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Abstract

Given a connected regular graph G, let l(G) be its line graph, s(G) its subdivision graph, r(G) the graph
obtained from G by adding a new vertex corresponding to each edge of G and joining each new vertex to
the end vertices of the corresponding edge and q(G) the graph obtained from G by inserting a new vertex
into every edge of G and new edges joining the pairs of new vertices which lie on adjacent edges of G. A
formula for the normalised Laplacian characteristic polynomial of l(G) (respectively s(G), r(G) and q(G))
in terms of the normalised Laplacian characteristic polynomial of G and the number of vertices and edges
of G is developed and used to give a sharp lower bound for the degree-Kirchhoff index and a formula for
the number of spanning trees of l(G) (respectively s(G), r(G) and q(G)).
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1. Introduction

Distance is an important concept in graph theory (see [4]). In 1993, Klein and Randić
[15] proposed a novel distance function, namely the resistance distance, on a graph.
The term resistance distance was used because of the physical interpretation: place
unit resistors on each edge of a graph G and take the resistance distance, ri j, between
vertices i and j of G to be the resistance between them. This new parameter is in fact
intrinsic to the graph and has some nice interpretations and applications in chemistry
(see [13, 14] for details). The resistance distance can be computed via the Moore–
Penrose generalised inverse of the (combinatorial) Laplacian matrix L = D − A,where
A is the adjacency matrix of G and D is the diagonal matrix of vertex degrees.

The traditional distance, di j, between vertices i and j is the length of a shortest
path connecting them. An important parameter called the Wiener index, W(G), is
given by W(G) =

∑
i< j di j (see [21]). As an analogue to the Wiener index, the sum
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K(G) =
∑

i< j ri j was proposed in [15] and later called the Kirchhoff index of G in [3].
In [10, 24], it is shown that

K(G) =
∑
i< j

ri j = n
n∑

i=2

1
µi
,

where 0 = µ1 < µ2 6 · · · 6 µn (n > 2) are the eigenvalues of L.
In recent years, another matrix, the normalised Laplacian, which is consistent with

the matrix in spectral geometry and random walks [7], has attracted attention. One
of the original motivations for defining the normalised Laplacian was to deal more
naturally with nonregular graphs. Chen and Zhang [6] showed that the resistance
distance can be expressed naturally in terms of the eigenvalues and eigenvectors of
the normalised Laplacian and proposed the degree-Kirchhoff index, which is closely
related to the spectrum of the normalised Laplacian. There are many connections
between the normalised Laplacian and its eigenvalues and the structural properties of
graphs (see [1, 16] for recent examples).

In this paper, inspired by [6, 9, 20], we study the normalised Laplacian characteristic
polynomial, the degree-Kirchhoff index and the enumeration of spanning trees of four
types of graphs.

2. Normalised Laplacian and degree-Kirchhoff index

Throughout this paper, we only consider simple connected graphs G = (VG, EG),
where VG is the vertex set and EG is the edge set. We call n = |VG | the order of G and
m = |EG | the size of G. For all graph theoretical terms the reader is referred to [7] and
for matrix terms to [11].

For a graph G, we can define the random walks on G as the Markov chain Xn, n > 0,
that from its current vertex i jumps to the adjacent vertex j with probability pi j = 1/di,
where di is the degree of the vertex i. Clearly, the transition probability matrix
P = (pi j) = D−1A is a stochastic matrix. The hitting time T j of the vertex j is the
number of jumps the walk takes to reach j. The expected value of T j when the walk is
started at the vertex i is denoted by EiT j. The expected commute time between vertices
i and j is defined by EiT j + E jTi. In view of [5, 15], we know that there is an elegant
relation between commute times and resistance distances:

EiT j + E jTi = 2mri j.

The normalised Laplacian matrix of G is defined to be

L = I − D1/2PD−1/2 = D−1/2LD−1/2. (2.1)

It is easy to see that L is Hermitian and similar to I − P, so the eigenvalues of L
are nonnegative and may be labelled 0 = λ1 < λ2 6 · · · 6 λn. Let u1, u2, . . . , un be the
corresponding mutually orthogonal eigenvectors of unit length. For convenience, let

ui = (ui1, ui2, . . . , uin)t,
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where t denotes the transposition. Set U = (u1, u2, . . . , un). Then U is an orthogonal
matrix, that is,

n∑
k=1

uiku jk =

n∑
k=1

ukiuk j =

{
1 if i = j,
0 otherwise,

and

U tLU = diag[λ1, λ2, . . . , λn],

Li j =

n∑
k=1

λkukiuk j =

n∑
k=2

λkukiuk j.

