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Abstract. In this article we determine all solutions to the equationxp + yq = zr , (p, q, r) ∈
{(2,4,6), (2,6, 4), (4,6, 2), (2, 8,3)} in coprime integersx, y, z. First we determine a set of curves
of genus 2, such that every solution corresponds to a rational point on one of these curves. Then we
determine the rational points on these curves using either covers of rank 0 elliptic curves or a method
known as effective Chabauty which works if the Mordell–Weil rank of the Jacobian is smaller than
the dimension.
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1. Introduction

The diophantine equationxp + yq = zr in integersp > 1, q > 1, r > 1, x, y, z is
a generalisation of the well-known Fermat equationxn + yn = zn. We will refer to
it as thegeneralised Fermat equation.

The homogeneity of the Fermat equation implies that it is sufficient to know
the coprime solutions in order to determine all rational solutions. The generalised
Fermat equation is only weighted homogeneous. That means that not all integer
solutions reduce to coprime integer solutions. The identity 21602 − 364 = 126 is
an example of this phenomenon. We exclude these from our considerations and we
limit ourselves to the determination of theprimitive solutions: solutions withx, y
andz coprime.??

The quantityχ = 1/p + 1/q + 1/r determines the general shape of the set
of primitive solutions. In the caseχ > 1, Beukers proved in [Beu98] that, for
fixed A, B, C, the equationAxp + Byq = Czr has either none or infinitely
many primitive solutions. He described the solutions quite explicitly by proving
that there exists a finite set of polynomial solutionsx, y, z ∈ Z[s, t], so called

? Address for correspondence: PO Box 9512, 2300 RA Leiden, The Netherlands.
?? The techniques used also apply to the situation where one allows gcd(x, y, z) to factor over a

fixed, finite set of primes.
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306 NILS BRUIN

parametrisations, such that each primitive solution can be obtained by specialising
s andt in one of the parametrisations.

For the equationsx2 ± y2 = zr with r > 2, x3 + y3 = z2, x2 + y3 = z4

andx2 + y4 = z3, these parametrisations can be determined using factorisation.
Zagier has done that and the results for(p, q, r) = (3,3,2), (2,3,4), (2,4,3) can
be found in an appendix to [Beu98].

The casex2 + y3 = z5 is harder. Thiboutot bounded the number of needed
parametrizations in [Thi96], but explicitly determining them seems beyond the
feasable at the moment. These are the only cases withχ > 1.

For χ = 1, the solutions are parametrised by elliptic curves. No nontrivial
solutions exist for(p, q, r) = (2,3,6), (2,6,3), (3,3,3), (4,4,2), (4,2,4) except
23+ 16 = 32 and obvious modifications of it.

Forχ < 1, Darmon and Granville proved in [DG95] that there are only finitely
many primitive solutions. For the casep = q they describe a procedure that gen-
erates a finite set of parametrizing curves such that each solution corresponds to a
rational point on one of the curves.

The ABC conjecture implies an even stronger finiteness result. Consider the
following.

CONJECTURE 1. (ABC Conjecture) For everyε > 0 there are only finitely many
coprime positive integersA,B,C satisfying the relationA+ B = C such that

logC

log(product of prime divisors ofABC)
> 1+ ε.

If 1/p + 1/q + 1/r < 1, then 1/p + 1/q + 1/r 6 41/42. Applying the
ABC-Conjecture withε < 1/41 gives that there are only finitely many triples
(A,B,C) = (xp, yq, zr) satisfyingA+ B = C and gcd(A,B,C) = 1.?

The casep = q = r was treated by Wiles. There are no nontrivial primitive
solutions in this case. Darmon and Merel [DM96] proved the same forp = q > 7,
r = 2 and, under the Shimura–Tanayama–Weil conjecture, forp = q > 7, r = 3.
The cases withp = q < 7, r = 2,3 are treated by Poonen in [Poo97].

In [Beu98], a list of small solutions to the generalised Fermat-equation with
χ < 1 is given. Since the number of primitive solutions toxp + yq = zr with
χ < 1 is conjecturally finite, it is tempting to try to provably list them all. We
make a modest start by proving that for some equations, there are no solutions
apart from the ones already known.

THEOREM 1.The only solutions toxp + yq = zr with gcd(x, y, z) = 1, xyz 6= 0
and(p, q, r) ∈ {(2,4,6), (2,6,4), (4,6,2), (2,8, 3)} are

(±1549034)2 + (±33)8 = 156133.
? One is easily tempted to conclude that the equationxp + yq = zr has only finitely many solu-

tions(x, y, z, p, q, r) with gcd(x, y, z) = 1, xyz 6= 0 and 1/p+ 1/q + 1/r < 1. A counterexample
is given by 23 + 1q = 32.
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In each case, we use the parametrisations of primitive solutions tox2 + y2 =
z2, x2 + y2 = z3 and x2 + y4 = z3 to derive curves of genus two such that
primitive solutions to the equations investigated correspond to rational points on
these curves. In some cases the curve covers an elliptic curve of rank 0. Thus, the
rational points can be determined by lifting the torsion points on the elliptic curve
to the cover.

