Minimal convergence on L^p spaces

I. ASSANI

Department of Mathematics, University of Toronto, Ontario, Canada, M5S 1A1

(Received 26 May 1988, revised 14 August 1989)

Abstract. Let (X, F, μ) be a probability measure space, p and β real numbers such that $1 \le p < +\infty$ and $0 < \beta < p$. For any linear positive operator T satisfying T1, $T^*1 = 1$ we prove the norm and pointwise convergence of the sequence

$$\frac{1}{n}\sum_{i=0}^{n-1}|T^if|^\beta\,\operatorname{sgn}\,T^if\quad\text{for any}\,f\in L^p(\mu).$$

We get then the pointwise and norm convergence in L^p , $0 < \beta \ge 1 < p < 2$, of the sequence $n^{-1} \sum_{i=0}^{n-1} |S^i f|^{\beta} \operatorname{sgn} S^i f$ for any positive linear operator on $L^p(\Omega, A, \mu)$ (μ - σ -finite) verifying $||(1-\alpha)I + \alpha S||_p \le 1$ for a real number $0 < \alpha \le 1$. In the particular case $\alpha = 1$, (S is a contraction), $\beta = p - 1$, this result gives the pointwise and norm convergence of the sequences $s_n^{(p)}$ introduced by Beauzamy and Enflo in 1985 to the asymptotic center of the sequence $(T^n f)_{n \in \mathbb{N}}$.

0. Introduction

Let E be a uniformly convex Banach space and x_n a bounded sequence in E. We are interested in this paper in two minimal procedures.

The first one introduced by Edelstein [6] leads to the notion of the asymptotic center of the sequence (x_n) . He considered for each integer $m \ge 1$ the unique element c_m which minimizes the function

$$r_m(y) = \sup_{k \ge m} \|x_k - y\|$$

and proved the norm convergence of c_m to an element c in E. If we denote by $r(y) = \lim_m r_m(y)$ then r(c) < r(y) for $y \neq c$. This element c is called the asymptotic center of the sequence x_n . When the sequence x_n is given by the iterates $T^n x$ of a contraction $T: C \rightarrow C$ (closed convex subset of E). Then c is a fixed point of T.

The second procedure was introduced by Beauzamy and Enflo [2]. For any real number p, 1 and fixed <math>x in C, $s_n^{(p)}$ is the unique element in E which minimizes the function

$$\phi_n^{(p)}: y \to \phi_n^{(p)}(y) = \frac{1}{n} \sum_{i=0}^{n-1} ||T^i x - y||^p \quad y \text{ in } E.$$

One of the interests of these sequences is that in any Hilbert space and for any p,

$$1$$

the Cesaro averages of the sequence $(T^i x)_{i \in \mathbb{N}}$. Of course the same procedure can be defined for a general bounded sequence (x_n) .

When E is not a Hilbert space there is no explicit expression for $s_n^{(p)}$. Even for linear operators the process of creation of $s_n^{(p)}$ is not linear. So one wonders if these sequences still enjoy the same convergence properties of the Cesaro averages.

The problem of the pointwise convergence of the sequences $s_n^{(p)}$ for a linear positive contraction $T: L^p \to L^p$ has been studied by Guerre and Benozene in [7] and [3]. But the problem of the pointwise and norm convergence when 1 remained open. If we denote by

$$d\phi_n^{(p)}(y) = \frac{1}{n} \sum_{i=0}^{n-1} |T^i f - y|^{p-1} \operatorname{sgn} (T^i f - y)$$

and c the asymptotic center of the sequence $(T^i f)_{i \in \mathbb{N}}$, f in L^p , the pointwise convergence of the sequence $s_n^{(p)}$ appears as a consequence of the pointwise convergence of $d\phi_n^{(p)}(c)$. But c being a fixed point of T we have

$$d\phi_n^{(p)}(c) = \frac{1}{n} \sum_{i=0}^{n-1} |T^i(f-c)|^{p-1} \operatorname{sgn} (T^i(f-c))$$
$$= \frac{1}{n} \sum_{i=0}^{n-1} |T^i(g)|^{p-1} \operatorname{sgn} (T^i(g)).$$

So to get the pointwise convergence in L^p , 1 we just need to consider the pointwise convergence of the sequence

$$\frac{1}{n}\sum_{i=0}^{n-1}|T^i(g)|^{p-1}\operatorname{sgn}(T^ig)\quad\text{for any }g\in L^p.$$