The following theorem gives some fundamental results about the spectrum of L.

Theorem 2.1 [7]. For a graph G = (VG, EG):

(i) if G is not a complete graph, then 1/(2md) < λ2 6 1, where d is the diameter of
G;

(ii) n/(n − 1) 6 λn 6 2 with λn = 2 if and only if G is bipartite;
(iii)

∏n
i=1 di

∏n
k=2 λk = 2mτ(G), where τ(G) is the number of spanning trees of G.

Using the notation as above, Lovász obtained the following result.

Theorem 2.2 [18]. For a graph G = (VG, EG), for all i, j ∈ VG,

EiT j + E jTi = 2m
n∑

k=2

1
λk

( uk j√
d j
−

uki
√

di

)2
.

From the earlier remarks, we have the following formula for the resistance distance
of a graph G = (VG, EG):

ri j =

n∑
k=2

1
λk

( uk j√
d j
−

uki
√

di

)2
∀i, j ∈ VG.

As pointed out above, the Kirchhoff index K(G) =
∑

i< j ri j is closely related to the
spectrum of L. Chen and Zhang [6] introduced a new graph index related to resistance
distance, defined by

K′(G) =
∑
i< j

did jri j,

called the degree-Kirchhoff index (see also [8, 19]). The following beautiful result
obtained by Chen and Zhang [6] shows that it is closely related to the spectrum of the
normalised Laplacian L.

Theorem 2.3 [6]. For a graph G = (VG, EG), for all i, j ∈ VG,

K′(G) = 2m
n∑

i=2

1
λi
.
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(a) (b) (c)

Figure 1. Graphs of (a) K3,3, (b) r(K3,3) and (c) q(K3,3).

Given a k-regular graph G, if we denote its Laplacian spectrum by {µ1, µ2, . . . , µn},
then its normalised Laplacian spectrum is {µ1/k, µ2/k, . . . , µn/k}, but, for general
graphs, there can be significant differences between the two spectra. Hence, it is
interesting to study the normalised Laplacian of nonregular graphs. To conclude this
section, we introduce the four classes of graphs which will be considered throughout
this paper.

• The line graph of a graph G, denoted by l(G), is the graph whose vertices
correspond to the edges of G, with two vertices of l(G) being adjacent if and
only if the corresponding edges of G share a common vertex.

• The subdivision graph of G, denoted by s(G), is the graph obtained by replacing
every edge in G with a copy of P3 (a path of length two).

• r(G) = (Vr(G), Er(G)) is the graph obtained from G by adding a new vertex e′

corresponding to each edge e = (a, b) of G and joining each new vertex e′ to the
end vertices a and b of the corresponding edge e = (a, b). Thus, Vr(G) = VG ∪ {e′ |
e ∈ EG) and Er(G) = EG ∪ {(vi, e′), (v j, e′) | e = (vi, v j) ∈ EG}; see Figure 1 for an
example.

• q(G) = (Vq(G),Eq(G)) is the graph obtained from G by inserting a new vertex e′i into
every edge ei of G and joining by edges those pairs of these new vertices e′i and e′j
which lie on adjacent edges ei and e j of G, i, j = 1, 2, . . . ,m. Denote by vi1 and vi2

the end vertices of edge ei of G. Then Vq(G) = VG ∪ {e′i | ei ∈ EG, i = 1, 2, . . . ,m}
and Eq(G) = {(vi1, e′i), (vi2, e′i) | i = 1, 2, . . . ,m} ∪ {(e′i , e

′
j) | ei and e j are the adjacent

edges of G}; see Figure 1 for an example.

Remark 2.4. The last two graphs considered are interesting because they might not be
regular. A line graph of a regular graph is regular and a subdivision graph is biregular,
that is, a bipartite graph where the degrees in the two respective parts have constant
degrees. For biregular graphs it easily follows from the definition of the normalised
Laplacian that the eigenvalues of the adjacency matrix of the subdivision graph when
scaled and translated give the eigenvalues for the normalised Laplacian.
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3. The normalised Laplacian characteristic polynomials of
l(G), s(G), r(G) and q(G)

We denote by Φ(B) = det(xI − B) the characteristic polynomial of the square matrix
B. If B = L(G), we write Γ(G; x) = Φ(L(G)) and call it the Laplacian characteristic
polynomial of G; if B = L(G), we write Ψ(G; x) = Φ(L(G)) and call it the normalised
Laplacian characteristic polynomial of G.