In the other cases, the Jacobian turns out to be of rank 1. We embed the curve
in the Jacobian and use a method known as effective Chabauty to determine the
rational points. The calculations involved are too bulky to display here. The inter-
ested reader can obtain scripts to check these using a computer. See Section 6 for
more information.

Note that the curves forx2 + y4 = z6, x2 + y6 = z4 andx4 + y6 = z2 are
all isomorphic to one another over some finite algebraic extension ofQ and so are
the curves forx2 + y8 = z3. Thus, when examining the different cases, we are
examining different arithmetic structures on one and the same geometric object.
This is essential to the method, as can be seen in the equationx3+ y8 = z2, which
is geometrically equivalent tox2 + y8 = z3. When determining the underlying
curves using the parametrisations ofx3 + y4 = z2, we run into the curves

Y 2 = X6− 6X5 + 45X4− 180X3 + 135X2 + 162X − 405,

Y 2 = X6+ 6X5 − 15X4+ 20X3 + 15X2 + 30X − 17

which turn out to have Jacobians of Mordell–Weil rank 2 overQ. This prevents us
from using the present method to solve the equationx3+ y8 = z2. However, these
curves are geometrically equivalent to the curves encountered forx2 + y8 = z3,
so their Jacobians are nonsimple, as are the Jacobians we will meet in the present
article. It turns out that they split over a degree 12 extension ofQ.

2. Preliminaries

We shall use the parametrisations of some equations withχ > 1.

LEMMA 1. Let x, y, z be coprime integers such thatx2 + y2 = z2. Possibly by
interchangingx and y, we can assume thatx is divisible by2. Then there are
coprime integerss and t , not both odd, such that

x = 2st, ±y = s2 − t2, ±z = s2 + t2.
Sketch of proof. This is a classical result. Thatx andy are not both odd can be

seen mod 4. The polynomials can be obtained by observing thaty2 = z2 − x2 =
(z+ x)(z − x). 2
LEMMA 2. Let x, y, z be coprime integers such thatx2 + y2 = z3. Then there
are coprime integerss, t such that

x = s(s2 − 3t2), y = t (t2− 3s2), z = s2 + t2.
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Sketch of proof. This result can be obtained by considering(x + iy)(x − iy) =
z3. 2
LEMMA 3 (Zagier, [Beu98]).Letx, y, z be coprime integers such thatx2+y4 = z3

Then there are rational numberss, t such that one of the following holds.

x = 4st (s2 − 3t2)(s4+ 6s2t2 + 81t4)(3s4 + 2s2t2+ 3t4),

±y = (s2 + 3t2)(s4 − 18s2t2 + 9t4),

z = (s4− 2s2t2 + 9t4)(s4 + 30s2t2 + 9t4),

±x = (s4 + 12t4)(s8− 408s4t4 + 144t8),

y = 6st (s4 − 12t4),

z = s8+ 168s4t4 + 144t8,

±x = (3s4 + 4t4)(9s8 − 408s4t4+ 16t8),

y = 6st (3s4 − 4t4),

z = 9s8 + 168s4t4+ 16t8,

±x = (1/8)(s4 + 3t4)(s8− 102s4t4 + 9t8),

y = (3/2)st (s4 − 3t4),

z = (1/4)(s8 + 42s4t4 + 9t8).

Sketch of proof. First observe thatx2 + (y2)2 = z3. Using Lemma 2, we see
that y2 = t (t2 − 3s2). This implies thatt = Au2, t2 − 3s2 = Au2 for some
A ∈ {1,−1,3,−3}. Parametrise the latter ternary quadratic equations to get a
list of quadratic expressions fors and t (for A = 3 andA = −1 there are no
solutions at all). Substitute each expression fort in t = Au2 to obtain a ternary
quadratic equation. Parametrisation again results in quadratic forms, which can be
substituted back. Care should be taken to eliminate parametrisations that do not
produce coprime solutions. 2

3. The Equationsx2+ y4 = z6, x2+ z6 = y4 and y4+ z6 = x2

The equations with exponents 2,4 and 6 turn out to be easy to solve. Essentially,
the solutions are parametrised by genus 2 curves that admit a morphism to a rank
0 elliptic curve.

THEOREM 2.If x, y, z ∈ Z are coprime such thatx2 + y4 = z6, thenxyz = 0.
Proof. Suppose we have a primitive solutionx, y, z. Then, by applying Lemma 2

to x2 + (y2)2 = (z2)3, we have coprimea, b ∈ Z such that

x = b(3a2 − b2), (1)
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y2 = a(a2 − 3b2), (2)

z2 = a2 + b2. (3)

Equation (3) implies that eithera = s2 − t2, b = 2st or a = 2st, b = s2 − t2. We
treat each of the possibilities separately.

a= s2− t2,b = 2st. By substitution in Equation (2), we get

y2 = (s2 − t2)(s4− 14s2t2+ t4).
Note thatt = 0 implies thatb = 0 and thusx = 0. We can therefore safely put
Y = y/t3, X = s2/t2. Solutions withx 6= 0 correspond to affine rational points
on the elliptic curve

Y 2 = (X − 1)(X2− 14X + 1).

