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Abstract. Let (X, F, /x) be a probability measure space, p and @ real numbers such
that 1< /?<+OO and 0<f3<p. For any linear positive operator T satisfying Tl,
T*l = 1 we prove the norm and pointwise convergence of the sequence

- " l i r / f s g n T 1 / forany/eL"(M).

We get then the pointwise and norm convergence in V, 0 < y3 > 1< p < 2, of the
sequence n~' X"J0' l^'/l'3 sgn S'/ for any positive linear operator on Lp{ft, A, fi)
(/i-o--finite) verifying ||(1 -a)I + aS\\p< 1 for a real number 0 < a < l . In the par-
ticular case a = 1, (S is a contraction), /3 =/> - 1 , this result gives the pointwise and
norm convergence of the sequences s'n

p) introduced by Beauzamy and Enflo in 1985
to the asymptotic center of the sequence (T"/),,eN.

0. Introduction
Let £ be a uniformly convex Banach space and xn a bounded sequence in E. We
are interested in this paper in two minimal procedures.

The first one introduced by Edelstein [6] leads to the notion of the asymptotic
center of the sequence (xn). He considered for each integer m > 1 the unique element
cm which minimizes the function

and proved the norm convergence of cm to an element c in E. If we denote by
r(y) = limm rm(y) then r(c) < r(y) for y^c. This element c is called the asymptotic
center of the sequence xn. When the sequence xn is given by the iterates T"x of a
contraction T:C-*C (closed convex subset of E). Then c is a fixed point of T.

The second procedure was introduced by Beauzamy and Enflo [2]. For any real
number p, \<p<+oo and fixed x in C, s{

n
p) is the unique element in E which

minimizes the function

<t>T:y^4>\r(y) = -V ||T'x-^||" y\nE.n /=o

One of the interests of these sequences is that in any Hilbert space and for any p,

i,l" = - V Tx
n ,-=o
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the Cesaro averages of the sequence (T'jc)ieN. Of course the same procedure can
be defined for a general bounded sequence (*„).

When E is not a Hilbert space there is no explicit expression for sl
n
p>. Even for

linear operators the process of creation of sl
n
p) is not linear. So one wonders if these

sequences still enjoy the same convergence properties of the Cesaro averages.
The problem of the pointwise convergence of the sequences sl

n
p) for a linear

positive contraction T:LP->LP has been studied by Guerre and Benozene in [7]
and [3]. But the problem of the pointwise and norm convergence when \<p<2
remained open. If we denote by

d4>T(y) = - V \Vf-y\-x sgn (T'f-y)

and c the asymptotic center of the sequence (7"/)jeN, / in Lp, the pointwise
convergence of the sequence slp) appears as a consequence of the pointwise conver-
gence of d(f>[

n
p)(c). But c being a fixed point of T we have

d<f>^(c)=- "l\T'(f-c)|"-' sgn (T'(f-c))
n ,=o

= - Y Ir(g)\p" sgn (Tig)).
n ,=o

So to get the pointwise convergence in Lp, l<p<2 we just need to consider the
pointwise convergence of the sequence

- " l | r (g) |"- 'sgn (T'g) for any geL ' .
n ,-=o

We are going in fact to prove the pointwise and norm convergence of the sequence
n ' Z"Jo \T'ff sgn (T'f) when T is not necessarily a contraction on Lp. More
precisely we shall prove the pointwise and norm convergence for the class Ca of
linear positive operators T such that | | ( 1 - a ) / + aT| |p< 1 for a real number a,
0< a < 1, for such operators we recently obtained [1] a dominated and pointwise
ergodic theorem in Lp. Let us remark that for a = 1 we get the set of linear positive
contractions on Lp and that there exists simple examples of operators T satisfying
||(1 -a)I + aT\\n< 1 and which are not contractions. For instance T = (° {>), e=l,
a=k,p = 2.

The present article is divided in two parts. In the first we prove the pointwise
and norm convergence of the sequence n"1 £"=0 \T'f\p sgn (T'f) for/in V, 1 </)<
+oo, 0 < /3 < p. The measure space is a probability one and the linear positive operator
satisfies 7*1 = 1, 7**1 = 1. We distinguish in this first part two cases: (i) K/3<p,
(ii) 0<)3 < 1 <p. The first case appears as a direct consequence of the subadditive
ergodic theorem for Markovian operators satisfying T\ = 1. In the second case we
use an almost subadditive property to get the norm convergence in Z,'. This result
does not appear as a simple consequence of known results on subadditive theorems.
The words 'almost subadditive property' come from [5]. We will use also some
ideas developed in [5].
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Then we get the pointwise convergence in L1. In the second part we use these
results to get the pointwise and norm convergence of the sequence
""' I"=~o I7"/]" sgn T'f w h e n T belongs to the class C o > K p < 2 and / e IF.

