Minimal convergence on \boldsymbol{L}^{p} spaces

I. ASSANI
Department of Mathematics, University of Toronto, Ontario, Canada, M5S 1A1

(Received 26 May 1988, revised 14 August 1989)

Abstract. Let (X, F, μ) be a probability measure space, p and β real numbers such that $1 \leq p<+\infty$ and $0<\beta<p$. For any linear positive operator T satisfying $T 1$, $T^{*} 1=1$ we prove the norm and pointwise convergence of the sequence

$$
\frac{1}{n} \sum_{i=0}^{n-1}\left|T^{i} f\right|^{\beta} \text { sgn } T^{i} f \text { for any } f \in L^{p}(\mu)
$$

We get then the pointwise and norm convergence in $L^{p}, 0<\beta \geq 1<p<2$, of the sequence $n^{-1} \sum_{i=0}^{n-1}\left|S^{i} f\right|^{\beta}$ sgn $S^{i} f$ for any positive linear operator on $L^{p}(\Omega, A, \mu)$ ($\mu-\sigma$-finite) verifying $\|(1-\alpha) I+\alpha S\|_{p} \leq 1$ for a real number $0<\alpha \leq 1$. In the particular case $\alpha=1$, (S is a contraction), $\beta=p-1$, this result gives the pointwise and norm convergence of the sequences $s_{n}^{(p)}$ introduced by Beauzamy and Enflo in 1985 to the asymptotic center of the sequence $\left(T^{n} f\right)_{n \in \mathbb{N}}$.

0. Introduction

Let E be a uniformly convex Banach space and x_{n} a bounded sequence in E. We are interested in this paper in two minimal procedures.

The first one introduced by Edelstein [6] leads to the notion of the asymptotic center of the sequence (x_{n}). He considered for each integer $m \geq 1$ the unique element c_{m} which minimizes the function

$$
r_{m}(y)=\sup _{k \geq m}\left\|x_{k}-y\right\|
$$

and proved the norm convergence of c_{m} to an element c in E. If we denote by $r(y)=\lim _{m} r_{m}(y)$ then $r(c)<r(y)$ for $y \neq c$. This element c is called the asymptotic center of the sequence x_{n}. When the sequence x_{n} is given by the iterates $T^{n} x$ of a contraction $T: C \rightarrow C$ (closed convex subset of E). Then c is a fixed point of T.

The second procedure was introduced by Beauzamy and Enflo [2]. For any real number $p, 1<p<+\infty$ and fixed x in $C, s_{n}^{(p)}$ is the unique element in E which minimizes the function

$$
\phi_{n}^{(p)}: y \rightarrow \phi_{n}^{(p)}(y)=\frac{1}{n} \sum_{i=0}^{n-1}\left\|T^{i} x-y\right\|^{p} \quad y \text { in } E .
$$

One of the interests of these sequences is that in any Hilbert space and for any p,

$$
1<p<+\infty, s_{n}^{(n)}=\frac{1}{n} \sum_{i=0}^{n-1} T^{i} x
$$

the Cesaro averages of the sequence $\left(T^{i} x\right)_{i \in \mathbb{N}}$. Of course the same procedure can be defined for a general bounded sequence (x_{n}).

When E is not a Hilbert space there is no explicit expression for $s_{n}^{(p)}$. Even for linear operators the process of creation of $s_{n}^{(p)}$ is not linear. So one wonders if these sequences still enjoy the same convergence properties of the Cesaro averages.

The problem of the pointwise convergence of the sequences $s_{n}^{(p)}$ for a linear positive contraction $T: L^{p} \rightarrow L^{p}$ has been studied by Guerre and Benozene in [7] and [3]. But the problem of the pointwise and norm convergence when $1<p<2$ remained open. If we denote by

$$
d \phi_{n}^{(p)}(y)=\frac{1}{n} \sum_{i=0}^{n-1}\left|T^{i} f-y\right|^{p-1} \operatorname{sgn}\left(T^{i} f-y\right)
$$

and c the asymptotic center of the sequence $\left(T^{i} f\right)_{i \in N}, f$ in L^{p}, the pointwise convergence of the sequence $s_{n}^{(n)}$ appears as a consequence of the pointwise convergence of $d \phi_{n}^{(p)}(c)$. But c being a fixed point of T we have

$$
\begin{aligned}
d \phi_{n}^{(p)}(c) & =\frac{1}{n} \sum_{i=0}^{n-1}\left|T^{i}(f-c)\right|^{p-1} \operatorname{sgn}\left(T^{i}(f-c)\right) \\
& =\frac{1}{n} \sum_{i=0}^{n-1}\left|T^{i}(g)\right|^{p-1} \operatorname{sgn}\left(T^{i}(g)\right)
\end{aligned}
$$

So to get the pointwise convergence in $L^{p}, 1<p<2$ we just need to consider the pointwise convergence of the sequence

$$
\frac{1}{n} \sum_{i=0}^{n-1}\left|T^{i}(g)\right|^{p-1} \operatorname{sgn}\left(T^{i} g\right) \quad \text { for any } g \in L^{p}
$$

