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Abstract. In this article we determine all solutions to the equatigh+ y? = 7", (p,q,r) €
{(2,4,6),(2,6,4), (4,6, 2), (2,8, 3)} in coprime integers, y, z. First we determine a set of curves

of genus 2, such that every solution corresponds to a rational point on one of these curves. Then we
determine the rational points on these curves using either covers of rank 0 elliptic curves or a method
known as effective Chabauty which works if the Mordell-Weil rank of the Jacobian is smaller than
the dimension.
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1. Introduction

The diophantine equatiot? + y? = 7" inintegersp > 1,¢ > 1,r > 1, x,y,7 IS
a generalisation of the well-known Fermat equatién- y" = z". We will refer to
it as thegeneralised Fermat equation

The homogeneity of the Fermat equation implies that it is sufficient to know
the coprime solutions in order to determine all rational solutions. The generalised
Fermat equation is only weighted homogeneous. That means that not all integer
solutions reduce to coprime integer solutions. The identity 21686* = 12 is
an example of this phenomenon. We exclude these from our considerations and we
limit ourselves to the determination of tipgimitive solutions: solutions with, y
andz coprime®*

The quantityy = 1/p + 1/q + 1/r determines the general shape of the set
of primitive solutions. In the casg > 1, Beukers proved in [Beu98] that, for
fixed A, B, C, the equationAx? + By? = CZz" has either none or infinitely
many primitive solutions. He described the solutions quite explicitly by proving
that there exists a finite set of polynomial solutionsy, z € Z[s, ], so called

* Address for correspondence: PO Box 9512, 2300 RA Leiden, The Netherlands.
** The techniques used also apply to the situation where one allows,gcd) to factor over a
fixed, finite set of primes.
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parametrisations, such that each primitive solution can be obtained by specialising
s andt in one of the parametrisations.

For the equations? £+ y2 = z" with r > 2, x3 4+ y3 = 22, x?2 +y3 = ¢
andx? + y* = 73, these parametrisations can be determined using factorisation.
Zagier has done that and the results@orq, r) = (3, 3, 2), (2,3, 4), (2,4, 3) can
be found in an appendix to [Beu98].

The casex? 4+ y® = z° is harder. Thiboutot bounded the number of needed
parametrizations in [Thi96], but explicitly determining them seems beyond the
feasable at the moment. These are the only caseswithl.

For x = 1, the solutions are parametrised by elliptic curves. No nontrivial
solutions existfoXp, g, r) = (2, 3,6), (2,6, 3), (3,3, 3), (4,4, 2), (4, 2, 4) except
2% 4 1% = 32 and obvious modifications of it.

For x < 1, Darmon and Granville proved in [DG95] that there are only finitely
many primitive solutions. For the cage= ¢ they describe a procedure that gen-
erates a finite set of parametrizing curves such that each solution corresponds to a
rational point on one of the curves.

The ABC conjecture implies an even stronger finiteness result. Consider the
following.

CONJECTURE 1. (ABC Conjecture) For every- 0 there are only finitely many
coprime positive integera, B, C satisfying the relatiom + B = C such that

logC
>
log(product of prime divisors oA BC)

If1/p+1/g +1/r < 1,then ¥p + 1/g + 1/r < 41/42. Applying the
ABC-Conjecture withe < 1/41 gives that there are only finitely many triples
(A,B,C) = (x, y4,7") satisfyingA + B = C and gcdA, B,C) = 1>

The casep = ¢ = r was treated by Wiles. There are no nontrivial primitive
solutions in this case. Darmon and Merel [DM96] proved the samg ferg > 7,

r = 2 and, under the Shimura—Tanayama—Weil conjecturep ferg > 7,r = 3.
The cases withh = g < 7,r = 2, 3 are treated by Poonen in [Po097].

In [Beu98], a list of small solutions to the generalised Fermat-equation with
x < 1is given. Since the number of primitive solutionsad + y? = z" with
x < 1is conjecturally finite, it is tempting to try to provably list them all. We
make a modest start by proving that for some equations, there are no solutions
apart from the ones already known.

1+e.

THEOREM 1.The only solutions te” + y? = z" withgcd(x, y, z) =1, xyz # 0
and(p,q,r) € {(2,4,6),(2,6,4), (4,6,2), (2,8,3)} are

(£1549034% + (+33)® = 15613.

* One is easily tempted to conclude that the equatidr- y? = z" has only finitely many solu-
tions(x, y, z, p, q, r) withgcd(x, y, z) = 1,xyz # 0and ¥Yp + 1/q + 1/r < 1. A counterexample
is given by 3 4 19 = 32,
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In each case, we use the parametrisations of primitive solution$ 40y? =
72, x2 + y? = 2 andx? + y* = Z% to derive curves of genus two such that
primitive solutions to the equations investigated correspond to rational points on
these curves. In some cases the curve covers an elliptic curve of rank 0. Thus, the
rational points can be determined by lifting the torsion points on the elliptic curve
to the cover.