This gives us the pointwise and norm convergence of the sequence sp
n.

1.
The probability measure space is (Q, A, m). The sequence n"1 X"ro' \Vf\p

sgn (T'f) can be written as

- "i! ar/rr--"i ((rfrr.
n ,=o N i=o

So it is enough to consider n~l X"=o' (^'/)+/3- The change/-* - / will give the result
for n~]Y.Ho i(T'f)~)p- As we said in the introduction we distinguish two cases.
l</8<:/?, 0</8<l</7. The following lemma can be proved as the one well-known
for conditional expectations. (See also Lemma 1.7.4 in [8].)

LEMMA I.I. For any positive linear operator S on Ll(il, A, m), f g > 0 , / e Lr(m),
ge U*(m), 1 <r<+oo, r* = r/(r-l), we have

(A) Kp<p.

THEOREM A.I. For any positive linear operator on L'((l, A, m) such that Tl = l,
T*l = l and any f in Lp(m) the sequence n"1 Y."Io iT'ff sgn (T'f) converges a.e.
and in norm in L1.

Proof. It is enough to prove the result for the sequence w"1 £"=o (T'f)+P. If we write
Sn =!::„ ( r / r 3 we have

Tk(Tk({T'f)+p)

> l (Tk(Tlf)+Y by Lemma I.I

So S ^ s r ^ J + Sii. We have a subadditive sequence with respect to T and the
sequence Sn/n converges a.e. and in norm by the subadditive theorem for Markovian
operator [8]. (In this case 71 = 1 and the conclusion can follow from a simpler
argument.)

(B)
We need just to consider the case p = l.

LEMMA B.2. Let T be a Markovian operator on L'(fl, A, m) satisfying 71 = 1. Then
for any f in V(m) the sequence «"' £"_, \T'f\ converge a.e. and in norm in L'.
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Proof. Let us note Sn =X"=, \Tf\. Then for any integer k we have

Tk(Sn)=l Tk(\Tf\)
i = \

> £ \Tk+if\ = Sn+k-Sk

and the result follows from the subadditive theorem for Markovian operators.

PROPOSITION B.3. Let T be a Markovian contraction on L'(m) verifying 7"1 = 1 and
finL\m). IfwedenotebySn = -Y."=\ (T'f)+P then for any integers n, /CM>1 we have

Proof / / S ; = i;= 1 (Tf)+fithen

b y L e m m a I ,

PROPOSITION B.4. Under the assumptions of Proposition B3 the sequence

f Sn
yn = — • dm converges to a real number y.

J n

Proof. Let us fix the integer n > 1 and note »i = n/+ r, 0< r < n. Then using Proposi-
tion B.3 we have

/ - I

7=0 i=O I 2 )

/ 2 /

The operator T being Markovian we have

nl if f 1 f (Tn'(\T'f\)-\T"'+ifW'i
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By using the concavity of the function x-^x13 and the fact that
(J |F | dm)13 for any function F in L\m) the last term of the previous inequality is
bounded by

If/* = l im N N ' £ = 0 | T ' / | which exists by lemma B.2 we have

By using again Lemma B.2 we have

lim sup ym < lim inf yn,
m n

which implies the convergence of the sequence yn.

PROPOSITION B.5. The sequence S,Jn converges in L1 norm to

limy [lim 7 I r"'(S,)].

Proof. We fix again the integer n and take m = nl+r. Then asT" ' (S r )<0 we have
/-I (-1 n /T"J(\T'f\\ — \Tnl+i

Sm^l Tni(Sn)+ I I U Jl' ' =
7=0 7 = 0 1=1 \ 2.

+i{T ( | T / I )2H T / l)"-

j y
m ,=0 J \ 2 /

By the ergodic theorem for T" (see [7]) lim;/ ' Y.,Jo T"'(Sn) = hn exists a.e. and in
L1 norm.

As

we have

7=0 i=l

J Vwi 7=o n I

f
i 2« 2

by the same arguments as those used in the proof of Proposition B.4.
For n > M»(e) we have then

J \m n )
lim sup I — 2 — h n ) dm<e and for m

https://doi.org/10.1017/S0143385700005666 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005666


416 /. Assani

large enough greater than n

J \m n )

We can choose na(e) such that

• yn - y

Then as J \g\ dm = 2 j g+ • dm — \g- dm we have

1Sm 1 ,

K
m n

^ll (^=-± • hX dm+\\ l^--hn) dm
J \m n J \J \m n /

<2e + |ym -y n | because \ hn dm = Sn dm

=3e.