We are going in fact to prove the pointwise and norm convergence of the sequence $n^{-1} \sum_{i=0}^{n-1}\left|T^{i} f\right|^{\beta} \operatorname{sgn}\left(T^{i} f\right)$ when T is not necessarily a contraction on L^{p}. More precisely we shall prove the pointwise and norm convergence for the class C_{α} of linear positive operators T such that $\|(1-\alpha) I+\alpha T\|_{p} \leq 1$ for a real number α, $0<\alpha<1$, for such operators we recently obtained [1] a dominated and pointwise ergodic theorem in L^{p}. Let us remark that for $\alpha=1$ we get the set of linear positive contractions on L^{p} and that there exists simple examples of operators T satisfying $\|(1-\alpha) I+\alpha T\|_{r} \leq 1$ and which are not contractions. For instance $T=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right), \varepsilon=\frac{3}{2}$, $\alpha=\frac{1}{2}, p=2$.

The present article is divided in two parts. In the first we prove the pointwise and norm convergence of the sequence $n^{-1} \sum_{i=0}^{n-1}\left|T^{i} f\right|^{\beta} \operatorname{sgn}\left(T^{i} f\right)$ for f in $L^{p}, 1 \leq p<$ $+\infty, 0<\beta<p$. The measure space is a probability one and the linear positive operator satisfies $T 1=1, T^{*} 1=1$. We distinguish in this first part two cases: (i) $1<\beta<p$, (ii) $0<\beta<1 \leq p$. The first case appears as a direct consequence of the subadditive ergodic theorem for Markovian operators satisfying $T 1=1$. In the second case we use an almost subadditive property to get the norm convergence in L^{\prime}. This result does not appear as a simple consequence of known results on subadditive theorems. The words 'almost subadditive property' come from [5]. We will use also some ideas developed in [5].

Then we get the pointwise convergence in L^{1}. In the second part we use these results to get the pointwise and norm convergence of the sequence $n^{-1} \sum_{i=0}^{n-1}\left|T^{i} f\right|^{\beta}$ sgn $T^{i} f$ when T belongs to the class $C_{\alpha}, 1<p \leq 2$ and $f \in L^{p}$.

This gives us the pointwise and norm convergence of the sequence s_{n}^{p}.
1.

The probability measure space is (Ω, A, m). The sequence $n^{-1} \sum_{i=0}^{n-1}\left|T^{i} f\right|^{\beta}$ $\operatorname{sgn}\left(T^{i} f\right)$ can be written as

$$
\frac{1}{n} \sum_{i=0}^{n-1}\left(\left(T^{i} f\right)^{+}\right)^{\beta}-\frac{1}{n} \sum_{i=0}^{n-1}\left(\left(T^{i} f\right)^{-}\right)^{\beta}
$$

So it is enough to consider $n^{-1} \sum_{i=0}^{n-1}\left(T^{i} f\right)^{+\beta}$. The change $f \rightarrow-f$ will give the result for $n^{-1} \sum_{i=0}^{n-1}\left(\left(T^{i} f\right)^{-}\right)^{\beta}$. As we said in the introduction we distinguish two cases. $1<\beta<p, 0<\beta<1 \leq p$. The following lemma can be proved as the one well-known for conditional expectations. (See also Lemma I.7.4 in [8].)

Lemma I.1. For any positive linear operator S on $L^{1}(\Omega, A, m), f, g \geq 0, f \in L^{r}(m)$, $g \in L^{r^{*}}(m), 1<r<+\infty, r^{*}=r /(r-1)$, we have

$$
S(f \cdot g) \leq\left(S\left(f^{r}\right)\right)^{1 / r} \cdot\left(S\left(g^{r^{*}}\right)\right)^{1 / r^{*}} .
$$

(A) $1<\beta<p$.

Theorem A.1. For any positive linear operator on $L^{1}(\Omega, A, m)$ such that $T 1=1$, $T^{*} 1=1$ and any f in $L^{p}(m)$ the sequence $n^{-1} \sum_{i=0}^{n-1}\left|T^{i} f\right|^{\beta} \operatorname{sgn}\left(T^{i} f\right)$ converges a.e. and in norm in L^{\prime}.
Proof. It is enough to prove the result for the sequence $n^{-1} \sum_{i=0}^{n-1}\left(T^{i} f\right)^{+\beta}$. If we write $S_{n}=\sum_{i=0}^{n-1}\left(T^{i} f\right)^{+\beta}$ we have

$$
\begin{aligned}
T^{k}\left(S_{n}\right) & =\sum_{i=0}^{n-1} T^{k}\left(\left(T^{i} f\right)^{+\beta}\right) \\
& \geq \sum_{i=0}^{n-1}\left(T^{k}\left(T^{i} f\right)^{+}\right)^{\beta} \quad \text { by Lemma I. } 1 \\
& \geq \sum_{i=0}^{n-1}\left(T^{k}\left(T^{i} f\right)\right)^{+\beta} \\
& =S_{n+k}-S_{k}
\end{aligned}
$$

So $S_{n+k} \leq T^{k}\left(S_{n}\right)+S_{k}$. We have a subadditive sequence with respect to T and the sequence S_{n} / n converges a.e. and in norm by the subadditive theorem for Markovian operator [8]. (In this case $T 1=1$ and the conclusion can follow from a simpler argument.)
(B) $0<\beta<1 \leq p$.

