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a-DERIVATIONS

MARIA JULIA REDONDO AND ANDREA SOLOTAR

ABSTRACT.  Let 4 be a commutative k-algebra with 1. We present a characterization
of a-derivations, for a: A — A a morphism of algebras, using a-Taylor series. When
S = Clx,x"', €] and a(x) = gx, (€) = g€, we compare the g-de Rham cohomology
of the C-algebra S with the Hochschild homology of Dy, the algebra of g-difference
operators on C[x,x'], forg € C,q # 0, 1.

RESUME.  Soient k et 4 deux anneux commutatifs unitaires, 4 une k-algebre. Etant
donné un endomorphisme « de I’algebre 4, nous montrons une caracterisation des a-
dérivations en utilisant les a-séries de Taylor, dont nous prouvons certaines propriétés.
Dans le cas particulier de I’algébre D, des operateurs g-differentiels sur Clx, x™ ! nous
faisons la comparaison entre la g-cohomologie de De Rham de C[x,x~!,£], et de
homologie d’Hochschild de D,, g € C,q # 0, 1.

VERSION FRANCAISE ABREGEE. Soient k et A deux anneaux commutatifs unitaries,
A une k-algebre et o un endomorphisme de 4. Compte tenue de la définition d’une a-
dérivation de 4 a valeurs dans un A-bimodule M [5], nous caracterisons le A-module des
a-dérivations D (4, M) a I’aide des applications de Taylor “tordues”, To: 4 — A® A4 ou
TW(@)=1®a—a(a) ®1.

Nous etablissons aussi un rapport entre les a-dérivations et I’homologie d’Hochs-
child tordue [4] HH*(4, M). Ensuite, nous prouvons que 1’application T, est universelle
parmi les k-a-séries de Taylor définies avant, et nous étudions le comportement de 1’4-
module des a-différentiels par rapport a la localisation. Finalement nous faisons une
comparaison entre 1’homologie d’Hochschild des opérateurs g-différentiels sur 4 =
Clx,x'],q € C,q # 0, 1, et la g-cohomologie de De Rham de C[x,x~', £] [S].

1. Introduction. LetA beacommutative k-algebra with 1, o: 4 — 4 a morphism of
algebras. We recall the definition of a-derivations of 4 into A-bimodules M, and present
a characterization of them, using the analogies with the theory of derivations. We also
relate them to “twisted” Hochschild homology.

In Section 2 we recall what a derivation is and we define o-derivations and «-Taylor
operators, which allows us to characterize the module of a-differentials Qf (4). In Sec-
tion 3 we define k-a-Taylor series, and show that the a-Taylor operator is universal for
k-a-Taylor series. We introduce the algebra D, of g-difference operators on C[x,x '] in
Section 4, and compare the g-de Rham cohomology of the C-algebra S = C[x,x!, €]
with the Hochschild homology of D,.
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2. a-Derivations and the o-Taylor operator. Let 4 be an associative k-algebra
with 1 and a: A — A a morphism of algebras. We shall present in the following section
a characterization of a-derivations, using the analogies with the theory developed for
derivations from A into an A-bimodule M. We recall that d is a derivation of 4 into an
A-bimodule M if and only if d is a k-linear map, d: A — M, such that

d(xy) = xd(y) + d(x)y

and Dy (4, M) denotes the set of all derivations d: 4 — M (in fact, it is a k-module, and
if A is commutative, it is an A-bimodule). If 4 is commutative and 4 ® AP is considered
an 4A-bimodule by a(b ® ¢)d = adb & c, we have the Taylor operator [7] T:4 — A ® AP
defined by T(a¢) = 1 ® a — a ® 1, and the multiplication map, u: 4 ® A — A4, given by
wu(a ® b) = ab. One easily verified consequence of these definitions is that

0—]—ARQA® — 4 —0

is a short exact sequence of 4-modules, where / is the ideal in 4 ® A°P generated by
{T(a),a € A}. Next we observe that the Taylor operator is not a derivation, but

T(ab) = aT(b) + T(a)b + T(a)T(h).