We are going in fact to prove the pointwise and norm convergence of the sequence $n^{-1}\sum_{i=0}^{n-1} |T^if|^{\beta} \operatorname{sgn}(T^if)$ when T is not necessarily a contraction on L^p . More precisely we shall prove the pointwise and norm convergence for the class C_{α} of linear positive operators T such that $\|(1-\alpha)I + \alpha T\|_p \leq 1$ for a real number α , $0 < \alpha < 1$, for such operators we recently obtained [1] a dominated and pointwise ergodic theorem in L^p . Let us remark that for $\alpha = 1$ we get the set of linear positive contractions on L^p and that there exists simple examples of operators T satisfying $\|(1-\alpha)I + \alpha T\|_p \leq 1$ and which are not contractions. For instance $T = \begin{pmatrix} 0 & \epsilon \\ 0 & 0 \end{pmatrix}, \ \epsilon = \frac{3}{2}, \ \alpha = \frac{1}{2}, \ p = 2.$

The present article is divided in two parts. In the first we prove the pointwise and norm convergence of the sequence $n^{-1}\sum_{i=0}^{n-1} |T^if|^\beta \operatorname{sgn}(T^if)$ for f in L^p , $1 \le p \le +\infty$, $0 \le \beta \le p$. The measure space is a probability one and the linear positive operator satisfies $T\mathbf{1} = \mathbf{1}$, $T^*\mathbf{1} = \mathbf{1}$. We distinguish in this first part two cases: (i) $1 \le \beta \le p$, (ii) $0 \le \beta \le 1 \le p$. The first case appears as a direct consequence of the subadditive ergodic theorem for Markovian operators satisfying $T\mathbf{1} = \mathbf{1}$. In the second case we use an almost subadditive property to get the norm convergence in L^1 . This result does not appear as a simple consequence of known results on subadditive theorems. The words 'almost subadditive property' come from [5]. We will use also some ideas developed in [5]. Then we get the pointwise convergence in L^1 . In the second part we use these results to get the pointwise and norm convergence of the sequence $n^{-1}\sum_{i=0}^{n-1} |T^i f|^{\beta} \operatorname{sgn} T^i f$ when T belongs to the class C_{α} , $1 and <math>f \in L^p$.

This gives us the pointwise and norm convergence of the sequence s_n^p .

1.

The probability measure space is (Ω, A, m) . The sequence $n^{-1} \sum_{i=0}^{n-1} |T^i f|^{\beta}$ sgn $(T^i f)$ can be written as

$$\frac{1}{n}\sum_{i=0}^{n-1}((T^{i}f)^{+})^{\beta}-\frac{1}{n}\sum_{i=0}^{n-1}((T^{i}f)^{-})^{\beta}.$$

So it is enough to consider $n^{-1} \sum_{i=0}^{n-1} (T^i f)^{+\beta}$. The change $f \to -f$ will give the result for $n^{-1} \sum_{i=0}^{n-1} ((T^i f)^{-})^{\beta}$. As we said in the introduction we distinguish two cases. $1 < \beta < p, \ 0 < \beta < 1 \le p$. The following lemma can be proved as the one well-known for conditional expectations. (See also Lemma I.7.4 in [8].)

LEMMA I.1. For any positive linear operator S on $L^1(\Omega, A, m)$, $f, g \ge 0, f \in L^r(m)$, $g \in L^{r^*}(m), 1 < r < +\infty, r^* = r/(r-1)$, we have

$$S(f \cdot g) \leq (S(f^r))^{1/r} \cdot (S(g^{r^*}))^{1/r^*}.$$

(A) $1 < \beta < p$.

THEOREM A.1. For any positive linear operator on $L^1(\Omega, A, m)$ such that T1 = 1, $T^*1 = 1$ and any f in $L^p(m)$ the sequence $n^{-1} \sum_{i=0}^{n-1} |T^if|^\beta \operatorname{sgn}(T^if)$ converges a.e. and in norm in L^1 .