In the other cases, the Jacobian turns out to be of rank 1. We embed the curve
in the Jacobian and use a method known as effective Chabauty to determine the
rational points. The calculations involved are too bulky to display here. The inter-
ested reader can obtain scripts to check these using a computer. See Section 6 for
more information.

Note that the curves far? + y* = 25, x? + y® = z* andx* + y® = z? are
all isomorphic to one another over some finite algebraic extensi@hasfd so are
the curves forx? 4+ y8 = z3. Thus, when examining the different cases, we are
examining different arithmetic structures on one and the same geometric object.
This is essential to the method, as can be seen in the equdtier® = z2, which
is geometrically equivalent t8? + y& = z3. When determining the underlying
curves using the parametrisationsxdf+ y* = z2, we run into the curves

Y2 = x®—6x°+45x* — 180x° + 135X2 + 162X — 405
Y2 = X%46X°—15x* + 20x°3 + 15x2 + 30X — 17

which turn out to have Jacobians of Mordell-Weil rank 2 o@eiThis prevents us

from using the present method to solve the equatioa y& = z2. However, these
curves are geometrically equivalent to the curves encounterecf fory® = z3,

so their Jacobians are nonsimple, as are the Jacobians we will meet in the present
article. It turns out that they split over a degree 12 extensid@.of

2. Preliminaries
We shall use the parametrisations of some equations yvithl.
LEMMA 1. Letx, y, z be coprime integers such that + y?> = z2. Possibly by

interchangingx and y, we can assume that is divisible by2. Then there are
coprime integers and¢, not both odd, such that

x = 2st, :I:y:sz—tz, +7 =52+ 12

Sketch of proofThis is a classical result. Thatandy are not both odd can be
seen mod 4. The polynomials can be obtained by observing/that z2 — x? =
(z+x)(z—x). O

LEMMA 2. Letx, y, z be coprime integers such that + y?> = z3. Then there
are coprime integers, ¢ such that

x = s(s® — 317, y =1(t? — 35?), 7=s°+1°
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Sketch of proofThis result can be obtained by consideringt iy)(x — iy) =

z5. 0

LEMMA 3 (Zagier, [Beu98]) Letx, y, z be coprime integers such thet+y* = z3
Then there are rational numbesst such that one of the following holds

x = 4st(s% — 3t2)(s* + 65212 + 81r*)(3s* 4 25212 + 3t%),
+y = (52 + 32 (s* — 185212 + %),
7= (s* — 2522 + %) (s* + 305212 4+ ),

+x = (s* 4+ 12%) (s® — 408%* + 144°),
y = Bst(s* — 12t%),
7 =%+ 168%* + 1448,

+x = (35* + 41*)(9s® — 408*1* + 16¢8),
y = 6st(3s* — 4t%),
7z = 9s% + 16&%* + 168,

+x = (1/8)(s* + 3r*)(s® — 1025%+4 4 9r8),
y = (3/2)st(s* — 3r*),
7= (1/4)(s® + 425%* + 9¢8).

Sketch of proofFirst observe that? + (y?)? = z°. Using Lemma 2, we see
that y> = ¢(> — 3s?). This implies thatt = Au?, 1> — 35> = Au? for some
A € {1,-1,3, —3}. Parametrise the latter ternary quadratic equations to get a
list of quadratic expressions ferands (for A = 3 andA = —1 there are no
solutions at all). Substitute each expressionsfar + = Au? to obtain a ternary
guadratic equation. Parametrisation again results in quadratic forms, which can be
substituted back. Care should be taken to eliminate parametrisations that do not
produce coprime solutions. O

3. The Equationsx? + y* = z°, x? + z8 = y*and y* + 78 = x?

The equations with exponents£and 6 turn out to be easy to solve. Essentially,
the solutions are parametrised by genus 2 curves that admit a morphism to a rank
0 elliptic curve.

THEOREM 2.If x, y, z € Z are coprime such that®> + y* = z8, thenxyz = 0.

Proof. Suppose we have a primitive solutieny, z. Then, by applying Lemma 2
to x2 + (y2)2 = (z2)3, we have coprime, b € Z such that

x = b(3d% — b?), (1)
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2 = a(@® - 3p%), 2
2 =a?+ b2 (3)
Equation (3) implies that either = s? — t?, b = 2st ora = 2st, b = 5% — t2. We
treat each of the possibilities separately.

a= s — t?, b = 2st By substitution in Equation (2), we get
y2 = (52 — D) (s* — 14s%% + 1Y),

Note thatr = 0 implies thath = 0 and thust = 0. We can therefore safely put
Y = y/t3, X = s2/t?. Solutions withx # 0 correspond to affine rational points
on the elliptic curve

Y2 = (X — 1)(X%2— 14X + 1).