In this section, for a regular graph G, we characterise the relationship between the
normalised Laplacian polynomial of l(G) (respectively s(G), r(G) and q(G)) and the
normalised Laplacian polynomial of G. We will need the following lemmas.

Lemma 3.1 [11]. Let M be a nonsingular square matrix. Then

det
(
M N
P Q

)
= det M det(Q − PM−1N).

Lemma 3.2 [17]. Let G be an undirected simple graph with n vertices and m edges.
Then

(i) I(G)I(G)t = D(G) + A(G);
(ii) I(G)tI(G) = 2Im + A(l(G)),

where I(G) is the incidence matrix of G, Ip is the unit matrix of order p and t denotes
the transposition.

Lemma 3.3 [12]. Let G be a k-regular graph with n vertices and m edges. Then

Γ(l(G); x) = (x − 2k)m−nΓ(G; x).

Lemma 3.4 [7]. Let G be the disjoint union of graphs G1,G2, . . . ,Gk; then

Ψ(G; x) =

k∏
i=1

Ψ(Gi; x).

First, we determine the relationship between the normalised Laplacian
characteristic polynomial of l(G) and that of the regular graph G.

Theorem 3.5. Let G be a k-regular graph with n vertices and m edges. Then

Ψ(l(G); x) =
[(k − 1)x − k]m−nkn

2n(k − 1)m Ψ

(
G;

2(k − 1)x
k

)
.

Proof. By Lemma 3.3,

det(xIm − L(l(G))) = (x − 2k)m−n det(xIn − L(G)). (3.1)

Note that if G is a k-regular graph, then l(G) is a 2(k − 1)-regular graph, which implies
that

L(G) =
L(G)

k
, L(l(G)) =

L(l(G))
2(k − 1)

.
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Together with (3.1),

det[xIm − 2(k − 1)L(l(G))] = (x − 2k)m−n det[xIn − kL(G)],

that is,

2m(k − 1)mΨ

(
l(G);

x
2(k − 1)

)
= (x − 2k)m−nknΨ

(
G;

x
k

)
,

which gives

Ψ(l(G); x) =
[(k − 1)x − k]m−nkn

2n(k − 1)m Ψ

(
G;

2(k − 1)x
k

)
.

This completes the proof. �

Next, we determine the relationship between the normalised Laplacian characteristic
polynomial of s(G) and that of the regular graph G.

Theorem 3.6. Let G be a k-regular graph with n vertices and m edges. Then

Ψ(s(G); x) = (− 1
2 )n(x − 1)m−nΨ(G; 2x(2 − x)).

Proof. Denote the incidence matrix of G by I(G). Then

A(s(G)) =

 0m I(G)t

I(G) 0n

 , D(s(G)) =

2Im 0

0 kIn


and

L(s(G)) =

 2Im −I(G)t

−I(G) kIn

 .
In view of (2.1),

L(s(G)) = D(s(G))−1/2L(s(G))D(s(G))−1/2

=


1
√

2
Im 0

0
1
√

k
In


 2Im −I(G)t

−I(G) rIn




1
√

2
Im 0

0
1
√

k
In


=


Im −

1
√

2k
I(G)t

−
1
√

2k
I(G) In

 .
It follows that

Ψ(s(G); x) = det


(x − 1)Im

1
√

2k
I(G)t

1
√

2k
I(G) (x − 1)In

 .
Case 1. k = 1. In this case, G is a disjoint union of copies of K2 and so s(G) is
a disjoint union of copies of P3, that is, G = (n/2)K2 and s(G) = (n/2)P3, where
n is even. Note that Ψ(K2; x) = x(x − 2) and Ψ(P3; x) = x(x − 1)(x − 2). Hence, by
Lemma 3.4, our result follows immediately in this case.
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Case 2. k ≥ 2. Based on Lemmas 3.1 and 3.2,

Ψ(s(G); x) = det


(x − 1)Im

1
√

2k
I(G)t

1
√

2k
I(G) (x − 1)In


= (x − 1)m det

[
(x − 1)In −

1
√

2k
I(G)

Im
√

2k(x − 1)
I(G)t

]
(by Lemma 3.1)

= (x − 1)m−n det
[
(x − 1)2In −

1
2k

(2kIn − L(G))
]

(by Lemma 3.2)

= (x − 1)m−n det[x(x − 2)In + 1
2L(G)]

= (− 1
2 )n(x − 1)m−nΨ(G; 2x(2 − x)).