Therefore, it seems reasonable to consider / / P as the module of 1-differentials QL v
Summarizing this discussion, we recall the following important result form [6]:

PROPOSITION 2.1.  For an A-module M, there is a canonical A-isomorphism
Homy(I/I*, M) — Der(4, M)
In particular, the isomorphism
Homy(I/ P, A) = Dery(4)

identifies the derivation module of A canonically with the dual of the differential module

of A.

When 4 is commutative, the Hochschild homology of 4, HH,(4) is isomorphic, as an
A-module to QL Ik If 4 is not commutative, HH, (4) is considered instead of QL /i which
is not defined in this case.

We are now in a position to make the following definitions.

DEFINITION 2.2. Assume A4 is commutative, a: 4 — A is a morphism of algebras
and M is an 4-bimodule that verifies ma = a(a)m, for m € M,a € A.
a) d, is an a-derivation of 4 into M if d, is a k-linear map, d,: 4 — M, such that

do(ab) = a(a)dy(b) +dy(a)b fora,b € A.

b) Dj (4, M) denotes the set of all a-derivations do: 4 — M.
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c) We shall denote by Q(4) the module of a-differentials in 4, i.e., the 4-module
satisfying:
i) there is an a-derivation Dy: A — Q7 (4),
ii) Qf(A) is generated by {Dq(a),a € A} over 4,
iii) for any o-derivation d,:4 — M, there exists a unique A-linear map
h: Qf(A) — M suchthat dy = ho Dy.

REMARK 2.3.  Dg(4,M) is an A-bimodule that verifies da = a(a)d, fora € A,d €
Dg(A, M),
Now we define the o-Taylor operator To: 4 — 4 ® AP given by
Te(P)=10P—-—a(P)®1

and we denote by po: 4 ® AP — A the a-multiplication map p.(P ® Q) = Pa(Q). As
an immediate consequence of these definitions, we have the following easily checked
proposition.

PROPOSITION 2.4.

0 —I, —ARQA® 254 —0

is a short exact sequence of A-modules, where I, is the ideal in A @ AP generated by
{To(a)} where a ranges over A.

The following facts concerning the o-Taylor operator are easily verified, when 4 ®4°P
is considered an 4-bimodule by '

a(b® c)d = pglad)b ® ¢ = aa(d)b  c.

PROPERTIES 2.5. a) T, is k-linear
b) To(PQ) = (UP)® 1) Tl @)+ Tu(PX1®Q) = AP)Tol Q)+ Tal PYO+ Tu(P)Ta(Q)
¢) Ta(P") = Loy (a(P™=") @ P') To(P)
d) To(P) - Py) = Spz (=D (Zi1<-~<ik (P, - P )To(Py -+ Py -- .pn)) +
To(P)Ta(P2) - - Ta(Pn—1)Ta(Pn)

REMARK 2.6. A4 ® A has two module structures, given by the ring homomorphisms
A— AQA%, a — ala)®1,and 4 — A® A*, a — 1 ® a. They induce two A-
module structures on /,. From those, we get induced 4-module structures of 7, / 13, which,
however, coincide in /1, / Ii since

(1or—amel)(1®a—a@e1+L) €L,

In view of Properties 2.5, we can reformulate Proposition 2.1 for a-derivations.

PROPOSITION 2.7. @) QX(A) X I,/
b) For an A-module M, there is a canonical A-isomorphism of A-bimodules

Homy(ly / I2, M) — D (4, M)
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PROOF. To prove the first statement, we shall verify i), ii) and iii) of Definition 2.2¢).
i) The mapping Do: A — I, /I, defined by the composition

PRELEy LAY ) )

is an a-derivation (using Property 2.5b)).

ii) It’s obvious that I, /2 is generated by {T,(a) + I2,a € A} over 4.

iii) Let d,: 4 — M be an a-derivation. We define ®: 4 ® AP — M by O(a ® b) =
ad(b). Now, a direct computation shows that ©(/2) = 0. So there exists a unique 4-linear
map h: I, /I2 — M suchthat hor = ©/I,. Finally, hoDg(a) = G)(To,(a)) = dy(a). Since
the A-module I, /2 is generated by {Dg(a),a € A}, there can be only one mapping 4
such that h o D, = d,. Hence D, is universal.