Proof. It is enough to prove the result for the sequence $n^{-1} \sum_{i=0}^{n-1} (T^i f)^{+\beta}$. If we write $S_n = \sum_{i=0}^{n-1} (T^i f)^{+\beta}$ we have

$$T^{k}(S_{n}) = \sum_{i=0}^{n-1} T^{k}((T^{i}f)^{+\beta})$$

$$\geq \sum_{i=0}^{n-1} (T^{k}(T^{i}f)^{+})^{\beta} \text{ by Lemma I.1}$$

$$\geq \sum_{i=0}^{n-1} (T^{k}(T^{i}f))^{+\beta}$$

$$= S_{n+k} - S_{k}$$

So $S_{n+k} \leq T^k(S_n) + S_k$. We have a subadditive sequence with respect to T and the sequence S_n/n converges a.e. and in norm by the subadditive theorem for Markovian operator [8]. (In this case T1 = 1 and the conclusion can follow from a simpler argument.)

(B) $0 < \beta < 1 \le p$. We need just to consider the case p = 1.

LEMMA B.2. Let T be a Markovian operator on $L^1(\Omega, A, m)$ satisfying T1 = 1. Then for any f in $L^1(m)$ the sequence $n^{-1}\sum_{i=1}^n |T^i f|$ converge a.e. and in norm in L^1 . *Proof.* Let us note $S_n = \sum_{i=1}^n |T^i f|$. Then for any integer k we have

$$T^{k}(S_{n}) = \sum_{i=1}^{n} T^{k}(|T^{i}f|)$$
$$\geq \sum_{i=1}^{n} |T^{k+i}f| = S_{n+k} - S_{k}$$

and the result follows from the subadditive theorem for Markovian operators.

PROPOSITION B.3. Let T be a Markovian contraction on $L^{1}(m)$ verifying T1 = 1 and f in $L^{1}(m)$. If we denote by $S_{n} = -\sum_{i=1}^{n} (T^{i}f)^{+\beta}$ then for any integers n, $k n \ge 1$ we have

$$S_{n+k} \leq S_k + T^k(S_n) + \sum_{i=1}^n \left(\frac{T^k(|T^if|) - |T^{k+i}f|}{2} \right)^{\beta}.$$

Proof. If $S'_n = \sum_{i=1}^n (T^i f)^{+\beta}$ then

$$T^{k}(S'_{n}) = T^{k} \left(\sum_{i=1}^{n} \left(\frac{T^{i}f + |T^{i}f|}{2} \right)^{\beta} \right)$$

$$\leq \sum_{i=1}^{n} \left(T^{k} \left(\frac{T^{i}f + |T^{i}f|}{2} \right) \right)^{\beta} \text{ by Lemma I.1}$$

$$= \sum_{i=1}^{n} \left((T^{k}(T^{i}f))^{+} + \frac{T^{k}(|T^{i}f|) - |T^{k+i}f|}{2} \right)^{\beta}$$

$$\leq \sum_{i=1}^{n} (T^{k+i}f)^{+\beta} + \sum_{i=1}^{n} \left(\frac{T^{k}(|T^{i}f|) - |T^{k+i}f|}{2} \right)^{\beta}$$

$$\geq S'_{n+k} - S'_{k} + \sum_{i=1}^{n} \left(\frac{T^{k}(|T^{i}f|) - |T^{k+i}f|}{2} \right)^{\beta}.$$

PROPOSITION B.4. Under the assumptions of Proposition B.3 the sequence

$$\gamma_n = \int \frac{S_n}{n} \cdot dm$$
 converges to a real number γ

Proof. Let us fix the integer n > 1 and note m = nl + r, $0 \le r < n$. Then using Proposition B.3 we have

$$S_{m} \leq \sum_{j=0}^{l-1} T^{nj}(S_{n}) + T^{nl}(S_{r}) + \sum_{i=0}^{r} \left(\frac{T^{nl}(|T^{i}f|) - |T^{nl+i}f|}{2} \right)^{\beta} + \sum_{j=0}^{l-1} \sum_{i=1}^{n} \left(\frac{T^{nj}(|T^{i}f|) - |T^{nj+i}f|}{2} \right)^{\beta}.$$

The operator T being Markovian we have

$$\gamma_m \leq \frac{nl}{m} \cdot \gamma_n + \frac{1}{m} \int S_r \cdot dm + \sum_{i=0}^r \frac{1}{m} \int \left(\frac{T^{nl}(|T^if|) - |T^{nl+i}f|}{2} \right)^{\beta} dm$$
$$+ \frac{nl}{m} \cdot \frac{1}{nl} \int \sum_{j=0}^{l-1} \sum_{i=1}^n \left(\frac{T^{nj}(|T^if|) - |T^{nj+i}f|}{2} \right)^{\beta} \cdot dm.$$