We need just to consider the case $p=1$.
Lemma B.2. Let T be a Markovian operator on $L^{\prime}(\Omega, A, m)$ satisfying $T 1=1$. Then for any f in $L^{1}(m)$ the sequence $n^{-1} \sum_{i=1}^{n}\left|T^{i} f\right|$ converge a.e. and in norm in L^{1}.

Proof. Let us note $S_{n}=\sum_{i=1}^{n}\left|T^{i} f\right|$. Then for any integer k we have

$$
\begin{aligned}
T^{k}\left(S_{n}\right) & =\sum_{i=1}^{n} T^{k}\left(\left|T^{i} f\right|\right) \\
& \geq \sum_{i=1}^{n}\left|T^{k+i} f\right|=S_{n+k}-S_{k}
\end{aligned}
$$

and the result follows from the subadditive theorem for Markovian operators.
Proposition B.3. Let T be a Markovian contraction on $L^{\prime}(m)$ verifying $T 1=1$ and fin $L^{1}(m)$. If we denote by $S_{n}=-\sum_{i=1}^{n}\left(T^{i} f\right)^{+\beta}$ then for any integers $n, k n \geq 1$ we have

$$
S_{n+k} \leq S_{k}+T^{k}\left(S_{n}\right)+\sum_{i=1}^{n}\left(\frac{T^{k}\left(\left|T^{i} f\right|\right)-\left|T^{k+i} f\right|}{2}\right)^{\beta}
$$

Proof. If $S_{n}^{\prime}=\sum_{i=1}^{n}\left(T^{i} f\right)^{+\beta}$ then

$$
\begin{aligned}
T^{k}\left(S_{n}^{\prime}\right) & =T^{k}\left(\sum_{i=1}^{n}\left(\frac{T^{i} f+\left|T^{i} f\right|}{2}\right)^{\beta}\right) \\
& \leq \sum_{i=1}^{n}\left(T^{k}\left(\frac{T^{i} f+\left|T^{i} f\right|}{2}\right)\right)^{\beta} \quad \text { by Lemma I.1 } \\
& =\sum_{i=1}^{n}\left(\left(T^{k}\left(T^{i} f\right)\right)^{+}+\frac{T^{k}\left(\left|T^{i} f\right|\right)-\left|T^{k+i} f\right|}{2}\right)^{\beta} \\
& \leq \sum_{i=1}^{n}\left(T^{k+i} f\right)^{+\beta}+\sum_{i=1}^{n}\left(\frac{T^{k}\left(\left|T^{i} f\right|\right)-\left|T^{k+i} f\right|}{2}\right)^{\beta} \\
& \geq S_{n+k}^{\prime}-S_{k}^{\prime}+\sum_{i=1}^{n}\left(\frac{T^{k}\left(\left|T^{i} f\right|\right)-\left|T^{k+i} f\right|}{2}\right)^{\beta}
\end{aligned}
$$

Proposition B.4. Under the assumptions of Proposition B. 3 the sequence

$$
\gamma_{n}=\int \frac{S_{n}}{n} \cdot d m \quad \text { converges to a real number } \gamma
$$

Proof. Let us fix the integer $n>1$ and note $m=n l+r, 0 \leq r<n$. Then using Proposition B. 3 we have

$$
\begin{aligned}
S_{m} \leq & \sum_{j=0}^{1-1} T^{n j}\left(S_{n}\right)+T^{n \prime}\left(S_{r}\right)+\sum_{i=0}^{r}\left(\frac{T^{n \prime}\left(\left|T^{i} f\right|\right)-\left|T^{n l+i} f\right|}{2}\right)^{\beta} \\
& +\sum_{j=0}^{1-1} \sum_{i=1}^{n}\left(\frac{T^{n j}\left(\left|T^{i} f\right|\right)-\left|T^{n j+i} f\right|}{2}\right)^{\beta}
\end{aligned}
$$

The operator T being Markovian we have

$$
\begin{aligned}
\gamma_{m} \leq & \frac{n l}{m} \cdot \gamma_{n}+\frac{1}{m} \int S_{r} \cdot d m+\sum_{i=0}^{r} \frac{1}{m} \int\left(\frac{T^{n l}\left(\left|T^{i} f\right|\right)-\left|T^{n+i} f\right|}{2}\right)^{\beta} d m \\
& +\frac{n l}{m} \cdot \frac{1}{n l} \int \sum_{i=0}^{l-1} \sum_{i=1}^{n}\left(\frac{T^{n j}\left(\left|T^{i} f\right|\right)-\left|T^{n j+i} f\right|}{2}\right)^{\beta} \cdot d m .
\end{aligned}
$$