The second statement of the Proposition is only a reformulation of the universal prop-
erty of Do: A — Io [ I2. n

REMARK 2.8. Given «, one may also consider “twisted Hochschild homology” and
“twisted Cyclic homology”, which differs from ordinary Hochschild homology by the
face and cyclic operators, which now involves the action of the automorphism. The
twisted theory appeared implicitly in [8] and [9], and explicitly in [4].

Explicitly, if oz 4 — A is an automorphism of algebras, we have:

dii A% — 4%" for0<i<n
s A% — 45D for0 <i<n
t:A®(n+l) N A®(n+l)

defined by

(@® Qa1 @---Ra,) ifi<n,

(dan)ao®ar @ ®@a, 1) ifi=n

5i@® - Ra)=(@®R - ®a;®1Qai ® - Qay)
Ha @ - Qay) = (a(a,,)®a0®-~®a,,_1)

di(ao®'”®an):{

which verifies the relations:

didi = d;_\d;, fori <j
tdiy forl <i<n,
dit = {dn, fori = 0.
SiSj = Sj+1Si for i S]
siid;  fori <j,
diSjZ{id forizj,j+1,
sidi—y fori>j+1.
of— {ts,-_l for1 <i<n,
! s, fori=0.

@ ® - ®an) = (da) @ ® an))
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. . . Ker(A®AE—»A) o .
Writing b* = 37, (—1)'d;, we verify that HH{(4) = —————— is isomorphic
Im(ARARA—ARA)

to Io /114, by the map

Io /1, — HHY(4)
Tola) — [1®a]

So we can view the difference between ordinary Hochschild homology and twisted
Hochschild homology in terms of the difference between 7 and I,.

Now, we consider a-n-derivations, i.e., k-linear maps dj;:4 — M such that
di(xo -+ xy) = Sh_ (D! (Z,-,<,,.<,~k o(xi, - - x; )di(xo -+ % - -x,,)) and we denote by
Qk"(4) the module of a-n-differentials in 4.

One easily verified consequence of Property 2.5 is the following proposition.

PROPOSITION 2.9. Q) is isomorphic o I /L.

3. o-Taylor series.

DEFINITION3.1.  Suppose C is an A-algebra, B is an 4-subalgebraof Cand a: 4 — 4
is a morphism of algebras.
a) We say that ,: 4 — B is an B-valued k-a-Taylor series if:
1) 7q is k-linear and n,(1) = 0
ii) 14(ab) = c(a)na(b) + a(b)a(@) + nal@)a(b) fora,b € 4
b) Suppose B, C are k-algebras, B C C, a: C — C a morphism of algebras. We define
I,(C/B) by the exact sequence

0 — I,(C/B) — C® C*? £ ¢ — 0.

We now prove some results concerning o-Taylor series.

PROPOSITION 3.2.  The map u: A — I,(A/k) given by a — T,(a), is universal for
k-a-Taylor series (T is the k-o-Taylor operator defined in Section 2).

PROOF. It’s obvious that the map u: 4 — Io(4/k) is an I,(A4/ k)-valued k-a-Taylor
series. Let 174: 4 — B be a B-valued k-o-Taylor series. We only have to show that there
exists a unique 4-morphism of algebras 1: Io(4 / k) — B such that ¢y ou = 7. The given
map 74:A — B is k-linear, therefore we may define an A-linear map h: 4 ® A°? — B
by h(a ® b) = ana(b). It follows that h(Ta(a)) = na(a) since nq(1) = 0. Clearly,
the restriction of 4 to I,(4/k) satisfies the conditions required. Notice that uniqueness
is immediate from the fact that {T,(a),a € A} generates I,(4/k) as an A-module. To
complete the proof, we only have to show that 4 is a morphism of algebras. To this end
we observe that is suffices to verify that

s s

H(IT(1 8% — atx) ®1)) = A1 @x — o) @ 1)
=

J=1
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because 4 is A-linear. This may be easily done by induction. In case s = 1, there is
nothing to prove. Assume the equality for » < s. We first observe that