By using the concavity of the function $x \to x^{\beta}$ and the fact that $(\int |F|^{\beta} \cdot dm) \le (\int |F| dm)^{\beta}$ for any function F in $L^{1}(m)$ the last term of the previous inequality is bounded by

$$\frac{nl}{m}\left(\int \left(\frac{1}{nl}\sum_{j=0}^{l-1}\sum_{i=1}^{n}\left(\frac{T^{nj}(|T^{i}f|)-|T^{nj+i}f|}{2}\right)\right)^{\beta} \cdot dm$$

$$\leq \frac{nl}{m}\left(\int \left(\frac{1}{2n}\sum_{i=1}^{n}|T^{i}f|-\frac{1}{2nl}\sum_{k=1}^{nl}|T^{k}f|\right)dm\right)^{\beta}.$$

If $f^* = \lim_N N^{-1} \sum_{i=0}^N |T^i f|$ which exists by lemma B.2 we have

$$\limsup_{m} \gamma_{m} \leq \gamma_{n} + \left(\int \left(\frac{\sum_{i=1}^{n} |T^{i}f|}{2n} - \frac{f^{*}}{2} \right) dm \right)^{\beta}.$$

By using again Lemma B.2 we have

$$\limsup_{m} \gamma_m \leq \liminf_{n} \gamma_n,$$

which implies the convergence of the sequence γ_n .

PROPOSITION B.5. The sequence S_n/n converges in L^1 norm to

$$\lim_{l} \frac{1}{l} \left[\lim_{j} \frac{1}{j} \sum_{i=1}^{j} T^{il}(S_l) \right].$$

Proof. We fix again the integer n and take m = nl + r. Then as $T^{nl}(S_r) \le 0$ we have

$$S_{m} \leq \sum_{j=0}^{l-1} T^{nj}(S_{n}) + \sum_{j=0}^{l-1} \sum_{i=1}^{n} \left(\frac{T^{nj}(|T^{i}f|) - |T^{nl+i}f|}{2} \right)^{l} + \sum_{i=0}^{r} \left(\frac{T^{nl}(|T^{i}f|) - |T^{nl+i}f|}{2} \right)^{\beta}.$$

By the ergodic theorem for T^n (see [7]) $\lim_l l^{-1} \sum_{j=0}^{l-1} T^{nj}(S_n) = h_n$ exists a.e. and in L^1 norm.

As

$$\int \left(\frac{S_m}{m} - \frac{1}{n} \cdot h_n\right)^+ \cdot dm \leq \frac{1}{m} \sum_{i=0}^r \int \left(\frac{T^{n'}(|T^if|) - |T^{n'+i}f|}{2}\right)^\beta \cdot dm \\ + \frac{1}{m} \int \left(\sum_{j=0}^{l-1} \sum_{i=1}^n \left(\frac{T^{nj}(|T^if|) - |T^{nj+i}f|}{2}\right)^\beta\right) dm \\ + \int \left(\frac{1}{m} \sum_{j=0}^{l-1} T^{nj}(S_n) - \frac{1}{n} \cdot h_n\right)^+ dm$$

we have

$$\limsup_{m} \int \left(\frac{S_m}{m} - \frac{1}{n} \cdot h_n\right)^+ \cdot dm \leq \left(\int \left(\sum_{i=1}^n \frac{|T^i f|}{2n} - \frac{f^*}{2}\right) dm\right)^{\beta}$$

by the same arguments as those used in the proof of Proposition B.4. For $n \ge n_0(\varepsilon)$ we have then

$$\limsup_{m} \int \left(\frac{S_m}{m} - \frac{1}{n} h_n\right)^+ dm \le \varepsilon \quad \text{and for } m$$

large enough greater than n

$$\int \left(\frac{S_m}{m}-\frac{1}{n}h_n\right)^+ dm \leq \varepsilon.$$

We can choose $n_0(\varepsilon)$ such that

$$\left|\frac{1}{n}\cdot\gamma_n-\gamma\right|<\varepsilon.$$

Then as $\int |g| dm = 2 \int g^+ \cdot dm - \int g \cdot dm$ we have

$$\int \left| \frac{S_m}{m} - \frac{1}{n} \cdot h_n \right| \cdot dm \le 2 \int \left(\frac{S_m}{m} - \frac{1}{n} \cdot h_n \right)^+ dm + \left| \int \left(\frac{S_m}{m} - \frac{1}{n} h_n \right) dm \right|$$
$$\le 2\varepsilon + |\gamma_m - \gamma_n| \quad \text{because} \int h_n \, dm = \int S_n \, dm$$
$$\le 2\varepsilon + \varepsilon = 3\varepsilon.$$