Using GP/Pari or Apecs, one can calculate the minimal model and the conductor
of this curve. From this, we see that it is isomorphic to 144A2 from Cremona’s
tables [Cre92]. These tables show that this curve has only one affine rational point,
namely(1,0). This corresponds to solutions withy = 0.

a= 2st,b = s2− t2. Puts− t = u, s+ t = v. This givesa = (v2−u2)/2, b = uv.
Substitution in Equation (2) yields

8y2 = (v2− u2)(v4− 14v2u2 + u4).

Note thatu = 0 implies thatb = 0 and thusx = 0. By puttingY = y/u3,
X = v2/u2, other solutions correspond to affine rational points on the elliptic
curve

8Y 2 = (X − 1)(X2− 14X + 1).

This curve is isomorphic to 576A2 in [Cre92] and has only one affine rational
point, namely(1,0). This corresponds to solutions withy = 0. 2
THEOREM 3.If x, y, z ∈ Z are coprime such thatx2 = z6+ y4, thenxyz = 0.

Proof. Suppose we have a primitive solutionx, y, z. Then Lemma 1 states that
there exist coprimes, t of distinct parity such thaty2 = 2st, z3 = s2 − t2 or
y2 = s2− t2, z3 = 2st . We treat these cases separately.

y2 = 2st, z3 = (s+ t)(s− t). Since gcd(y, x) = 1 ands+ t ands− t are both odd,
we have thats + t ands − t are coprime. Therefore, there existu, v ∈ Z such that
u3 = s − t , v3 = s + t . Rewritingy2 in u, v gives

2y2 = v6− u6.
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u = 0 implies thats = t and thusz = 0. Other solutions correspond to the affine
rational points on the elliptic curve curve 2Y 2 = X3 − 1, which is isomorphic to
576E1 and has just (1, 0) as affine rational point.

y2 = s2 − t2, z3 = 2st. Sincey is odd, we havey2 = 1 mod 4. Therefore,s is odd.
Fromz3 = 2st we then conclude thats = v3, t = 4u3. Rewritingy2 in u, v gives

y2 = v6− 16u6.

Note thatu = 0 impliest = 0 and thusz = 0. Other solutions correspond to affine
rational points on the elliptic curveY 2 = X3 − 16, which is is 432A1 in [Cre92].
The curve has no affine rational points at all. 2
THEOREM 4.If x, y, z ∈ Z are coprime such thatx2 + z6 = y4, thenxyz = 0.

Proof. Suppose we have a primitive solutionx, y, z. If z 6= 0 theny4 − x2 >

0. Therefore, bothy2 − x > 0 andy2 + x > 0. Sincex and y are coprime,
gcd(y2 − x, y2 + x) | 2. Possibly after change of sign ofx we havey2 − x =
2u6, y2 + x = 25v6 or y2− x = u6, y2 + x = v6. We treat these cases separately.

y2− x = 2u6, y2+ x = 25v6. Eliminatingx gives

y2 = u6+ 16v6.

v = 0 implies thatz = 0. Other solutions correspond to affine rational points on
the elliptic curveY 2 = X3+16, which is isomorphic to 27A3 and has only the two
affine rational points (0,4), (0,−4). The corresponding solutions have
u = z = 0.

y2− x = u6, y2 + x = v6. It follows thatu andv are odd and coprime. Eliminating
x gives 2y2 = u6 + v6. Proceeding as before does not work, as the elliptic curve
2Y 2 = X3+ 1 has infinitely many rational points. However, we remark that

2y2 = (u2+ v2)(u4− u2v2+ v4)

implies that

u2+ v2 = α y2
1, u4− u2v2+ v4 = β y2

2,

whereαβ = 2y2
0 andα, β consist only of factors 2 and 3. Positivity shows that

α, β > 0 and modulo 3 we see that 3- α. Furthermore, the parity ofu and v
implies thatu4− u2v2+ v4 is odd. Therefore we have

u2+ v2 = 2y2
1, (4)

u4− u2v2+ v4 = y2
2. (5)
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Solutions of (5) correspond to rational points on the elliptic curveY 2 = X4 −
X2 + 1, which is isomorphic to 27A1. (The smooth model of) this curve has 8
rational points:{∞+,∞−, (0,±1), (±1,±1)}. The points at infinity and(0,±1)
correspond to solutions withv = 0 andu = 0 respectively. Equation (4) has
no solution for those points. Solutions corresponding to(±1,±1) haveu6 = v6,
which implies thatx = 0. 2

4. Rational Points on Genus 2 Curves

The exponent triples 2-4-6, 2-6-4 and 4-6-2 are easy to handle, since the corres-
ponding genus 2 curves cover elliptic curves of rank 0. The following method
works for the cases we encounter for 2-8-3.

We use the fact that thep-adic topological closure of a rankr subgroup of ap-
adic abelian variety is ap-adic subvariety of dimension at mostr. Chabauty used
this observation in [Cha41] to prove the finiteness of the number of rational points
on curves of genusg > 0 with a Jacobian of Mordell–Weil rank< g overQ. Flynn
has adapted this idea in [CF96] and [Fly97] to get bounds on the number of rational
points on curves of genus 2 with a Jacobian of rank 1 overQ. We present and use
a version that is restricted to the type of curves we will encounter.