The sequences Sm/m and An/n are Cauchy sequences in V. They converge to
the same limit in L1 norm:

THEOREM B.6. For any positive linear contraction Ton L'(fl, A, m) such that T\ = 1,
T*l = 1 and any fin L\m) the sequence n"1 £"ro' |T'/ |P sgn (T / ) converges a.e. (/or
0</3<l ) in V.

Proof. It is enough to prove the pointwise convergence of

1 "

We remark first that for any positive contraction U on L\m) verifying (71 = 1
the sequence n~l Y"lo Wig))1* converges a.e. In fact if we note Vn =£"=1 (U'g)p

then

UkVn=i Uk(U'g)p

= Vn+k-Vk (g>0),

for any integers k and n. The result follows again by the subadditive (or superaddi-
tive) ergodic theorem.

Now we fix the integer n > 1, we have for any /> 1

-'i i
nl j=o *.=<> nl / = o ik = i

I z
ni./=o k = i

"i+kf\\li
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by using the inequality
TnJ(\Q\)-\T"Jfr\\13( TnJ(\

So if we note Sm =£"_, (Tkf)+fl we have

I - |T'-In C. / I 7-1 * T"U\Tkf\\-)T"' + ki

(by the concavity of x-»xp).
By the ergodic theorem applied to T" and Lemma B.2

( 1 l-\ n 1 /-I n \

-.11 Tk(\T"'f\)—Y I |7"*+Vl
ni j=o k = i nl j=o t = i /

= /i* - / * a.e. where | ft* dm = | - I | Tkf\ dm.

So from (*) and the fact that limm^cc Sm+i/(w + l)-(Sm/wi) = 0 a.e. we have

m i nlj=ok=]

1 nl

^ m \ 2

So

(by the remark made at the beginning of the proof)
P

j( l i mf-^)^sI(MTZ !)^w

dm) .
\J \ 2 I )

If we let n go to the infinity we get

K lim—- — lim—- | dm =0
m mj

which proves the pointwise convergence of Sn/n. The convergence holds in L1

because of the norm convergence in V proved in Proposition B.4.

COROLLARY B.7. Under the assumptions of Theorem B.6 but fe IT for K / X + o o ,
then the pointwise and norm convergence holds in Lp/I3.

Proof. It suffices to prove that
1

« n
We have

sup^lT'/l^sup^T'l/l)"
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so

\ (sup -\Tf A"'" dm^ \( sup-r\f\Y dm* K \ \f\p dm

(as a particular case of the estimate in [1]) and ||supn / T ' l r / H , ^ < Kp/P\\f\\f.
Remarks
(1) It is clear that when / is in V, \<p< +oo by using only the proof of Theorem

B.6 and the fact that supn « ' £"=0' \T'f\p e Lp/P we can get the pointwise and
norm convergence in Lplp.

(2) A consequence of Theorem B.6 is the pointwise and norm convergence in Z.1

of the sequence n ' X"J0' l^'/l^- We can also get the same conclusion when T
is not necessarily positive but its linear modulus T satisfies Tl = 1 and T*\ = 1.

We apply now the results of this first part to operators in any class Ca, 0 < a £ 1.

2.
PROPOSITION 2.1. Let Tbe a positive linear operator on Lp(X, F, fi) 1 < p < + o o such
that | | ( l - a ) / + a T | | p < l for a real number a, 0 < a < 1. Then there exists a decomposi-
tion of the space X in two disjoint parts E and Ec invariant by T. (i.e. T(LP(E))<= LP(E)
and T(LP(EC)) a L"(EC)). Furthermore there exists h in L"(ix) such that supp h = E,
Th = hand T*(hpl) = hp-\

Proof. Let h be a function in Lp invariant by T with maximal support E. This
function h is also invariant with maximal support for S = ( l - a ) / + aT. As

I S(h)-hp-x dfi= \h"dfi= \ hS*{h"'')

we have also S*(hp ') = hv ' and E is the maximal support of the invariant functions
of S* and then of T*. (Note: hp~l is the only element in L" (such that \h- hpl d\i =
IIh\pp = | |/ip~l| | ' .) We have to show that E and £ ' are invariant by T (and also T*).
We have

J T(1E- • / ) • h"~l dy, = J 1E./- T*(hp-<)

By analogy we also have

J
which proves that Ec is invariant by T and T*. Let us denote by P and P*, the
projections obtained by the mean ergodic theorem (a consequence of the result
obtained in [1]). If g (resp. / ) is a strictly positive function such that

E c = supp/»(g-P*g) (resp. Ec = supp h(f-P(f))
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then we have

\ T(lEf)-(g-P*(g))d»=[ (lef) • (T*{g)-T*P*(g)) dfi

= 0 as £" is invariant by T*.