Using GP/Pari or Apecs, one can calculate the minimal model and the conductor
of this curve. From this, we see that it is isomorphic to 144A2 from Cremona’s
tables [Cre92]. These tables show that this curve has only one affine rational point,
namely(1, 0). This corresponds to solutions with= 0.

a=2stb=—t2 Puts—t =u,s+t = v. Thisgivesa = (v>—u?)/2, b = uv.
Substitution in Equation (2) yields
8y? = (vV? — ud)(v* — 14%u? + u*).

Note thatu = O implies thath = 0 and thusx = 0. By puttingY = y/u?,
X = v?/u?, other solutions correspond to affine rational points on the elliptic
curve

8Y? = (X —1)(X?—14X +1).

This curve is isomorphic to 576A2 in [Cre92] and has only one affine rational
point, namely(1, 0). This corresponds to solutions with= 0. O

THEOREM 3.If x, y, z € Z are coprime such that? = z8 + y*, thenxyz = 0.

Proof. Suppose we have a primitive solutieny, z. Then Lemma 1 states that
there exist coprime, ¢ of distinct parity such thay? = 2st,z% = 5% — 1% or
y?2 =52 — 12, 73 = 25t. We treat these cases separately.

y? = 2st, 28 = (s+ t)(s—t). Since gcdy, x) = 1 ands + ands — ¢ are both odd,
we have that + r ands — 7 are coprime. Therefore, there existv € Z such that
u® =5 —1t,v3 =15+ 1. Rewritingy? in u, v gives

2y? = v® — ub.
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u = 0 implies thats = ¢ and thus; = 0. Other solutions correspond to the affine
rational points on the elliptic curve curvé’2 = X3 — 1, which is isomorphic to
576E1 and has just (1, 0) as affine rational point.

y? =& —t2, 22 = 2st Sincey is odd, we have? = 1 mod 4. Therefores is odd.
Fromz® = 25t we then conclude that= v3, t = 4u®. Rewritingy? in u, v gives

y2 =% — 16u°.

Note thaty = 0 impliest = 0 and thug = 0. Other solutions correspond to affine
rational points on the elliptic curvB? = X3 — 16, which is is 432A1 in [Cre92].
The curve has no affine rational points at all. O

THEOREM 4.If x, y, z € Z are coprime such that? + 7z = y*, thenxyz = 0.
Proof. Suppose we have a primitive solutiany, z. If z # 0 theny* — x? >

0. Therefore, bothy? — x > 0 andy? + x > 0. Sincex andy are coprime,

gcd(y? — x, y?> 4+ x) | 2. Possibly after change of sign efwe havey? — x =

2u8, y2 +x = 258 or y? — x = u®, y2 + x = v8. We treat these cases separately.

y? — x = 2u8, y? + x = 258, Eliminatingx gives
y2 = u® + 160°.

v = 0 implies that; = 0. Other solutions correspond to affine rational points on
the elliptic curveY? = X34 16, which is isomorphic to 27A3 and has only the two

affine rational points (0, 4), (0, —4). The corresponding solutions have

u=z=0.

y? — x = U8, y? + x = \®. It follows thatu andv are odd and coprime. Eliminating
x gives 22 = u® + v8. Proceeding as before does not work, as the elliptic curve
2Y? = X° + 1 has infinitely many rational points. However, we remark that

2y2 = W? 4+ v?)(u* — u?v? +vH
implies that

u2+v2=oly%, u4—u2v2+v4=ﬂy§,
whereaf = 2y ande, B consist only of factors 2 and 3. Positivity shows that
«, 8 > 0 and modulo 3 we see that{3«. Furthermore, the parity af andv
implies thatu® — u?v? + v* is odd. Therefore we have

u® + 0% =2y?, (4)

ut —ut? 0t = yg. (5)
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Solutions of (5) correspond to rational points on the elliptic curfe= X* —

X? + 1, which is isomorphic to 27A1. (The smooth model of) this curve has 8
rational pointsi{oo™, co™, (0, £1), (£1, £1)}. The points at infinity and0, +1)
correspond to solutions with = 0 andu = O respectively. Equation (4) has
no solution for those points. Solutions correspondingdtd, +1) haveu® = v°,
which implies thatc = 0. 0

4. Rational Points on Genus 2 Curves

The exponent triples 2-4-6, 2-6-4 and 4-6-2 are easy to handle, since the corres-
ponding genus 2 curves cover elliptic curves of rank 0. The following method
works for the cases we encounter for 2-8-3.