4.1. NOTATION AND STANDARD RESULTS

This section is a summary of the objects and results we need from, for example,
[CF96]. Let C denote a smooth curve of genus 2 with a singular modelY 2 =
F(X), whereF(X) is a square-free polynomial overZ of degree 5?. We denote
the hyperelliptic involute of a point(x, y) by (̂x, y) = (x,−y). Note that, because
the degree ofF is odd, we have a unique place∞ on C corresponding to the
intersection of the model with the line at infinity. We have∞̂ = ∞.

We writeJ = JC for the Jacobian. As a set,J is the same as the collection of
divisor-classes of degree 0, the Pic0. It is a standard result thatJ ' C × C/ ∼,
where(P1,Q1) ∼ (P2,Q2) if {P1,Q1} = {P2,Q2} or if P1 = Q̂1, P2 = Q̂2. We
write [P +Q] for the point onJ corresponding to the divisor-class represented by
{P +Q− 2∞}.

Note that∞ is defined overQ, soC(K) is nonempty for any extensionK of Q.
That means that all points inJ(K) can be represented by divisors defined overK.
That means that every point inJ(K) can be written as[P +Q], whereP,Q are
points onC, either rational of quadratic conjugate overK (in fact, this is true for
all curves of genus 2 and number fieldsK).

On this representation ofJ, the description of the group law bears great re-
semblance to the chord-tangent method on elliptic curves. The point[P3 + Q3]
? In general, a model exists with degF ∈ {5,6}. We limit ourselves to the special case degF = 5,

but this is not essential to the method used.
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such that[P1 + Q1] + [P2 + Q2] + [P3 + Q3] = 0 is characterised by the fact
that the pointsP3, Q3 are the other points of intersection ofC with the curve
Y = a3X

3+ a2X
2+ a1X + a0 throughP1,Q1, P2,Q2. The inverse of[P +Q] is

[P̂ + Q̂].
Letp be a prime of good reduction (i.e.p > 2 and does not divide the discrim-

inant ofF ). Denote withJ(Qp)0 the kernel of reduction modp

0→ J(Qp)0→ J(Qp)→ J(Fp)→ 0.

By the corollary to Theorem 7.4.1 in [CF96] we have thatJ(Qp)0 is free of torsion.
SinceJ(Q) injects intoJ(Qp), this implies that #Jtor(Q) | #J(Fp). The latter
quantity can be calculated using

#JC(Fp) = 1
2(#C(Fp))2+ 1

2#C(Fp2)− p. (6)

(see Section 8.2 in [CF96]). Completely analogous to the elliptic curves case, this
gives us a way to boundJtor(Q).

4.2. COMPUTING THE RANK AND THE GROUP STRUCTURE

We compute the rank ofJ(Q) by a complete 2-descent as described in, for example,
11.2 of [CF96]. LetK be an extension ofQ. Denote by2 the image ofX in
K[X]/(F (X)). ThenK[2] is a finite, square-free commutativeK-algebra and thus
the direct sum of finite field-extensions ofK. WriteMK forK[2]∗/(K[2]∗)2. This
is a commutative group of exponent 2 and therefore anF2-vector space. The group
homomorphismµK :J(K)/2J(K) → MK partially given by[(x, y) + (u, v)] 7→
(x−2)(u−2), is injective. LetS be the set of primes dividing 2 Disc(F ) together
with a set of primes such that the class groups of the irreducible factors ofQ(2)
can be represented by ideals that are unitary outsideS. In our case, we will only
meet trivial classgroups, so the latter condition is void. LetG be the subspace ofMQ
of quadratic classes that can be represented by elements ofQ[2] that are unitary
outsideS in each of the factors ofQ[2]. It is shown in [FPS95] thatµQ(J(Q))
lies inG. Furthermore, note thatG is finite and effectively computable givenF . We
make use of the commutative diagram

J(Q)/2J(Q)
µQ - G

J(Qp)/2J(Qp)
? µQp- MQp .

?

We use that #J(Qp)/2J(Qp) = #J[2](Qp)/|2|2p to compute the dimension of
#J(Qp)/2J(Qp) as anF2-vector space and search for generators (p-adic points
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are not too hard to find). The intersectionG in MQp with the pullback of the image
of µQp to MQ gives a bound on the dimension ofJ(Q)/2J(Q) and thus on the
rank ofJ(Q). Provided that we can findJtor(Q), this gives us the group structure.

4.3. THE JACOBIAN AS Ap-ADIC VARIETY

In [CF96], Chapter 2, Cassels and Flynn give an explicit embeddingz:J ↪→ P15.
Note for future reference that

(z12 : z13 : z14)([(x, y) + (u, v)]) = (xu : x + u : 1).
The affine coordinates(s1, . . . , s15) = (z1/z0, . . . , z15/z0) are normalized such that
for a primep of good reduction we haveD ∈ J(Qp)0 exactly if s1(D), s2(D) ∈
pZp. Thus s1 and s2 are local coordinates around the origin. The power series
expansions ofs3, . . . , s15 in s1, s2 are convergent for suchD. Furthermore, the
formal logarithm and exponential map describe the group law onJ(Qp)0 and are
expressible in terms ofs1, s2. Thus, forD1,D2 ∈ J(Qp)0 we have

(s1, s2)(D1+D2) = Exp(Log(D1)+ Log(D2)).

