)

ρtors(Y )

OO

// Br k

H1(k, M) × Extck-gp(M,Gm)

OO

// Br k

H1(k, M) × Extk-abgp(M,Gm)

OO

// Br k

H1(k, M) × H1(k, M̂)

'

OO

// Br k

(2.2)

is commutative.

Proof. Commutativity of the first diagram follows from functoriality. Commutativity of the
second and third diagrams, where Extk-abgp(M,Gm) denotes the group of isomorphism classes
of extensions of M by Gm in the category of abelian k-group schemes, is also a matter of
functoriality.
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For the construction of the last diagram and the proof of its commutativity, most ingredients
may be found in Chapter I, § 0 of Milne’s book [Mil86]. Proposition 0.14 op. cit. establishes
a similar diagram at the level of Galois modules, Galois cohomology and extensions of Galois
modules. In the present context of commutative algebraic groups, the definition of maps and
pairing must be adapted. The map H1(k, M̂)→ Extk-abgp(M,Gm) comes from the spectral
sequence in Proposition 0.17 op. cit. For the pairings, see Proposition 0.16 op. cit. For the
commutativity, one uses [Mil80] V.1.20, which produces a variant of the above mentioned
Proposition 0.14 in the more general context required here (see the comments in the proof
of the quoted proposition). 2

The group Extk-abgp(M,Gm) classifies extensions

1→Gm→ E→M → 1,

where E is a commutative algebraic group over k. The group E is then a k-group of multiplicative
type. Over k any such extension is split.

The injective map Extk-abgp(M,Gm)→ Extck-gp(M,Gm) has for its image the group of central
extensions of M by Gm which split over k.

Thus the composite map

H1(k, M̂)→ Extk-abgp(M,Gm)→ Extck-gp(M,Gm)→ Extck-gp(H,Gm)

has its image in the subgroup of extensions split over k, and the composite map

H1(k, M̂)→ Extk-abgp(M,Gm)→ Extck-gp(M,Gm)→ Extck-gp(H,Gm)→ BrX

has its image in the subgroup Br1 X ⊂ BrX. Since M̂ ' Ĥ this gives rise to a map

θ(Y ) :H1(k, Ĥ)→ Br1 X.

We are indebted to T. Szamuely for a discussion of the following proposition.

Proposition 2.8. Let H be a not necessarily connected linear algebraic group, let M =Hmult

and let Y →X be an H-torsor. Let ν(Y ) : Ĥ → PicX be the associated homomorphism.
The induced map H1(k, Ĥ)→H1(k, PicX) coincides with the composite of the map θ(Y ) :
H1(k, Ĥ)→ Br1 X with the map Br1 X →H1(k, PicX) in Lemma 2.1.

Proof. To prove this proposition one may replace the H-torsor Y by the M -torsor Y ×H M . In
other words, it is enough to prove the proposition in the case H =M is a k-group of multiplicative
type.

The map θ(Y ) here is induced by the composite map

H1(k, M̂)→ Extk-abgp(M,Gm)→ BrX,

where the map Extk-abgp(M,Gm)→ BrX is given by the M -torsor Y (see the discussion before
Proposition 2.3). The composite map clearly has its image in Br1 X. One first observes that
the map θ(Y ) :H1(k, M̂)→ Br1 X as defined above coincides with the map given by cup-
product with the class of the torsor Y in H1

ét(X,M). For this we refer to [GH70, GH71] and to
[Mil80, Proposition 1.20 in Chapter V]. (The caseX = Spec k already appears in Proposition 2.7.)
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We have a natural pairing of sheaves M̂ ×M →Gm on the big étale site of Spec k. Consider the
following diagram.

H1(k, M̂)

=

��

× H1
ét(X,M)

��

// Br1 X

��
H1(k, M̂) × Homk(M̂, PicX) // H1(k, PicX)

(2.3)

In this diagram the top pairing is induced by cup-product. The map H1
ét(X,M)→

Homk(M̂, PicX) is the natural map associating to an M -torsor Y over X its type ν(Y ). Given
α ∈H1(k, M̂), the bottom map sends it to the map which sends ν ∈Homk(M̂, PicX) to ν(α).
The map Br1 X →H1(k, PicX) is the map coming from the Hochschild–Serre spectral sequence.
Theorem 4.1.1 of Skorobogatov’s book [Sko01], the proof of which is rather elaborate, shows
that this diagram is commutative. Combining this with the above compatibility establishes the
result. 2

Proposition 2.9. Let H be a connected linear algebraic group over the field k. With notation
as above, the group M =Hmult is a torus. Any algebraic group extension of H by Gm is central
and any algebraic group extension of the k-torus M by Gm is commutative. There are natural
compatible isomorphisms of finite groups

Extk-gp(H,Gm) '→ PicH

and

Extk-gp(M,Gm) '→ PicM.

Let Y →X be an H-torsor. The diagram in the previous proposition yields a commutative
diagram as follows.

X(k)

evY
��

× BrX // Br k

H1(k, H)

��

× PicH

δtors(Y )

OO

// Br k

H1(k, M) × Ker[PicH → PicH]

OO

// Br k

H1(k, M) × H1(k, M̂) //

'

OO

Br k

(2.4)

Proof. The first two statements are well known. The two isomorphisms have been discussed
above.

That PicH is a finite group is a well known fact (see [Col08], Rappel 0.5, Proposition 3.3,
Proposition 6.3 and the literature cited there). Part of the right vertical map in the previous
diagram now reads

H1(k, M̂)' PicM → PicH.
The statement now follows from Proposition 2.7 provided we show that the map PicM → PicH
induces an isomorphism PicM →Ker[PicH → PicH]. We have the exact sequence of connected
algebraic groups

1→H1→H →M → 1,
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where H1 is a smooth connected characterfree algebraic group. Applying Proposition 2.2 to this
sequence we get the exact sequences

0→ PicM → PicH → PicH1

and

0→ PicM → PicH → PicH1,

which simply reads PicH ↪→ PicH1. Moreover Rosenlicht’s lemma and Lemma 2.1 show that
the obvious map PicH1→ PicH1 is injective. This is enough to conclude. 2

Proposition 2.10. Let G be a semisimple, simply connected algebraic group over k and H ⊂G
a connected k-subgroup. Let X =G/H. Projection G→G/H makes G into a right H-torsor
Y →X. Let Br ∗ X ⊂ BrX be the group of elements vanishing at the point of X(k) which is the
image of 1 ∈G(k). Projection BrX → BrX/Br k induces an isomorphism Br ∗ X → BrX/Br k.

(i) The natural map ν(G) : Ĥ(k)→ PicX is an isomorphism.

(ii) The map δtors(G) : PicH → BrX attached to the torsor G→G/H =X induces
isomorphisms

δ′tors(G) : PicH '→ Br ∗ X ' BrX/Br k.

(iii) Let Xc be a smooth compactification of X. There is an isomorphism between BrXc and
the group of elements of H1(g, Ĥ) whose restriction to each procyclic subgroup of g is zero.

Proof. For (i) use either Proposition 2.2 or 2.5.

Let us prove (ii). The map δtors(G) : PicH → BrX sends PicH to Br ∗ X ⊂ BrX. By
Proposition 2.3, the map δtors(G) : PicH → BrX is injective. We thus have an injective
homomorphism PicH → Br ∗ X. By Proposition 2.6, PicG= 0 and the natural map Br k→ BrG
is an isomorphism. Sansuc’s Proposition 2.2 gives some isomorphism PicH ' Br ∗ X. Since the
group PicH is finite, we conclude that δtors(G) : PicH → Br ∗ X is an isomorphism.

Statement (iii) is a special case of [CK06, main theorem]. 2

Remark 2.11. If the connected group H has no characters, then the map PicH → PicH is
injective. As soon as PicH 6= 0, we thus get ‘transcendental elements’ in the Brauer group of X,
i.e. elements of the Brauer group of X whose image in BrX is nonzero.

Proposition 2.12. Let G be a semisimple, simply connected algebraic group over k and H ⊂G
be a closed k-subgroup, not necessarily connected. Let X =G/H. Then:

(i) the natural map ν(G) : Ĥ(k)→ PicX is an isomorphism;

(ii) the map θ(G) :H1(k, Ĥ)→ Br1 X induces an isomorphism H1(k, Ĥ)' Br1 X/Br k.

Proof. Using Propositions 2.5 and 2.6 we obtain isomorphisms ν(G)(k) : Ĥ(k) '→ PicX
and ν(G) : Ĥ '→ PicX. The first one gives (i), the second one induces an isomorphism
H1(k, Ĥ) '→ H1(k, PicX). Proposition 2.6 gives k

∗ = k[X]∗. By Lemma 2.1 this implies
Br1 X/Br k '→ H1(k, PicX). Combining this with Proposition 2.8 we get (ii). 2
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3. The Brauer–Manin obstruction for rational and integral points of homogeneous
spaces with connected stabilizers

Let k be a number field and H/k be a connected linear algebraic group. Since H is connected,
the image of the diagonal map H1(k, H)→

∏
v H

1(kv, H) lies in the subset
⊕

v H
1(kv, H) of

elements which are equal to the trivial class 1 ∈H1(kv, H) for all but a finite number of places
v of k. For each place v, the pairing

H1(kv, H)× PicHkv → Br kv ⊂Q/Z

from Proposition 2.9 induces a map H1(kv, H)→Hom(PicH,Q/Z).

The following theorem is essentially due to Kottwitz ([Kot86, 2.5, 2.6]; see also [BR95]). It
extends the Tate–Nakayama theory (case when H is a torus). With the maps as defined above,
a proof of the theorem is given in [Col08, Theorem 9.4] (handling the real places is a delicate
point; in [Col08] one refers to an argument of Borovoi).

Theorem 3.1. Let k be a number field and H a connected linear algebraic group over k. The
above maps induce a natural exact sequence of pointed sets

H1(k, H)→
⊕
v

H1(kv, H)→Hom(PicH,Q/Z).

Let G be a connected linear algebraic group over k and H ⊂G a connected subgroup. Let
X =G/H. Projection G→G/H makes G into a right torsor over X under the group H.

We have the following natural commutative diagram.

G(k)

��

// G(Ak)

��
X(k)

��

// X(Ak) //

��

Hom(BrX/Br k,Q/Z)

��
H1(k, H) //

��

⊕
v H

1(kv, H) //

��

Hom(PicH,Q/Z)

H1(k, G) // ⊕
v H

1(kv, G)

(3.1)

In this diagram the two left vertical sequences are exact sequences of pointed sets
([Ser65, Chapter I, § 5.4, Proposition 36]). The map Hom(BrX/Br k,Q/Z)→Hom(PicH,Q/Z)
is induced by the map δtors(G) : PicH → BrX. The commutativity of this diagram follows from
Proposition 2.9.

A finite set S of places of k will be called big enough for (G, H) if it contains all the
archimedean places, there exists a closed immersion of smooth affine OS-group schemes with
connected fibres H⊂G extending the embedding H ⊂G and the quotient OS-scheme X = G/H
exists and is separated. There always exists such a finite set S.

Theorem 3.2. Let k be a number field, H ⊂G connected linear algebraic groups over k and
X =G/H.
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(i) With notation as above, the kernel of the map

X(Ak)→Hom(BrX/Br k,Q/Z)

is included in the kernel of the composite map

X(Ak)→
⊕
v

H1(kv, H)→Hom(PicH,Q/Z).

(ii) If G is semisimple and simply connected, the kernels of these two maps coincide.

(iii) Let the finite set S of places be big enough for (G, H). A point {Mv}v∈Ωk in the product∏
v∈S X(kv)×

∏
v/∈S X(Ov) is in the kernel of the composite map

X(Ak)→
⊕
v

H1(kv, H)→Hom(PicH,Q/Z)

if and only if the point {Mv}v∈S is in the kernel of the composite map∏
v∈S

X(kv)→
∏
v∈S

H1(kv, H)→Hom(PicH,Q/Z).

Proof. Statement (i) follows from diagram (3.1).
If G is semisimple and simply connected, Proposition 2.10 implies that the composite map

δ′tors(G) : PicH → BrX → BrX/Br k is an isomorphism. This gives (ii).
In the situation of (iii), for each v /∈ S, the composite map X(Ov)→X(kv)→H1(kv, H)

factorizes as X(Ov)→H1
ét(Ov,H)→H1(kv, H) and H1

ét(Ov,H) = 1 by Hensel’s lemma together
with Lang’s theorem. 2

In the case where the group G is semisimple and simply connected, the hypotheses of the
next three theorems are fulfilled. In that case these theorems are due to Borovoi [Bor96] and
Borovoi and Rudnick [BR95].

Theorem 3.3 (Compare [BR95, Theorem 3.6]). Let G be a connected linear algebraic group
over a number field k and H ⊂G a connected k-subgroup. Let X =G/H. Assume X1(k, G) = 0.
If {Mv}v∈Ω ∈X(Ak) is orthogonal to the image of the (finite) group PicH in BrX with respect
to the Brauer–Manin pairing, then there exist {gv} ∈G(Ak) and M ∈X(k) such that for each
place v of k

gvM =Mv ∈X(kv).

Proof. This immediately follows from diagram (3.1). 2

Theorem 3.4. Let G be a connected linear algebraic group over a number field k and H ⊂G a
connected k-subgroup. Let X =G/H. Assume X1(k, G) = 0 and assume that G satisfies weak
approximation.

(a) Let {Mv}v∈Ω ∈X(Ak) be orthogonal to the image of the (finite) group PicH in BrX with
respect to the Brauer–Manin pairing. Then for each finite set S of places of k and open sets
Uv ⊂X(kv) with Mv ∈ Uv there exists M ∈X(k) such that M ∈ Uv for v ∈ S.

(b) (Borovoi) If G is semisimple and simply connected and H is geometrically characterfree,
then X satisfies weak approximation.

Proof. (a) Let {gv} ∈G(Ak) and M ∈X(k) be as in the conclusion of the previous theorem. If
g ∈G(k) is close enough to each gv for v ∈ S, then gM ∈X(k) belongs to each Uv for each v ∈ S.
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(b) Since H is geometrically characterfree, Lemma 2.1 and Rosenlicht’s lemma ensure
that the natural map PicH → PicH is injective. This implies that for any field K containing k
the natural map of finite abelian groups PicH → PicHK is injective. Thus the dual map
Hom(PicHK ,Q/Z)→Hom(PicH,Q/Z) is onto. For any nonarchimedean place w of k the
natural map

H1(kw, H)→Hom(PicHkw ,Q/Z)
is a bijection (Kottwitz, see [Col08, Theorem 9.1(ii)]). SinceG is semisimple and simply connected
and w nonarchimedean, H1(kw, G) = 1 (Kneser), hence the map X(kw)→H1(kw, H) is onto.
Thus the composite map

X(kw)→H1(kw, H)→Hom(PicHkw ,Q/Z)→Hom(PicH,Q/Z)

is onto. Let S be a finite set of places of k, let {Mv}v∈S ∈
∏
v∈S X(kv) and for each place

v let Uv ⊂X(kv) be a neighbourhood of Mv. Let ϕ ∈Hom(PicH,Q/Z) be the image of
{Mv}v∈S under the map

∏
v∈S X(kv)→Hom(PicH,Q/Z). Choose a nonarchimedean place

w /∈ S and a point Mw ∈X(kw) whose image in the group Hom(PicHkw ,Q/Z) induces
−ϕ ∈Hom(PicH,Q/Z). At places v not in S ∪ {w} takeMv ∈X(kv) to be the image of 1 ∈G(kv)
under the projection map G(kv)→X(kv). Then the family {Mv}v∈Ωk satisfies the hypothesis in
(a), which is enough to conclude. 2

Theorem 3.5. Let G be a connected linear algebraic group over a number field k and H ⊂G
a connected k-subgroup. Let X =G/H. Let Xc be a smooth compactification of X. The closure
of the image of the diagonal map Xc(k)→Xc(Ak) is exactly the Brauer–Manin set Xc(Ak)BrXc

consisting of elements of Xc(Ak) which are orthogonal to BrXc.

Proof. After changing both G and H one may assume that the group G is ‘quasi-trivial’ (see
[CK06, Lemme 1.5]). For any such group G, weak approximation holds, and X1(k, G) = 0
(see [Col08, Proposition 9.2]). Let {Mv} ∈Xc(Ak) be orthogonal to BrXc. Since G is a rational
variety, the smooth, projective, geometrically integral variety Xc is geometrically unirational.
This implies that the quotient BrXc/Br k is finite. Any element of Xc(Ak)BrXc may thus
be approximated by an {Mv} ∈X(Ak) which is orthogonal to BrXc. Let S be a finite set
of places of k. The group PicH is finite, its image B ⊂ BrX is thus a finite group and we
have {Mv} ∈X(Ak)B∩BrXc . According to a theorem of Harari ([Har94, Corollary 2.6.1], see
also [Col03, Theorem 1.4]), there exists a family {Pv} ∈X(Ak) with Pv =Mv for v ∈ S which is
orthogonal to B ⊂ BrX. By Theorem 3.4 we may find M ∈X(k) as close as we wish to each Mv

for v ∈ S. 2

Remark 3.6. Some of the results in [Bor96], [Bor99] and the references quoted therein are not
covered by the previous two theorems. M. Borovoi tells us that in Theorem 3.5 one may replace
BrXc by Br1 Xc.

We now discuss integral points of homogeneous spaces. Let Y be a variety over a number
field k. Let S0 be a finite set of places of k (these may be arbitrary places of k). We let OS0

denote the subring of elements x of k which are v-integral at each nonarchimedean place v not
in S0. One says that Y satisfies strong approximation with respect to S0 if the diagonal image
of Y (k) in the set of S0-adèles of Y is dense. The S0-adèles of Y is the subset of

∏
v/∈S0

Y (kv)
consisting of elements which are integral at almost all places of k. This set is equipped with a
natural restricted topology. The definition does not depend on the choice of an integral model
for Y . For a discussion of various properties of strong approximation, see [PR91, § 7.1]. If G/k
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is a connected linear algebraic group, G satisfies strong approximation with respect to S0 if and
only if G(k).(

∏
v∈S0

G(kv)) is dense in the group of all adèles G(Ak).
On first reading the statement of the following theorem, the reader is invited to take S to be

just the set of archimedean places.

Theorem 3.7. Let k be a number field, O its ring of integers, S a finite set of places of k
containing all archimedean places, and OS the ring of S-integers. Let G/k be a semisimple,
simply connected group. Let H ⊂G be a connected subgroup. Let X be a separated OS-scheme
of finite type such that X = X×OS k is k-isomorphic to G/H.

(a) For a point {Mv} ∈
∏
v∈S X(kv)×

∏
v/∈S X(Ov)⊂X(Ak) the following conditions are

equivalent:

(i) it is in the kernel of the map X(Ak)→Hom(BrX,Q/Z);
(ii) it is in the kernel of the composite map

X(Ak)→
⊕
v

H1(kv, H)→Hom(PicH,Q/Z).

Let S1 with S ⊂ S1 be big enough for (G, H) and X. More precisely assume
that there exists a semisimple OS1-group scheme G extending G/k, a smooth,
fibrewise connected, OS1-subgroup scheme H⊂G over OS1 extending H and an OS1-
isomorphism X×OS OS1 'G/H extending X 'G/H. Then the above conditions are
equivalent to:

(iii) the S1-projection {Mv}v∈S1 of {Mv} is in the kernel of the composite map∏
v∈S1

X(kv)→
∏
v∈S1

H1(kv, H)→Hom(PicH,Q/Z).