We use the fact that the-adic topological closure of a ranksubgroup of g-
adic abelian variety is @-adic subvariety of dimension at mostChabauty used
this observation in [Cha41] to prove the finiteness of the number of rational points
on curves of genug > 0 with a Jacobian of Mordell-Weil rank g over@Q. Flynn
has adapted this idea in [CF96] and [Fly97] to get bounds on the number of rational
points on curves of genus 2 with a Jacobian of rank 1 QueWe present and use
a version that is restricted to the type of curves we will encounter.

4.1. NOTATION AND STANDARD RESULTS

This section is a summary of the objects and results we need from, for example,
[CF96]. Let @ denote a smooth curve of genus 2 with a singular matel=
F(X), where F(X) is a square-free polynomial ovér of degree 5. We denote
the hyperelliptic involute of a poirty, y) bym = (x, —y). Note that, because
the degree off is odd, we have a unique place on € corresponding to the
intersection of the model with the line at infinity. We haxe= cc.

We write § = ¢ for the Jacobian. As a sef, is the same as the collection of
divisor-classes of degree 0, the ®itt is a standard result thagt ~ € x ¢/ ~,
where(Py, Q1) ~ (P2, Q2) if {P1, Q1} = (P2, Q2} or if PL = Q1, P> = Q,. We
write [P 4+ Q] for the point ong corresponding to the divisor-class represented by
{P + Q — 200}.

Note thatoo is defined ovef), soC(K) is nonempty for any extensiaki of Q.
That means that all points (K ) can be represented by divisors defined aver
That means that every point g K) can be written agP + Q], whereP, Q are
points onC, either rational of quadratic conjugate ov@ér(in fact, this is true for
all curves of genus 2 and number fielk$.

On this representation ¢f, the description of the group law bears great re-
semblance to the chord-tangent method on elliptic curves. The pBint Qs]

* In general, a model exists with dége {5, 6}. We limit ourselves to the special case deg- 5,
but this is not essential to the method used.
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such thaf P, + Q1] + [P> + Q»] + [Pz + Q3] = 0 is characterised by the fact
that the pointsP;, Q3 are the other points of intersection 6f with the curve
Y = a§X3 + ay X? + a1 X + ag through Py, Q1, P>, Q5. The inverse of P + Q] is
[P+ O]

Let p be a prime of good reduction (i.e.> 2 and does not divide the discrim-
inant of F). Denote withg (Q,)° the kernel of reduction mogd

0— 3(Q,)° — (@, - ¢(F,) — 0.

By the corollary to Theorem 7.4.1 in [CF96] we have tf&D,)° is free of torsion.
Since Z(Q) injects into 4(Q,,), this implies that #,(Q) | #4(F,). The latter
guantity can be calculated using

#ge(F,) = J#HC(F,))* + $#C(F 2) — p. (6)

(see Section 8.2 in [CF96]). Completely analogous to the elliptic curves case, this
gives us a way to boung,(Q).

4.2. COMPUTING THE RANK AND THE GROUP STRUCTURE

We compute the rank ¢f(Q) by a complete 2-descent as described in, for example,
11.2 of [CF96]. LetK be an extension of). Denote by® the image ofX in
K[X]/(F(X)). ThenK[®] s a finite, square-free commutatike-algebra and thus
the direct sum of finite field-extensions Kt Write My for K[®]* /(K [©]*)2. This
is a commutative group of exponent 2 and therefor&awmector space. The group
homomorphismug: $(K)/23(K) — Mg partially given by[(x, y) + (u, v)] —
(x —©®)(u—0), is injective. LetS be the set of primes dividing 2 Di6E) together
with a set of primes such that the class groups of the irreducible factds@f
can be represented by ideals that are unitary outsida our case, we will only
meet trivial classgroups, so the latter condition is void.4.be the subspace #g
of quadratic classes that can be represented by elemefigadfthat are unitary
outsidesS in each of the factors o[®]. It is shown in [FPS95] thatg(4(Q))
lies in . Furthermore, note thgtis finite and effectively computable given We
make use of the commutative diagram

J(Q)/29(Q) —2— g

9(Q,)/29(Q,) —2+ My,

We use that #(Q,)/27(Q,) = #g[Z](Qp)/|2|I% to compute the dimension of
#3(Q,)/23(Q,) as anlF,-vector space and search for generatgrsadic points
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are not too hard to find). The intersectignn Mg, with the pullback of the image
of ug, to Mg gives a bound on the dimension gtQ)/27(Q) and thus on the
rank of Z(Q). Provided that we can finglo(Q), this gives us the group structure.
4.3. THE JACOBIAN AS A p-ADIC VARIETY

In [CF96], Chapter 2, Cassels and Flynn give an explicit embeddigig— Ps.
Note for future reference that

(z12:z13: 229 ([(x, y) + (u, v)]) = (xu 1 x +u : 1).