The sequences S_m/m and h_n/n are Cauchy sequences in L^1 . They converge to the same limit in L^1 norm:

$$\lim_{l} \frac{1}{l} \left[\lim_{j} \frac{1}{j} \sum_{i=1}^{j} T^{il}(S_l) \right].$$

THEOREM B.6. For any positive linear contraction T on $L^1(\Omega, A, m)$ such that T1 = 1, $T^*1 = 1$ and any f in $L^1(m)$ the sequence $n^{-1} \sum_{i=0}^{n-1} |T^if|^{\beta} \operatorname{sgn}(T^if)$ converges a.e. (for $0 < \beta \le 1$) in L^1 .

Proof. It is enough to prove the pointwise convergence of

$$\frac{1}{n}\sum_{i=0}^{n-1} (T^i f)^{+\beta}.$$

We remark first that for any positive contraction U on $L^1(m)$ verifying U1=1the sequence $n^{-1}\sum_{i=0}^{n=1} (U^i(g))^{\beta}$ converges a.e. In fact if we note $V_n = \sum_{i=1}^n (U^ig)^{\beta}$ then

$$U^{k}V_{n} = \sum_{i=1}^{n} U^{k} (U^{i}g)^{\beta}$$
$$\leq \sum_{i=1}^{n} (U^{k} (U^{i}g))^{\beta}$$
$$= V_{n+k} - V_{k} \quad (g \geq 0)$$

for any integers k and n. The result follows again by the subadditive (or superadditive) ergodic theorem.

Now we fix the integer $n \ge 1$, we have for any $l \ge 1$

$$\frac{1}{nl} \sum_{j=0}^{l-1} \sum_{k=0}^{n} (T^{nj}(T^k f))^{+\beta} \leq \frac{1}{nl} \sum_{j=0}^{l-1} \sum_{k=1}^{n} (T^{nj}(T^k f)^{+})^{\beta}$$
$$\leq \frac{1}{nl} \sum_{j=0}^{l-1} \sum_{k=1}^{n} \left((T^{nj}(T^k f))^{+\beta} + \left(\frac{T^{nj}(|T^k f|) - |T^{nj+k} f|}{2} \right)^{\beta} \right)$$

416

by using the inequality

$$(T^{nj}(g^+))^{\beta} \leq (T^{nj}g)^{+\beta} + \left(\frac{T^{nj}(|g|) - |T^{nj}g|}{2}\right)^{\beta}.$$

So if we note $S_m = \sum_{k=1}^m (T^k f)^{+\beta}$ we have

$$(*) \qquad \frac{S_{nl}}{nl} \le \frac{1}{nl} \sum_{j=0}^{l-1} \sum_{k=1}^{n} (T^{nj}(T^k f)^+)^{\beta} \le \frac{S_{nl}}{nl} + \left(\frac{1}{nl} \sum_{j=0}^{l-1} \sum_{k=1}^{n} \frac{T^{nj}(|T^k f|) - |T^{nj+k} f|}{2}\right)^{\beta}$$

(by the concavity of $x \rightarrow x^{\beta}$).

By the ergodic theorem applied to T^n and Lemma B.2

$$\lim_{l} \left(\frac{1}{nl} \sum_{j=0}^{l-1} \sum_{k=1}^{n} T^{k}(|T^{nf}f|) - \frac{1}{nl} \sum_{j=0}^{l-1} \sum_{k=1}^{n} |T^{nj+k}f| \right)$$

= $h_{n}^{*} - f^{*}$ a.e. where $\int h_{n}^{*} dm = \int \frac{1}{n} \sum_{k=1}^{n} |T^{k}f| dm$