Here, the+ on the left-hand side is onJ and on the right-hand side onpZp⊕pZp.

4.4. APPLYING CHABAUTY’S METHOD

Consider the map

C → J,

P 7→ [P + P ].
It mapsC(Q) into J(Q), so determining the rational points onC reduces to finding
all n ∈ Z such thatnG = [P + P ] or T + nG = [P + P ]. We will assume that
using a variety of ad hoc finite-field arguments, we have found a primep of good
reduction such that anyP ∈ C(Q) has[P + P ] = 0 modp and thatT +G is not
of the form[P + P ] for anyn ∈ Z.

Letm be the order ofGmodp. We define

θmG(n) = (s2
13− 4s12s14)(nmG).

This function has a zero atn if nmG = [P + P ]. We can express this as a power
series inn, since(s1, s2)(nmG) = Exp(n Log(mG)) andmG ∈ J(Qp)0. We then
use Strassmann’s theorem to bound the number ofn ∈ Zp for which θmG(n) = 0.

THEOREM 5 (Strassman).Let A(X) = ∑∞
i=0 anX

n be a nonzero power series
overQp such that

lim
n→∞ |an|p = 0.
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LetN be such that|an|p 6 |aN |p for n = 0, . . . , N − 1 and |an|p < |aN |p for
n = N + 1, . . .. ThenA(X) = 0 for at mostN values ofX ∈ Zp. If the zeros are
counted with the appropriate multiplicity, then the bound still holds.

Sketch of proof. This is Theorem 4.1 in [Cas86]. The stronger statement about
multiplicity follows from the proof given there or from the Preparation Theorem of
Weierstrass, which says that A(X) can be written as the product of anN th degree
polynomial and a power-series without zeros inZp. (Theorem 5.1 in [Cas86]).2
For convenience, we do this calculation once for the type of curve we will en-
counter. Note that the restriction on the model of the curve is purely to limit the
size of the computer algebra involved.

LEMMA 4. Consider the genus 2 curveC:Y 2 = X5 + aX (a ∈ Z). Choose a
primep > 2 not dividinga. LetG ∈ J(Q) be a point on the Jacobian and let
m be its order modp. If (L1, L2) = Log(mG) satisfiesL2 6= 0 modp2, then the
following holds. IfL4

1 + a L4
2 = 0 modp6, then there is at most onen ∈ Z>0 such

thatnmG = [P + P ]. Otherwise, onlyn = 0 is a solution.
Proof. Using the formulas described by [CF96] and available by anonymous ftp,

we compute

θmG(n) = 4L1L
5
2

(
L4

1+ aL4
2

)
n10−

−1
3 L

4
2(17L8

1 + 2a L4
1L

4
2+ a2L8

2)n
12+O(n14).

From [CF96] we know that power series fors12, s13, s14 ∈ Z[a][[s1, s2]] and that the
denominators of coefficients of terms of total degreen in the power series for Exp
and Log have their denominators bounded byn!. This means that forp > 7, the
available terms are sufficient to compute(L1, L2)modp7 and that the coefficient
of nt in θmG(n) is divisible byp13 for t > 12. Note thatn = 0 is at least a 10-
fold zero ofθmG. If L4

1+ a L4
2 = 0 modp6, thenθmG(n) = −16

3 a
2L12

2 n
12 modp13,

which is nonzero by the assumption onL2. So, by Strassman’s lemma we have that
θmG(n) has at most 12 zeros inZp counted with multiplicity. Apart fromn = 0,
this leaves room for at most two more zeros. SinceZ ⊂ Zp, this bound surely holds
for n ∈ Z. By construction we know that ifn is a zero, so is−n. Therefore there
can be at most one suchn > 0.

If L4
1+a L4

2 6= 0 modp6, we have thatθmG(n) = 4L1L
5
2(L

4
1+aL4

2)n
10 modp12

is nonzero, so again by Strassman’s lemma we see that there is non ∈ Zp apart
from n = 0 that is a zero ofθmG. 2
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5. The Equationx2+ y8 = z3

Observe that any primitive solution of the diophantine equationx2+ y8 = z3 must
also satisfyx2 + (y2)4 = z3. Lemma 3 gives us a finite set of formulae describing
suchx, y2, z. We see that

±y2 = (s2+ 3t2)(s4 − 18s2t2 + 9t4) or

y2 = 6st (s4 − 12t4) or

y2 = 6st (3s4 − 4t4) or

y2 = (3/2)st (s4 − 3t4).

Remark that in each case,t = 0 implies eitherx = 0 or y = 0. Therefore, non-
trivial solutions correspond (after some transformations) to affine rational points
on one of the curves

C1 : Y 2 = −(X2+ 3)(X4− 18X2 + 9),

C2 : Y 2 = (X2+ 3)(X4− 18X2 + 9),

C3 : Y 2 = X5− 15552X,

C4 : Y 2 = X5− 139968X,

C5 : Y 2 = X5− 3888X.