(b) Let S0 be a finite set of places of k such that for each almost simple k-factor G′ of G there
exists a place v ∈ S0 such that G′(kv) is not compact. Let S2 be a finite set of places of k.
If {Mv} ∈

∏
v∈S X(kv)×

∏
v/∈S X(Ov)⊂X(Ak) satisfies one of the three conditions above,

then there exists M ∈X(OS0∪S) arbitrarily close to each Mv for v ∈ S2 \ S0. In particular,
we then have X(OS∪S0) 6= ∅.

Proof. The assumption on G ensures that X1(k, G) = 0 and that G satisfies strong
approximation with respect to S0 (Kneser [Kne65]; Platonov and Rapinchuk [PR91, Russian
edition, Chapter 7.4, Teor. 12, p. 466; English edition, § 7.4, Theorem 7.12, p. 427]).

Statement (a) then follows from Theorem 3.2.

Let us prove (b). We may assume that S2 contains S1. According to Theorem 3.3, whose
hypotheses are fulfilled, there exist N ∈X(k) and a family {gv} ∈G(Ak) such that gv.N =Mv

for each place v. By strong approximation with respect to S0, there exist g ∈G(k) such that g
is very close to gv for v ∈ S2 \ S0 and g ∈G(Ov) for v /∈ S2 ∪ S0. Now the point M = gN ∈X(k)
belongs to X(Ov) for v /∈ S2 ∪ S0 and it is very close to Mv ∈X(kv) for v ∈ S2 \ S0. Hence it
also belongs to X(Ov) for v /∈ S ∪ S0 (the set X(Ov) is open in X(kv)). We thus have found
M ∈X(OS∪S0) very close to each Mv for v ∈ S2 \ S0. 2

The existence of an {Mv} ∈
∏
v∈S X(kv)×

∏
v/∈S X(Ov) satisfying hypothesis (i) or (ii) is

reduced to the existence of an {Mv} ∈
∏
v∈S1

X(kv) as in hypothesis (iii). This can be checked
by a finite amount of computations involving the pairings H1(kv, H)× PicH →Q/Z.
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If one uses the Brauer pairing, one can also check hypothesis (i) by means of a finite amount
of computations. For any α ∈ BrX there exists a finite set Sα of places of k such that α vanishes
on X(Ov) for any v /∈ Sα. Let T be the union of S and the Sα for a finite set E of the α spanning
the finite group BrX/Br k. To decide if there exists {Mv} as in hypothesis (i) one only has to
see whether there exists an element {Mv} ∈

∏
v∈S X(kv)×

∏
v∈T\S X(Ov) which is orthogonal

to each α in the finite set E, the sum in the Brauer–Manin pairing being taken only over the
places in T .

Remark 3.8. In view of Remark 2.11, the Brauer–Manin obstruction involved in this section
may involve transcendental elements in the Brauer group of the homogeneous spaces X =G/H
under consideration.

4. The Brauer–Manin obstruction for rational and integral points of homogeneous
spaces with finite, commutative stabilizers

Let k be a number field and µ/k be a finite commutative k-group scheme. The image of the
diagonal map H1(k, µ)→

∏
v H

1(kv, µ) lies in the restricted direct product
∏′
vH

1(kv, µ). For
each place v, we have the cup-product pairing

H1(kv, µ)×H1(kv, µ̂)→ Br kv ⊂Q/Z.

Theorem 4.1 (Poitou, Tate). The above pairings induce a natural exact sequence of commu-
tative groups

H1(k, µ)→
∏′

v
H1(kv, µ)→Hom(H1(k, µ̂),Q/Z). (4.1)

Let S be a finite set of places of k containing all the archimedean places, such that the finite
étale k-group scheme µ extends to a finite étale group scheme over OS of order invertible in OS ,
so that µ̂ also extends to a finite étale group scheme over OS . Then there is an exact sequence
of finite abelian groups

H1
ét(OS , µ)→

∏
v∈S

H1(kv, µ)→Hom(H1
ét(OS , µ̂),Q/Z). (4.2)

See Milne’s book [Mil86], Chapter I, § 4, Theorem 4.10 p. 70 (for both sequences) and
Chapter II, § 4, Proposition 4.13(c) p. 239 (for the second sequence).

Let G be a connected linear algebraic group over k and µ⊂G a finite commutative
k-subgroup, not necessarily normal in G. Let X =G/µ.

We have the following natural commutative diagram.

G(k) //

��

// G(Ak)

��
X(k) //

��

// X(Ak) //

��

Hom(Br1 X/Br k,Q/Z)

��
H1(k, µ)

��

// ∏′
vH

1(kv, µ) //

��

Hom(H1(k, µ̂),Q/Z)

H1(k, G) // ∏′
vH

1(kv, G)

(4.3)
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In this diagram the two left vertical sequences are exact sequences of pointed sets [Ser65,
Chapter I, § 5.4, Proposition 36]. The map

Hom(Br1 X/Br k,Q/Z)→Hom(H1(k, µ̂),Q/Z)

is induced by the map θ(G) :H1(k, µ̂)→ Br1 X ⊂ BrX associated to the µ-torsor G→G/µ=X,
as defined in Proposition 2.7 and the comments following that proposition. The commutativity
of the right hand side square follows from Proposition 2.7.

Let S be a finite set of places of k which contains all the archimedean places, and is large
enough so that all the following properties hold: there exists a smooth, linear OS-group G with
connected fibres, the group µ comes from a finite, étale OS-group scheme µ⊂G, the group µ̂
comes from a finite, étale OS-group scheme µ̂, the k-variety X comes from a smooth OS-scheme
X and there is a finite étale map G→X extending G→X =G/µ and making G into a µ-torsor
over X. In the rest of this section, we shall simply say that such an S is ‘big enough for (G, µ)’.

One then has the following commutative diagram.

G(OS) //

��

∏
v∈S G(kv)

��
X(OS) //

��

∏
v∈S X(kv) //

��

Hom(Br1 X,Q/Z)

��
H1

ét(OS , µ) //

��

∏
v∈S H

1(kv, µ) //

��

Hom(H1
ét(OS , µ̂),Q/Z)

H1
ét(OS ,G) //

∏
v∈S H

1(kv, G)

(4.4)

The map Hom(Br1 X,Q/Z)→Hom(H1
ét(OS , µ̂),Q/Z) is induced by the composite map

H1
ét(OS , µ̂)→H1(k, µ̂)→ Br1 X. By Theorem 4.1, the sequence on the third line, which is a

sequence of finite abelian groups, is exact. The middle and left vertical maps are exact sequences
of pointed sets.

Theorem 4.2.

(i) With notation as above, the kernel of the map

X(Ak)→Hom(Br1 X/Br k,Q/Z)

is included in the kernel of the composite map

X(Ak)→
∏′

v
H1(kv, µ)→Hom(H1(k, µ̂),Q/Z).

(ii) If G is simply connected, the kernels of these two maps coincide.

(iii) Let the finite set S of places be big enough for (G, µ). If the point
{Mv} ∈

∏
v∈S X(kv)×

∏
v/∈S X(Ov) is in the kernel of the composite map

X(Ak)→
∏′

v
H1(kv, µ)→Hom(H1(k, µ̂),Q/Z)

then its projection {Mv}v∈S is in the kernel of the composite map∏
v∈S

X(kv)→
∏
v∈S

H1(kv, µ)→Hom(H1
ét(OS , µ̂),Q/Z).
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Proof. Statement (i) follows from diagram (4.3). If G is simply connected, then by
Proposition 2.12 the composite map H1(k, µ̂)→ Br1 X → Br1 X/Br k is an isomorphism. This
proves (ii). For v /∈ S, the image of the composite map

X(Ov)→X(kv)→H1(kv, µ)

lies in H1
ét(Ov, µ). Since the cup-product H1

ét(Ov, µ)×H1
ét(Ov, µ̂)→ Br kv vanishes, this

proves (iii). 2

Proceeding as in the previous section we get the first statement in each of the following
results. Here the (generally infinite) group H1(k, µ̂) plays the rôle of the (finite) group PicH.
The second statement in each of the following results has the advantage of involving only finitely
many computations.

Theorem 4.3. Let G/k be a connected linear algebraic group over a number field k. Let µ⊂G
be a finite, commutative k-subgroup. Assume X1(k, G) = 0.

(a) If {Mv} ∈X(Ak) is orthogonal to the image of the group H1(k, µ̂) in BrX with respect to
the Brauer–Manin pairing, then there exist {gv} ∈G(Ak) and M ∈X(k) such that for each
place v of k

gvM =Mv ∈X(kv).

(b) Let S be big enough for (G, µ). If {Mv} ∈
∏
v∈S X(kv) is orthogonal to the image of the

composite map H1
ét(OS , µ̂)→H1(k, µ̂)→ BrX with respect to the Brauer–Manin pairing

(where the pairing is restricted to the places in S), then there exist {gv} ∈
∏
v∈S G(kv) and

M ∈X(k) such that for each place v ∈ S

gvM =Mv ∈X(kv).

Proof. (a) This is the same as the proof of Theorem 3.3, using diagram (4.3).
(b) Chasing through the diagram (4.4) one first produces a class ξ in H1

ét(OS , µ) whose image
in H1

ét(OS ,G) has trivial image in each H1(kv, G) for v ∈ S. For v /∈ S, the image of an element of
H1

ét(OS ,G) in H1(kv, G) is trivial by Lang’s theorem and Hensel’s lemma. Thus the image of ξ in
H1(k, G) has trivial image in each H1(kv, G), hence is trivial in H1(k, G). This implies that the
image of ξ in H1(k, µ) lies in the image of X(k) and one concludes the argument just as before. 2

Theorem 4.4. Let G/k be a connected linear algebraic group over a number field k. Let µ⊂G
be a finite, commutative k-subgroup. Assume X1(k, G) = 0 and assume that G satisfies weak
approximation.

(a) Let {Mv} ∈X(Ak) be orthogonal to the image of the group H1(k, µ̂) in BrX with respect to
the Brauer–Manin pairing. Then for each finite set S of places of k and open sets Uv ⊂X(kv)
with Mv ∈ Uv there exists M ∈X(k) such that M ∈ Uv for v ∈ S.

(b) Let S be big enough for (G, µ). If {Mv} ∈
∏
v∈S X(kv) is orthogonal to the image of the

composite map H1
ét(OS , µ̂)→H1(k, µ̂)→ BrX with respect to the Brauer–Manin pairing

(where the pairing is restricted to the places in S), then for each family of open sets
Uv ⊂X(kv) with Mv ∈ Uv for v ∈ S there exists M ∈X(k) such that M ∈ Uv for v ∈ S.

Proof. This immediately follows from the previous theorem. 2

On first reading the statement of the following theorem, the reader is invited to take S to be
just the set of archimedean places.
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Theorem 4.5. Let k be a number field, O its ring of integers, S a finite set of places of k
containing all archimedean places, and OS the ring of S-integers. Let G/k be a semisimple,
simply connected group. Let µ⊂G be a finite, commutative k-subgroup. Let X be a separated
OS-scheme of finite type such that X = X×OS k is k-isomorphic to G/µ.

(a) For a point {Mv} ∈
∏
v∈S X(kv)×

∏
v/∈S X(Ov)⊂X(Ak), the following conditions are

equivalent:

(i) it is in the kernel of the map X(Ak)→Hom(Br1 X,Q/Z);
(ii) it is in the kernel of the composite map

X(Ak)→
∏′

H1(kv, µ)→Hom(H1(k, µ̂),Q/Z).

Let S1 with S ⊂ S1 be big enough for (G, µ) and X. More precisely assume that S1

contains S and there exists a semisimple OS1-group scheme G extending G/k, a finite,
commutative étale subgroup scheme µ⊂G over OS1 extending µ and an isomorphism
of OS1-schemes X×OS OS1 'G/µ extending X 'G/µ. Then the above conditions
imply:

(iii) the point {Mv}v∈S1 is in the kernel of the composite map∏
v∈S1

X(kv)→
∏
v∈S1

H1(kv, µ)→Hom(H1
ét(OS1 , µ̂),Q/Z).

(b) Let S0 be a finite set of places of k such that for each almost simple k-factor G′ of G there
exists a place v ∈ S0 such that G′(kv) is not compact. Let S2 be a finite set of places of k.
If {Mv} ∈

∏
v∈S X(kv)×

∏
v/∈S X(Ov) satisfies condition (i) or (ii) above, then there exists

M ∈X(OS0∪S) arbitrarily close to each Mv for v ∈ S2 \ S0. In particular X(OS∪S0) 6= ∅.
(c) If the finite set S1 of places is as above and contains S0 and if {Mv} in the product∏

v∈S X(kv)×
∏
v/∈S X(Ov) satisfies condition (iii) above, then there exists M ∈X(OS∪S0)

arbitrarily close to each Mv for v ∈ S1 \ S0. In particular X(OS∪S0) 6= ∅.

Proof. (a) This is just a special case of Theorem 4.2.
(b) We may assume that S2 contains S1. By Theorem 4.3 there exist N ∈X(k) and a

family {gv} ∈G(Ak) such that for each place v of k we have gvN =Mv ∈X(kv). By the strong
approximation theorem for G with respect to S0, there exists g ∈G(OS2∪S0) such that g is very
close to gv ∈G(kv) for v ∈ S2 \ S0. We may thus arrange that the point M = gN is very close
to Mv for v ∈ S2 \ S0, and in particular lies in X(Ov) for each v ∈ S2 \ (S ∪ S0). It also lies in
X(Ov) for v /∈ S2 ∪ S0. Hence it lies in X(OS∪S0).

(c) The proof here is more delicate than the proof of the statement (b) in Theorem 3.7. Let
{Mv} ∈

∏
v∈S1

X(kv) satisfy condition (iii). By a theorem of Nisnevich [Nis84], the kernel of the
map

H1
ét(OS1 ,G)→H1(k, G)

is H1
Zar(OS1 ,G). Under our assumptions on G, we have X1(k, G) = 0 and the group G satisfies

strong approximation with respect to S1: the set G(k).(
∏
v∈S1

G(kv)) is dense in G(Ak). By a
theorem of Harder [Har67, Korollar 2.3.2, p. 179] this implies H1

Zar(OS1 ,G) = 0.
For v /∈ S1, we have H1

ét(Ov,G) = 0 (Hensel’s lemma and Lang’s theorem). Thus the kernel
of the map H1

ét(OS1 ,G)→
∏
v∈S1

H1(kv, G) is the same as the kernel of the map H1
ét(OS1 ,G)→∏

v H
1(kv, G) and under our assumptions, by the above argument, that kernel is trivial (note in

passing that the only places where H1(kv, G) may not be trivial are the real places of k). Chasing
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through diagram (4.4) with S replaced by S1 one finds that there exist a point N ∈X(OS1) and a
family {gv} in

∏
v∈S1

G(kv) such that gv.N =Mv for each v ∈ S1. By strong approximation with
respect to S0 there exists g ∈G(OS1)⊂G(k) such that g is very close to gv ∈G(kv) for v ∈ S1 \ S0

and g ∈G(Ov) for v /∈ S1. Now the point M = gN ∈X(k) belongs to X(Ov) for v /∈ S1 and it is
very close to Mv ∈X(kv) for v ∈ S1 \ S0, hence lies in X(Ov) for v /∈ S ∪ S0. 2

Remark 4.6. Under the assumption on G made in (c), the proof of the above theorem shows,
in a very indirect fashion, that the existence of a point {Mv}v∈Ωk as in (i) or (ii) is equivalent
to the existence of a point {Mv}v∈S1 as in (iii).

The group H1(k, µ̂) is in general infinite, hence the conditions appearing in (i) and (ii) do not
lead to a finite decision process for the existence of S-integral points. However for any finite set
S ⊂ Ωk such that µ and its dual are finite étale over OS , the group H1

ét(OS , µ̂) is a finite group:
this is a consequence of Dirichlet’s theorem on units and of the finiteness of the class number of
number fields. Thus for S = S1 as in (c), only finitely many computations are required to decide
whether there exists a family {Mv}v∈S1 as in (iii), hence ultimately to decide if there exists an
S-integral point on X, which additionally may be chosen arbitrarily close to each Mv ∈X(kv)
for v ∈ S \ S0.

5. Representation of a quadratic form by a quadratic form over a field

5.1 Let k be a field of characteristic different from 2. Let n≤m be natural integers. A classical
problem asks for the representation of a nondegenerate quadratic form g over k, of rank n≥ 1, by
a nondegenerate quadratic form f of rank m≥ 2, over k, i.e. one looks for linear forms l1, . . . , lm
with coefficients in k in the variables x1, . . . , xn, such that

g(x1, . . . , xn) = f(l1(x1, . . . , xn), . . . , lm(x1, . . . , xn)).

This equation in the coefficients of the forms li defines an affine k-variety X.
In an equivalent fashion, X is the variety of linear maps of W = kn into V = km such that the

quadratic form f on V induces the quadratic form g on W . The linear map is then necessarily
an embedding.

Let Bf (v1, v2) be the symmetric bilinear form on V such that Bf (v, v) = f(v) for v ∈ V . Thus
Bf (v1, v2) = 1

2(f(v1 + v2)− f(v1)− f(v2)). In concrete terms, a k-point of X is given by a set
of n vectors v1, . . . , vn ∈ V = km, such that the bilinear form Bf satisfies: the matrix

Bf (vi, vj)i=1,...,n;j=1,...,n

is the matrix of the bilinear form on W = kn attached to g.
The k-variety X has a k-point if and only if there exists a nondegenerate quadratic form h

over k in m− n variables and an isomorphism of quadratic forms f ' g ⊥ h over k. The quadratic
form h is then well defined up to (nonunique) isomorphism (Witt’s cancellation theorem).

By another of Witt’s theorems [O’Me71, Theorem 42:17, p. 98], over any field K containing
k the set X(K) is empty or a homogeneous space of O(f)(K), and the stabilizer of a point of
X(K) is isomorphic to the group O(hK)(K), where hK is a nondegenerate quadratic form over
K such that fK ' gK ⊥ hK . Thus the k-variety X is a homogeneous space of the k-group O(f).
If X(k) 6= ∅, the stabilizer of a k-point of X, up to nonunique isomorphism, does not depend on
the k-point, it is k-isomorphic to the k-group O(h) for a quadratic form h over k as above.
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For n <m, the group SO(f)(k) acts transitively on X(k). If X(k) 6= ∅, the stabilizer of a
k-point of X, up to nonunique isomorphism, does not depend on the k-point, it is k-isomorphic
to the k-group SO(h) for a quadratic form h as above. For n=m− 1, the k-variety X is a
principal homogeneous space of SO(f).

For n=m, the k-variety X is a principal homogeneous space of O(f). If it has a k-point, it
breaks up into two connected components X ′ and X ′′, each of which is a principal homogeneous
space of SO(f).

Let us fix a k-point of X, i.e. an embedding λ : (W, g) ↪→ (V, f) of quadratic spaces as above.
If n=m, the k-point determines a connected component of X, say X ′. Such a k-point M ∈X(k)
defines a k-morphism SO(f)→X which sends σ ∈ SO(f) to σ ◦ λ. For n=m this factorizes
through a k-morphism SO(f)→X ′. By Witt’s results, for n <m over any field K containing k,
the induced map SO(f)(K)→X(K) is onto. For n=m− 1 it is a bijection. For n=m the map
SO(f)(K)→X ′(K) is a bijection.