The affine coordinate@y, . .., s15) = (z1/z0, . - . , 215/20) are normalized such that
for a prime p of good reduction we hav® < g(@,,)o exactly if s;(D), s2(D) €
pZ,. Thuss; ands; are local coordinates around the origin. The power series
expansions ofs, ..., si5 in s1, s, are convergent for such. Furthermore, the
formal logarithm and exponential map describe the group lag @,)° and are
expressible in terms af, so. Thus, forDy, D, € g(@p)o we have

(51, 52)(D1 + D7) = Exp(Log(D1) + Log(Dy)).
Here, the+ on the left-hand side is ofi and on the right-hand side 1%, ® pZ,,.

4.4. APPLYING CHABAUTY'S METHOD
Consider the map

C -9,

P~ [P+ P].

It mapsC (Q) into 4(Q), so determining the rational points @reduces to finding
alln € Z such thanG =[P + P]lorT +nG = [P + P]. We will assume that
using a variety of ad hoc finite-field arguments, we have found a ppirokgood
reduction such that anf € C(Q) has[P + P] = O0modp and thatT + G is not
of the form[P + P]for anyn € Z.

Letm be the order otz modp. We define

OnG(n) = (553 — 4512514) (1M G).

This function has a zero atif nmG = [P 4+ P]. We can express this as a power
series inn, since(sy, s2)(nmG) = Exp(n Log(mG)) andmG € g(Qp)o. We then
use Strassmann’s theorem to bound the numberef, for which6,,;(n) = 0.

THEOREM 5 (Strassman)et A(X) = Y -,a,X" be a nonzero power series
over(Q, such that

lim l|a,|, = 0.
n—o0
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Let N be such thata,|, < lay|, forn =0,...,N — 1and|a,|, < |an|, for
n=N+1,.... ThenA(X) = Ofor at mostN values ofX € Z,. If the zeros are
counted with the appropriate multiplicity, then the bound still holds

Sketch of proofThis is Theorem 4.1 in [Cas86]. The stronger statement about
multiplicity follows from the proof given there or from the Preparation Theorem of
Weierstrass, which says that A(X) can be written as the product oftardegree
polynomial and a power-series without zeroin (Theorem 5.1 in [Cas86]).0

For convenience, we do this calculation once for the type of curve we will en-
counter. Note that the restriction on the model of the curve is purely to limit the
size of the computer algebra involved.

LEMMA 4. Consider the genus 2 cun@: Y?> = X° + aX (a € Z). Choose a
prime p > 2 not dividinga. LetG € 4(Q) be a point on the Jacobian and let
m be its ordermodp. If (L1, L,) = Log(mG) satisfiesL, # 0 modp?, then the
following holds. IfL{ + a L3 = 0modp®, then there is at most onee Z such
thatnmG = [P + P]. Otherwise, only: = Ois a solution

Proof. Using the formulas described by [CF96] and available by anonymous ftp,
we compute

emG(n) = 4L1Lg (Li + aL‘Zl) nlo —
—1 13718 + 2a LILS + a®LY)n"* + O(n™).

From [CF96] we know that power series @b, s13, s14 € Z[a][[s1, s2]] and that the
denominators of coefficients of terms of total degtea the power series for Exp
and Log have their denominators boundednubyThis means that fop > 7, the
available terms are sufficient to compute;, L,) modp’ and that the coefficient
of n' in 6,,(n) is divisible by p*3 for r+ > 12. Note that: = 0 is at least a 10-
fold zero of6,,g. If L} + a L3 = 0modp®, thend,,¢(n) = —%angznlz modp*3,
which is nonzero by the assumption ba So, by Strassman’s lemma we have that
Onc(n) has at most 12 zeros i, counted with multiplicity. Apart frorm = 0,
this leaves room for at most two more zeros. Siice Z,,, this bound surely holds
for n € Z. By construction we know that i is a zero, so is-n. Therefore there
can be at most one sueh> 0.

If L1+a L3 # 0modp®, we have tha#,,¢ (n) = 4L1L3(L}+aL3)n'®modpt?
is nonzero, so again by Strassman’s lemma we see that therenisend, apart
fromn = O that is a zero of,,;. O
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5. The Equationx? + y® = z°

Observe that any primitive solution of the diophantine equatf# y® = z3 must
also satisfyx?® + (y?)* = z3. Lemma 3 gives us a finite set of formulae describing
suchx, y?, z. We see that

+y?2 = (5% 4 32 (s* — 18212 + %) or
y? = 6st(s* — 12%) or
y? = 6st(3s* — 4t*)  or
y2 = (3/2)st(s* — 3t%).
Remark that in each case~= 0 implies eitherx = 0 or y = 0. Therefore, non-

trivial solutions correspond (after some transformations) to affine rational points
on one of the curves

Cr:Y?2=—(X?+3)(X*—-18X2+9),
Cy: Y2 = (X?+3)(X*—18X%+9),
C3:Y? = X%— 15552,

C4:Y? = X°— 139968,

Cs: Y? = X5 —3888X.