The rational points on the first two curves can be determined using covers of elliptic
curves.

PROPOSITION 1.The curveC1 has no affine rational points.
Proof. The curveC1 is a double cover of the elliptic curveY 2 = −(X+3)(X2−

18X + 9) by the mapX 7→ X2. The elliptic curve is of conductor 2304 and has
rank 0, which can be verified by performing a 2-descent on the curve. The only
affine torsion-point is(−3,0), which lifts to (±√−3,0) onC1. 2
PROPOSITION 2.The curveC2 has no affine rational points.

Proof. Unfortunately, the elliptic curve we get by applying the mapX 7→ X2

has rank 1. We observe that, because(X2 + 3)(X4 − 18X2 + 9) has no rational
roots and Res(X2+ 3, X4 − 18X2+ 9) = 2634, any rational solution must satisfy

µY 2
1 = X2+ 3, (7)

µY 2
2 = X4− 18X2+ 9, (8)

for oneµ ∈ {±1,±2,±3,±6}. Equation (7) shows thatµ > 0. A simple computer
search shows that there are no solutions toµY 2

2 = X4−18X2Z2+9Z4 mod 128 for
µ = 2,3,6 with (X,Z) ∈ Z2, (X,Z) 6= (0,0)mod 2, which only leavesµ = 1.
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For µ = 1, (8) is isomorphic to 288D1, which is a curve with 4 rational points.
For our model, these are∞+,∞−, (0,3), (0,−3). The affine points clearly do not
satisfy (7). 2
PROPOSITION 3.C3(Q) = {(0,0),∞}.

Proof. Fix α3 such thatα2
3 + 3α3 + 36 = 0. ThenP3 = (α3,33α3 − 180) ∈

C(Q(α3)). Write P̄3 for the quadratic conjugate point ofP3. ThenG3 = [P3 +
P̄3] ∈ J(Q). Another point isT = [(0,0) +∞] ∈ J(Q). Using the notation from
Section 4.2, we have

µQ2(J(Q2)/2J(Q2)) = µQ2(〈T ,G3, [(4,24
√−239)+∞])〉),

µR(J(R)/2J(R)) = µR(〈T 〉).
Calculation shows that the intersection ofG with the pullbacks of these spaces to
MQ is two dimensional. Furthermore,J(Q)/2J(Q) = 〈T ,G3〉.

Table I. Image ofJC3(Q) in JC3(F7)

G3 [(α3,−2α3 + 2)+ (−3− α3,1+ 2α3)]
2G3 [(3,2)+ (6,5)]
3G3 [(γ,−γ − 3)+ (−γ, γ − 3)]
4G3 = T [(0,0)+∞]
5G3 [(γ, γ + 3)+ (−γ,−γ + 3)]
6G3 [(3,5)+ (6,2)]
7G3 [(α3,2α3 − 2)+ (−3− α3,−1− 2α3)]
8G3 [2∞]

γ 2+ 2= 0

Table II. T + nG3 in JC3(F13)

T [(0,0)+∞]
T +G3 [(−1,4)+ (3,6)]
T + 2G3 [(γ,5γ + 5)+ (−γ − 4,−5γ − 2)]
T + 3G3 [(1,−6)+ (−3,−4)]
T + 4G3 [(1,6)+ (−3,4)]
T + 5G3 [(γ,−5γ − 5)+ (−γ − 4, 5γ + 2)]
T + 6G3 [(−1,−4)+ (3,−6)]

γ 2+ 4γ − 3= 0

Using (6) we determine that #J(F5) = 26 and that #J(F7) = 64. Thus,Jtor(Q)
has at most two elements and since 2T = 0, is {0, T }. This means thatJ(Q) '
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Z/(2)×Z. For future reference we observe thatG3 mod 7 and[(3,2)+∞]mod 7
generate order 8 subgroups ofJ(F7) with trivial intersection. Therefore,J(F7) '
Z/(8) × Z/(8). As Table I shows,T = 4G3 mod 7, soJ(Q)mod 7 is a cyclic
group containingG3 mod 7. Taking into account the group-structure, this implies
thatJ(Q)mod 7= 〈G3 mod 7〉. It follows thatG3 is not in 2J(Q) (but we already
knew that, sinceG3 is nontrivial inJ(Q)/2J(Q)).

An inspection of Table I yields that any point[P +P ] ∈ J(Q) lies inJ(Q7)
0 or

in T+4G3+J(Q7)
0. However, the following argument mod 13 rules out[P+P ] =

T + 4G+ n8G.
We have that{0, T , [(√2,0) + (−√2,0)], [(√10,0) + (−√10,0)]} form a

subgroup ofJ(F13) isomorphic toZ/(2) × Z/(2). Furthermore,G3 mod 13 and
[(1,6) + (1,6)]mod 13 generate cyclic subgroups of order 7 with trivial intersec-
tion. It follows thatJ(F13) ' Z/(2) × Z/(2) × Z/(7) × Z/(7), and thus thatG3

is not in 7J(Q). Furthermore,J(Q)mod 13 is generated byT andG3 (since we
already saw thatG3 is not in 2J(Q)). Table II shows that no pointT + nG3 can be
of the form[2P ]. We have not proved thatG3 is a generator and we do not need
to either. It is enough to know thatG3 is not twice or seven times a point inJ(Q).
Upon choice of a generator, we get

J(Q) ∩ J(Q7)
0 ⊂ {n8G3 : n ∈ Q ∩ Z7 ∩ Z2}.