In this paper we restrict attention to m≥ 3, which we henceforth assume. We then have the
exact sequence

1→ µ2→ Spin(f)→ SO(f)→ 1. (5.1)
Let G= Spin(f). Assume char(k) = 0. Proposition 2.6 gives k∗ = k[G]∗, PicG= 0 and Br k =
BrG.

We thus have k∗ = k[SO(f)]∗ and k∗ = k[SO(f)]∗. Proposition 2.5 gives natural isomorphisms

ν(Spin(f))(h) : Z/2 '→ Pic SO(f), ν(Spin(f)) : Z/2 '→ Pic SO(f)×k k.

This induces an isomorphism k∗/k∗2 =H1(k, Z/2) '→ H1(k, Pic SO(f)×k k), which combined
with the inverse of the isomorphism Br1 X/Br k '→ H1(k, Pic SO(f)×k k) yields an isomorphism

k∗/k∗2 ' Br1 X/Br k.

This isomorphism is the one provided by Proposition 2.12.
Given a k-isogeny 1→ µ→G→G′→ 1 with G semisimple simply connected, Proposition 2.6

and the Hochschild–Serre spectral sequence

Epq2 =Hp(µ̂(k), Hq(G,Gm)) =⇒Hn(G′,Gm)

yield an isomorphism H2(µ̂(k), k∗)' BrG′. If the group µ̂(k) is cyclic, as is the case here, this
implies BrG′ = 0. Thus

Br1 SO(f) = Br SO(f).

5.2 Applying Galois cohomology to sequence (5.1) and using Kummer’s isomorphism we get a
homomorphism of groups, the spinor norm map

θ : SO(f)(k)→ k∗/k∗2.

There are various ways to compute this map. One is well known: any element σ ∈ SO(V )(k)
is a product of reflections with respect to an even number of anisotropic vectors v1, . . . , vn. The
product

∏
i f(vi) ∈ k is nonzero; its class in k∗/k∗2 is equal to θ(σ).

The following result, due to Zassenhaus, is quoted in [O’Me71, p. 137]. We thank P. Gille for
help with the proof.

Proposition 5.1. For an element τ ∈ SO(V )(k)⊂GL(V )(k) such that det(1 + τ) 6= 0, we have
θ(τ) = det((1 + τ)/2) ∈ k∗/k∗2.
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Proof. Let σ : End(V )→ End(V ) denote the adjoint involution attached to the quadratic form
f (if one fixes a basis V = km and A is the matrix of f in this basis, then for M ∈Mm(k) we
have σ(M) =A−1.tM.A).

We have the following inclusions of k-varieties:

U ⊂ SO(f)⊂O(f)⊂GL(V )⊂ End(V ),

where O(f) = {a ∈ End(V ), σ(a).a= 1}, and U = {a ∈O(f), (1 + a) ∈GL(V )}. The open set
U ⊂O(f) is contained in the irreducible open set SO(f)⊂O(f).

We also have the following inclusions of k-varieties:

W ⊂Alt(f)⊂ End(V ),

where Alt(f) = {b ∈ End(V ), σ(b) + b= 0} and

W = {b ∈ End(V ), σ(b) + b= 0, 1 + b ∈GL(V )}.

The k-variety Alt(f), which is the Lie algebra of SO(f), is an affine space Am(m−1)/2. One
checks that the polynomial function det(1 + b) on End(V ) induces a nonzero (geometrically)
irreducible function hW on Alt(f)' Am(m−1)/2. Thus the open set W ⊂Alt(f) satisfies Pic(W ) =
0 and k[W ]∗ = k∗.hZW .

The maps b 7→ (1− b)(1 + b)−1, respectively a 7→ (1 + a)−1(1− a), define k-morphisms
W → U , respectively U →W , which are the inverse of each other (this is the well-known Cayley
parametrization of the orthogonal group). On U ⊂ SO(f), the invertible function hU which is
the inverse image of hW sends τ ∈ U ⊂ SO(f) to det(2(1 + τ)−1). We have Pic(U) = 0 and k[U ]∗

= k∗.hZU . From the Kummer sequence in étale cohomology we have k[U ]∗/k[U ]∗2 'H1
ét(U, µ2).

Thus any étale µ2-cover of U is given by an equation c.hrU = z2, with c ∈ k∗ and r = 0 or 1. If
the total space of the cover is geometrically irreducible, then r = 1. The restriction of the étale
µ2-cover Spin(f)→ SO(f) on U is thus given by an equation c.hU = z2. The point τ = 1 belongs
to U and hU (1) = 1. There exists a k-point in Spin(f) above τ = 1 ∈ SO(f). Thus the restriction
of c.hU = z2 on τ = 1, which is simply c= z2, has a k-point. Hence c is a square in k.

The spinor map θ : SO(f)(k)→ k∗/k∗2 thus restricts to the map U(k)→ k∗/k∗2 induced by
τ 7→ det(2(1 + τ)−1). 2

5.3 If m− n≥ 3, the geometric stabilizers of the Spin(f) action on X are of the shape
Spin(h) for h a quadratic form over k of rank m− n≥ 3. Assume X(k) 6= ∅. The stabilizer
H ⊂G= Spin(f) of this k-point is then isomorphic to a k-group H = Spin(h) for h a quadratic
form over k of rank m− n≥ 3. Assume char(k) = 0. Then Ĥ = 0, PicH = 0 and Br k = BrH
(Proposition 2.6). From Proposition 2.2 we conclude that

k∗ = k[X]∗, PicX = 0, Br k = BrX.

5.4 If m− n= 1, the stabilizers of the SO(f)-action on X are trivial, X is a principal
homogeneous space of SO(f), and the geometric stabilizers of the Spin(f) action on X
are of the shape µ2. Assume X has a k-point, and fix such a k-point. This determines an
isomorphism of k-varieties φ : SO(f) '→X sending 1 to the given k-point. The composite map
Spin(f)→ SO(f)→X makes Spin(f) into a µ2-torsor over X. As explained in § 5.1 we then
get

k∗ = k[X]∗, Z/2 = PicX
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and

k∗/k∗2 =H1(k, Z/2)' Br1 X/Br k = BrX/Br k.

Let ξ ∈H1
ét(X, µ2) be the class of the µ2-torsor Spin(f)→X. There is an associated map

ψ :X(k)→H1(k, µ2) = k∗/k∗2. The composite map SO(f)(k)→X(k)→ k∗/k∗2 is the spinor
map θ : SO(f)(k)→ k∗/k∗2.

For any α ∈ k∗/k∗2 =H1(k, Z/2) we have the cup-product ξ ∪ α ∈H2
ét(X, µ2) and we may

consider the image Aα ∈ 2BrX of this element in the 2-torsion subgroup of BrX under the
natural map induced by µ2→Gm. Using Propositions 2.7 and 2.8, one sees that the map
α 7→Aα induces the isomorphism k∗/k∗2 ' BrX/Br k described above, and that for any k-point
N ∈ SO(f)(k) =X(k), and any α ∈ k∗/k∗2, the evaluation of Aα at φ(N) ∈X(k) is the class of
the quaternion algebra (ψ(φ(N)), α) = (θ(N), α) ∈ Br k.

5.5 If m= n and X(k) 6= ∅, then § 5.4 applies to each of the two connected components X ′ and
X ′′ of X.

5.6 If m− n= 2, the geometric stabilizers, be they for the SO(f)-action or the Spin(f)-
action on X, are one-dimensional tori. Assume X has a k-point M . This fixes a morphism
φ : SO(f)→X. This also corresponds to a decomposition f ' g ⊥ h for some two-dimensional
quadratic form h over k. The stabilizer of the k-point M for the SO(f)-action is the k-torus
T1 =R1

K/kGm, where K = k[t]/(t2 − d) and disc(f) =−disc(g).d. If d is a square in k then
T1 'Gm,k. The stabilizer of the k-point M for the Spin(f)-action is a k-torus T which fits
into an exact sequence

1→ µ2→ T → T1→ 1.

This implies that the k-torus T1 is k-isomorphic to the k-torus T . For clarity, we keep the index
1 for the torus T1. Thus from the k-point M ∈X(k) one builds a commutative diagram

1 // µ2 // T //

��

T1

��

// 1

1 // µ2 // Spin(f) //

��

SO(f) //

��

1

X X

where the bottom vertical maps define torsors and the horizontal sequences are exact sequences
of algebraic groups over k.

By Proposition 2.6, we have k∗ = k[Spin(f)]∗, Pic Spin(f) = 0, Br k = Br Spin(f) and the
analogous statements over k.

This immediately implies k∗ = k[X]∗ and k
∗ = k[X]∗.

Applying Propositions 2.2 or 2.5 to the T -torsor Spin(f)→X, we get isomorphisms

ν(Spin(f))(k) : T̂ (k) '→ PicX, ν(Spin(f)) : T̂ '→ PicX.

The latter map induces an isomorphism H1(k, T̂ ) '→ H1(k, PicX). If we compose this
isomorphism with the inverse of the isomorphism Br1 X/Br k '→ H1(k, PicX) coming from
Lemma 2.1, we get an isomorphism H1(k, T̂ ) '→ Br1 X/Br k which is the one in Proposition 2.12,
i.e. is induced by θ(Spin(f)) :H1(k, T̂ )→ Br1 X.
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Since T is a torus, it is a connected group and Pic T = 0. Proposition 2.9 shows that the map
θ(Spin(f)) :H1(k, T̂ )→ Br1 X factorizes as

H1(k, T̂ ) '→ Pic T → Br1 X.

If d is a square, we get
Z' PicX, BrX/Br k = 0.

If d is not a square in k, then

PicX = 0, Z/2' Br1 X/Br k ' BrX/Br k.

Indeed, in the first case, T̂ = Z with the trivial Galois action, thus Pic T 'H1(k, T̂ ) = 0. In the
second case, T̂ = Z[G]/Z(1 + σ) where G= Gal(K/k) = {1, σ}= Z/2, hence Pic T 'H1(k, T̂ ) =
H1(G, T̂ ) = Z/2.

Taking Galois cohomology one gets the commutative diagram

θ : SO(f)(k) //

φk
��

k∗/k∗2

��
ψ :X(k) //

��

H1(k, T ) = k∗/NK/kK
∗

��
Hom(BrX, Br k) // Hom(H1(k, T̂ ), Br k)

where the bottom right hand side vertical map is given by cup-product and the bottom horizontal
map is induced by

θ(Spin(f)) :H1(k, T̂ ) '→ Pic T → Br1 X ⊂ BrX.

Let us check that this diagram is commutative. Given a point in a ∈ SO(f)(k), one lifts it
to b ∈ Spin(f)(ks), where ks is a separable closure of k. The 1-cocycle σ 7→ σb.b−1 ∈ µ2 defines
a class in H1(k, µ2) = k∗/k∗2 which is exactly θ(a), i.e. the image of the spinor map. On the
other hand the image c ∈X(ks) of b under the map Spin(f)(ks)→X(ks) is precisely the same
as the image of a under the map SO(f)(k)→X(k). Thus the image of c in H1(k, T ) under ψ
is given by the class of the cocycle σb.b−1 viewed in T (ks) rather than in µ2 ⊂ T (ks). That is,
the top diagram is commutative. The commutativity of the bottom square is a special case of
Proposition 2.7.

The natural map ψ :X(k)→ k∗/NK∗ associated to the torsor Spin(f)→X under the k-
torus T can thus be defined in a more concrete fashion. By Witt’s theorem a point in X(k) may
be lifted to some element σ in SO(f)(k). One may then send this element σ to k∗/k∗2 =H1(k, µ2)
using the middle horizontal exact sequence. That is, one sends σ to its spinor norm θ(σ) ∈ k∗/k∗2.
The top horizontal sequence defines a map H1(k, µ2)→H1(k, T ), which may be identified with
the obvious map k∗/k∗2→ k∗/NK∗. Using this map, one gets an element in H1(k, T ) which one
immediately checks does not depend on the choice of the lift σ in SO(k).

Let us assume that d is not a square in k. The torsor Spin(f)→X is associated to the choice
of a k-point M of X. The above discussion yields a map Z/2 = Pic T → BrX. The image of
1 ∈ Z/2 is the class of an element α ∈ BrX which is trivial at M , vanishes when pulled back
to Spin(f) and also vanishes when pulled back to BrXK . There thus exists a rational function
ρ ∈ k(X)∗ whose divisor on X is the norm of a divisor on XK and such that the image of α under
the embedding BrX ↪→ Br k(X) is the class of the quaternion algebra (K/k, ρ). Let U be the
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complement of the divisor of ρ. On the subset U(k)⊂X(k) the map X(k)→ Br k defined by α
is induced by the evaluation of the function ρ, which yields a map U(k)→ k∗/NK/kK

∗ ⊂ Br k.
In order to implement the results of the previous section it is thus useful to compute such
a function ρ. Here is a general way to do it. Let F = k(X) be the function field of X. By
Witt’s theorem the map SO(f)(F )→X(F ) is onto. One may thus lift the generic point of X
to an F -point ξ ∈ SO(f)(F ), which one may write as an even product of reflections τvi with
respect to anisotropic vectors vi with F -coordinates. One computes the image of ξ ∈ SO(f)(F )
in H1(F, µ2) = F ∗/F ∗2 under the boundary map, that is one computes the spinor norm of ξ.
The image of ξ is thus the class of the product

∏
i f(vi) ∈ F ∗. This product yields a desired

function ρ.

For later use, it will be useful to give complete recipes for the computation of the map
X(k)→ k∗/NK∗.

5.7 We start with the general case m= n+ 2. We fix a k-point M ∈X(k). As recalled
above, this is equivalent to giving n vectors v1, . . . , vn ∈ V = km such that the matrix
{Bf (vi, vj)}i=1,...,n;j=1,...,n gives the coefficients of the quadratic form g(x1, . . . , xn) on W = kn.
We may and shall assume f(v1) 6= 0. Let us henceforth write B(x, y) = Bf (x, y).

Let now P be an arbitrary k-point of X, given by a linear map from W = kn to V = km

compatible with the bilinear forms. Let w1, . . . , wn ∈ km be the image of the standard basis
of W . There exists σ ∈ SO(f)(k) such that σ(M) = P , i.e. σ(vi) = wi for each i= 1, . . . , n. Let
τy be the reflection along the vector y ∈ V with f(y) 6= 0 which is given by

τy(x) = x− 2
B(x, y)
f(y)

y.

Over a Zariski open set U of SO(f) such that all the following related reflections are defined,
we define σ1 = σ and σ2 = τv1τσ1v1+v1σ1 if n is odd and σ2 = τσ1v1−v1σ1 if n is even. Let

σ3 = τσ2v2−v2σ2, . . . , σn = τσn−1vn−1−vn−1σn−1

inductively. Let us prove

B(vi, σjvj − vj) = 0 (5.2)

for all j > i with 1≤ i≤ n. Indeed, if j = i+ 1> 2 or n is even, then

B(vi, σi+1vi+1 − vi+1) = B(vi, τσivi−viσivi+1)−B(vi, vi+1)
= B(τσivi−vivi, σivi+1)−B(vi, vi+1) =B(σivi, σivi+1)−B(vi, vi+1) = 0.

If j = i+ 1 = 2 and n is odd, then

B(vi, σi+1vi+1 − vi+1) = B(v1, τv1τσ1v1+v1σ1v2 − v2)
= B(τσ1v1+v1τv1v1, σ1v2)−B(v1, v2) = 0.

Suppose (5.2) is true for values less than j. Then

B(vi, σjvj − vj) = B(vi, τσj−1vj−1−vj−1 · · · τσivi−viσivj)−B(vi, vj)
= B(τσivi−vi · · · τσj−1vj−1−vj−1vi, σivj)−B(vi, vj).

By the induction hypothesis, one has

τσivi−vi · · · τσj−1vj−1−vj−1vi = τσivi−vivi = σivi
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and (5.2) follows. From (5.2) we deduce

σvi = τσ1v1−v1τσ2v2−v2 · · · τσnvn−vnvi
for all 1≤ i≤ n if n is even and

σvi = τv1τσv1+v1τσ2v2−v2 · · · τσnvn−vnvi
for all 1≤ i≤ n if n is odd.

For n even, the even product of reflections τσ1v1−v1τσ2v2−v2 · · · τσnvn−vn is a lift of P
under the map SO(f)→X associated to M . For n odd, the even product of reflections
τv1τσ1v1+v1τσ2v2−v2 · · · τσnvn−vn is a lift of P under the map SO(f)→X associated to M .

The spinor norm of this lift is thus the class of the product
∏n
i=1 f(σivi − vi) ∈ k∗/k∗2 if n is

even or f(v1)f(σv1 + v1)
∏n
i=2 f(σivi − vi) ∈ k∗/k∗2 if n is odd. Hence the image of P ∈X(k) in

k∗/NK∗ is the class
n∏
i=1

f(σivi − vi) ∈ k∗/NK/kK
∗

if n is even or

f(v1)f(σv1 + v1)
n∏
i=2

f(σivi − vi) ∈ k∗/NK/kK
∗

if n is odd.

5.8 We now specialize to the case m= 3, n= 1. This is the classical problem of representing
an element a ∈ k∗ by a ternary quadratic form f(x, y, z). The k-variety X is the affine quadric
given by the equation

f(x, y, z) = a.

Assume d=−a. disc(f) is not a square and X(k) 6= ∅. Let K = k(
√
d). The general considerations

above, or direct ones, show that BrX/Br k = Br1 X/Br k has order 2. Here is a more direct way
to produce a function ρ with divisor a norm for the extension K/k, such that the quaternion
algebra (ρ, d) ∈ Br k(X) comes from BrX and yields a generator of BrX/Br k. Let Y ⊂ P3

k be
the smooth projective quadric given by the homogeneous equation

f(x, y, z) = at2.

Suppose a k-rational point M of Y is given. Let l1(x, y, z, t) be a linear form with coefficients in
k defining the tangent plane to Y at M . There then exist linear forms l2, l3, l4, a constant c ∈ k∗
and an identity

f(x, y, z)− at2 = l1.l2 + c(l23 − dl24).

Such linear forms (and the constant c) are easy to determine. The linear forms li are
linearly independent. Conversely, if we have such an identity, l1 = 0 is an equation for the
tangent plane at the k-point l1 = l3 = l4 = 0. Define ρ= l1(x, y, z, t)/t ∈ k(X). Consider
the quaternion algebra α= (ρ, d) = (l1(x, y, z, t)/t, d) ∈ Br k(X). We have (l1(x, y, z, t)/t, d) =
(l2(x, y, z, t)/t, d) ∈ Br k(X). Thus α is unramified on Xk away from the plane at infinity
t= 0, and the finitely many closed points given by l1 = l2 = 0. By the purity theorem for
the Brauer group of smooth varieties [Gro68, II, Theorem 2.1 and III, Theorem 6.1], we see
that this class is unramified on the affine quadric X, i.e. belongs to BrX ⊂ Br k(X). The
complement of X in Y is the smooth projective conic C over k given by q(x, y, z) = 0. An
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easy computation shows that the residue of α at the generic point of this conic is the class of
d in k∗/k∗2 =H1(k, Z/2)⊂H1(k(C), Z/2)⊂H1(k(C),Q/Z) (note that k is algebraically closed
in k(C)). Since d is not a square in k, this class is not trivial. Thus α= (ρ, d) ∈ BrX ⊂ Br k(X)
does not lie in the image of Br k. It is thus a generator of BrX/Br k. Note that, at any k-point
of X, either l1 or l2 is not zero. The map X(k)→ Br k associated to α can thus be computed
by means of the map X(k)→ k∗/NK/kK

∗ given by either the function ρ= l1(x, y, z, t)/t or the
function σ = l2(x, y, z, t)/t.