H(l Rx; — alx) ® ) =3 ui®v; € I,(4/k)
=

so Y u;c(v;) = 0. On the other hand,

s—1
h(jgl(l ®x—a) ® 1) (19 x — alx) ® 1))

- h((zu,- ®v)(18x - alx) @ 1))
= Z(u,-na(xsv,-) — wio(xs )N (Vi)

= ( (a(xs)not(vt) + a(vt)na(xs) + U(V:)ﬂa(xs)) - uia(xs)na(vi)>
= Z(u (Vi) + uino(Vi) ) nalxs) = 2 it (via(xs)
- (Zu,@v,) (1®x — atx)®1). .

PROPOSITION 3.3.  Suppose A, B are k-algebras suchthat A C B, and a: B — Bis a
morphism of algebras such that a | A = id. There exists an exact sequence of B-algebras

0 — Na(A k) — Io(B/K) — Io(B/A) — 0

where No(A / k) is generated as an ideal in I(B [ k) by the elements (1@x—a(x)®1),x €
A, and O is the restriction of the map B ®; B — B ®4 B to the ideal 1,(B [ k).

PROOF. The map O is clearly onto. We shall prove that I,(B/k)/ No(A4 / k) is univer-
sal for A-a-Taylor series on B, from which the assertion of the theorem follows immedi-
ately. First note that the map 7,: B — I4(B/k)/Nq(A4/k) defined as the composition

Mot B~ L(B/K) ™ 1(B/K) [ Nu(A k)
satisfy the conditions:

Na(xXy) = a(X)Na(y) + Y Ma(x) + Nax)ay), forx,y € B.

If a € 4, then na(ay) = a@)a(y) + a()na(a) + na(@)na(y) = ana(y) since nqla) €
No(A/k)and o/ 4 = id. As ne(1) = 0, it follows that 1 is an Io(B/k)/ No(4 / k)-valued
A-a-Taylor series on B. Now, suppose that p,: B — R is an R-valued 4-a-Taylor series.
Forx € k,x1 € A (because 4 is a k-algebra). Therefore p, is an R-valued k-a-Taylor
series, and thus there exists a unique B-algebra morphism h: [,(B/k) — R such that
pa = h o Ty. Since pa(al) = apa(1) = 0 for eacha € 4, (ho Ty)/A = 0. Therefore the
kernel of h contains Nu(4 / k), and h factors uniquely through I,(B/k) / N(A [ k). n

REMARK 3.4. The module /,(d4 / k) has one outstanding drawback, which is that if S
is a multiplicatively closed subset of 4, then in general, As ®4 Io(4/k) F [(As/k), i.e.,
I, doesn’t localize. For example, @ = id, 4 = k[x] and S = {1,x,x?,...}.
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THEOREM 3.5.  Let S be a multiplicatively closed subset of A, 1 € S, 0 ¢ S. Then
Lo(As [ k) [ 1a(As [ ) = As @4 LA/ k)| 1u(A [ )’

PROOF. The mapping do:As — As ®4 lo(4/k)/1o(4/k) defined by do(2) =
_ ag((s% ® Tals) + ;('s‘) ® Ty(a) is an a-derivation:

aia\ _ _a(a|a2) T oo T (a2
d“( 5152 ) - ols?s3 ® Talsi52) * a(s)s2) ® Lolar)
—_ ‘;((‘;%2‘%2) ® a(51)Ta(s2) + 2)TalS1)
+ ® a(ar)Ta(az) + a(az)Talar)
a(sis?)