We compute 8G3 represented as a divisor onC3 using the genus 2 analogon of the
chord-tangent method for computing on elliptic curves. The result is too large to
print here, but using a computer algebra package, we can calculate it and substitute
it in the formulas by Flynn. We get Log(8G3) = (133,14)mod 73. Lemma 4 yields
that the onlyn ∈ Z such that 8nG3 = [P + P ] is n = 0. However, note that if
G3 = kG′, we know that 2,7 - k, so the order ofG′mod 7 will also be 8 and
Log(8G′) = k Log(8G3). Thus, only 0∈ J(Q7)

0 ∩ J(Q) is of the form[P + P ].
The only pointsP on C such that[P + P ] = 0 are points withY (P ) = 0 or
P = ∞. The only rational points with this property areP = ∞ andP = (0,0). 2
PROPOSITION 4.C4(Q) = {(0,0),∞}.

Proof. Fix α4 such thatα2
4 − 36α4− 648= 0. We have thatP4 = (α4,288α4 +

2592) is a point onC4 and

G4 = [P4 + P̄4], T = [(0,0) +∞] ∈ J(Q) = JC4(Q).

It is straightforward to verify that

µQ2(J(Q2)/2J(Q2)) = µQ2(〈T ,G4, [(4,24
√−2183)+∞]〉).

The intersectionG with the pullback of this set toMQ is two-dimensional. Since
2T = 0, this bounds the rank ofJ(Q) to one. By (6), we have #J(F7) = 26 and
that #J(F13) = 196. Therefore,Jtor(Q) = {0, T } andJ(Q) ' Z/(2)× Z.
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By some computations inJ(F13), we see thatT mod 13 and[(√6,0)+(−√6,0)]
generate aZ/(2) × Z/(2) subgroup ofJ(F13) and that[(2,5) + (2,5)] and 2G4

generate distinct order 7 subgroups. It follows thatJ(F13) ' Z/(2) × Z/(2) ×
Z/(7)×Z/(7). We know thatJ(Q)mod 13 is a subgroup with 2 generators, one of
which has order 2 and containsT andG4. Computations show that #〈T ,G4〉 = 28,
and thereforeT andG4 generateJ(Q)mod 13, since such a group is maximal
under the given properties. Table III shows that the only point inJ(Q) of the form
[P +P ] is [2∞] (use that ifD = [P +P ], then−D = [P̂ + P̂ ]). Therefore, every
point of the form[P + P ] ∈ J(Q)must lie inJ(Q13)

0.

Table III. (half of) Image ofJC4(Q) in JC4(F13)

0 [2∞]
G4 [(−2,1)+ (−1, 3)]
2G4 [(−2,−1)+ (2, 5)]
3G4 [(−1,3)+ (2,5)]
4G4 [(γ1,5γ1+ 6)+ (−4− γ1,−1− 5γ1)]
5G4 [(γ2,4γ2+ 4)+ (−3− γ2,5− 4γ2)]
6G4 [(γ3,6γ3+ 3)+ (5− γ3,−6− 6γ3)]
7G4 [(γ4,0)+ (−γ4,0)]
T [(0,0)+∞]
T +G4 [(2,−5)+ (4,−3)]
T + 2G4 [(1,−2)+ (−4,−2)]
T + 3G4 [(−2,−1)+ (4,−3)]
T + 4G4 [(−1,3)+ (4,−3)]
T + 5G4 [(γ5,−5γ5+ 4)+ (2− γ5,5γ5− 6)]
T + 6G4 [(γ6,−4γ6− 3)+ (−2− γ6,4γ6+ 5)]
T + 7G4 [(γ7,0)+ (−γ7,0)]

γ 2
1 + 4γ1 − 4= 0

γ 2
2 + 3γ2 + 6= 0

γ 2
3 − 5γ3 − 4= 0

γ 2
4 + 6= 0

γ 2
5 − 2γ5 − 6= 0

γ 2
6 + 2γ6 − 4= 0

γ 2
7 − 6= 0

We compute that Log(14G4) = (1456,1534)mod 133. This is not congruent to
(0,0)mod 132, so we seeG4 is not in 13J(Q). This means

J(Q) ∩ J(Q13)
0 ⊂ {14nG4 : n ∈ Q ∩ Z13}.
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Lemma 4 proves that 0 is the only point inJ(Q) of the form[P + P ]. The only
P ∈ C(Q) such that[P + P ] = 0 are∞ and points withY (P ) = 0, i.e.(0,0). 2
PROPOSITION 5.C5(Q) = {(0,0),∞, (−2,88), (−2,−88)}