For later use, let (V, Q) denote the three-dimensional quadratic space which in the given basis
V = k3 is defined by Q(u) = f(x, y, z) for u= (x, y, z). Let B(u, v) = 1

2(Q(u+ v)−Q(u)−Q(v))
be the associated bilinear form. Let v0 ∈ V correspond to a point M of the affine quadric
f(x, y, z) = a. Then the affine linear map ρ : V → k is given by v 7→B(v0, v)− a. Thus on
the open set B(v0, v)− a 6= 0 of X the restriction of α is given by the quaternion algebra
(B(v0, v)− a,−a. disc(f)).

6. Representation of a quadratic form by a quadratic form over a ring of integers

Let k be a number field, and O its ring of integers. Let f and g be quadratic forms over O.
Assume gk and fk are nondegenerate, of respective ranks n≥ 1 and m≥ n.

A classical problem raises the question of the representability of g by f , i.e. the existence of
linear forms l1, . . . , lm with coefficients in O in the variables x1, . . . , xn, such that one has the
identity

g(x1, . . . , xn) = f(l1(x1, . . . , xn), . . . , lm(x1, . . . , xn)).

Such an identity corresponds to a point with O-coordinates of a certain O-scheme X.
There are variants of this question. For instance, when g is of rank one, i.e. of the shape ax2,

in which case one simply asks for the existence of an integral point yi = bi, i= 1, . . . , n of the
scheme

a= f(y1, . . . , yn),

one sometimes demands that the ideal spanned by the bi be the whole ring O (this is a so-called
primitive solution of the equation). This simply corresponds to choosing a different O-scheme X,
but one with the same generic fibre X = X×O k. More precisely one takes the new O-scheme to
be the complement of the closed set y1 = · · ·= yn = 0 in the old X.

In the case n=m and X(k) 6= ∅ we shall replace the natural X, which is disconnected, by
one of its connected components over k, and we shall consider O-schemes X with generic fibre
this component.

Quite generally the following problem may be considered.

Problem. Let k be a number field, and O its ring of integers. Let f and g be nondegenerate
quadratic forms over k, of respective ranks m and n≤m. Let X be a separated O-scheme of
finite type equipped with an isomorphism of X = X×O k with the closed k-subvariety of Amn

k

which the identity

g(x1, . . . , xn) = f(l1(x1, . . . , xn), . . . , lm(x1, . . . , xn))

defines – here the li are linear forms. Assume
∏
v X(Ov) 6= ∅. Does this imply X(O) 6= ∅?

We have adopted the following convention: for v archimedean we set X(Ov) =X(kv). One
could also naturally address the question of existence and density of S-integral solutions for
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an arbitrary finite set S of places, as we did in §§ 3 and 4. In the interest of simplicity, in
the rest of this paper, when discussing representation of quadratic forms by quadratic forms,
we restrict attention to integral representations, as opposed to S-integral representations as
considered in earlier sections. Also, we concentrate on the existence of integral points and do
not systematically state the strongest approximation results. The reader will have no difficulty
in applying the general theorems of earlier sections to get the most general results.

According to a well-known result of Hasse, the hypothesis
∏
v X(kv) 6= ∅ implies X(k) 6= ∅.

If m≥ 3, then as explained in § 5, we may fix an isomorphism X ' Spin(f)/H. Here H is a
connected linear algebraic group if m− n≥ 2, H = µ2 is m− n≤ 1 (as usual, in the case n=m,
we replace X by one of its connected components).

We shall say that a finite set S of places of k is big enough for {f, g} if S contains all the
archimedean places, all the dyadic places and all the nonarchimedean places such that disc(f)
or disc(g) is not a unit.

The following result is well known (Kneser). It is most often stated under the assumption
that v0 is an archimedean place, in which case the above integral representation problem has a
positive answer.

Theorem 6.1. Let f, g and X/O be as above, with m− n≥ 3. Let v0 be a place of k such
that fkv0 is isotropic. If

∏
v X(Ov) 6= ∅ then X(O{v0}) 6= ∅: there is a point which is integral away

from v0. Moreover X(O{v0}) is dense in the topological product
∏
v 6=v0 X(Ov).

Proof. In this case X ' Spin(f)/H with PicH = 0 and BrX/Br k = 0 (§ 5.3). The hypothesis
fkv0 isotropic is equivalent to the hypothesis that SO(f)(kv0) or equivalently Spin(f)(kv0)
is not compact. The group Spin(f) is almost k-simple except if m= 4 and the determinant
of f is a square. In this special case, there is a quaternion algebra A over k such that
Spin(f)' SL1(A)×k SL1(A) and the algebra A splits over a field F if and only if the quadratic
form f is isotropic over F . Thus in all cases Theorem 3.7 with S0 = {v0} yields the result. 2

Remark 6.2. One may prove the above theorem without ever mentioning the Brauer group. One
uses the left hand side of diagram (3.1), strong approximation for G= Spin(f) and the Hasse
principle: for G semisimple and simply connected, the map H1(k, G)→

∏′
v∈Ωk

H1(kv, G) reduces
to a bijection H1(k, G)→

∏
v∈S∞ H1(kv, G), where S∞ denotes the set of archimedean places

of k. Surjectivity of the map is used for H = Spin(h), injectivity for G= Spin(f).

When m− n≤ 2, examples in the literature, some of which will be mentioned in later sections,
show that the existence of local integral solutions is not a sufficient condition for the existence
of an integral solution.

Theorem 6.3. Let f , g and X/O be as above, with m− n= 2. Let d=−disc(f). disc(g) ∈ k∗.
LetK = k[t]/(t2 − d). Let T denote the k-torus R1

K/kGm. Assume
∏
v X(Ov) 6= ∅. Then X(k) 6= ∅.

Fix M ∈X(k). The choice of M defines a k-morphism SO(f)→X. Let ξ ∈H1
ét(X, T ) be the

class of the T -torsor defined by the composite map Spin(f)→ SO(f)→X. For any field F
containing k we have the map ψF :X(F )→H1(F, T ) = F ∗/N(FK)∗. The quotient BrX/Br k
is of order 1 if d is a square, of order 2 if d is not a square. In the latter case it is spanned by
the class of an element α ∈ BrX of order 2, well defined up to addition of an element of Br k.
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For a point {Mv} ∈
∏
v∈Ωk

X(Ov) the following conditions are equivalent:

(i) {Mv} is orthogonal to BrX for the Brauer–Manin pairing;

(ii)
∑

v∈Ωk
invv(α(Mv)) = 0;

(iii) {Mv} is in the kernel of the composite map

X(Ak)→
⊕
v∈Ωk

k∗v/NK
∗
v → Z/2,

where the first map is defined by the various ψkv and the second map is the sum of the
local Artin maps k∗v/NK

∗
v →Gal(Kv/kv)⊂Gal(K/k) = Z/2.

Let S be a finite set of places of k, big enough for {f, g}, and such that there exists an
isomorphism X×O OS ' Spin(f)/T over OS . Here T is an OS-torus such that T×OS k = T .

Then the above conditions on {Mv} ∈
∏
v∈Ωk

X(Ov) are equivalent to:

(iv) the projection {Mv}v∈S is in the kernel of the composite map∏
v∈S

X(kv)→
⊕
v∈S

k∗v/NK
∗
v → Z/2.

Let v0 be a place of k such that fkv0 is isotropic. Under any of the above conditions the element
{Mv} ∈

∏
v∈Ωk\v0 X(Ov) can be approximated arbitrarily closely by an element of X(O{v0}). In

particular X(O{v0}) 6= ∅.

Proof. Just combine § 5.6 with Theorem 3.7. 2

Computational recipes
(i) To be in a position to apply the above theorem, one must first exhibit a k-rational point

of X. Starting from such a k-point, one determines a finite set S of places as in the theorem.
To decide if an {Mv}v∈S satisfies (iv), or even if there is such an {Mv}v∈S , is then the matter
of finitely many computations. Indeed one only needs to give a concrete description of the maps
ψkv :X(kv)→ k∗v/NK

∗
v for each v ∈ S. This has already been given in § 5.6, with complements

in §§ 5.2 and 5.7 for the computation of the spinor norm map.
Given any point Mv ∈X(kv), there exists an element σv ∈ SO(f)(kv) such that σv(M) =Mv.

To σv ∈ SO(kv) one associates its spinor norm θ(σv) ∈ k∗v/k∗2v . Then ψkv(Mv) is the image of this
element under projection k∗v/k

∗2
v → k∗v/NK

∗
v .

(ii) In the case m= 3, n= 1, that is when X is given by an equation f(x, y, z) = a, the
discussion in § 5.8 leads to an alternative, possibly more efficient, recipe. Compare the comments
after Theorem 3.7.

Theorem 6.4. Let f, g and X/O be as above, with m≥ 3 and 1≥m− n≥ 0. Assume∏
v X(Ov) 6= ∅. Then X(k) 6= ∅. The choice of a k-point M ∈X(k) defines a k-isomorphism

SO(f)'X. Let ξ ∈H1
ét(X, µ2) be the class of the µ2-torsor defined by Spin(f)→ SO(f)'X.

For any field F containing k this torsor defines a map ψF :X(F )→H1(F, µ2) = F ∗/F ∗2. The
composite map SO(f)(F )'X(F )→ F ∗/F ∗2 is the spinor norm map.

(a) For a point {Mv} ∈
∏
v∈Ωk

X(Ov), the following conditions are equivalent:

(i) {Mv} is the kernel of the map X(Ak)→Hom(BrX,Q/Z);
(ii) {Mv} is in the kernel of the composite map

X(Ak)→
∏′

k∗v/k
∗2
v →Hom(k∗/k∗2, Z/2),

where the last map is given by the sum over all v of Hilbert symbols.
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Assume that the finite set of places S is big enough for (G, µ2) and that there is
an isomorphism SO(f)'X×O OS extending SO(f)'X. Conditions (i) and (ii) on
{Mv} ∈

∏
v∈Ωk

X(Ov) imply:
(iii) the point {Mv}v∈S ∈

∏
v∈S X(Ov) is in the kernel of the map∏

v∈S
X(kv)→

∏
v∈S

k∗v/k
∗2
v →Hom(H1

ét(OS , µ2), Z/2).

Let v0 be a place of k such that fkv0 is isotropic.

(b) If {Mv} ∈
∏
v∈Ωk

X(Ov) satisfies condition (i) or (ii) and S1 is a finite set of places containing
v0, then there exists M ∈X(O{v0}) arbitrarily close to each Mv for v ∈ S1 \ S0. In particular
X(O{v0}) 6= ∅.

(c) If the finite set S of places is as above and contains v0 and if {Mv}v∈S ∈
∏
v∈S X(Ov) is as

in condition (iii), then there exists M ∈X(O{v0}) arbitrarily close to each Mv for v ∈ S \ S0.
In particular X(O{v0}) 6= ∅.

Proof. Just combine §§ 5.4 and 5.5 with Theorem 4.5. 2

Computational recipe
One first exhibits some point M ∈X(k). Using this point one determines S as in the

theorem. One enlarges S so that the 2-torsion of the class group of OS vanishes. One then
has O∗S/O

∗2
S 'H1

ét(OS , µ2). The group O∗S/O
∗2
S is finite.

First method. To each element η ∈O∗S/O∗2S one associates the cup-product ξ ∪ η ∈H2(X, µ2)
which one then pushes into BrX. This produces finitely many elements {βj}j∈J of order 2 in
BrX, which actually are classes of quaternion Azumaya algebras over X×O OS . For a given j
one considers the map ∏

v∈S
X(Ov)→ Z/2

given by {Mv}v∈S 7→
∑

v∈S invv(βj(Mv)) ∈ Z/2. One then checks whether there exists a point
{Mv} ∈

∏
v∈S X(Ov) which simultaneously lies in the kernel of these finitely many maps.

Second method. One considers the map X(k)→H1(k, µ2) = k∗/k∗2 associated to ξ. For S as
above, the image of X(OS) lies in the finite group C =H1

ét(OS , µ2) =O∗S/O
∗2
S . For each element

ρ ∈ C, one considers the µ2-torsor Y ρ over X obtained by twisting Y by a representant of
ρ−1 ∈O∗S/O∗2S ⊂ k∗/k∗2. Then the kernel in (iii) is not empty if and only if there exists at least
one ρ ∈ C and a family {Mv} ∈

∏
v∈S X(Ov) such that there exists a family {Nv} ∈

∏
v∈S Y

ρ(kv)
which maps to {Mv} ∈

∏
v∈S X(kv) under the structural map Y ρ→X.

7. Genera and spinor genera

A necessary condition for an integral quadratic form g to be represented by an integral quadratic
form f (of rank at least 3) over the integers is that it be represented by f over each completion of
the integers and at the infinite places. If that is the case, g is said to be represented by the genus
of f . A further, classical necessary condition, considered by Eichler [Eic52] and Kneser [Kne56],
is that g be represented by the spinor genus of f (see [O’Me71]). In this section we first recall
the classical language of lattices. We then show how the spinor genus condition boils down
to an integral Brauer–Manin condition of the type considered in the previous section. Finally,
we compare the results in terms of the Brauer–Manin obstruction with some results obtained
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in [CX04, HSX98, Kne61, Xu05, SX04]. With hindsight, we see that some version of the Brauer–
Manin condition had already been encountered in these papers.

7.1 Classical parlance
Let k be a number field and O its ring of integers. Let V be a finite-dimensional vector space
over k equipped with a nondegenerate quadratic form f with associated bilinear form Bf . A
quadratic lattice L⊂ V is a finitely generated, hence projective, O-module such that f(L)⊂O
and such that the restriction of the quadratic form f on Lk = L⊗O k ⊂ V is nondegenerate.
Given any element σ ∈O(f)(k) the O-module σ.L is a quadratic lattice. A quadratic lattice L
is called full if its rank is maximal, i.e. Lk = V .

Two full quadratic lattices L1 and L2 are in the same class, respectively the same proper
class, if there exists σ ∈O(f)(k), respectively σ ∈ SO(f)(k), such that L1 = σ.L2.

Given a quadratic lattice N ⊂ V of rank n and a full quadratic lattice M ⊂ V of rank
m= dimkV , one asks whether there exists σ ∈O(f)(k), respectively σ ∈ SO(f)(k), such that
N ⊂ σ.M . If the rank of N is strictly less than the rank of M , i.e. if N is not full, the two
statements are equivalent.

If that is the case, one says that the quadratic latticeN is represented by the class, respectively
the proper class, of the quadratic lattice M . One sometimes writes N → cls(M),
respectively N → cls+(M).

From now on we assume m= dimV ≥ 3. (The case m= 2 is very interesting but requires
other techniques.)

There is an action of the group of adèles O(f)(Ak) (via the finite components) on the set of
full quadratic lattices in V . Indeed, given an adèle {σv} ∈O(f)(Ak) and a full quadratic lattice
L⊂ V , one shows [O’Me71, 81:14] that there exists a unique full quadratic lattice L1 ⊂ V such
that L1 ⊗O Ov = σv(L⊗O Ov)⊂ V ⊗k kv for each finite place v.

Two full quadratic lattices in (V, f) in the same orbit of O(f)(Ak) are said to be
in the same genus. They automatically lie in the same orbit of SO(f)(Ak)⊂O(f)(Ak)
(see [O’Me71, § 102 A]).

One says that a quadratic lattice N ⊂ V is represented by the genus of the full quadratic
lattice M ⊂ V if there exists at least one quadratic lattice M1 ⊂ V in the genus of M such that
N ⊂M1 ⊂ V . One sometimes writes N → gen(M).

We have the natural isogeny ϕ : Spin(f)→ SO(f), with kernel µ2. The group Spin(f)(Ak)
acts on the set of maximal quadratic lattices in V through ϕ. The group ϕ(Spin(f)(Ak)) is a
normal subgroup in SO(f)(Ak). One therefore has an action of the group

O(f)(k) · ϕ(Spin(f)(Ak)) = ϕ(Spin(f)(Ak)) ·O(f)(k)

on the set of such lattices. One says that two full quadratic lattices are in the same spinor
genus, respectively in the same proper spinor genus, if they are in the same orbit of the group
O(f)(k) · ϕ(Spin(f)(Ak)), respectively of the group SO(f)(k) · ϕ(Spin(f)(Ak)).

One says that a quadratic lattice N ⊂ V is represented by the spinor genus, respectively the
proper spinor genus of the full quadratic lattice M if there exists at least one quadratic lattice
M1 ⊂ V in the spinor genus, respectively in the proper spinor genus of M , such that N ⊂M1.
One sometimes writes N → spn(M), respectively N → spn+(M).

Let N ⊂ V and M ⊂ V be quadratic lattices in (V, f), with M a full lattice. There is
an induced quadratic form f on M and an induced quadratic form g on N . We may then
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consider (N, g) and (M, f) as abstract quadratic spaces over O (with associated bilinear form
nondegenerate over k, but not necessarily over O). We let Nk =N ⊗O k and Mk =M ⊗O k = V .

Let HomO(N,M) be the scheme of linear maps from N into M . Let X/O be the closed
subscheme defined by the linear maps compatible with the quadratic forms on N and M . Let
X = X×O k. As explained in § 1, for the purposes of this paper we may if we wish replace X,
which need not be flat over O (dimensions of fibres may jump), by the schematic closure of X
in X, which is integral and flat over O. This does not change the generic fibre X, and it does
not change the sets X(O) and X(Ov).

Since we are given quadratic lattices N ⊂ V and M ⊂ V in the same quadratic space (V, f)
over k, we are actually given a k-point ρ ∈X(k), that is a k-linear map ρ :Nk→Mk which is
compatible with the quadratic forms f and g. Conversely such a map defines a point of X(k). If
n <m then the k-variety X is connected and is a homogeneous space of SO(f). If n=m, we shall
henceforth replace X by the connected component to which the given k-point belongs and X
by the schematic closure of that connected component; the new X is a (principal) homogeneous
space of SO(f). In all cases, we shall view the k-variety X as a homogeneous space of the k-group
Spin(f).

7.2 Classical parlance versus integral Brauer–Manin obstruction
Proposition 7.1. With notation as in § 7.1, the following conditions are equivalent.

(i) The quadratic lattice N is represented by the proper class of the quadratic lattice M .

(ii) We have X(O) 6= ∅.

Proof. Assume (i). Thus there exists σ ∈ SO(f)(k) such that σ(N)⊂M ⊂ V . The linear map
σ(ρ) :Nk→Mk sends N to M and is compatible with the quadratic forms. It is thus a point of
X(O).

Assume (ii). There exists an O-linear map λ :N →M which is compatible with the quadratic
forms f and g. We also have the given k-point ρ ∈X(k). By a theorem of Witt and the
definition of X in the case n=m there exists σ ∈ SO(f)(k) such that σ(ρ) = λk over k. Thus
σ(N)⊂M ⊂ V . 2

Proposition 7.2. With notation as in § 7.1, the following conditions are equivalent.

(i) The quadratic lattice N is represented by the genus of the quadratic lattice M .

(ii) We have
∏
v∈Ωk

X(Ov) 6= ∅.