By analogy we have

T*(\Eg) • (f-P(f)) dfi=O because £" is invariant.

THEOREM 2.3. Let 0<)3< l< /><2 , for any positive operator T on Lp(fi) such

that | | (1-a)7 + aT|| / )< 1 and for any function f in Lp(/x) the sequence
n ' ZiTo \T'f\p sgn (T1/) converges a.e. and »n norm in Lp/i3.

Proof We have

-I |r/|Ngn(r/)|<(-1 r|/| .
M i=o \ " i=o /

By Proposition 2.2 the space il can be divided in two disjoint parts E and Ec both
invariant by T. There exists also h in !/(/*) such that supp h = E, Th = h and

Because of the pointwise ergodic theorem [1] we have

lE<--(Yr( | / | )NUo a.e. and so

1E' -iV'/l'sgnd"/) •0 a.e.
n ,=o

The operator 5: S(g)=T(g- h)/h on the space Lp(E,m) (where m{A) = \A hp d/x)
is a Markovian operator contraction on L\m) verifying also SI = 1 as

T*{s-hpX)
S*(s) = - ,P-\

As S'(g)= T'(g- h)/h for any integer i>0 the pointwise convergence of the
sequence n ' £"_T(J |S'(g)|" sgn S'g valid by Theorem B.6 implies the same con-
sequence for the sequence n~' Z"ro' \T'f\p sgn T'f on E. The norm convergence
follows from the following inequality consequence of the dominated estimate in [1]
and the concavity of x -» x'3

sgnT1/ ^(•y(a)r / l >(- j : - ||/||£. D
II n n i=o II p//3 \p — \/

To see how these results can be applied to the sequences s{
n
p) we need the following

propositions. The first one can be obtained following the proof of Bruck and Reich
[4] (taking the function d(y) = \\m ||Tnx-j>||1' instead of \\\m | | r"x-y| | 2 ) and the
fact that r(c)<r(y) for y / c (c is the asymptotic center). The second proposition
uses ideas of Beauzamy and Enflo [2] in their proof of the weak convergence in lp

of the sequence si
n
p). (Just use pointwise the scalar inequalities established in Lemma
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6 for 2<p<oo and Lemma 6 for K p < 2 in [2], then the mean value theorem.)
Both propositions can also be found in [3].

PROPOSITION 2.4. Let E be a uniformly smooth Banach space and T a contraction
(not necessarily linear) T:E->E. Then if for any x in E we denote by c the asymptotic
center of the sequence (T"x)ne^, and J^ the duality map associated with the function
i(,(r) = rp~' ( K p < + o o ) then d<j>{

n
p)(c) = n"1 !":„ ' J^(c-Vx) converges weakly to 0.

PROPOSITION 2.5. When E = Lp(fi), Kp<+oo, (the same p as the one used for sp
n)

and c is the asymptotic center of the sequence (T"f)n then if d(f>n( p)(c) -> 0 a.e. then

sp
n^c a.e.

THEOREM 2.6. Let (0,, A, /A) be a cr-finite measure space and T a positive linear
contraction on LP(/J,), 1 < / ?<2 . If we denote by sp

n the element which minimises the
function <t>p(y) = «~' X"=o ||7*"/~>'ll'' ana% c the asymptotic center of the sequence
(T"f)neN then sp

n converges almost everywhere to c.

Proof. For kj)(r) — rp~x we have

J*(c - Vx) =p\c- Tx\ sgn (c - Vx)

and d<f>i
n
p)(c) = (p/n)YJ"~o \c-TJx\p'1 sgn(c-TJx). As c is a fixed point of T

dcf>(
n
p>(c)=l"z \T(c-x)\p-1 sgn (T'(c-x)).

n j=o

By Theorem 2.3 (for (! =p-l) the sequence d<j>{
n
p)(c) converges a.e. to a function

which must be equal to zero a.e. by Proposition 2.4. We conclude then by using
Proposition 2.5.
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