So from (*) and the fact that $\lim_{m\to\infty} S_{m+1}/(m+1) - (S_m/m) = 0$ a.e. we have

$$\overline{\lim m} \frac{S_m}{m} \le \overline{\lim_{l}} \frac{1}{nl} \sum_{j=0}^{l-1} \sum_{k=1}^{n} (T^{nj} (T^k f)^+)^{\beta}$$
$$= \lim_{l} \frac{1}{nl} \sum_{j=0}^{l-1} \sum_{k=1}^{n} (T^{nj} (T^k f)^+)^{\beta}$$
(by th

(by the remark made at the beginning of the proof)

$$\leq \underline{\lim} \frac{S_m}{m} + \left(\frac{h_n^* - f^*}{2}\right)^{\beta}.$$

So

$$\int \left(\overline{\lim \frac{S_m}{m}} - \underline{\lim \frac{S_m}{m}}\right) dm \leq \int \left(\frac{h_n^* - f^*}{2}\right)^\beta dm$$
$$\leq \left(\int \left(\frac{h_n^* - f^*}{2}\right) dm\right)^\beta.$$

If we let n go to the infinity we get

$$\int \left(\overline{\lim} \frac{S_m}{m} - \underline{\lim} \frac{S_m}{m}\right) dm = 0$$

which proves the pointwise convergence of S_n/n . The convergence holds in L^1 because of the norm convergence in L^1 proved in Proposition B.4.

COROLLARY B.7. Under the assumptions of Theorem B.6 but $f \in L^p$ for $1 , then the pointwise and norm convergence holds in <math>L^{p/\beta}$.

Proof. It suffices to prove that

$$\sup_{n}\frac{1}{n}|T^{i}f|^{\beta}\in L^{p/\beta}.$$

We have

$$\sup_{n \leq N} \left(\frac{1}{n} |T^i f|^{\beta} \right) \leq \sup_{n \leq N} \left(\frac{1}{n} |T^i f| \right)^{\beta}$$

so

$$\int \left(\sup_{n \leq N} \frac{1}{n} |T^i f|^{\beta}\right)^{p/\beta} dm \leq \int \left(\sup_{n \leq N} \frac{1}{n} |T^i| f|\right)^p dm \leq K \int |f|^p dm$$

(as a particular case of the estimate in [1]) and $\|\sup_n n^{-1} |T^i f|^{\beta} \|_{p/\beta} \le K^{\beta/p} \|f\|_p^{\beta}$. Remarks

- (1) It is clear that when f is in L^p , $1 by using only the proof of Theorem B.6 and the fact that <math>\sup_n n^{-1} \sum_{i=0}^{n-1} |T^i f|^{\beta} \in L^{p/\beta}$ we can get the pointwise and norm convergence in $L^{p/\beta}$.
- (2) A consequence of Theorem B.6 is the pointwise and norm convergence in L^1 of the sequence $n^{-1} \sum_{i=0}^{n-1} |T^i f|^{\beta}$. We can also get the same conclusion when T is not necessarily positive but its linear modulus T satisfies T1 = 1 and $T^*1 = 1$.

We apply now the results of this first part to operators in any class C_{α} , $0 < \alpha \le 1$.

2.

PROPOSITION 2.1. Let T be a positive linear operator on $L^{p}(X, F, \mu) \ 1 such that <math>\|(1-\alpha)I + \alpha T\|_{p} \le 1$ for a real number $\alpha, 0 < \alpha \le 1$. Then there exists a decomposition of the space X in two disjoint parts E and E^{c} invariant by T. (i.e. $T(L^{p}(E)) \subset L^{p}(E)$ and $T(L^{p}(E^{c})) \subset L^{p}(E^{c}))$. Furthermore there exists h in $L^{p}(\mu)$ such that supp h = E, Th = h and $T^{*}(h^{p-1}) = h^{p-1}$.