Proof. For any place v of k let Nv =N ⊗O Ov and Mv =M ⊗O Ov.
Assume (i). Let {σv} ∈ SO(f)(Ak) be such that σv(Nv)⊂Mv ⊂ V ⊗k kv. For each finite

place v the linear map σv(ρ) :N ⊗k kv→M ⊗k kv sends Nv to Mv and is compatible with the
quadratic forms. It is thus a point of X(Ov). By assumption ρ ∈X(k). Thus for v archimedean
X(Ov) =X(kv) 6= ∅.

Assume (ii). The argument given in the proof of the previous proposition shows that for
each place v ∈ Ωk there exists τv ∈ SO(f)(kv) such that Nv ⊂ τv(Mv). For all places v of k not
in a finite set S ⊂ Ωk, the discriminant of g and the discriminant of f are units in Ov, Nv is
an orthogonal factor of the unimodular Ov-lattice Mv and it is also an orthogonal factor in the
unimodular Ov-lattice τv(Mv). For each place v /∈ S there thus exists ςv ∈ SO(f)(kv) which sends
isomorphically τv(Mv) to Mv ⊂ V ⊗k kv and induces the identity map on Nv ⊂Mv ⊂ V ⊗k kv
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(see [O’Me71, Theorem 92:3]). Therefore ςvτvMv =Mv for all v /∈ S. Let ςv = 1 for v ∈ S. Then
{ςvτv} ∈ SO(f)(Ak) and Nv ⊂ ςvτvMv for all v. Therefore N is represented by the genus of M . 2

Proposition 7.3. With notation as in § 7.1, the following conditions are equivalent.

(i) The quadratic lattice N is represented by the proper spinor genus of the quadratic lattice
M .

(ii) We have (
∏
v∈Ωk

X(Ov))BrX 6= ∅.

Proof. Assume (i). Let σ ∈ SO(f)(k) and {τv} ∈ ϕ(Spin(Ak)) be such that Nv ⊂ {τv}σMv for
each v ∈ Ωk. The map σ(ρ) :Nk→Mk defines a k-point p ∈X(k), which itself defines a point
{pv} ∈X(Ak). One then applies the element {τv} ∈ ϕ(Spin(Ak)) to get the point {xv}= {τv.p} ∈
X(Ak). By hypothesis, the element {xv} lies in

∏
v∈Ωk

X(Ov). Since {pv} ∈X(Ak) is the
diagonal image of an element of X(k), it is orthogonal to BrX. Consider diagram (3.1) after
Theorem 3.1 if m− n≥ 2, respectively diagram (4.3) after Theorem 4.1 if 0≤m− n≤ 1. The
commutativity of those diagrams implies that the image of {xv}= {τv.p} in Hom(PicH,Q/Z),
respectively Hom(H1(k, µ̂),Q/Z), is zero. If m− n≥ 2 we know from §§ 5.3 and 5.6 that the map
Hom(BrX/Br k,Q/Z)→Hom(PicH,Q/Z) is an isomorphism. If 0≤m− n≤ 1 we know from
§§ 5.4 and 5.5 that the map Hom(BrX/Br k,Q/Z)→Hom(H1(k, µ̂),Q/Z) is an isomorphism.
Thus in all cases we find that {xv} lies in (

∏
v∈Ωk

X(Ov))BrX .

Assume (ii). Let {xv} belong to (
∏
v∈Ωk

X(Ov))BrX . Each xv corresponds to an Ov-linear
map Nv→Mv which respects the quadratic forms f and g. We have X =G/H with G= Spin(f)
and H semisimple simply connected if m− n≥ 3, H a one-dimensional k-torus T if m− n=
2 and H = µ2 if 0≤m− n≤ 1. Applying Theorem 3.3 when H is connected and Theorem 4.3
when H = µ2, we see that there exists a rational point p ∈X(k), with associated linear map
Nk→Mk and {τv} ∈ ϕ(Spin(Ak)) such that τvp= xv ∈X(Ov) for all v. By Witt’s theorem
there exists σ ∈ SO(f)(k) such that σ(ρ) :Nk→Mk is given by the point p. Then τvσ(Nv)⊂Mv

for all v. Thus N is represented by the proper spinor genus of M . 2

Remark 7.4. Let N,M be quadratic lattices in the quadratic space (V, f), with M a full lattice.
Let us assume there exists an archimedean place v0 of k such that f is isotropic over kv0 , that is
Spin(f)(kv0) is not compact.

Using the above propositions, we recover the classical result: for such an f and m− n≥ 3,
Theorem 6.1 implies that any quadratic lattice N represented by the genus of M is represented
by the proper class of M .

In the cases m− n≤ 2, Theorems 6.3 and 6.4 show that the representation of a given
quadratic lattice N by the proper class of M may be decided after a finite amount of computation.

7.3 Relation with some earlier literature
We keep notation as in § 7.1. We thus have a finite-dimensional vector space V over k of rank
m≥ 3, equipped with a nondegenerate quadratic form f . We are given two quadratic lattices
N ⊂ V and M ⊂ V , with M a full lattice.

We let X/O be the closed subscheme of HomO(N,M) consisting of maps which respect the
quadratic form f on M and the form g it induces on N . We let X = X×O k. The natural inclusion
Nk ⊂Mk = V determines a k-point ρ ∈X(k). When n=m we replace X by the connected
component of ρ and X by the schematic closure of that component in X. If we wish, when
n <m, we may perform the same replacement.
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In this subsection we work under the standing assumption
∏
v X(Ov) 6= ∅.

We have the natural homogeneous map

φ : SO(f)→X

sending 1 to the point ρ. For any field K containing k, the induced map SO(f)(K)→X(K) is
surjective (Witt).

In earlier studies of the representation of N by M (see [CX04, p. 287] and [Xu05, p. 38]), the
following sets played an important rôle. For any place v of k, one lets

X(Mv/Nv) = {σ ∈ SO(f)(kv) :Nv ⊂ σ(Mv)}.
For almost all places v, the form f is nondegenerate over Ov and there is an inclusion Nv ⊂Mv

over Ov which over kv yields ρ⊗k kv. For almost all v we therefore have

SO(f)(Ov)⊂X(Mv/Nv).

The set X(Mv/Nv) is not empty if and only if X(Ov) 6= ∅. As a matter of fact,

X(Mv/Nv) = φ−1(X(Ov))⊂ SO(f)(kv).

The spinor maps induce maps
θv :X(Mv/Nv)→ k∗v/k

∗2
v .

With notation as in Theorem 6.3 we have the following theorem.

Theorem 7.5. Assume m− n= 2. Let d=−disc(f). disc(g) and K = k[t]/(t2 − d). The
following conditions are equivalent.

(i) The quadratic lattice N is represented by the proper spinor genus of the quadratic lattice
M .

(ii) We have (
∏
v∈Ωk

X(Ov))BrX 6= ∅.
(iii) There exists a point in the kernel of the composite map∏′

v∈Ωk
X(Mv/Nv)→

∏′

v∈Ωk
k∗v/k

∗2
v →

⊕
v∈Ωk

k∗v/NK/kK
∗
v → Z/2.

The restricted product on the left hand side is taken with respect to the subsets SO(f)(Ov)⊂
X(Mv/Nv) at places of good reduction.

Let S be a finite set of places containing all archimedean places, all dyadic places, all
finite places v at which either disc(f) or disc(g) is not a unit. Assume moreover that at each
finite nondyadic place v /∈ S the natural injection Nkv ⊂Mkv , which is given by ρkv , comes from
an injection Nv ⊂Mv. Then the above conditions are equivalent to the following.

(iv) There exists a point in the kernel of the composite map∏
v∈S

X(Mv/Nv)→
∏
v∈S

k∗v/k
∗2
v →

⊕
v∈S

k∗v/NK/kK
∗
v → Z/2.

If the form f is isotropic at an archimedean place of k, these conditions are equivalent to the
following.

(v) The quadratic lattice N is represented by the proper class of M .

Proof. Combine Proposition 7.3 and Theorem 6.3. Note that the assumption on S ensures that
ρ ∈X(k) actually belongs to X(OS) and defines an OS-isomorphism Spin(f)/T'X×O OS , for
T as in Theorem 6.3. 2
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With notation as in Theorem 6.4 we have the following theorem.

Theorem 7.6. Assume 0≤m− n≤ 1. With notation as above, the following three conditions
are equivalent.

(i) The quadratic lattice N is represented by the proper spinor genus of the quadratic lattice
M .

(ii) We have (
∏
v∈Ωk

X(Ov))BrX 6= ∅.
(iii) There exists a point in the kernel of the composite map∏′

v∈Ωk
X(Mv/Nv)→

∏′

v∈Ωk
k∗v/k

∗2
v →Hom(k∗/k∗2, Z/2).

Let S be a finite set of places containing all archimedean places, all dyadic places, all finite
places v at which disc(f) or disc(g) is not a unit. Suppose the form f is isotropic at an
archimedean place of k. Then these conditions are equivalent to the following.

(iv) There exists a point in the kernel of the composite map∏
v∈S

X(Mv/Nv)→
∏
v∈S

k∗v/k
∗2
v →Hom(H1

ét(OS , µ2), Z/2).

(v) The quadratic lattice N is represented by the proper class of M .

Proof. Combine Proposition 7.3 and Theorem 6.4. Note that the assumption on S ensures that
ρ ∈X(k) actually belongs to X(OS). Note that the assumption on S ensures that ρ ∈X(k)
actually belongs to X(OS) and defines an OS-isomorphism SO(f)'X×O OS . 2

Remark 7.7. The equivalence of (i) and (iii) in each of the last two theorems appears in various
guises in the literature. Let us here quote Eichler [Eic52], Kneser [Kne61, see Satz 2, p. 93],
Jones and Watson [JW56], Schulze-Pillot [Sch80, see Satz 1, Satz 2], [Sch00, Sch04], and most
particularly Hsia, Shao and Xu [HSX98, Theorem 4.1]. See also [Xu00], [CX04, Theorem 3.6,
p. 292], [SX04, Proposition 7.1] and [Xu05, (5.4) and Corollary 5.5, p. 50].

One may rephrase Theorems 7.5 and 7.6 in terms of the spinor class fields defined in
[HSX98, p. 131]. The construction of such spinor class fields is based on the following fact,
which is proved by ad hoc computations [HSX98, Theorem 2.1].

Fact. Let v be a finite place of k. If Nv ⊆Mv, then the set θ(X(Mv/Nv)) is a subgroup of
k∗v/k

∗
v

2.

Assume that
∏
v∈Ωk

X(Ov) 6= ∅. There is σ ∈ SO(f)(kv) such that σNv ⊆Mv. Then
θ(X(σ−1Mv/Nv)) is a subgroup of k∗v/k

∗
v

2 by the above fact. Let τ ∈ SO(f)(kv) such that
τNv ⊆Mv. Then

X(σ−1Mv/Nv)σ−1 =X(τ−1Mv/Nv)τ−1 ⊂ SO(f)(kv).

This implies that the group θ(X(σ−1Mv/Nv))⊂ k∗v/k∗v2 is independent of the choice of σ. For all
v such that 2 det(N) det(M) is a unit, this subgroup contains O∗v/O

∗
v

2. One lets θ(Mv, Nv)⊂ k∗v
denote its inverse image under the map k∗v → k∗v/k

∗
v

2.
The finite Kummer 2-extension ΣM/N of k corresponding to

k∗
∏′

v∈Ωk
θ(Mv, Nv)
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is called the spinor class field of M and N . The notation
∏′ here means the trace of∏′

v∈Ωk
θ(Mv, Nv)⊂

∏
v k
∗
v on the group of idèles of k.

In the situation of Theorem 7.5 (m− n= 2), one has k ⊂ ΣM/N ⊂K = k(
√
d). In the situation

of Theorem 7.6 (m− n≤ 1), the field extension ΣM/N/k is a subfield of the maximal Kummer
2-extension of k which is ramified only at primes with v|2 det(M) and at the archimedean primes.

The detailed comparison with the results of [HSX98] is left to the reader.
There are several articles devoted to explicit computations of the group θ(Mv, Nv) in terms

of the local Jordan splitting of Mv and Nv. In the case rank(Mv) = 3, rank(Nv) = 1, the group
θ(Mv, Nv) is computed in [Sch80] for v nondyadic or 2-adic and it is computed in [Xu00] for the
general dyadic case. In [HSX98], the group θ(Mv, Nv) is computed for general Mv and Nv with
nondyadic v.

7.4 Spinor exceptions
In this subsection we assume m= n+ 2.

Definition 7.8. Suppose the quadratic lattice N is represented by the genus of the quadratic
lattice M . The lattice N is called a spinor exception for the genus of M if there is a proper
spinor genus in gen(M) such that no lattice in that proper spinor genus represents N .

That is to say, there exists a lattice M ′ in gen(M) such that N is represented by gen(M ′)
but no lattice in the proper spinor genus of M ′ represents N .

We let X and X be associated to the pair N,M as in the beginning of § 7.3. If N is a spinor
exception for gen(M), then Proposition 7.3 and § 5.6 imply

d=−det(M) · det(N) 6∈ k∗2

and BrX/Br k ∼= Z/2.

Proposition 7.9. Suppose the lattice N is represented by gen(M). Suppose we have
d=−det(M) · det(N) 6∈ k∗2. Let K = k(

√
d). Let A ∈ BrX generate the group BrX/Br k ∼= Z/2.

The following conditions are equivalent.

(i) N is a spinor exception for gen(M).

(ii) For each v ∈ Ωk, A assumes only a single value on X(Ov).

Proof. The condition in (ii) does not depend on the representant A. Since X(k) 6= ∅, there exists
an element A ∈ BrX which is of exponent 2 in BrX and which generates BrX/Br k ∼= Z/2. We
fix such an element A ∈ BrX.

Assume that, for some place v, A takes two distinct values on X(Ov). This implies that A
has a nontrivial image in the group BrXkv/Br kv, which is of order at most 2. The natural map
Z/2 = BrX/Br k→ BrXkv/Br kv is thus an isomorphism. Let M ′ be a lattice in the genus of M .
Let X′ be the O-scheme attached to the pair N,M ′. The hypothesis that M ′ is in the genus of M
implies that there exists an isomorphism of kv-schemes X ′kv = X′ ×O kv ∼= X×O kv =Xkv . The
latter map induces an isomorphism BrXkv/Br kv ∼= BrX ′kv/Br kv. The inverse image B ∈ BrX ′kv
of A ∈ BrX under the composite map X ′kv

∼=Xkv →X takes two distinct values on X′(Ov). We
also have a natural map BrX ′/Br k→ BrX ′kv/Br kv. Since M ′ is in the genus of M , there
exists an isomorphism of k-varieties X ∼=X ′. The map BrX ′/Br k→ BrX ′kv/Br kv is therefore
an isomorphism, and both groups are isomorphic to Z/2. There thus exists an element A′ of
order 2 in BrX ′ whose image in BrX ′kv differs from B by an element in Br kv. Thus A′ takes
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two distinct values on X′(Ov). This implies (
∏
v∈Ωk

X′(Ov))BrX′ 6= ∅. By Proposition 7.3 this
shows that N is represented by the proper spinor genus of the quadratic lattice M ′. Since M ′ is
an arbitrary lattice in the genus of M , this shows that (i) implies (ii).

Assume (ii). If the sum of the values of A on each X(Ov) is nonzero, then by Proposition 7.3
N is not represented by the proper spinor genus of M so N is a spinor exception. Let us assume
otherwise. Thus the value invv(A(X(Ov))) ∈ Z/2 is well defined and we have∑

v∈Ωk

invv(A(X(Ov))) = 0 ∈ Z/2.

For any smooth compactification Xc of X, we have Br k = BrXc. This is easy to show in
the case n= 1, m= 3. In the general case, this follows from [CK06] (see Proposition 2.10(iii)
above) together with the easy computation that for the k-torus T =R1

K/kGm any class in

H1(g, T̂ ) whose restriction to procyclic subgroups of g vanishes must itself vanish. Thus the class
A ∈ BrX does not extend to a class on a smooth compactification of X. By a result of Harari
[Har94, Corollaire 2.6.1], this implies that there exist infinitely many primes v0 ∈ Ωk such that
A takes at least two distinct values over X(kv0). We choose such a prime v0, nonarchimedean
and such that ρv0 sends Nv0 into Mv0 , i.e. ρv0 ∈X(Ov0).

Let P ∈X(kv0) be such that

invv0(A(P )) 6= invv0(A(X(Ov0))) ∈ Z/2.

By Witt’s theorem, there exists σ ∈ SO(V ⊗k kv0) sending the point ρ ∈X(k) to P ∈X(kv0).
Let the quadratic lattice M ′ ⊂ V be defined by the conditions M ′v =Mv over Ov for each

v 6= v0 and M ′v0 = σMv0 over Ov0 . The lattice M ′ is in the genus of M .
Let X′ be the O-scheme attached to the pair of lattices N,M ′. We have equalities X×O k =X

and X′ ×O k =X. For each v 6= v0 we have an equality X×O Ov = X′ ×O Ov. For v = v0, the
kv0-isomorphism σ :X ×k kv0 'X ×k kv0 induces a bijection between X(Ov0) and X′(Ov0). Let
Q ∈X′(Ov0) be the image of ρ under this bijection. The image of Q under the natural embedding
X′(Ov0)⊂X(kv0) is the point P .

For v 6= v0, for trivial reasons, the element A takes on X′(Ov) the same value as A on X(Ov).
For v = v0, the values taken by A on X′(Ov0) are those taken by σ∗(A) on X(Ov0). Since σ is
an automorphism of the kv0-scheme X ×k kv0 , the element σ∗(A) ∈ Br(X ×k kv0) is of order 2
and its class generates Br(X ×k kv0)/Br(kv0) = Z/2. Thus σ∗(A) differs from A by an element in
Br(kv0). In particular it takes a single value on X(Ov0), thus A takes a single value on X′(Ov0).
That value is the one taken on P .

Thus for any {Mv} ∈
∏
v∈Ωk

X′(Ov) we have∑
v∈Ωk

invv(A′(Mv)) 6= 0 ∈ Z/2,

hence ( ∏
v∈Ωk

X′(Ov)
)BrX′

= ∅.

By Proposition 7.3 this implies that N is not represented by the proper spinor genus of M ′.
Therefore N is a spinor exception for gen(M). 2

With notation as in § 7.3 (see especially Remark 7.7), the above result and
[HSX98, Theorem 4.1] give the following corollary.
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Corollary 7.10. With notation as in this and the previous section the following conditions
are equivalent:

(i) N is a spinor exception for the genus of M ;

(ii) ΣM/N =K;

(iii) θ(Mv, Nv) =NKw/kv(K
∗
w) for all v ∈ Ωk and w|v;

(iv) for any A ∈ BrX which generates BrX/Br k, invv(A) takes a single value over X(Ov) for
all v ∈ Ωk.

Remark 7.11. If these conditions are fulfilled, then it is known that N is represented by exactly
half the spinor genera in gen(M).

It is a purely local problem to determine whether N is a spinor exception for gen(M).
Moreover the finiteness of the set of extensions ΣM/N for a given M implies that the determinants
det(N) of spinor exception lattices N for gen(M) belong to finitely many square classes of k∗/k∗2.

In particular, spinor exception integers for a given ternary genus belong to finitely many
square classes, a fact which has been known for a long time [Kne61]. For a proof in terms of the
Brauer group, see the next-but-one paragraph.