The rational points on the first two curves can be determined using covers of elliptic
curves.

PROPOSITION 1The curve; has no affine rational points

Proof. The curveC; is a double cover of the elliptic curd? = — (X +3)(X%—
18X + 9) by the mapX — X?2. The elliptic curve is of conductor 2304 and has
rank 0, which can be verified by performing a 2-descent on the curve. The only
affine torsion-point ig—3, 0), which lifts to (£+/—3, 0) on €. 0

PROPOSITION 2The curveC, has no affine rational points

Proof. Unfortunately, the elliptic curve we get by applying the map— X?
has rank 1. We observe that, becag&@ + 3)(X* — 18X? + 9) has no rational
roots and Res¥? + 3, X* — 18X? + 9) = 263*, any rational solution must satisfy

uY?=Xx*—18x2+9, (8)
foroneu € {£1, £2, +3, +6}. Equation (7) shows that > 0. A simple computer

search shows that there are no solutions¥§ = X*—18X27Z2+97*mod 128 for
w = 2,3,6 with (X, Z) € Z?, (X, Z) # (0,0)mod 2, which only leaveg = 1.
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Foru = 1, (8) is isomorphic to 288D1, which is a curve with 4 rational points.
For our model, these am®™, 0o, (0, 3), (0, —3). The affine points clearly do not
satisfy (7). O

PROPOSITION 3C3(Q) = {(0, 0), co}.

Proof. Fix a3 such that3 + 33 + 36 = 0. ThenP; = (a3, 3303 — 180) €
C(Q(a3)). Write P; for the quadratic conjugate point ¢&. ThenGs = [P3 +
P3] € 9(Q). Another point isT = [(0, 0) + o] € (Q). Using the notation from
Section 4.2, we have

10,(3(Q2)/24(Q2)) = g, (T, G, [(4, 2°/=239) + o0))),
pr(F(R)/24(R)) = ur((T)).

Calculation shows that the intersectiongfwvith the pullbacks of these spaces to
Mg is two dimensional. Furthermorg(Q)/24(Q) = (T, G3).

Table I. Image 0ffe,(Q) in e, (F7)

G3 [(e3, —203 4+ 2) + (—3 — @3, 1 + 2a3)]
2G3 [(3,2) + (6, 5)]
3G3 (v, =y =3+ (=v,v = 3)]
4G3=T [(0,0) + oo]
5G3 [(v,y +3 + (v, —y +3)]
6G3 [((3,5) + (6,2)]
7G3 [(a3, 203 — 2) + (=3 — a3, —1 — 203)]
8G3 [200]
y2+2=0

Table Il. T +nGzin ge,(F13)

T [(0, 0) + oc]

T+Gz [(-1,49+@3 0]

T+2G3 [(y,57 +5 + (—y —4, -5y — 2)]
T +3Gz [(1,-6)+ (=3, -4)]

T +4G3 [(1,6) + (—3,4)]

T +5G3 [(y,—=Sy =5 +(-y —4,5 +2)]
T+6G3 [(-1,-4+ 3, -6)]

y2+4y —-3=0

Using (6) we determine tha{#Fs) = 26 and that #(IF;) = 64. Thus,Zr(Q)
has at most two elements and sin@ 2 0, is {0, T'}. This means thag(Q) ~
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Z./](2) x Z. For future reference we observe tliagtmod 7 and (3, 2) + co] mod 7
generate order 8 subgroups ;) with trivial intersection. Thereforeg (F;) ~
7/(8) x Z/(8). As Table | showsT = 4Gzmod7, sog(Q)mod?7 is a cyclic
group containingGz mod 7. Taking into account the group-structure, this implies
that 4(Q) mod 7= (Gzmod 7). It follows thatG3 is not in 24(Q) (but we already
knew that, sinces3 is nontrivial in Z(Q)/24(Q)).

An inspection of Table | yields that any poii® + P] € 9(Q) lies in (Q7)° or
in T+4G3+4(Q7)°. However, the following argument mod 13 rules pBt- P] =
T +4G + n8G.

We have that{0, T, [(+/2, 0) + (—+/2, 0)], [(+/10, 0) + (—+/10,0)]} form a
subgroup ofg(F13) isomorphic t0Z/(2) x Z/(2). Furthermore,G3; mod 13 and
[(1,6) + (1, 6)] mod 13 generate cyclic subgroups of order 7 with trivial intersec-
tion. It follows thatg (F13) ~ Z/(2) x Z/(2) x Z/(7) x Z/(7), and thus thaG3
is not in 74(Q). Furthermore g(Q) mod 13 is generated by and G3 (since we
already saw that; is not in 24(Q)). Table Il shows that no poirft +nG3 can be
of the form[2P]. We have not proved thak; is a generator and we do not need
to either. It is enough to know thats is not twice or seven times a point Q).
Upon choice of a generator, we get

(Q) N 4(Q7)° C (n8G3:n € QN Z7 N Zy).