By using the concavity of the function $x \rightarrow x^{\beta}$ and the fact that $\left(\int|F|^{\beta} \cdot d m\right) \leq$ $\left(\int|F| d m\right)^{\beta}$ for any function F in $L^{1}(m)$ the last term of the previous inequality is bounded by

$$
\begin{aligned}
& \frac{n l}{m}\left(\int\left(\frac{1}{n l} \sum_{j=0}^{l-1} \sum_{i=1}^{n}\left(\frac{T^{n j}\left(\left|T^{i} f\right|\right)-\left|T^{n j+i} f\right|}{2}\right)\right)^{\beta} \cdot d m\right. \\
& \quad \leq \frac{n l}{m}\left(\int\left(\frac{1}{2 n} \sum_{i=1}^{n}\left|T^{i} f\right|-\frac{1}{2 n l} \sum_{k=1}^{n l}\left|T^{k} f\right|\right) d m\right)^{\beta}
\end{aligned}
$$

If $f^{*}=\lim _{N} N^{-1} \sum_{i=0}^{N}\left|T^{i} f\right|$ which exists by lemma B. 2 we have

$$
\limsup _{m} \gamma_{m} \leq \gamma_{n}+\left(\int\left(\frac{\sum_{i=1}^{n}\left|T^{i} f\right|}{2 n}-\frac{f^{*}}{2}\right) d m\right)^{\beta}
$$

By using again Lemma B. 2 we have

$$
\limsup _{m} \gamma_{m} \leq \liminf _{n} \gamma_{n},
$$

which implies the convergence of the sequence γ_{n}.
Proposition B.5. The sequence S_{n} / n converges in L^{1} norm to

$$
\lim _{i} \frac{1}{l}\left[\lim _{j} \frac{1}{j} \sum_{i=1}^{j} T^{i l}\left(S_{l}\right)\right] .
$$

Proof. We fix again the integer n and take $m=n l+r$. Then as $T^{n t}\left(S_{r}\right) \leq 0$ we have

$$
\begin{aligned}
S_{m} \leq & \sum_{j=0}^{1-1} T^{n j}\left(S_{n}\right)+\sum_{i=0}^{I-1} \sum_{i=1}^{n}\left(\frac{T^{n j}\left(\left|T^{i} f\right|\right)-\left|T^{n l+i} f\right|}{2}\right)^{\beta} \\
& +\sum_{i=0}^{n}\left(\frac{T^{n!}\left(\left|T^{i} f\right|\right)-\left|T^{n l+i} f\right|}{2}\right)^{\beta} .
\end{aligned}
$$

By the ergodic theorem for T^{n} (see [7]) $\lim _{l} l^{-1} \sum_{j=0}^{l-1} T^{n j}\left(S_{n}\right)=h_{n}$ exists a.e. and in L^{1} norm.

As

$$
\begin{aligned}
\int\left(\frac{S_{m}}{m}-\frac{1}{n} \cdot h_{n}\right)^{+} \cdot d m \leq & \frac{1}{m} \sum_{i=0}^{r} \int\left(\frac{T^{n j}\left(\left|T^{i} f\right|\right)-\left|T^{n+i} f\right|}{2}\right)^{\beta} \cdot d m \\
& +\frac{1}{m} \int\left(\sum_{j=0}^{1-1} \sum_{i=1}^{n}\left(\frac{T^{n j}\left(\left|T^{i} f\right|\right)-\left|T^{n j+i} f\right|}{2}\right)^{\beta}\right) d m \\
& +\int\left(\frac{1}{m} \sum_{j=0}^{1-1} T^{n j}\left(S_{n}\right)-\frac{1}{n} \cdot h_{n}\right)^{+} d m
\end{aligned}
$$

we have

$$
\limsup _{m} \int\left(\frac{S_{m}}{m}-\frac{1}{n} \cdot h_{n}\right)^{+} \cdot d m \leq\left(\int\left(\sum_{i=1}^{n} \frac{\left|T^{i} f\right|}{2 n}-\frac{f^{*}}{2}\right) d m\right)^{\beta}
$$

by the same arguments as those used in the proof of Proposition B.4.
For $n \geq n_{0}(\varepsilon)$ we have then

$$
\limsup _{m} \int\left(\frac{S_{m}}{m}-\frac{1}{n} h_{n}\right)^{+} d m \leq \varepsilon \quad \text { and for } m
$$

large enough greater than n

$$
\int\left(\frac{S_{m}}{m}-\frac{1}{n} h_{n}\right)^{+} d m \leq \varepsilon
$$