Suppose N is a spinor exception for gen(M). Then N is represented by spn(M) if and only
if the number of places v of k satisfying

θv(X(Nv/Mv)) 6= θ(Mv, Nv)

is even: this follows from Theorem 7.5(iii) and statement (iii) in the above corollary. This is the
exact statement of [SX04, Proposition 7.1].

Let us discuss the finiteness of square classes associated to spinor exceptions in the case
n= 1, m= 3. Let O be the ring of integers in a number field k, and let f(x, y, z) be a quadratic
form in three variables defined over O, nondegenerate over k. Let a ∈O, a 6= 0. Let v be a
finite nondyadic place such that v(disc(f)) is even and v(a) is odd. Let Xa be the O-scheme
defined by f(x, y, z) = a. Let Xa/k be the affine quadric with equation q(x, y, z) = a. Over Ov the
quadratic form f is isomorphic to the form uv − det(f)w2. In these last coordinates a generator
of BrXkv/Br kv is given by α= (u,−a. disc(f)). There are integral Ov-points on Xa with w = 0
and u ∈O∗v either a square or a nonsquare in the residue field. Thus α takes two distinct values
on Xa(Ov). This implies that there is no Brauer–Manin obstruction.

We thus see that, if a ∈O is such that f(x, y, z) = a has solutions in all Ov, then there
may exist a Brauer–Manin obstruction to the existence of an integral point only if for each
nonarchimedean nondyadic v with v(disc(f)) even – and these are almost all places – we have
v(a) even. This implies that, for given f , such an a belongs to a finite number of classes in k∗/k∗2.

8. Representation of an integral quadratic form by another integral quadratic
form: some examples from the literature

8.1 Some numerical examples from the literature

8.1.1 In Cassels’ book [Cas78, p. 168], we find Example 23. Let m≡±3 mod 8. Then m2

is represented primitively by the indefinite form x2 − 2y2 + 64z2 over every Zp but not over Z.
The equation for X/Z is the complement of x= y = z = 0 in the affine Z-scheme with equation

x2 − 2y2 = (m+ 8z)(m− 8z).
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One considers the algebra α= (m+ 8z, 2) = (m− 8z, 2) over X = X×Z Q. Over (primitive)
solutions in X(Zp) for p odd or infinity one checks that α vanishes whereas it never vanishes
on points in X(Z2). For this, one uses the obvious equalities (m+ 8z) + (m− 8z) = 2m and
(m+ 8z)− (m− 8z) = 16z. (Note that for primes p which do not divide m, any Zp-solution is
primitive.)

8.1.2 In the same book [Cas78, Example 7, p. 252], we find two examples of positive definite
forms and elements which are primitively represented locally but not globally. Cassels refers to
papers by G. L. Watson; the hint he gives can certainly be reinterpreted in terms of the law of
quadratic reciprocity.

Here is one of these examples. If m is odd and positive and m≡ 1 mod 3 then 4m2 is not
represented primitively by x2 + xy + y2 + 9z2 over Z, although it is primitively represented over
each Zp. We can write the equation of X/Q as

x2 + xy + y2 = (2m+ 3z)(2m− 3z).

The Z-scheme X under consideration here is the complement of x= y = z = 0 in the Z-scheme
given by the same equation. For any Z-algebra A, the points of X(A) are the primitive solutions
of the above equation, with coordinates in A. We consider the algebra α= (2m+ 3z,−3) =
(2m− 3z,−3) over X. Using (2m+ 3z) + (2m− 3z) = 4m and (2m+ 3z)− (2m− 3z) = 6z, one
checks that α vanishes on points of X(Zp) for p 6= 2, 3,∞. It also vanishes on points of X(Z2).
Indeed, Q(

√
−3)/Q is unramified at 2. For a point of X(Z2), one checks that z ∈ Z∗2. Thus

2m+ 3z ∈ Z∗2 and 2m+ 3z is a local norm at 2 for the unramified extension Q2(
√
−3)/Q2. Over

R, either 2m+ 3z or 2m− 3z is positive, but since their product is positive both must be positive.
Hence α vanishes on X(R).

The assumption m≡ 1 mod 3 implies 2m+ 3z ≡ 2 mod 3. But the units in Z3 which are norms
for the ramified extension Q3(

√
−3)/Q3 are precisely those which are congruent to 1 mod 3. Thus

α never vanishes on X(Z3).

8.1.3 One may also give such examples with a positive definite form, excluding the existence
of integral solutions – not only primitive integral solutions. Over Q(

√
35), Schulze-Pillot in [Sch04]

gives an example (Example 5.3). Let us show that this example can be accounted for by the
Brauer–Manin condition.

Proposition 8.1. Let k = Q(
√

35). Then 7p2 where p is a prime with (p/7) = 1 is not a sum of
three integral squares over the ring of integers O = Z[

√
35] but is a sum of three integral squares

over Ov for all primes v of F .

Proof. The tangent plane through the rational point ((7/
√

35)p, (14/
√

35)p, 0) of

x2 + y2 + z2 = 7p2

is given by x+ 2y −
√

35p= 0.
By § 5.8, one can consider the following quaternion algebra (x+ 2y −

√
35p,−7) over the

integral points of x2 + y2 + z2 = 7p2 at each local completion.
If v is a finite prime away from 2, 5, 7 and p, we claim that

ordv(x+ 2y −
√

35p)≡ 0 mod 2 or −7 ∈ (k∗v)
2.

This implies that invv((x+ 2y −
√

35p,−7)) = 0. Indeed, one can write

x+ 2y −
√

35p= uvπ
nv
v
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with uv ∈O∗v and one may assume nv > 0 and −7 6∈ (k∗v)
2.

Suppose (2y −
√

35p) ∈O∗v . Then

z2 + 7
(

2p−
√

35
7
y

)2

= 2(2y −
√

35p)uvπnvv − u2
vπ

2nv
v

by plugging x into the above quadric. Since the left hand side is a norm of the unramified
extension kv(

√
−7)/kv, one concludes that nv is even.

Otherwise 2y ≡
√

35pmod πv. Then z2 ≡−7(p/2)2 mod πv. By Hensel’s lemma, −7 ∈ (k∗v)
2

which is a contradiction. The claim follows.
If v | p, one has(

−7
p

)
= (−1)(p−1)/2

(
7
p

)
= (−1)(p−1)/2(−1)((p−1)/2)((7−1)/2)

(
p

7

)
=
(
p

7

)
= 1

and −7 ∈ (Q∗p)2 ⊂ (k∗v)
2. Then invv((x+ 2y −

√
35p,−7)) = 0.

If v | 2, then −7 ∈ (Q∗2)2 ⊂ (k∗v)
2 and invv((x+ 2y −

√
35p,−7)) = 0.

If v | 5 and x+ 2y −
√

35p≡ 0 mod πv, then

7p2 = x2 + y2 + z2 ≡ 22y2 + y2 + z2 ≡ z2 mod πv.

Since 5 is ramified in k/Q, the above equation implies that 7 is a square modulo 5, which is a
contradiction. Therefore x+ 2y −

√
35p is a unit and invv((x+ 2y −

√
35p,−7)) = 0.

Since −7 = (
√

35/5)2(−5) and (−5/7) = 1, if v | 7, then one has −7 ∈ (k∗v)
2 and one has

invv((x+ 2y −
√

35p,−7)) = 0.
The algebra is (x+ 2y −

√
35p,−7) at one real place ∞1 and (x+ 2y +

√
35p,−7) at the

other real place∞2. Since x+ 2y −
√

35≤ 0 and x+ 2y +
√

35≥ 0 for x2 + y2 + z2 = 7p over R,
one has

inv∞1((x+ 2y −
√

35p,−7)) = 1
2 and inv∞2((x+ 2y +

√
35p,−7)) = 0.

Therefore (∏
v

X(Ov)
)BrX

= ∅

hence there are no integral points. 2

8.1.4 We leave it to the reader to handle the following example with (n, m) = (1, 3) (see
[Bor01, BR95]):

−9x2 + 2xy + 7y2 + 2z2 = 1.

More generally, one may give a criterion for an integer to be represented by the indefinite form
−9x2 + 2xy + 7y2 + 2z2 (see [Xu05, 6.4]). As an exercise, the reader should recover the results
of [Xu05] from the present point of view and give a criterion for primitive representation of
integers by the above form.

8.1.5 Here is an example with (n, m) = (2, 4) which goes back to Siegel. This is Example
5.7 in [Xu05, p. 50]. Over Z, the form g(x, y) = x2 + 32y2 is not represented by the form
f(x, y, z, t) = x2 + 128y2 + 128yz + 544z2 − 64t2, even though it is represented over each Zp
and R.
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Let us explain how this example can be explained from the present point of view. Let B(u, v)
denote the bilinear form with coefficients in Z such that B(u, u) = f(u). Let X/Z be the closed
Z-scheme of A8

Z given by the identity

g(x, y) = f(l1(x, y), . . . , l4(x, y)).

Let X = X×Z Q. For any commutative ring A a point of X(A) is given by a pair of vectors
u1, u2 ∈A4 with

B(u1, u1) = 1, B(u1, u2) = 0, B(u2, u2) = 32.

The standard basis for A4 will be denoted e1, e2, e3, e4. The discriminant of g is 25, and the
discriminant of f is −222. In the notation of the previous section, we may take d= 2, K = Q(

√
2).

On X we find the Q-point M given by the pair

v1 = (1, 0, 0, 0) = e1, v2 = (0, 1
5 ,

1
5 , 0) = 1

5(e2 + e3).

We also have the Q-point given by the pair

(1, 0, 0, 0); (0, 1
2 , 0, 0).

This ensures X(Zp) 6= ∅ for all p.

The Q-point M gives rise to a morphism SO(f)→X over Q and for each field extension
F/Q to a map X(F )→ F ∗/N((FK)∗), hence for each prime p to a map

θp : X(Zp)→Q∗p/NK∗p .

Each of these maps is computed in the following fashion: given a point of X(Zp) represented by
a pair of vectors w1, w2 ∈ (Zp)4, one picks up σ ∈ SO(f)(Qp) such that simultaneously σv1 = w1

and σv2 = w2. One then computes the spinor class of σ, which is an element in Q∗p/Q∗2p and one
takes its image in Q∗p/NK∗p .

Assertion. For each prime p 6= 5 the image of θp is reduced to 1 ∈Q∗p/NK∗p . For p= 5 the
image of θ5 is reduced to the nontrivial class 5 ∈Q∗5/NK∗5 .

The reciprocity law then implies that there is no point in X(Z): the form f does not represent
g over Z.

Let us prove the assertion. The system X, M has good reduction away from S = {2, 5,∞}.
We also have R∗/NK/QK

∗
∞ = 1. To prove the assertion we could restrict ourselves to considering

the primes p= 2 and p= 5 but as we shall see the recipe we apply easily yields the triviality of
all maps θp for p 6= 2, 5.

In § 5.7 we gave a recipe for writing the rotation σ as an even product of reflections, so as to
be able to compute the spinor norm of σ. This recipe works provided the pair {w1, w2} lies in a
certain Zariski open set. Typically one wants some f(x− σx) to be nonzero in order to use the
reflection with respect to x− σx. There are however many ways to write a rotation as a product
of reflections. We shall use the basic equality

f(x+ σx) + f(x− σx) = 4f(x).

This equality ensures that if f(x) 6= 0 then one of f(x+ σx) or f(x− σx) is nonzero. For x ∈ Z4
p

with p 6= 2 and f(x) ∈ Z∗p it ensures that at least one of f(x+ σx) or f(x− σx) is in Z∗p.
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With notation as in § 5.7 whenever the appropriate reflections are defined we have for each
of i= 1, 2 the equalities

τσv1−v1τ[τσv1−v1σv2−v2]vi = σvi,

τσv1+v1τv1τ[τv1τσv1+v1σv2−v2]vi = σvi,

τσv1−v1τ[τσv1−v1σv2+v2]τv2vi = σvi,

τσv1+v1τv1τ[τv1τσv1+v1σv2+v2]τv2vi = σvi.

(To check these formulas, use the property τx−y(y) = x is f(x) = f(y).)
Note that the form f represents 1. Thus for any point P ∈X(F ) with lift σ ∈ SO(f)(F ) the

image of P in F ∗/N(FK)∗ is the class of any nonzero element among

h1 = f(σv1 − v1)f(τσv1−v1σv2 − v2),
h2 = f(σv1 + v1)f(v1)f(τv1τσv1+v1σv2 − v2),
h3 = f(σv1 − v1)f(τσv1−v1σv2 + v2)f(v2),

h4 = f(σv1 + v1)f(v1)f(τv1τσv1+v1σv2 + v2)f(v2).

The extension K = Q(
√

2)/Q is ramified only at 2.
Suppose p 6= 2 and p 6= 5. Then f(v1) is in Z∗p. This implies that at least one of f(σv1 − v1)

or f(σv1 + v1) is in Z∗p. Since f(v2) is in Z∗p for p 6= 2 and 5, one has that at least one
of f(τσv1−v1σv2 − v2) or f(τσv1−v1σv2 + v2) is in Z∗p, and one of f(τv1τσv1+v1σv2 − v2) or
f(τv1τσv1+v1σv2 + v2) is in Z∗p. This combination implies that at least one of hi for 1≤ i≤ 4
is in Z∗p, hence has trivial image in Q∗p/NK∗p . This proves the assertion for such p.

Consider the case p= 5. Let {w1, w2} ∈X(Z5). Thus w1, w2 are in Z5e1 + Z5e2 + Z5e3 + Z5e4

and there exists σ ∈ SO(f)(Q5) such that σv1 = w1 and σv2 = w2. Since f(v1) = 1 from the basic
equality we deduce that at least one of f(σv1 − v1) and f(σv1 + v1) belongs to Z∗5. Let

%=

{
τσv1−v1σ if f(σv1 − v1) ∈ Z∗5,
τv1τσv1+v1σ otherwise.

Then %v1 = v1. As for %v2, it is integral and orthogonal to %v1 hence it belongs to the group
Z5e2 + Z5e3 + Z5e4.

There exists ε ∈ (Z5)4 with Z5e2 + Z5e3 = Z5(e2 + e3) + Z5ε such that f(ε) = 0 and moreover
B(ε, e2 + e3) = 1. Write %v2 = a(e2 + e3) + bε+ ce4 with a, b and c ∈ Z5. Then a, b ∈ Z∗5.
Otherwise one would have 32 = f(%v2)≡−64c2 mod 5, but 2 is not a square modulo 5. Immediate
computation now yields B(%v2, v2) ∈ 5−1Z∗5. This implies h1 or h2 ∈ 5−1Z∗5. Since Q5(

√
2)/Q5 is

an unramified quadratic field extension, this proves the assertion for p= 5.
Let p= 2 and {w1, w2} ∈X(Z2). Thus w1, w2 belong to Z2e1 + Z2e2 + Z2e3 + Z2e4 and there

exists σ ∈ SO(f)(Q2) such that σv1 = w1 and σv2 = w2.
Write σv1 = αv1 + w with α ∈ Z2 and w ∈ Z2e2 + Z2e3 + Z2e4. Then 1− α2 = f(w) ∈ 25Z2.

Therefore min{ord(1− α), ord(1 + α)}= 1 and ord(1− α) + ord(1 + α)≥ 5. We have

f(σv1 + v1) = f((1 + α)v1 + w) = (1 + α)2 + f(w) = (1 + α)2 + (1− α2) = 2(1 + α),
f(σv1 − v1) = f((α− 1)v1 + w) = (α− 1)2 + f(w) = (1− α)2 + (1− α2) = 2(1− α).

We have 1± α= 2− (1∓ α) = 2(1− 2−1(1∓ α)). If ord(1 + α)≥ 4 (first case) then 1− α
∈ 2(Z∗2)2, hence f(σv1 − v1) ∈ 4(Z∗2)2. If ord(1− α)≥ 4 (second case) then 1 + α ∈ 2(Z∗2)2, hence
f(σv1 + v1) ∈ 4(Z∗2)2.
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In the first case set %= τσv1−v1σ. We have %v1 = v1. The element σv1 − v1 belongs to
2Z2e1 + Z2e2 + Z2e3 + Z2e4. This implies that %v2 belongs to Z2e1 + Z2e2 + Z2e3 + Z2e4. It
actually lies in Z2e2 + Z2e3 + Z2e4, because %v2 is orthogonal to %v1 = v1.

In the second case set %= τv1τσv1+v1σ. We have %v1 = v1. The element σv1 + v1 belongs
to 2Z2e1 + Z2e2 + Z2e3 + Z2e4. This implies that %v2 belongs to Z2e1 + Z2e2 + Z2e3 + Z2e4. It
actually lies in Z2e2 + Z2e3 + Z2e4, because %v2 is orthogonal to %v1 = v1.

In the first case we have h1 = f(σv1 − v1)f(%v2 − v2) and h3 = f(σv1 − v1)f(%v2 + v2)f(v2).
In the second case we have h2 = f(σv1 + v1)f(%v2 − v2) and h4 = f(σv1 + v1)f(%v2 + v2)f(v2).

There exists ε such that Z2e2 + Z2e3 = Z2v2 ⊥ Z2ε with f(ε) = 211. Write %v2 = av2 + bε+
ce4 with a, b and c ∈ Z2. We have 25 = f(v2) = f(%v2) = 25a2 + 211b2 − 26c2. From this we
deduce that a ∈ Z∗2 and ord(c)≥ 1. Set c= 2d with d ∈ Z2. From a ∈ Z∗2 we deduce that
min{ord(1 + a), ord(1− a)}= 1 and ord(1 + a) + ord(1− a)≥ 3. We have

f(%v2 − v2) = 25(a− 1)2 + 211b2 − 28d2 and f(%v2 + v2) = 25(a+ 1)2 + 211b2 − 28d2.

Suppose ord(1− a) = 1. Then f(%v2 − v2) 6= 0 is a norm for the extension Q2(
√

2)/Q2. If we
are in the first case we find that h1 = f(σv1 − v1)f(%v2 − v2) is a norm. If we are in the second
case we find that h2 = f(σv1 + v1)f(%v2 − v2) is a norm.

Suppose ord(1 + a) = 1. Then f(%v2 + v2) 6= 0 is a norm for the extension Q2(
√

2)/Q2. If we
are in the first case we find that h3 = f(σv1 − v1)f(%v2 + v2)f(v2) is a norm (recall f(v2) = 25).
If we are in the second case we find that h4 = f(σv1 + v1)f(%v2 + v2) is a norm.

This completes the proof of the assertion.

8.1.6 Starting from the previous example one immediately gets an example with (n, m) =
(2, 3). Indeed the form x2 + 32y2 is represented by the form x2 + 128y2 + 128yz + 544z2 over
each Zp and it certainly is not represented by this form over Z since it is not represented by the
form x2 + 128y2 + 128yz + 544z2 − 64t2.

We leave it to the reader to analyze [CX04, Example 2.9]: the form 5x2 + 16y2 is represented
by 4x2 + 45y2 − 10yz + 45z2 over each Zp but not over Z.

8.2 Representation of an integer by a three-dimensional form: a two-parameter
family

In [SX04, p. 324, Example 1.2] we find the following result.

Proposition 8.2. Let n, m, k ≥ 1 be positive integers. The diophantine equation

m2x2 + n2ky2 − nz2 = 1

is solvable over each Zp and R except if (n, m) 6= 1. It is solvable over Z except in the following
cases:

(i) (n, m) 6= 1;

(ii) n≡ 5 mod 8 and 2 divides m;

(iii) n≡ 3 mod 8 and 4 divides m.