Cases 1 and 2 together establish the result. �

Now, we determine the relationship between the normalised Laplacian
characteristic polynomial of r(G) and that of the regular graph G.

Theorem 3.7. Let G be a k-regular graph with n vertices and m edges. Then

Ψ(r(G); x) =
(x − 1)m−n(2x − 3)n

4n Ψ(G; 2x).

Proof. It is routine to check that

A(r(G)) =

 0m I(G)t

I(G) A

 , D(r(G)) =

2Im 0

0 2kIn


and

L(r(G)) =

 2Im −I(G)t

−I(G) kIn + L(G)

 .
In view of (2.1),

L(r(G)) = D(r(G))−1/2L(r(G))D(r(G))−1/2

=


1
√

2
Im 0

0
1
√

2k
In


 2Im −I(G)t

−I(G) kIn + L(G)




1
√

2
Im 0

0
1
√

2k
In


=


Im −

1

2
√

k
I(G)t

−
1

2
√

k
I(G)

1
2

In +
1
2k

L(G)



=


Im −

1

2
√

k
I(G)t

−
1

2
√

k
I(G)

1
2

In +
1
2
L(G)

 .
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It follows that

Ψ(r(G); x) = det


(x − 1)Im

1

2
√

k
I(G)t

1

2
√

k
I(G)

(
x −

1
2

)
In −

1
2
L(G)

 . (3.2)

Case 1. k = 1. In this case, G is a disjoint union of copies of K2 and hence r(G) is a
disjoint union of copies of K3, that is, G = n/2K2 and s(G) = n/2K3, where n is even.
Note that Ψ(K2; x) = x(x − 2) and Ψ(K3; x) = 1

4 x(2x − 3)2. Hence, by Lemma 3.4, our
result holds in this case.

Case 2. k ≥ 2. By (3.2) and Lemmas 3.1 and 3.2,

Ψ(r(G); x) = (x − 1)m det
[(

x −
1
2

)
In −

1
2
L(G) −

1

2
√

k
I(G)

Im

2
√

k(x − 1)
I(G)t

]
= (x − 1)m det

[(
x −

1
2

)
In −

1
2
L(G) −

1
4k(x − 1)

(2kIn − L(G))
]

= (x − 1)m det
[(

x −
1
2

)
In −

1
2
L(G) −

1
2(x − 1)

In +
1

4(x − 1)
L(G)

]
= (x − 1)m−n det

{[
(x − 1)

(
x −

1
2

)
−

1
2

]
In −

[1
2

(x − 1) −
1
4

]
L(G)

}
=

(x − 1)m−n

4n det[2x(2x − 3)In − (2x − 3)L(G)]

=
(x − 1)m−n(2x − 3)n

4n Ψ(G; 2x).

By Cases 1 and 2, our result holds. �

Finally, we determine the relationship between the normalised Laplacian
characteristic polynomial of q(G) and that of the regular graph G.

Theorem 3.8. Let G be a k-regular graph of order n and size m. Then

Ψ(q(G); x) =
(kx − k − 1)m

2nkm Ψ(G; 2x).

Proof. Observe that

A(q(G)) =

A(l(G)) I(G)t

I(G) 0n

 , D(q(G)) =

2kIm 0

0 kIn

 ,
L(q(G)) =

2kIm − A(l(G)) −I(G)t

−I(G) kIn
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and, in view of (2.1),

L(q(G)) = D(q(G))−1/2L(q(G))D(q(G))−1/2

=


1
√

2k
Im 0

0
1
√

k
In


2kIm − A(l(G)) −I(G)t

−I(G) kIn




1
√

2k
Im 0

0
1
√

k
In


=


Im −

1
2k

A(l(G)) −
1
√

2k
I(G)t

−
1
√

2k
I(G) In

 .
Since a permutation similarity transformation preserves the determinant, we can
interchange rows to give

Ψ(q(G); x) = det


(x − 1)In

1
√

2k
I(G)

1
√

2k
I(G)t (x − 1)Im +

1
2k

A(l(G))

 .
By Lemmas 3.1 and 3.2,

Ψ(q(G); x) = (x − 1)n det
[
(x − 1)Im +

1
2k

A(l(G)) −
1
√

2k
I(G)t In

√
2k(x − 1)

I(G)
]

= (x − 1)n det
[
(x − 1)Im +

1
2k

A(l(G)) −
1

2k2

1
x − 1

(2Im + A(l(G)))
]

= (x − 1)n−m det
{[

(x − 1)2 −
1
k2

]
Im +

( x − 1
2k
−

1
2k2

)
A(l(G))

}
.