We can choose $n_{0}(\varepsilon)$ such that

$$
\left|\frac{1}{n} \cdot \gamma_{n}-\gamma\right|<\varepsilon .
$$

Then as $\int|g| d m=2 \int g^{+} \cdot d m-\int g \cdot d m$ we have

$$
\begin{aligned}
\int\left|\frac{S_{m}}{m}-\frac{1}{n} \cdot h_{n}\right| \cdot d m & \leq 2 \int\left(\frac{S_{m}}{m}-\frac{1}{n} \cdot h_{n}\right)^{+} d m+\left|\int\left(\frac{S_{m}}{m}-\frac{1}{n} h_{n}\right) d m\right| \\
& \leq 2 \varepsilon+\left|\gamma_{m}-\gamma_{n}\right| \quad \text { because } \int h_{n} d m=\int S_{n} d m \\
& \leq 2 \varepsilon+\varepsilon=3 \varepsilon
\end{aligned}
$$

The sequences S_{m} / m and h_{n} / n are Cauchy sequences in L^{\prime}. They converge to the same limit in L^{\prime} norm:

$$
\lim _{i} \frac{1}{l}\left[\lim _{i} \frac{1}{j} \sum_{i=1}^{j} T^{i l}\left(S_{l}\right)\right]
$$

Theorem B.6. For any positive linear contraction T on $L^{\prime}(\Omega, A, m)$ such that $T 1=1$, $T^{*} 1=1$ and any fin $L^{1}(m)$ the sequence $n^{-1} \sum_{i=0}^{n-1}\left|T^{i} f\right|^{\beta} \operatorname{sgn}\left(T^{i} f\right)$ converges a.e. (for $0<\beta \leq 1$) in L^{\prime}.
Proof. It is enough to prove the pointwise convergence of

$$
\frac{1}{n} \sum_{i=0}^{n-1}\left(T^{i} f\right)^{+\beta}
$$

We remark first that for any positive contraction U on $L^{1}(m)$ verifying $U 1=1$ the sequence $n^{-1} \sum_{i=0}^{n=1}\left(U^{i}(g)\right)^{\beta}$ converges a.e. In fact if we note $V_{n}=\sum_{i=1}^{n}\left(U^{i} g\right)^{\beta}$ then

$$
\begin{aligned}
U^{k} V_{n} & =\sum_{i=1}^{n} U^{k}\left(U^{i} g\right)^{\beta} \\
& \leq \sum_{i=1}^{n}\left(U^{k}\left(U^{i} g\right)\right)^{\beta} \\
& =V_{n+k}-V_{k} \quad(g \geq 0)
\end{aligned}
$$

for any integers k and n. The result follows again by the subadditive (or superadditive) ergodic theorem.

Now we fix the integer $n \geq 1$, we have for any $l \geq 1$

$$
\begin{aligned}
\frac{1}{n l} \sum_{j=0}^{1-1} \sum_{k=0}^{n}\left(T^{n j}\left(T^{k} f\right)\right)^{+\beta} & \leq \frac{1}{n l} \sum_{j=0}^{1-1} \sum_{k=1}^{n}\left(T^{n j}\left(T^{k} f\right)^{+}\right)^{\beta} \\
& \leq \frac{1}{n l} \sum_{j=0}^{1-1} \sum_{k=1}^{n}\left(\left(T^{n j}\left(T^{k} f\right)\right)^{+\beta}+\left(\frac{T^{n j}\left(\left|T^{k} f\right|\right)-\left|T^{n j+k} f\right|}{2}\right)^{\beta}\right)
\end{aligned}
$$

by using the inequality

$$
\left(T^{n j}\left(g^{+}\right)\right)^{\beta} \leq\left(T^{n j} g\right)^{+\beta}+\left(\frac{T^{n j}(|g|)-\left|T^{n j} g\right|}{2}\right)^{\beta}
$$

So if we note $S_{m}=\sum_{k=1}^{m}\left(T^{k} f\right)^{+\beta}$ we have

$$
\begin{equation*}
\frac{S_{n l}}{n l} \leq \frac{1}{n l} \sum_{j=0}^{1-1} \sum_{k=1}^{n}\left(T^{n j}\left(T^{k} f\right)^{+}\right)^{\beta} \leq \frac{S_{n l}}{n l}+\left(\frac{1}{n l} \sum_{j=0}^{l-1} \sum_{k=1}^{n} \frac{T^{n j}\left(\left|T^{k} f\right|\right)-\left|T^{n j+k} f\right|}{2}\right)^{\beta} \tag{*}
\end{equation*}
$$

(by the concavity of $x \rightarrow x^{\beta}$).
By the ergodic theorem applied to T^{n} and Lemma B. 2

$$
\begin{aligned}
\lim _{l} & \left(\frac{1}{n l} \sum_{j=0}^{1-1} \sum_{k=1}^{n} T^{k}\left(\left|T^{n l} f\right|\right)-\frac{1}{n l} \sum_{j=0}^{l-1} \sum_{k=1}^{n}\left|T^{n j+k} f\right|\right) \\
& =h_{n}^{*}-f^{*} \quad \text { a.e. where } \int h_{n}^{*} d m=\int \frac{1}{n} \sum_{k=1}^{n}\left|T^{k} f\right| d m
\end{aligned}
$$