Proof. We writeP5 = (−2,88), T = [(0,0) +∞] andG5 = [P5 +∞]. We
have that

µQ2(J(Q2)/2J(Q2)) = µQ2(〈T ,G5, [(−12,2332
√−39)+∞]〉)

and that the intersection ofG with the pullback of this space toMQ is two-dimen-
sional. Thus,J(Q)/2J(Q) = 〈T ,G5〉. Using (6) we find that #J(F17) = 2·89
and #J(F43) = 22·33·17. We see thatJtor(Q) = {0, T } andJ(Q) ' Z/(2) × Z.
Furthermore, from the fact that 108G5 mod 43 6= 0, we conclude thatG5 is not
in 17J(Q). Some computation shows thatJ(F11) = (Z/(2))3 × Z/(17). Since
G5 mod 11= [(−2,0)+∞] andG5 is not in 17-divisible, we see thatJ(Q)mod 11
is completely 2-torsion. A 2-torsion point being of the form[P + P ] means that
P̂ = P and thus[P + P ] = 0. Therefore, any rational pointP ∈ C5(Q) has
[P + P ] ∈ J(Q11)

0. We have 2G5 ∈ J(Q11)
0. However, the formulas available

for s1, s2 are not defined for points of the form[P + P ]. We could compute
(s1, s2)(2G5) by taking limits, but for our purposes,(s1, s2)(6G5) are also suffi-
cient, so we will compute these. We find Log(6G5) = (649,341)mod 113. These
values satisfyL4

1 − 3888L4
2 = 0 mod 116. Since Log(6G5) 6= (0,0)mod 112, we

see that 6G5 (and thereforeG5) is not 11-divisible. Upon choice of a generator we
haveJ(Q) ∩ J(Q11)

0 ⊂ {n2G5 : n ∈ Q ∩ Z11}. and we see that the Log of that
generator also satisfiesL4

1 − 3888L4
2 = 0 mod 116. By Lemma 4, there is at most

one pair of nontrivial points inJ(Q) of the form[P +P ]. Together with the points
P ∈ C(Q) with [P + P ] = 0, these are the points mentioned in the proposition.2
THEOREM 6.The only solutions tox2+y8 = z3 withx, y, z ∈ Z andgcd(x, y, z) =
1 are (x, y, z) = (±1,0,1), (0,±1,1) and(±1549034,±33,15613).

Proof. The solutions withxyz = 0 are clear. Solutions withxyz 6= 0 correspond
to affine rational points on the curvesC1, . . . ,C5. Proposition 1 and 2 show thatC1

andC2 contain no such points. The point(0,0) onC3,C4,C5 gives rise to solutions
with y = 0. By Proposition 3, 4 and 5,C5 is the only curve that contains other affine
rational points. It contains two such points. Taking into account the sign ofx, these
give rise to four more solutions ofx2 + y8 = z3. Therefore, the list stated in the
theorem is complete. 2

6. References for Computations and Further Reading

The computations necessary for the proofs presented in this article are clearly un-
doable with pencil and paper. While Lemma 1 and 2 may be checked by hand,
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for Lemma 3 it is necessary to compute fundamental units and (trivial) ideal class
groups in quadratic orders.

The computer algebra package KASH [DKF97] has good support for this. Ver-
sions 1.6 through 1.8 were used to obtain all algebraic-number theoretic results
used in this article. The package is maintained by the group of Pohst and is free. It
can be obtained fromftp://ftp.math.tu-berlin.de/pub/algebra/Kant.

Determining conductor, minimal model, rank and torsion of elliptic curves are
also tasks better left to a computer. The Maple package Apecs 3.8 by Connell was
used for this. It can be obtained fromftp://math.mcgill.ca/pub/apecs.

Doing a 2-descent on genus 2 curves requires information on class-groups,
units, factorisation of ideals and squares in number fields up to degree 6 (for
the curves in this article, degree 4). Kash provides ample support for this kind
of calculations. The ranks computed in this article were verified by calculations
using Kash and by Stoll [Sto96] who uses a program not based on Kash.

The computations on Jacobians were done in Maple Vr3 using the cubic fitting
algorithm described in Section 1.2 of [CF96]. The formulas mentioned in Sec-
tion 4.3 are available fromftp://ftp.liv.ac.uk/∼ftp/pub/genus2. In this art-
icle, these were used in Maple Vr3 to obtain local coordinates and approximations
to θ(n).

In all cases, calculations took at most a couple of minutes on a HP712/60
workstation. The interested reader can download the scriptsprfs283.mpl and
dscnt283.g. See for more informationREADME in

ftp://ftp.wi.leidenuniv.nl/pub/GM/Publications/N.Bruin/

Most of the required theory for applying effective Chabauty can be found in
[CF96]. The history of the formulas can be found in [Fly90] and [Fly93]. Notation
in these article slightly differs from the one used here and in [CF96]. For people
interested in doing this kind of computations themselves, [FPS95] is a valuable
source. Further references for determining Mordell–Weil ranks are [Sch95] and
[PS97].

Note that the curves in this article, all having a rational Weierstrass-point, can
in principle be analysed as suggested in [Gra90] and [GG93]. While this method
may be theoretically simpler, the availability of the formulas in Flynn’s case makes
it easier to use his (more general) method. Also, the reader might be interested in
[Col85], which offers an alternative treatment of Chabauty’s method.
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