Proof. Let h be a function in L^p invariant by T with maximal support E. This function h is also invariant with maximal support for $S = (1 - \alpha)I + \alpha T$. As

$$\int S(h) \cdot h^{p-1} d\mu = \int h^p d\mu = \int hS^*(h^{p-1}) d\mu,$$

we have also $S^*(h^{p-1}) = h^{p-1}$ and E is the maximal support of the invariant functions of S^* and then of T^* . (Note: h^{p-1} is the only element in L^q (such that $\int h \cdot h^{p-1} d\mu =$ $\|h\|_p^p = \|h^{p-1}\|_q^q$.) We have to show that E and E^c are invariant by T (and also T^*). We have

$$\int T(\mathbf{1}_{E^c} \cdot f) \cdot h^{p-1} d\mu = \int \mathbf{1}_{E^c} f \cdot T^*(h^{p-1}) d\mu$$
$$= \int \mathbf{1}_{E^c} f \cdot h^{p-1} d\mu = 0.$$

By analogy we also have

$$\int T^*(\mathbf{1}_{E^{\mathsf{c}}}g) \cdot h \, d\mu = \int \mathbf{1}_{E^{\mathsf{c}}}g \cdot h \, d\mu = 0,$$

which proves that E^c is invariant by T and T^* . Let us denote by P and P^* , the projections obtained by the mean ergodic theorem (a consequence of the result obtained in [1]). If \tilde{g} (resp. \tilde{f}) is a strictly positive function such that

$$E^{c} = \operatorname{supp} h(\tilde{g} - P^{*}\tilde{g}) \quad (\operatorname{resp.} E^{c} = \operatorname{supp} h(\tilde{f} - P(\tilde{f})))$$

418

then we have

$$\int T(\mathbf{1}_E f) \cdot (\tilde{g} - P^*(\tilde{g})) \, d\mu = \int (\mathbf{1}_E f) \cdot (T^*(\tilde{g}) - T^*P^*(\tilde{g})) \, d\mu$$
$$= 0 \quad \text{as } E^c \text{ is invariant by } T^*.$$

By analogy we have

$$\int T^*(\mathbf{1}_E g) \cdot (\tilde{f} - P(\tilde{f})) \, d\mu = 0 \quad \text{because } E^c \text{ is invariant.}$$

THEOREM 2.3. Let $0 < \beta < 1 < p \le 2$, for any positive operator T on $L^p(\mu)$ such that $\|(1-\alpha)I + \alpha T\|_p \le 1$ and for any function f in $L^p(\mu)$ the sequence $n^{-1}\sum_{i=0}^{n-1} |T^if|^{\beta} \operatorname{sgn}(T^if)$ converges a.e. and in norm in $L^{p/\beta}$.

Proof. We have

$$\frac{1}{n} \sum_{i=0}^{n-1} |T^{i}f|^{\beta} \operatorname{sgn}(T^{i}f)| \leq \left(\frac{1}{n} \sum_{i=0}^{n-1} |T^{i}|f|\right)^{\beta}.$$

By Proposition 2.2 the space Ω can be divided in two disjoint parts E and E^c both invariant by T. There exists also h in $L^p(\mu)$ such that supp h = E, Th = h and $T^*(h^{p-1}) = h^{p-1}$.

Because of the pointwise ergodic theorem [1] we have

$$\mathbf{1}_{E^c} \cdot \frac{1}{n} \left(\sum_{i=0}^{n-1} T^i(|f|) \right) \to 0 \quad \text{a.e. and so}$$
$$\mathbf{1}_{E^c} \cdot \left| \frac{1}{n} \sum_{i=0}^{n-1} |T^i f|^p \operatorname{sgn} (T^i f) \right| \to 0 \quad \text{a.e.}$$

The operator $S: S(g) = T(g \cdot h)/h$ on the space $L^p(E, m)$ (where $m(A) = \int_A h^p d\mu$) is a Markovian operator contraction on $L^1(m)$ verifying also S1 = 1 as

$$S^{*}(s) = \frac{T^{*}(s \cdot h^{p-1})}{h^{p-1}}$$

As $S^i(g) = T^i(g \cdot h)/h$ for any integer $i \ge 0$ the pointwise convergence of the sequence $n^{-1} \sum_{i=0}^{n-1} |S^i(g)|^{\beta} \operatorname{sgn} S^i g$ valid by Theorem B.6 implies the same consequence for the sequence $n^{-1} \sum_{i=0}^{n-1} |T^i f|^{\beta} \operatorname{sgn} T^i f$ on E. The norm convergence follows from the following inequality consequence of the dominated estimate in [1] and the concavity of $x \to x^{\beta}$

$$\left\|\sup_{n}\frac{1}{n}\sum_{i=0}^{n-1}|T^{i}f|^{\beta}\operatorname{sgn} T^{i}f\right\|_{p/\beta} \leq (\gamma(\alpha))^{\beta/p}\left(\frac{p}{p-1}\right)^{\beta}\|f\|_{p}^{\beta}.$$