So from (*) and the fact that $\lim _{m \rightarrow \infty} S_{m+1} /(m+1)-\left(S_{m} / m\right)=0$ a.e. we have

$$
\begin{aligned}
\overline{\lim } \frac{S_{m}}{m} & \leq \varlimsup_{l} \frac{1}{n l} \sum_{j=0}^{I-1} \sum_{k=1}^{n}\left(T^{n j}\left(T^{k} f\right)^{+}\right)^{\beta} \\
& =\lim _{1} \frac{1}{n l} \sum_{j=0}^{1-1} \sum_{k=1}^{n}\left(T^{n j}\left(T^{k} f\right)^{+}\right)^{\beta}
\end{aligned}
$$

(by the remark made at the beginning of the proof)

$$
\leq \underline{\lim } \frac{S_{m}}{m}+\left(\frac{h_{n}^{*}-f^{*}}{2}\right)^{\beta}
$$

So

$$
\begin{aligned}
\int\left(\overline{\lim } \frac{S_{m}}{m}-\underline{\lim } \frac{S_{m}}{m}\right) d m & \leq \int\left(\frac{h_{n}^{*}-f^{*}}{2}\right)^{\beta} d m \\
& \leq\left(\int\left(\frac{h_{n}^{*}-f^{*}}{2}\right) d m\right)^{\beta}
\end{aligned}
$$

If we let n go to the infinity we get

$$
\int\left(\varlimsup \frac{S_{m}}{m}-\underline{\lim } \frac{S_{m}}{m}\right) d m=0
$$

which proves the pointwise convergence of S_{n} / n. The convergence holds in L^{1} because of the norm convergence in L^{\prime} proved in Proposition B.4.
Corollary B.7. Under the assumptions of Theorem B. 6 but $f \in L^{p}$ for $1<p<+\infty$, then the pointwise and norm convergence holds in $L^{p / \beta}$.
Proof. It suffices to prove that

$$
\sup _{n} \frac{1}{n}\left|T^{i} f\right|^{\beta} \in L^{p / \beta}
$$

We have

$$
\sup _{n<N}\left(\frac{1}{n}\left|T^{i} f\right|^{\beta}\right) \leq \sup _{n<N}\left(\frac{1}{n} T^{i}|f|\right)^{\beta}
$$

so

$$
\int\left(\sup _{n \leqslant N} \frac{1}{n}\left|T^{i} f\right|^{\beta}\right)^{p / \beta} d m \leq \int\left(\sup _{n \leq N} \frac{1}{n} T^{i}|f|\right)^{p} d m \leq K \int|f|^{p} d m
$$

(as a particular case of the estimate in [1]) and $\left\|\sup _{n} n^{-1}\left|T^{i} f\right|^{\beta}\right\|_{p / \beta} \leq K^{\beta / p}\|f\|_{p}^{\beta}$.

Remarks

(1) It is clear that when f is in $L^{p}, 1<p<+\infty$ by using only the proof of Theorem B. 6 and the fact that $\sup _{n} n^{-1} \sum_{i=0}^{n-1}\left|T^{i} f\right|^{\beta} \in L^{p / \beta}$ we can get the pointwise and norm convergence in $L^{p / \beta}$.
(2) A consequence of Theorem B.6 is the pointwise and norm convergence in L^{1} of the sequence $n^{-1} \sum_{i=0}^{n-1}\left|T^{i} f\right|^{\beta}$. We can also get the same conclusion when T is not necessarily positive but its linear modulus \boldsymbol{T} satisfies $\boldsymbol{T} \mathbf{1}=\mathbf{1}$ and $\boldsymbol{T}^{*} \mathbf{1}=\mathbf{1}$.

We apply now the results of this first part to operators in any class $C_{\alpha}, 0<\alpha \leq 1$.

2.

Proposition 2.1. Let T be a positive linear operator on $L^{p}(X, F, \mu) 1<p<+\infty$ such that $\|(1-\alpha) I+\alpha T\|_{p} \leq 1$ for a real number $\alpha, 0<\alpha \leq 1$. Then there exists a decomposition of the space X in two disjoint parts E and E^{c} invariant by T. (i.e. $T\left(L^{p}(E)\right) \subset L^{p}(E)$ and $\left.T\left(L^{p}\left(E^{c}\right)\right) \subset L^{p}\left(E^{c}\right)\right)$. Furthermore there exists h in $L^{p}(\mu)$ such that $\operatorname{supp} h=E$, $T h=h$ and $T^{*}\left(h^{p-1}\right)=h^{p-1}$.
Proof. Let h be a function in L^{p} invariant by T with maximal support E. This function h is also invariant with maximal support for $S=(1-\alpha) I+\alpha T$. As

$$
\int S(h) \cdot h^{p-1} d \mu=\int h^{p} d \mu=\int h S^{*}\left(h^{p-1}\right) d \mu
$$