Let us prove this result with the method of the present paper.

Proof. Let us denote by X the affine scheme over Z defined by m2x2 + n2ky2 − nz2 = 1 and by X
the Q-scheme X×Z Q.

350

https://doi.org/10.1112/S0010437X0800376X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X0800376X


Brauer–Manin obstruction and integral quadratic forms

Let us first discuss the existence of local solutions. If (n, m) 6= 1 then there is a prime p such
that X(Zp) = ∅. We now assume (n, m) = 1. Over Q, we have the point (x, y, z) = (1/m, 0, 0)
and the point (x, y, z) = (0, 1/nk, 0). For each prime p, at least one of these two points lies in
X(Zp). Both lie in X(R).

One has the equation
(1 + nky)(1− nky) =m2x2 − nz2, (E1)

and the second equation
(1 + nky) + (1− nky) = 2. (E2)

One introduces α= (1 + nky, n) (note that 1 + nky = 0 is the tangent plane to the quadric X
at the obvious rational point (0,−1/nk, 0)). As explained above, α belongs to Br1 X and induces
the nontrivial element in Br1 X/Br(Q). Let us restrict attention to the open set U ⊂X defined
by

(1 + nky)(1− nky) =m2x2 − nz2 6= 0. (E3)

First note that over any field F containing Q and any point (x, y, z) ∈ U(F ), the equation (E3)
implies

(1 + nky, n) = (1− nky, n) ∈ Br(F ). (E4)

Claim: for any prime p 6= 2, α vanishes on X(Zp). Let (x, y, z) ∈X(Zp) ∩ U(Qp). If p divides n,
then 1 + nky is a square in Zp, hence α vanishes. Suppose that p does not divide n. If n is a
square mod p there is nothing to prove. Suppose n is not a square mod p. If vp(1 + nky) = 0 then
each entry in (1 + nky, n)p ∈ Br(Qp) is a unit, hence (1 + nky, n)p = 0. Suppose vp(1 + nky)> 0.
Then from (E2) we get vp(1− nky) = 0, hence (1− nky, n)p = 0, which using (E4) shows
(1 + nky, n)p = 0.

From n > 0 we see that α vanishes on X(R).
It remains to discuss the value of α on X(Z2) ∩ U(Q2).
By Theorem 6.3 together with § 5.8, there is an integral solution, i.e. a point in X(Z), if and

only if there exists a point of X(Z2) on which α vanishes.
If m is odd, then the point M with coordinates (x, y, z) = (1/m, 0, 0) belongs to the set

X(Z2) ∩ U(Q2), and α(M) = (1, n)2 = 0 ∈ Br(Q2).
Assume now m even, hence n odd.
If n≡ 1 mod 8 then n is a square in Z2, hence (1 + nky, n)2 = 0 for any point of the set

X(Z2) ∩ U(Q2).
If n≡−1 mod 8 then there exists a pointM ∈X(Z2) ∩ U(Q2) with coordinates (x, y) = (0, 0),

hence α(M) = (1, n)2 = 0.
Let us consider the remaining cases, i.e. m even and n≡±3 mod 8.
Let us recall the following values of the Hilbert symbol at the prime 2. We have (r, 5)2 = 0 if r

is an odd integer and (2, 5)2 = 1 ∈ Z/2. We have (3, 3)2 = (3, 7)2 = 1 ∈ Z/2 and (2, 3)2 = 1 ∈ Z/2.
Assume that n≡ 3 mod 8 and m= 2m0 with m0 odd. The equation 1− 4m2

0 =−nz2 has
a solution with z ∈ Z2. The point M with coordinates (x, y, z) = (1, 0, z) belongs to the set
X(Z2) ∩ U(Q2), and α(M) = (1, n)2 = 0.

Assume that n≡ 3 mod 8 and 4 divides m. Let M = (x, y, z) be a point of the set
X(Z2) ∩ U(Q2). We have 1− y2 ≡−3z2 mod 8. If v2(y)> 0 then z ∈ Z∗2 and the last equality
implies 1− y2 ≡−3 mod 8, hence y = 2y0 with y0 ∈ Z∗2. Thus 1 + nky ≡ 3 or 7 mod 8.
This implies (1 + nky, n)2 = (3, 3)2 or (7, 3)2 = 1 ∈ Z/2. Assume y ∈ Z∗2. Then (E1) implies
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0≡−3z2 mod 8. Hence 4 divides z. Hence 1− n2ky2 ≡ 0 mod 16. This implies nky ≡±1 mod 8.
Thus either 1 + nky ≡ 2 mod 8 which implies (1 + nky, n)2 = 1 ∈ Z/2 or 1− nky ≡ 2 mod 8 which
implies (1− nky, n)2 = 1 ∈ Z/2, hence using (E4) (1 + nky, n)2 = 1 ∈ Z/2. That is, α is never zero
on X(Z2) ∩ U(Q2).

Assume that n≡ 5 mod 8 and 2 divides m. Let M = (x, y, z) be a point of X(Z2) ∩ U(Q2). We
have 1− y2 ≡ 3z2 mod 4. This implies y ∈ Z∗2 and v2(z)> 0 even. Each of 1 + nky and 1− nky
has positive 2-adic valuation. Since their sum is 2, one of them is of the shape 2r with r ∈ Z∗2.
Now (r, 5)2 = 0 for r ∈ Z∗2, so (2r, 5)2 = (2, 5)2 = 1 ∈ Z/2. Thus at least one of (1 + nky, n)2 or
(1− nky, n)2 is nonzero, hence both are nonzero. 2

8.3 Quadratic diophantine equations
In this section we illustrate how our insistence on arbitrary integral models, as opposed to the
classical ones, immediately leads to results which in the classical literature would have required
some work.

Theorem 8.3. Let k be a number field, O its ring of integers, f(x1, . . . , xn) a polynomial of
total degree 2 and l(x1, . . . , xn) a polynomial of total degree 1 which does not divide f .

Let X/O be the affine closed O-subscheme of An
O defined by

f(x1, . . . , xn) = 0, l(x1, . . . , xn) = 0.

Assume that X = X×O k is smooth. Let v0 be a place of k such that X(kv0) is noncompact.
Let O{v0} be the ring of integers away from v0.

(i) If n≥ 5, i.e. the dimension of X is at least 3, then X(O{v0}) is dense in
∏
v 6=v0 X(Ov).

(ii) If n= 4, i.e. the dimension of X is 2, and if {Mv} ∈
∏
v X(Ov) is orthogonal to the group

BrX/Br k ⊂ Z/2, then {Mv} ∈
∏
v 6=v0 X(Ov) may be approximated arbitrarily closely by

an element of X(O{v0}).

Proof. The hypothesis on X guarantees that X is k-isomorphic to a smooth affine quadric of
dimension n− 2. Such a quadric is of the shape G/H for G a spinor group attached to a quadratic
form of rank n− 1 and H ⊂G a spinor group if n≥ 5, a torus if n= 4 (see §§ 5.3 and 5.6). The
result is a special case of Theorem 3.7 (see also Theorem 6.1 if n≥ 5 and Theorem 6.3 if n= 4). 2

Remark 8.4. One may write a more general statement, where one gives oneself a finite set of
places containing v0 and one approximates elements in

∏
v∈S\v0 X(kv)×

∏
v/∈S X(Ov) by points

in X(OS).

Remark 8.5. Watson proved a result [Wat61, Theorem 2] closely related to the case n≥ 5 of the
above theorem. It would be interesting to revisit his paper [Wat67].

9. Sums of three squares in an imaginary quadratic field

Let k = Q(
√
d) be an imaginary quadratic field. We may and will assume that d is a negative

squarefree integer. Let O denote the ring of integers of k. In this section we give a proof based
on Theorem 6.3 of the following theorem due to Ji, Wang and Xu [JWX06].

Theorem 9.1. Suppose a ∈O can be expressed as a sum of three integral squares at each local
completion Ov. If a is not a sum of three integral squares in O, then all the following conditions
are fulfilled:
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(i) d 6≡ 1 mod 8;
(ii) there is a squarefree positive integer d0 such that a= d0α

2 for some α ∈ k; such a d0 is then
uniquely determined;

(iii) d= d0.d1 with d1 ∈ Z;
(iv) d0 ≡ 7 mod 8;
(v) for any odd prime p which divides NF/Q(a), at least one of (−d0/p), (−d1/p) is equal to 1.

If conditions (i) to (v) are fulfilled, then a is not a sum of three squares in O.

Remark 9.2. (1) For v nondyadic, −1 is a sum of two squares in Ov, hence any element in Ov
is a sum of three squares (use the formula x= ((x+ 1)/2)2 − ((x− 1)/2)2). The local condition
on a in the theorem only has to be checked for the dyadic valuations.

(2) Let us explain the comment on uniqueness of the positive squarefree d0 in (ii). Let
a= d′0.β

2 be another representation. Then d0/d
′
0 = (n+m

√
d)2 with n, m ∈Q, which implies

d0/d
′
0 = n2 or d0/d

′
0 =m2.d. From d < 0 we conclude that we are in the first case and then

d0 = d′0.
(3) An easy application of Hilbert’s theorem 90 implies that (ii) holds if and only if

Nk/Q(a) = r2 for some integer r ∈ Z.
(4) There is a big difference with the family of examples discussed in Proposition 8.2. Given

an integer a ∈ k which is a good candidate, there is in general no obvious rational point on
a= x2 + y2 + z2 – unless d is such that −1 is an explicit sum of two squares in k.

(5) Earlier results on the representation of an integer in a quadratic imaginary field as a sum
of three squares are due to Estes and Hsia [EH83].

Before we begin the proof let us fix some notation and recall facts from § 5.8.
Let k be a field of characteristic not 2, let (V, Q) be a three-dimensional quadratic space

over k which in a given basis V ' k3 associates Q(v) = f(x, y, z) to v = (x, y, z). Let B(v, w)
= 1

2(Q(v + w)−Q(v)−Q(w)) be the associated bilinear form. Let a ∈ k∗. We let X ⊂ A3
k be

the smooth affine quadric defined by the equation Q(v)− a= 0. We let Y ⊂ P3
k be the smooth

projective quadric given by the homogeneous equationQ(v)− at2 = 0. Suppose−a is not a square
in k. Then according to § 5.8 we have BrX/Br k = Z/2. Let M ∈X(k), which we may view as
an element v0 ∈ V . The trace on X of the tangent plane to Y at M is given by B(v0, v)− a= 0.
Let UM ⊂X ⊂ V be the complement in X of that plane.

By § 5.8 the class of the quaternion algebra

A= (B(v0, v)− a,−a. disc(f)) ∈ Br UM

is the restriction to the open set UM of an element α of BrX which generates BrX/Br k = Z/2.
For X(k) 6= ∅ that very statement implies that, for F any field extension of k such that

−a /∈ F ∗2, the restriction map Z/2 = BrX/Br k→ BrXF /Br F = Z/2 is an isomorphism.
If we start from a point M ∈ Y (k) \X(k), which may be given by an element v0 ∈ V \ 0 with

Q(v0) = 0, the same construction yields the algebra

A= (B(v0, v),−a. disc(f)) ∈ Br UM .

Proof. We thus assume that a ∈O is a sum of three squares in each Ov.
If −a is a square in k then according to Theorem 6.3 a is a sum of three squares in O. If −a

is a square in k and (ii) holds then −d0 is a square in k = Q(
√
d) hence −d0 = d. Then (i) and

(iv) may not simultaneously hold.
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To prove the theorem it is thus enough to restrict to the case where −a is not a square in k.
In that case BrX/Br k = Z/2. Let A ∈ BrX be a 2-torsion element which spans BrX/Br k. By
Theorem 6.3 we know that X(O) 6= ∅ if and only if there exists a family {Mv} ∈

∏
X(Ov) such

that ∑
v

invv(A(Mv)) = 0 ∈ Z/2.

For this to happen, it suffices that for some place v the map X(Ov)→ Z/2 given by evaluation
of A is onto.

In the next three lemmas we discuss purely local situations.
If O ⊂ k is a discrete valuation ring with field of fractions k, we shall write L= LO ⊂ V for

the trace of O3 ⊂ k3 ' V .

Lemma 9.3. Let k be a nonarchimedean, nondyadic local field, O its ring of integers, a ∈O∗.
Let X⊂ A3

O be the O-scheme with affine equation x2 + y2 + z2 = a and let X = X×O k.
Then X(O) 6= ∅. For any element A ∈ BrX, the image of the map X(O)→Q/Z given by
P 7→ inv(A(P )) is reduced to one element.

Proof. The quadratic form x2 + y2 + z2 is O-isomorphic to the quadratic form 2uv − w2,
and the scheme X⊂ A3

O is given by the equation 2uv − w2 = a. In particular X(O) 6= ∅. Its
natural compactification is the smooth O-quadric Y ⊂ P3

O given by the homogeneous equation
2uv − w2 = at2.

If−a is a square, then BrX/Br k = 0 and the result is obvious. Assume−a is not a square. The
point (u, v, w, t) = (0, 1, 0, 0) is a point of Y (k). Its tangent plane is given by u= 0. Thus there
exists an element of order 2 in BrX whose restriction to the open set u 6= 0 of X ⊂ A3

k is given by
the quaternion algebra (u,−a), and which spans BrX/Br k. Given any point (α, β, γ) ∈X(O),
from 2αβ − γ2 = a we deduce that α and β are in O∗. Thus α is a norm for the unramified
extension k(

√
−a)/k and inv(α,−a) = 0 ∈ Z/2. 2

Lemma 9.4. Let k be a nonarchimedean, nondyadic local field, O its ring of integers, a ∈O.
Let X⊂ A3

O be the O-scheme with affine equation x2 + y2 + z2 = a and let X = X×O k. Then
X(O) 6= ∅. Assume −a is not a square in k and v(a)> 0. Then BrX/Br k = Z/2 and there exists
an element A of order 2 in BrX which spans BrX/Br k. For any such element the image of the
map X(O)→ Z/2 given by P 7→ inv(A(P )) ∈ Z/2 is the whole group Z/2.

Proof. Since the local field k is not dyadic, the quadratic form x2 + y2 + z2 is O-isomorphic to
the quadratic form 2xy − z2, and X⊂ A3

O is given by the equation 2xy − z2 = a which we now
only consider. We clearly have X(O) 6= ∅.

The assumption −a is not a square yields BrX/Br k = Z/2 as recalled above, that group
being generated by the class of an algebra A whose restriction to a suitable open set is given by
a quaternion algebra A computed from the equation of the tangent plane at a k-point.

Let ν denote the valuation of k. If ν(a) is odd, let us set v0 = (1
2a, 1, 0) ∈X(O)⊂X(k). For

given ε ∈O∗ set v = v(ε) = (ε, 1
2aε
−1, 0) ∈X(O). Since B(v0, v)− a= ε+ 1

4ε
−1a2 − a= εη2 for

some η ∈O∗ by Hensel’s lemma, one has

inv(B(v0, v)− a,−a) = inv(ε,−a) ∈ Z/2.

This is equal to 0 if ε is a square and to 1 otherwise.
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Fix π a uniformizing parameter for O. If ν(a)> 1 is even, and −a /∈ k∗2, set v0 =
((π/2)a, π−1, 0) ∈X(k). Let v1 = (1, a/2, 0) ∈X(O) and v2 = (π, (a/2π), 0) ∈X(O). Then
B(v0, v1) = π−1 + (a2/4)π and B(v0, v2) = 1 + (a2/4). Thus

inv(B(v0, v1)− a,−a) = inv(π−1,−a) = 1 ∈ Z/2

and
inv(B(v0, v2)− a,−a) = inv(1,−a) = 0 ∈ Z/2.

Lemma 9.5. Let k be a finite extension of Q2 and O its ring of integers. Let a ∈O. Let X⊂ A3
O

be the O-scheme with affine equation x2 + y2 + z2 = a and let X = X×O k. Assume X(O) 6= ∅,
i.e. a is a sum of three squares in O. Assume −a is not a square in k. Then BrX/Br k = Z/2
and there exists an element A of order 2 in BrX which spans BrX/Br k. For any such element
A the image of the map X(O)→ Z/2 given by P 7→ inv(A(P )) ∈ Z/2 is the whole group Z/2.

Proof. We let ν denote the valuation on k and π be a uniformizing parameter for O. We shall
use the following facts from the theory of local fields. Let K/k be a quadratic field extension of
local fields. The subgroup of norms NK/kK

∗ ⊂ k∗ is of index 2. This subgroup coincides with
the group of elements of k of even valuation if and only if K/k is the unramified quadratic
extension of k. If K = k(

√
a) and b ∈ k∗, then b is a norm from K if and only if the Hilbert

symbol (a, b) = 0 ∈ Z/2.
Suppose x2 + y2 + z2 is O-isomorphic to 2xy − z2 and X⊂ A3

O is given by the equation
2xy − z2 = a which we now first consider.

Since X(O) 6= ∅, there is (x0, y0, z0) ∈X(O). Let v0 = (x0y0, 1, z0) ∈X(O) and let
v = (ε−1, εx0y0, z0) ∈X(O) for any ε ∈O∗. Then

inv(B(v0, v)− a,−a) = (ε−1(εx0y0 − 1)2,−a) = (ε,−a)

takes both values 0 and 1 in Z/2 if k(
√
−a)/k is ramified.

If k(
√
−a)/k is unramified, then ν(a) is even and there are infinitely many ξ and η in O∗

such that −aπ−ν(a) = ξ2 + 4η by [O’Me71, 63:3].
Let v0 = (−2ηπν(a), 1, ξπν(a)/2) be such that

π−1B((π, 1, 0), v0) = π−1(π − 2ηπv(a)) = 1− 2πv(a)−1η ∈O
is nonzero.

Since the above v only produces the value 0 in this case, one needs

v′ = v0 − π−1B((π, 1, 0), v0)(π, 1, 0) ∈X(O)

and
inv(B(v0, v

′)− a,−a) = (−π−1(B((π, 1, 0), v0))2,−a) = (−π,−a) = 1 ∈ Z/2.

Next we assume that x2 + y2 + z2 is not isomorphic to 2xy − z2 over O. Since x2 + y2 + z2

is isomorphic to 2x2 + 2xy + 2y2 + 3z2 over O by x 7→ x− z, y 7→ y − z and z 7→ x+ y + z, we
consider that X⊂ A3

O is given by the equation 2x2 + 2xy + 2y2 + 3z2 = a. Since X(O) 6= ∅, one
can fix v0 = (x0, y0, z0) ∈X(O) such that at least one of x0 or y0 is nonzero by Hensel’s lemma.
For any ε ∈O∗, there are infinitely many η ∈O∗ such that ε≡ η2 mod π. By Hensel’s
lemma, for each η there is ξ ∈O such that ξ2 + ξη + η2 = ε. Since there are at most two η
satisfying B(v0, (ξ, η, 0)) = 0 for the given v0, one can choose η such that B(v0, (ξ, η, 0)) 6= 0. Let

v = v0 − ε−1B(v0, (ξ, η, 0))(ξ, η, 0) ∈X(O).
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Then

inv(B(v0, v)− a,−a) = (−ε−1B(v0, (ξ, η, 0))2,−a) = (−ε,−a)

takes both values 0 and 1 in Z/2 if k(
√
−a)/k is ramified.