To see how these results can be applied to the sequences $s_n^{(p)}$ we need the following propositions. The first one can be obtained following the proof of Bruck and Reich [4] (taking the function $\theta(y) = \lim ||T^n x - y||^p$ instead of $\frac{1}{2} \lim ||T^n x - y||^2$) and the fact that r(c) < r(y) for $y \neq c$ (c is the asymptotic center). The second proposition uses ideas of Beauzamy and Enflo [2] in their proof of the weak convergence in l^p of the sequence $s_n^{(p)}$. (Just use pointwise the scalar inequalities established in Lemma

6 for $2 \le p < \infty$ and Lemma 6 for 1 in [2], then the mean value theorem.)Both propositions can also be found in [3].

PROPOSITION 2.4. Let E be a uniformly smooth Banach space and T a contraction (not necessarily linear) $T: E \to E$. Then if for any x in E we denote by c the asymptotic center of the sequence $(T^n x)_{n \in \mathbb{N}}$, and J_{ψ} the duality map associated with the function $\psi(r) = r^{p-1} (1 then <math>d\phi_n^{(p)}(c) = n^{-1} \sum_{i=0}^{n-1} J_{\psi}(c - T^i x)$ converges weakly to 0.

PROPOSITION 2.5. When $E = L^{p}(\mu)$, $1 , (the same p as the one used for <math>s_{n}^{p}$) and c is the asymptotic center of the sequence $(T^{n}f)_{n}$ then if $d\phi_{n}(p)(c) \rightarrow 0$ a.e. then

$$s_n^p \rightarrow c$$
 a.e.

THEOREM 2.6. Let (Ω, A, μ) be a σ -finite measure space and T a positive linear contraction on $L^p(\mu)$, $1 . If we denote by <math>s_n^p$ the element which minimises the function $\phi_n^p(y) = n^{-1} \sum_{i=0}^{n-1} ||T^n f - y||^p$ and c the asymptotic center of the sequence $(T^n f)_{n \in \mathbb{N}}$ then s_n^p converges almost everywhere to c.

Proof. For $\psi(r) = r^{p-1}$ we have

$$J_{\psi}(c-T^{j}x) = p|c-T^{j}x|\operatorname{sgn}(c-T^{j}x)$$

and $d\phi_n^{(p)}(c) = (p/n) \sum_{i=0}^{n-1} |c - T^j x|^{p-1} \operatorname{sgn} (c - T^j x)$. As c is a fixed point of T

$$d\phi_n^{(p)}(c) = \frac{p}{n} \sum_{j=0}^{n-1} |T^j(c-x)|^{p-1} \operatorname{sgn} (T^j(c-x)).$$

By Theorem 2.3 (for $\beta = p-1$) the sequence $d\phi_n^{(p)}(c)$ converges a.e. to a function which must be equal to zero a.e. by Proposition 2.4. We conclude then by using Proposition 2.5.

REFERENCES

- [1] I. Assani. Estimates of positive linear operators in L^{p} . Proc. Amer. Math. Soc. accepted.
- [2] B. Beauzamy & P. Enflo. Théorèmes de points fixes et d'approximation. Arkiv Math. 23 (1985), 19-34.
 [3] R. Benozene. Sommes minimales des itérés d'une contraction dans les espaces de Hilbert et de Banach. Thèse de 3^{eme} cycle, Université Pierre et Marie Curie, 29 Octobre 1981.
- [4] R. E. Bruck & S. Reich. Accretive operators, Banach limits, and dual ergodic theorems. Bull. de l'Acad. Polon. des Sciences 19 Nos. 11-12 (1981), 585-589.
- [5] Y. Derriennic. Un théorème ergodique presque sous additif. Ann. of Prob. 11, 669-677.
- [6] M. Edelstein. The construction of an asymptotic center with a fixed point property. Bull. Amer. Math. Soc. 78 (1972), 206-208.
- [7] S. Guerre. Procédé de convergence minimale dans les espaces de Banach. Une loi des grands nombres et un théorème ergodique. Sem. Geom. Espaces de Banach, Ec. polytech., Cent. Math (1977-1978), Exposé, 1-14.
- [8] U. Krengel. Ergodic theorems. Studies in Mathematics, de Gruyter, 1985.