we have also $S^{*}\left(h^{p-1}\right)=h^{p-1}$ and E is the maximal support of the invariant functions of S^{*} and then of T^{*}. (Note: h^{p-1} is the only element in L^{q} (such that $\int h \cdot h^{p-1} d \mu=$ $\|h\|_{p}^{p}=\left\|h^{p-1}\right\|_{4}^{4}$.) We have to show that E and E^{c} are invariant by T (and also T^{*}). We have

$$
\begin{aligned}
\int T\left(\mathbf{1}_{E^{c}} \cdot f\right) \cdot h^{p-1} d \mu & =\int \mathbf{1}_{E^{\prime}} f \cdot T^{*}\left(h^{p-1}\right) d \mu \\
& =\int \mathbf{1}_{E^{c}} f \cdot h^{p-1} d \mu=0
\end{aligned}
$$

By analogy we also have

$$
\int T^{*}\left(\mathbf{1}_{E^{\prime}} \mathbf{g}\right) \cdot h d \mu=\int \mathbf{1}_{E^{\prime}} \mathbf{g} \cdot h d \mu=0
$$

which proves that E^{c} is invariant by T and T^{*}. Let us denote by P and P^{*}, the projections obtained by the mean ergodic theorem (a consequence of the result obtained in [1]). If \tilde{g} (resp. \tilde{f}) is a strictly positive function such that

$$
E^{c}=\operatorname{supp} h\left(\tilde{g}-P^{*} \tilde{g}\right) \quad\left(\text { resp. } E^{c}=\operatorname{supp} h(\tilde{f}-P(\tilde{f}))\right.
$$

then we have

$$
\begin{aligned}
\int T\left(1_{E} f\right) \cdot\left(\tilde{g}-P^{*}(\tilde{g})\right) d \mu & =\int\left(1_{E} f\right) \cdot\left(T^{*}(\tilde{g})-T^{*} P^{*}(\tilde{g})\right) d \mu \\
& =0 \quad \text { as } E^{c} \text { is invariant by } T^{*}
\end{aligned}
$$

By analogy we have

$$
\int T^{*}\left(\mathbf{1}_{E} g\right) \cdot(\tilde{f}-P(\tilde{f})) d \mu=0 \quad \text { because } E^{c} \text { is invariant. }
$$

Theorem 2.3. Let $0<\beta<1<p \leq 2$, for any positive operator T on $L^{p}(\mu)$ such that $\|(1-\alpha) I+\alpha T\|_{p} \leq 1$ and for any function f in $L^{p}(\mu)$ the sequence $n^{-1} \sum_{i=0}^{n-1}\left|T^{i} f\right|^{\beta} \operatorname{sgn}\left(T^{i} f\right)$ converges a.e. and in norm in $L^{p / \beta}$.
Proof. We have

$$
\left.\frac{1}{n} \sum_{i=0}^{n-1}\left|T^{i} f\right|^{\beta} \operatorname{sgn}\left(T^{i} f\right) \right\rvert\, \leq\left(\frac{1}{n} \sum_{i=0}^{n-1} T^{i}|f|\right)^{\beta}
$$

By Proposition 2.2 the space Ω can be divided in two disjoint parts E and E^{c} both invariant by T. There exists also h in $L^{p}(\mu)$ such that $\operatorname{supp} h=E, T h=h$ and $T^{*}\left(h^{p-1}\right)=h^{p-1}$.

Because of the pointwise ergodic theorem [1] we have

$$
\begin{aligned}
& \mathbf{1}_{E^{*}} \cdot \frac{1}{n}\left(\sum_{i=0}^{n-1} T^{i}(|f|)\right) \rightarrow 0 \quad \text { a.e. and so } \\
& \left.\left.\mathbf{1}_{E^{i}} \cdot\left|\frac{1}{n} \sum_{i=0}^{n-1}\right| T^{i} f\right|^{p} \operatorname{sgn}\left(T^{i} f\right) \right\rvert\, \rightarrow 0 \quad \text { a.e. }
\end{aligned}
$$

The operator $S: S(g)=T(g \cdot h) / h$ on the space $L^{p}(E, m)\left(\right.$ where $\left.m(A)=\int_{A} h^{p} d \mu\right)$ is a Markovian operator contraction on $L^{1}(m)$ verifying also $S \mathbf{1}=\mathbf{1}$ as

$$
S^{*}(s)=\frac{T^{*}\left(s \cdot h^{p-1}\right)}{h^{p-1}}
$$

As $S^{i}(g)=T^{i}(g \cdot h) / h$ for any integer $i \geq 0$ the pointwise convergence of the sequence $n^{-1} \sum_{i=0}^{n-1}\left|S^{i}(g)\right|^{\beta}$ sgn $S^{i} g$ valid by Theorem B. 6 implies the same consequence for the sequence $n^{-1} \sum_{i=0}^{n-1}\left|T^{i} f\right|^{\beta} \operatorname{sgn} T^{i} f$ on E. The norm convergence follows from the following inequality consequence of the dominated estimate in [1] and the concavity of $x \rightarrow x^{\beta}$

$$
\left\|\sup _{n} \frac{1}{n} \sum_{i=0}^{n-1}\left|T^{i} f\right|^{\beta} \operatorname{sgn} T^{i} f\right\|_{p / \beta} \leq(\gamma(\alpha))^{\beta / r}\left(\frac{p}{p-1}\right)^{\beta}\|f\|_{p}^{\beta} .
$$