If k(
√
−a)/k is unramified, then ν(a) is even. We claim ν(2x2 + 2xy + 2y2) is odd for all

x, y ∈O. First we show that ν(2) is odd. Suppose it is not; then there exists α ∈O∗ such that
2 + 3α2πν(2) ≡ 0 mod 2π by the perfectness of the residue field. Then

2x2 + 2xy + 2y2 + 3z2 ∼ (2 + 3α2πν(2))x2 + 2xy + 2y2 + (3 + 6α2πν(2))z2

over O by

x 7→ x− 2απν(2)/2z, y 7→ y + απν(2)/2z, z 7→ z + απν(2)/2x.

By Hensel’s lemma, one has

(2 + 3α2πν(2))x2 + 2xy + 2y2 ∼ 2xy

over O (see [O’Me71, 93:11]). This contradicts our assumption. Suppose the claim is not
true. Then there are α, β ∈O∗ such that α2 + αβ + β2 ≡ 0 mod π. By Hensel’s lemma and
[O’Me71, 93:11], one has 2x2 + 2xy + 2y2 ∼ 2xy over O which contradicts our assumption. The
claim is proved.

By the claim, one obtains that z0 6= 0. Since the above v only produces the value 0 in this
case, one needs v′ = (x0, y0,−z0) ∈X(O) and

inv(B(v0, v
′)− a,−a) = (−2z2

0 ,−a) = (−2,−a) = 1 ∈ Z/2.

The proof is complete. 2

Lemma 9.6. Let d < 0 be a squarefree negative integer. Let k = Q(
√
d). Let a be a nonzero

element in the ring O of integers of k. Assume that, for each place v, a is a sum of three squares
in Ov. Then the set of conditions:

(a) for each nondyadic valuation v with v(a)> 0, −a is a square in kv;

(b) for each dyadic valuation v, −a is a square in kv;

is equivalent to the set of conditions:

(i) d 6≡ 1 mod 8;

(ii) there is a squarefree integer d0 ∈ Z such that a= d0α
2 for some α ∈ k;

(iii) d= d0.d1 with d1 ∈ Z;

(iv) d0 ≡ 7 mod 8;

(v) for any odd prime p which divides Nk/Q(a) one at least of (−d0/p), (−d1/p) is equal to 1.

Note that the only difference between the second list of conditions and the list in Theorem 9.1
is that we do not demand d0 > 0.

Proof. From (b) we deduce that −1 is a sum of three squares in each dyadic field kv. Since −1
is not a sum of three squares in Q2, this implies that the prime 2 is not split in the extension
k/Q, i.e. d 6≡ 1 mod 8, which proves (i).

Hypotheses (a) and (b) imply:

(c) for any (nonarchimedean) valuation v of k, v(a) is even.
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Thus for any prime p, the p-adic valuation of the positive integer Nk/Q(a) is even. Thus
Nk/Q(a) ∈ N is a square. An application of Hilbert’s theorem 90 shows that there exist an integer
r ∈ N and an element ξ ∈ k such that a= r.ξ2. We may and will take r squarefree. From (a) and
(b) we conclude that r consists only of primes ramified in the extension k/Q, i.e. r divides the
discriminant D of k/Q. In particular r divides 4d. Since r is squarefree, r divides 2d.

As we have seen, there is just one valuation v of k above the prime 2. In the dyadic field
kv = Q2(

√
d), −a is a square, hence so is −r. This implies that either −r or −d/r is a square

in Q2.
If −r ∈ Z, which is squarefree, is a square in Q2, then −r is odd and −r ≡ 1 mod 8. We set

d0 = r > 0. The integer d0 is squarefree, divides 2d and is odd, hence divides d. It satisfies d0 ≡ 7
mod 8. Let α= ξ. Then a= d0.α

2.
Assume that −r is not a square in Q2. Then −d/r is a square in Q2. Since r divides 2d in Z

and d is squarefree, the 2-adic valuation of −d/r is −1, 0 or 1. It must therefore be 0, and −d/r
is a positive squarefree integer congruent to 1 mod 8. We set d0 = d/r ∈ Z, d0 < 0. The integer d0

is squarefree, divides d and satisfies d0 ≡ 7 mod 8. Let α= r.ξ. Then a= r.ξ2 = (d/r).α2 = d0.α
2.

Since d is squarefree, we may write d= d0d1 with d1 ∈ Z and d0, d1 coprime and squarefree.
Let p be an odd prime which divides NF/Q(a) ∈ N. There exists a place v of k above p such

that v(a)> 0. By hypothesis (b), −a is a square in kv. Thus −d0 is a square in kv. If p splits in
k = Q(

√
d), then kv 'Qp, the squarefree integer −d0 is a square in Qp, hence is prime to p and

satisfies (−d0/p) = 1. If p is inert or ramified in k, then −d0 is a square in the quadratic extension
Qp(
√
d)/Qp. Thus one of the squarefree integers −d0 or −d1 =−d/d0 is a square in Qp, hence is

the square of a unit in Zp.
Thus the second set of conditions is implied by the first one.
Suppose (i) to (v) hold. From (ii) and (iv), we get (b). From (ii) and (iii) we see that we may

write −a=−d0α
2 and a=−d1β

2 with α, β ∈ k. If v is a place of k above an odd prime p and
v(a)> 0 then p divides Nk/Q(a). From (v) we then get that either −d0 or −d1 is a square in Qp,
hence −a is a square in kv. 2

Let us go back to the global situation. Thus a lies in the ring of integers of k = Q(
√
d) and

a ∈O is a sum of three squares in Ov for each place v. Moreover, −a is not a square in k.
Let A ∈ BrX be a 2-torsion element which spans BrX/Br k = Z/2. Let us consider the two
conditions:

(1) for each nondyadic valuation v with v(a)> 0, −a is a square in kv;

(2) for each dyadic valuation v, −a is a square in kv.

From Lemmas 9.3, 9.4 and 9.5 we deduce the following result.
If one of these two conditions does not hold, then there exists a place v such that the image

of X(Ov)→ Z/2 given by evaluation of A is the whole group Z/2, hence X(O) 6= ∅.
For any given A ∈ BrX as above, we thus have that, for each place v of k, the image of

the evaluation map X(Ov)→ Z/2 given by Mv 7→ invv(A(Mv)) is reduced to one element, say
αv ∈ Z/2, and X(O) = ∅ if and only if

∑
v αv = 1 ∈ Z/2.

For given a satisfying the two conditions above, let us produce a convenient A. Under our
assumptions, −1 = a/(−a) is a sum of three squares, hence of two squares, in each dyadic
field kv. It is a sum of two squares in any other completion kv. By Hasse’s principle it is
a sum of two squares in k. There thus exists ρ, σ, τ ∈O, which we may take all nonzero,
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such that ρ2 + σ2 + τ2 = 0. This defines a point (at infinity) on Y (k). Starting from this
point, the technique recalled at the beginning of the proof shows that the quaternion algebra
(ρx+ σy + τz,−a) is the restriction to the open set ρx+ σy + τz 6= 0 of a 2-torsion element A
of BrX which spans BrX/Br k.

Let v be a place of k and π a uniformizing parameter. If −a is a square in kv, then A= 0.
That is thus the case for v dyadic and for v nondyadic such that v(a)> 0.

Assume that −a is not a square in kv. For v nondyadic with v(a) = 0, for b ∈ k∗v , we have
inv(b,−a) = 0 ∈ Z/2 if and only if v(b) is even. Let n= inf(v(ρ), v(σ), v(τ)). Let ρ= ρvπ

n,
σ = σvπ

n, τ = τvπ
n. Assume v(ρv) = 0. Let

Mv = (ρv, σv, τv) + (a/2ρ2
v)(ρv,−τv, σv) ∈O3

v .

We have Mv ∈X(Ov). Thus αv = invv(A(Mv)) = invv(1
2π

na,−a) ∈ Z/2 is 0 or 1 depending on
whether n is even or odd. By symmetry in ρ, σ, τ , the result holds whichever is the smallest of
v(ρ), v(σ), v(τ).

We thus conclude as follows.
Assume that for each nondyadic valuation v with v(a)> 0, −a is a square in kv and that

for each dyadic valuation v, −a is a square in kv. There exist ρ, σ, τ ∈O, none of them zero,
such that ρ2 + σ2 + τ2 = 0. Fix such a triple. Then the set X(O) is not empty if and only if the
number of places v such that:

(1) −a is not a square in kv,
(2) inf(v(ρ), v(σ), v(τ)) is odd,

is even.
Let us now look for values of ρ, σ, τ ∈O. We know that −1 is a sum of two squares in k. Since

it is not a sum of two squares in Q2, this implies that the prime 2 is not split in the extension
k/Q, i.e. the squarefree integer d satisfies d 6≡ 1 mod 8, hence the squarefree integer −d satisfies
−d 6≡ 7 mod 8. Thus there exist α, β, γ, δ in Z, not all zero, such that α2 + β2 + γ2 + dδ2 = 0.
We may choose them so that none of α, β, γ, δ, α2 + β2 is zero. Then

(α2 + β2)2 + (αγ + βδ
√
d)2 + (βγ − αδ

√
d)2 = 0.

We may thus take
(ρ, σ, τ) = (α2 + β2, αγ + βδ

√
d, βγ − αδ

√
d).

To produce convenient α, β, γ, δ, we shall use Hecke’s results on primes represented by a
binary quadratic form.

Proposition 9.7. Let d < 0 be a squarefree integer, d 6≡ 1 mod 8. Then there exists a prime
l ≡ 1 mod 4 which does not divide d and which is represented over Z as:

(a) l =−2i2 + 2ij − ((d+ 1)/2)j2 if d≡ 5 mod 8;

(b) l =−i2 − dj2 if d≡ 2 mod 4;

(c) l =−i2 + ij − ((d+ 1)/4)j2 if d≡ 3 mod 4.

Proof. Let us denote by q(x, y) the quadratic form on the right hand side. This is a form
of discriminant −4d, hence over the reals it breaks up as a product of two linear forms. In
each of the above cases one checks that there exist i0, j0 ∈ Z such that q(i0, j0)≡ 1 mod 4.
Let ∆⊂ R× R be a convex cone with vertex at the origin in the open set defined by
q(x, y)> 0. In each of the above cases the quadratic form q(x, y) is primitive: there is no
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prime which divides all its coefficients. A direct application of Hecke’s result as made explicit in
[CCS80, Theorem 2.4, p. 162] shows that there exist i, j ∈ Z and l a prime number such that
(i, j) ∈∆, hence q(i, j)> 0, with q(i, j) =±l, hence q(i, j) = l such that moreover (i, j)≡ (i0, j0)
mod 4, hence l ≡ 1 mod 4. 2

Remark 9.8. Earlier papers on the subject [EH83, JWX06] already use special representations
as provided by the above proposition. For their purposes, Dirichlet’s theorem (for number fields)
was enough.

Fix l as above. Fix α, β ∈ Z such that:

(a) α2 + β2 = 2l if d≡ 5 mod 8;
(b) α2 + β2 = l if d≡ 2 mod 4;
(c) α2 + β2 = 4l if d≡ 3 mod 4.

For i, j as above set:

(a) γ = 2i− j, δ = j if d≡ 5 mod 8;
(b) γ = i, δ = j if d≡ 2 mod 4;
(c) γ = 2i− j, δ = j if d≡ 3 mod 4.

Then α2 + β2 + γ2 + dδ2 = 0 and (l, αβγδ) = 1.
The prime l splits in k/Q. Let v1 and v2 be the two places of k above l. We have

Nk/Q(βγ − αδ
√
d) = 2l(α2 + γ2) if d≡ 5 mod 8, Nk/Q(βγ − αδ

√
d) = l(α2 + γ2) if d≡ 2 mod 4,

and Nk/Q(βγ − αδ
√
d) = 4l(α2 + γ2) if d≡ 3 mod 4. We have Nk/Q(αγ + βδ

√
d) = 2l(β2 + γ2) if

d≡ 5 mod 8, Nk/Q(αγ + βδ
√
d) = l(β2 + γ2) if d≡ 2 mod 4, and Nk/Q(αγ + βδ

√
d) = 4l(β2 + γ2)

if d≡ 3 mod 4.
Thus

ordv1(βγ − αδ
√
d) + ordv2(βγ − αδ

√
d)≥ 1

and
ordv1(αγ + βδ

√
d) + ordv2(αγ + βδ

√
d)≥ 1.

Since β(βγ − αδ
√
d) + α(αγ + βδ

√
d) is equal to 2lγ if d≡ 5 mod 8, is equal to lγ if d≡ 2

mod 4 and is equal to 4lγ if d≡ 3 mod 4, one has

ordv1(βγ − αδ
√
d)≥ 1⇔ ordv1(αγ + βδ

√
d)≥ 1

and
ordv2(βγ − αδ

√
d)≥ 1⇔ ordv2(αγ + βδ

√
d)≥ 1.

Since
Nk/Q(αδ

√
d− βγ) +Nk/Q(αγ + βδ

√
d)

is equal to 4l(l + γ2) if d≡ 5 mod 8, to l(l + 2γ2) if d≡ 2 mod 4 and to 8l(2l + γ2) if d≡ 3 mod 4,
one has

ordv1(βγ − αδ
√
d) + ordv2(βγ − αδ

√
d) = 1

or
ordv1(αγ + βδ

√
d) + ordv2(αγ + βδ

√
d) = 1.

Without loss of generality, one can assume that

ordv1(βγ − αδ
√
d) = 0 and ordv2(βγ − αδ

√
d) = 1.
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Then
ordv1(αγ + βδ

√
d) = 0 and ordv2(αγ + βδ

√
d)≥ 1.

For
(ρ, σ, τ) = (α2 + β2, αγ + βδ

√
d, βγ − αδ

√
d)

we thus have

inf(v1(ρ), v1(σ), v1(τ)) = 0,
inf(v2(ρ), v2(σ), v2(τ)) = 1

and
inf(v(ρ), v(σ), v(τ)) = 0

for any other nondyadic prime v.
Assume X(O) = ∅. From Lemmas 9.3, 9.4 and 9.5 we know that hypotheses (a) and (b) in

Lemma 9.6 hold. In particular a= d0ζ
2 for some ζ ∈ k. Also, the squarefree integer d is not

congruent to 1 mod 8. We may thus produce (ρ, σ, τ) as above. For A associated to (ρ, σ, τ), we
have αv = 0 for any v 6= v2 and αv2 = 1 if and only if −a is not a square in kv2 , i.e. if and only if
−d0 is not a square in Ql, i.e. if and only if −1 = (−d0/l).

From Lemma 9.6 we have d 6= 0, 1, 4 mod 8. Thus

−1 =
(
−d0

l

)
=
∏
p|d0

(
l

p

)
=
∏
p|d0

(
−1
p

)
if d≡ 2 or 3 mod 4, where the second equality follows from the quadratic reciprocity law and the
third equality follows from Proposition 9.7. This implies that there is an odd number of primes
congruent to 3 mod 4 which divide the squarefree integer d0. Hence d0 is congruent to its sign
times 3 modulo 4. From Lemma 9.6 we have d0 congruent to 7 mod 8, hence to 3 mod 4. We
now conclude d0 > 0.

Similarly

−1 =
(
−d0

l

)
=
∏
p|d0

(
l

p

)
=
∏
p|d0

(
−2
p

)
if d≡ 5 mod 8, and we deduce d0 > 0.

Together with Lemma 9.6, this completes the proof of one half of Theorem 9.1: if X(O) is
empty, then conditions (i) to (v) in that theorem are fulfilled.

Assume that hypotheses (i) to (v) in Theorem 9.1 hold. Then from Lemma 9.6 we deduce: for
each nondyadic valuation v with v(a)> 0, −a is a square in kv and for each dyadic valuation v,
−a is a square in kv. Proceeding as above one finds suitable α, β, γ, δ with associated ρ, σ, τ , and
a prime l congruent to 1 mod 4 such that X(O) = ∅ if and only if −d0 is not a square in Ql. The
same computation as above now shows that d0 > 0 implies that −d0 is not a square in Ql. 2
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Appendix A. Sum of three squares in a cyclotomic field, by Dasheng Wei
and Fei Xu

In this appendix, we will show that the local-global principle holds for the sum of three squares
over the ring of integers of cyclotomic fields. First we need the following lemma which appears
in [Raj93, Exercises 2 and 3, p. 70]. For completeness, we provide the proof.

Lemma A.1. Suppose R is a commutative ring with identity 1R. If −1R can be written as a
sum of two squares over R, then any element which can be written as a sum of squares over R
is a sum of three squares over R.

Proof. Suppose α ∈R can be written as a sum of squares. Since −1R can be written as a sum of
squares, one has that −α can be written as a sum of squares as well. Let −α=

∑s
i=1 x

2
i . Then

α=
( ∏

1≤i<j≤s
xixj +

s∑
i=1

xi + 1
)2

−
[( ∏

1≤i<j≤s
xixj +

s∑
i=1

xi

)2

+
(

1 +
s∑
i=1

xi

)2]
.

Since −1R is a sum of two squares and

(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2,

one concludes that α is a sum of three squares. 2

Let k = Q(ζn) be a cyclotomic field, where ζn is a primitive nth root of unity. Let O be the
ring of integers of k.

Theorem A.2. An integer x ∈O is a sum of three squares over O if and only if x is a sum of
three squares over all local completions Ov.

Proof. If 2 is ramified in k/Q, then 4 | n and −1 is a square in O. By Theorem 6.1, one has x is
a sum of four squares. By Lemma A.1, one concludes that x is a sum of three squares as well.

Now one only needs to consider the case that 2 is unramified. Therefore one can assume that
n is odd. Let f be the order of the Frobenius of 2 in Gal(k/Q) = (Z/n)∗.

If f is even, there is a prime p | n such that the order of 2 in (Z/p)∗ is even by the Chinese
remainder theorem, which is denoted by 2t. Then 2t ≡−1 mod p. Let ζp ∈O be a pth primitive
root of unity. One has

t∏
i=1

(1 + ζ2i

p ) =
1− (ζ2t

p )2

1− ζ2
p

=
1− (ζ−1

p )2

1− ζ2
p

=−ζ−2
p .

This implies that −1 can be written as a sum of two squares over O. By the same argument as
above, x is a sum of three squares.

Otherwise f = [Q2(ζn) : Q2] is odd. Suppose x is not a sum of three squares over O. By
Lemma 9.5 and Theorem 6.3, one obtains that −x is a square in Q2(ζn). This implies −1 is
a sum of three squares over Q2(ζn). By Springer’s theorem (see [Sch86, Chapter 2, § 5.3]), −1
is a sum of three squares over Q2. Therefore −1 is a sum of two squares by Pfister’s theorem
(see [Sch86, Chapter 2, § 10.8]) over Q2. A contradiction is derived. 2
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Math. 618 (2008), 77–133.

CCS80 J.-L. Colliot-Thélène, D. Coray and J.-J. Sansuc, Descente et principe de Hasse pour certaines
variétés rationnelles, J. reine angew. Math. 320 (1980), 150–191.

CS87 J.-L. Colliot-Thélène and J.-J. Sansuc, La descente sur les variétés rationnelles II, Duke
Math. J. 54 (1987), 375–492.

Col03 J.-L. Colliot-Thélène, Points rationnels sur les fibrations, in Higher dimensional varieties and
rational points, Budapest, 2001, Bolyai Society of Mathematical Studies, vol. 12 (Springer,
Berlin, 2003), 171–221.
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(Masson, Paris; North-Holland, Amsterdam, 1968).
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