= a(G)de(5) +o(5)e(5))
So there exists a unique As-linear map
h: Io(As | 0 L(As | kP — As ®4 Tu(4 ] K) La(A /K
such that dy = h o Dy, where Dy: As — Io(As/k)/Io(As/k)* is the composition
As = Lo(As/ k) — LA/ 0) | Tl As [ P
The map : As ®4 Io(A/k) /1A ] k)* — Io(As/k)/Io(As ] k)* defined by

o(3oT®) = 1.(3)

is an inverse for A. [

4. The algebra of g-difference operators and its homology. Let g be a complex
number # 0,1, and let D, be the algebra of g-difference operators on C[x,x~']. By
definition D, [5] is the algebra of all linear endomorphisms of C[x,x~!] generated by
multiplications by Laurent polynomials and by Jackson’s g-differentiation operator 0,
defined for any polynomial P by

o, = @)~ P,
gx —x
As a complex associative algebra D, is generated by x, x~' and &, and the relation
Oyx — qx0; = 1, which is the g-analogue of the Heisenberg relation for differential
operators. The family {x'd) };cz en is a basis of D,. It is convenient to introduce the al-
gebra automorphism 7, of C[x, x~!] defined by 74(x) = gx. Since Ny = 1+ (g — 1x0,,
the automorphism 7, belongs to D,. We have the additional relations 6,x — x0, = 7,
and n,x = gxn,. The g-differentiation operator is not a derivation, but a n,-derivation;
namely for all P, Q € C[x,x™'] we have

0q(PQ) = ng(P)0g(Q) + 04(P)Q.
It is easy to check that {x'd, }cz is a basis of the vector space D (C[x,x~']) of all n,-
derivations of Cx,x™'].
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PROPERTIES 4.1 [S].  For integersn € Z, set (n)g = 1+q+- -+ q"~'. Then
@) Fx = @x3y + ()0 "
b) Oyx' = q'x'0, + (i)yx'~ 1.
In [5], Kassel shows that the Hochschild homology groups of D, are the homology
groups of the complex

0— D, ® ANV, 2D, 0V, 2 D, — 0
where ¥, is a two-dimensional vector space with basis {dx, dd, }, and for any M € D,
Bq(Mdx A do,) = (xM — qMx)do, — (q0;M — M0, )dx
Bq(Mdx) = xM — Mx
B4(Mdd,) = 0,M — Mo,

Let S be the commutative C-algebra generated by x,x !, &, and a: S — S the mor-
phism of algebras defined by a(x) = gx, a(§) = g€. Then,

0,’'¢) _ (gx)'¢ —x'¢

_ o il
O4(x) - gx —x = (g ¢
O,x'¢) _ x'(q€y —X'€¢ _ . i
0© —  qe—g "0

We shall compare the complex (D; ® A V4, B4) with the g-de Rham complex of S
0— QF(S) - Q') 1 QFX(S) — 0
where,
QXS) =S
QLS = Q¢S) =L,/ ;, (I, = 1S/ )
QEA(S) = QUS) A Q)
QE&(S) is generated by dx = (1 @ x —gx ® 1) +I§ anddé = (1 ® € —q¢ ® 1)+, and

o o (xigj) (x1+1£j+l 0 (Xifj) F) (xi+l£j+l)
di(x* — 9 -1 9 dx — q -1 A d
)= ("4 o 9TV m Jac— (a7 a© 9T 5w Ju
iej 1 _ [ Cax'€) O, (x™'¢)
dr(x'&dx) = (—aq(g) (g— H+t——== G f)dx/\di
o ) i j+1
st (D
q

Consider the map 0,: D, ® A* ¥, — Q&?7*(S) defined by
oo(xia’(']) =x'&dx NdE
ol(x’agdx) = —x'&dx
01(x'8,do,) = x'§'d¢
02(x'Cpdx N ddy) = x'¢
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LEMMA4.2. 0. D QA\* V;— 02'2_*(.5') is a chain bijection, and induces a bijec-
tion from H,(D,) onto Hy_pR(S).

PROOF. It is obvious.
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