To see how these results can be applied to the sequences $s_{n}^{(p)}$ we need the following propositions. The first one can be obtained following the proof of Bruck and Reich [4] (taking the function $\theta(y)=\lim \left\|T^{n} x-y\right\|^{p}$ instead of $\frac{1}{2} \lim \left\|T^{n} x-y\right\|^{2}$) and the fact that $r(c)<r(y)$ for $y \neq c$ (c is the asymptotic center). The second proposition uses ideas of Beauzamy and Enflo [2] in their proof of the weak convergence in l^{p} of the sequence $s_{n}^{(n)}$. (Just use pointwise the scalar inequalities established in Lemma

6 for $2 \leq p<\infty$ and Lemma 6 for $1<p \leq 2$ in [2], then the mean value theorem.) Both propositions can also be found in [3].

Proposition 2.4. Let E be a uniformly smooth Banach space and T a contraction (not necessarily linear) $T: E \rightarrow E$. Then if for any x in E we denote by c the asymptotic center of the sequence $\left(T^{n} x\right)_{n \in \mathbb{N}}$, and J_{ψ} the duality map associated with the function $\psi(r)=r^{p-1}(1<p<+\infty)$ then $d \phi_{n}^{(p)}(c)=n^{-1} \sum_{j=0}^{n-1} J_{\psi}\left(c-T^{j} x\right)$ converges weakly to 0.
Proposition 2.5. When $E=L^{p}(\mu), 1<p<+\infty$, (the same p as the one used for s_{n}^{p}) and c is the asymptotic center of the sequence $\left(T^{n} f\right)_{n}$ then if $d \phi_{n}(p)(c) \rightarrow 0$ a.e. then

$$
s_{n}^{p} \rightarrow c \quad \text { a.e. }
$$

Theorem 2.6. Let (Ω, A, μ) be a σ-finite measure space and T a positive linear contraction on $L^{p}(\mu), 1<p \leq 2$. If we denote by s_{n}^{p} the element which minimises the function $\phi_{n}^{p}(y)=n^{-1} \sum_{i=0}^{n-1}\left\|T^{n} f-y\right\|^{p}$ and c the asymptotic center of the sequence $\left(T^{n} f\right)_{n \in \mathbb{N}}$ then s_{n}^{p} converges almost everywhere to c.
Proof. For $\psi(r)=r^{p-1}$ we have

$$
J_{\psi}\left(c-T^{j} x\right)=p\left|c-T^{j} x\right| \operatorname{sgn}\left(c-T^{j} x\right)
$$

and $d \phi_{n}^{(p)}(c)=(p / n) \sum_{j=0}^{n-1}\left|c-T^{j} x\right|^{p-1} \operatorname{sgn}\left(c-T^{j} x\right)$. As c is a fixed point of T

$$
d \phi_{n}^{(p)}(c)=\frac{p}{n} \sum_{j=0}^{n-1}\left|T^{j}(c-x)\right|^{p-1} \operatorname{sgn}\left(T^{j}(c-x)\right)
$$

By Theorem 2.3 (for $\beta=p-1$) the sequence $d \phi_{n}^{(p)}(c)$ converges a.e. to a function which must be equal to zero a.e. by Proposition 2.4. We conclude then by using Proposition 2.5.

REFERENCES

[1] 1. Assani. Estimates of positive linear operators in L^{f}. Proc. Amer. Math. Soc. accepted.
[2] B. Beauzamy \& P. Enflo. Théorèmes de points fixes et d'approximation. Arkiv Math. 23 (1985), 19-34.
[3] R. Benozene. Sommes minimales des itérés d'une contraction dans les espaces de Hilbert et de Banach. Thèse de 3^{eme} cycle, Université Pierre et Marie Curie, 29 Octobre 1981.
[4] R. E. Bruck \& S. Reich. Accretive operators, Banach limits, and dual ergodic theorems. Bull. de l'Acad. Polon. des Sciences 19 Nos. 11-12 (1981), 585-589.
[5] Y. Derriennic. Un théorème ergodique presque sous additif. Ann. of Prob. 11, 669-677.
[6] M. Edelstein. The construction of an asymptotic center with a fixed point property. Bull. Amer. Math. Soc. 78 (1972), 206-208.
[7] S. Guerre. Procédé de convergence minimale dans les espaces de Banach. Une loi des grands nombres et un théorème ergodique. Sem. Geom. Espaces de Banach, Ec. polytech., Cent. Math (1977-1978), Exposé, 1-14.
[8] U. Krengel. Ergodic theorems. Studies in Mathematics, de Gruyter, 1985.