We compute &3 represented as a divisor @i using the genus 2 analogon of the
chord-tangent method for computing on elliptic curves. The result is too large to
print here, but using a computer algebra package, we can calculate it and substitute
itin the formulas by Flynn. We get L&8G3) = (133 14) mod 7. Lemma 4 yields

that the onlyn € Z such that 8Gs = [P + P]isn = 0. However, note that if

Gz = kG’, we know that 27 { k, so the order ofG’ mod 7 will also be 8 and
Log(8G’) = k Log(8G3). Thus, only Oc (Q7)° N 4(Q) is of the form[P + P].

The only pointsP on € such that{P + P] = 0 are points withY (P) = 0 or

P = oo. The only rational points with this property afe= oo and P = (0, 0). O

PROPOSITION 4C4(Q) = {(0, 0), oo}.
Proof. Fix a4 such thatr? — 3604 — 648 = 0. We have thaP; = (a4, 288, +
2592 is a point onC4 and
Ga=[Ps+ Ps], T =[(0,0) + 00] € (Q) = e, (Q).
It is straightforward to verify that
10,(F(Q2)/2(Q2)) = g, (T, Ga, [(4, 2°V/—2183 + 2])).
The intersectiorg with the pullback of this set td/g is two-dimensional. Since

2T = 0, this bounds the rank gf(Q) to one. By (6), we have #IF;) = 26 and
that #/(IF13) = 196. Thereforegr(Q) = {0, T} and4(Q) ~ Z/(2) x Z.
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By some computations ifi(F13), we see thal’ mod 13 and(+/6, 0)+(—+/6, 0)]
generate &/(2) x 7Z/(2) subgroup ofg (IF13) and that[(2, 5) + (2, 5)] and 254
generate distinct order 7 subgroups. It follows th&F13) >~ Z/(2) x Z/(2) x
Z/(7) x Z/ (7). We know thatf (Q) mod 13 is a subgroup with 2 generators, one of
which has order 2 and contaiffsandG4. Computations show that#, G4) = 28,
and thereforeT and G, generatef(Q) mod 13, since such a group is maximal
under the given properties. Table 11l shows that the only poirgt(@) of the form
[P + Plis [200] (use that ifD = [P + P], then—D = [P + P]). Therefore, every
point of the form[ P + P] € §(Q) must lie ing(Q13)°.

Table I1I. (half of) Image offe, (Q) in de,(F13)

0 [200]

Gy [(=2,1) 4+ (-1, 3)]

2G4 [(=2,-1) +(2,9)]

3Gy [(-1,3) + (2,5)]

4G4 [(y1.5y1 +6) + (=4 — y1, =1 —5y1)]
5G4 [(y2, 4y2+ 4 + (=3 —y2,5— 4]
6G4 [(y3,6y3+3) 4+ (5— y3, —6 — 6y3)]
7Gyq (4, 0) + (—v4, 0)]

T [(0, 0) + o0]

T+Gs [(2,-5) + (4, —3)]

T+2Gs [(1,-2) + (-4, -2)]

T+3Gs [(-2,-D+ (4 -3)]

T+4Gs4 [(-1,3)+ (4, -3)]

T +5G4 [(ys, —Sy5+4) + (2~ y5, Sy5 — 6)]
T+6Gs [(ve —4v6—3) +(—2— 6,476+ 5]
T+7G4 [(y7,0) + (—y7. 0]

yZ+dy1—4=0
Y3 +3y+6=0
yZ2—5y3—4=0
y}+6=0

ve—2y5-6=0
e +2y6—4=0
Y2 —-6=0

We compute that Lod4G4) = (1456 1534 mod 13. This is not congruent to
(0, 0) mod 1%, so we se&, is not in 13/(Q). This means

9(Q) N F(@Q13)° C {141G4:n € QN Zy3).
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Lemma 4 proves that 0 is the only point JtQ) of the form[P + P]. The only
P € C(Q) such thaf{P + P] = 0 areco and points withY (P) = 0, i.e.(0, 0). O

PROPOSITION 5€C5(Q) = {(0, 0), 0o, (—2, 88), (—2, —88)}
Proof We write Ps = (—2,88), T = [(0,0) + oo] andGs = [Ps + oo]. We
have that

10, (3(Q2)/29(Q2)) = ug,(T, Gs, [(—12, 2232/~39) + oo]))

and that the intersection gf with the pullback of this space ®q is two-dimen-
sional. Thus,4(Q)/24(Q) = (T, Gs). Using (6) we find that #(F,7;) = 2.89
and #(F43) = 22.3%.17. We see thaf(Q) = {0, T} and4(Q) ~ Z/(2) x Z.
Furthermore, from the fact that 108 mod 43 # 0, we conclude thaf's is not
in 174(Q). Some computation shows thgtFi,) = (Z/(2))° x Z/(17). Since
Gsmod 11= [(—2, 0)+oc] andG5is not in 17-divisible, we see thgi(Q) mod 11

is completely 2-torsion. A 2-torsion point being of the fofi + P] means that
P = P and thus[P + P] = 0. Therefore, any rational poir® € C5(Q) has
[P+ P] € 9(Q11)°. We have &5 € 4(Q11)°. However, the formulas available
for s1, s, are not defined for points of the forfP + P]. We could compute
(s1, $2)(2Gs) by taking limits, but for our purposess:, s2)(6Gs) are also suffi-
cient, so we will compute these. We find L@@ s) = (649, 341) mod 1E. These
values satisfyL] — 38885 = O0mod 1%. Since Log6Gs) # (0,0) mod 1%, we
see that 65 (and thereforess) is not 11-divisible. Upon choice of a generator we
haveg(Q) N (Q11)° C {n2Gs : n € Q N Z11}. and we see that the Log of that
generator also satisfids; — 3888.5 = 0mod 1£. By Lemma 4, there is at most
one pair of nontrivial points i (Q) of the form[ P + P]. Together with the points
P € C(Q) with [P 4+ P] = 0, these are the points mentioned in the proposition.

THEOREM 6.The only solutions te?+y® = z3withx, y, z € Zandgcd(x, y, z) =
lare(x,y,z) = (£1,0,1), (0, +1, 1) and(£1549034 +33, 15613.

Proof. The solutions withvyz = 0 are clear. Solutions withyz 7~ 0 correspond
to affine rational points on the curvés, ..., Cs. Proposition 1 and 2 show thét
and@, contain no such points. The poiftt, 0) on C3, C4, Cs gives rise to solutions
with y = 0. By Proposition 3, 4 and %5 is the only curve that contains other affine
rational points. It contains two such points. Taking into account the signtbese
give rise to four more solutions of 4 y& = z3. Therefore, the list stated in the
theorem is complete. O

6. References for Computations and Further Reading

The computations necessary for the proofs presented in this article are clearly un-
doable with pencil and paper. While Lemma 1 and 2 may be checked by hand,
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for Lemma 3 it is necessary to compute fundamental units and (trivial) ideal class
groups in quadratic orders.

The computer algebra package KASH [DKF97] has good support for this. Ver-
sions 1.6 through 1.8 were used to obtain all algebraic-number theoretic results
used in this article. The package is maintained by the group of Pohst and is free. It
can be obtained frorfitp: //ftp.math.tu-berlin.de/pub/algebra/Kant.

Determining conductor, minimal model, rank and torsion of elliptic curves are
also tasks better left to a computer. The Maple package Apecs 3.8 by Connell was
used for this. It can be obtained frofap: //math.mcgill.ca/pub/apecs.

Doing a 2-descent on genus 2 curves requires information on class-groups,
units, factorisation of ideals and squares in number fields up to degree 6 (for
the curves in this article, degree 4). Kash provides ample support for this kind
of calculations. The ranks computed in this article were verified by calculations
using Kash and by Stoll [Sto96] who uses a program not based on Kash.

The computations on Jacobians were done in Maple Vr3 using the cubic fitting
algorithm described in Section 1.2 of [CF96]. The formulas mentioned in Sec-
tion 4.3 are available frofitp: //ftp.liv.ac.uk/~ftp/pub/genus2. In this art-
icle, these were used in Maple Vr3 to obtain local coordinates and approximations
tof(n).

In all cases, calculations took at most a couple of minutes on a HP712/60
workstation. The interested reader can download the scripis283.mpl and
dscnt283.g. See for more informatioREADME in

ftp://ftp.wi.leidenuniv.nl/pub/GM/Publications/N.Bruin/

Most of the required theory for applying effective Chabauty can be found in
[CF96]. The history of the formulas can be found in [Fly90] and [Fly93]. Notation
in these article slightly differs from the one used here and in [CF96]. For people
interested in doing this kind of computations themselves, [FPS95] is a valuable
source. Further references for determining Mordell-Weil ranks are [Sch95] and
[PS97].

Note that the curves in this article, all having a rational Weierstrass-point, can
in principle be analysed as suggested in [Gra90] and [GG93]. While this method
may be theoretically simpler, the availability of the formulas in Flynn's case makes
it easier to use his (more general) method. Also, the reader might be interested in
[Col85], which offers an alternative treatment of Chabauty’s method.
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