Since A(l(G)) = D(l(G)) − L(l(G)) = 2(k − 1)Im − 2(k − 1)L(l(G)),

Ψ(q(G); x) = (x − 1)n−m det
{[

(x − 1)2 −
1
k2

]
Im

+

( x − 1
2k
−

1
2k2

)
[2(k − 1)Im − 2(k − 1)L(l(G))]

}
=

(x − 1)n−m(kx − k − 1)m

k2m det[kxIm − (k − 1)L(l(G))]

=
(k − 1)m(x − 1)n−m(kx − k − 1)m

k2m Ψ

(
l(G);

k
k − 1

x
)
.

Then, using Theorem 3.5 and simplifying,

Ψ(q(G); x) =
(kx − k − 1)m

2nkm Ψ(G; 2x).

This completes the proof. �
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4. Degree-Kirchhoff index of l(G), s(G), r(G) and q(G)

In this section, we study the relationship between the degree-Kirchhoff index of
l(G) (respectively s(G), r(G) and q(G)) and the degree-Kirchhoff index of the regular
graph G. Consequently, some sharp lower bounds on K′(l(G)),K′(s(G)),K′(r(G)) and
K′(q(G)) are determined.

First, we give a lower bound on the degree-Kirchhoff index of a general connected
graph G.

Theorem 4.1. Let G be a connected graph on n > 3 vertices and m edges. Then

K′(G) >
2m(n − 1)2

n
.

The equality holds if and only if G is complete.

Proof. Recall that
∑n

k=2 λk = n. By the Cauchy–Schwarz inequality,

n−1∑
k=2

1
λk
>

(n − 2)2∑n−1
k=2 λk

=
(n − 2)2

n − λn

and then

K′(G) =
2m
λn

+ 2m
n−1∑
k=2

1
λk
>

2m
λn

+ 2m
(n − 2)2

n − λn

with equality if and only if λ2 = λ3 = · · · = λn−1.
Note that f (x) = ((2m)/x) + (2m(n − 2)2)/(n − x) is increasing for x > n/(n − 1)

and, by Theorem 2.1(ii), λn > n/(n − 1). Hence,

K′(G) > f (λn) > f
(n − 1

n

)
=

2m(n − 1)2

n
.

Equality holds if and only if λ2 = λ3 = · · · = λn = n/(n − 1), that is, G is complete. This
completes the proof. �

Lemma 4.2. Let G be a connected graph with n > 2 vertices and Ψ(G; x) = xn +

a1xn−1 + · · · + an−2x2 + an−1x. Then

K′(G)
2m

= −
an−2

an−1
(an−2 = 1 whenever n = 2).

Proof. Let 0 = λ1 < λ2 6 · · · 6 λn be the normalised Laplacian eigenvalues of G. Then
λi (i = 2, 3, . . . , n) satisfy the equation xn−1 + a1xn−2 + · · · + an−2x + an−1 = 0 and so
1/λi (i = 2, 3, . . . , n) satisfy the reciprocal equation and, by Theorem 2.4 and Vieta’s
theorem,

K′(G)
2m

=

n∑
i=2

1
λi

= −
an−2

an−1
,

as desired. �
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Theorem 4.3. Let G be a connected k-regular graph with n > 2 vertices. Then

(i) K′(l(G)) = ((2(k − 1)2)/k)K′(G) + (n2(k − 1)2(k − 2))/2;
(ii) K′(s(G)) = 8K′(G) + nk(nk − 2n + 1);
(iii) K′(r(G)) = 6K′(G) + (n2k(3k − 2))/2;
(iv) K′(q(G)) = 2(k + 1)K′(G) + (n2k3)/2.

Proof. (i) Assume that the size of G is m. Let Ψ(G; x) = xn + a1xn−1 + · · · + an−2x2 +

an−1x and S (G) = (λ1, λ2, . . . , λn) be the normalised Laplacian spectrum of G, where
λ1 = 0. By Lemma 4.2,

K′(G)
2m

= −
an−2

an−1
(4.1)

and it follows from Theorem 3.5 that the coefficient of x2 in Ψ(l(G); x) is

kn

2n(k − 1)m

[
(m − n)(k − 1)(−k)m−n−1an−1

2(k − 1)
k

+ (−k)m−nan−2
4(k − 1)2

k2

]
, (4.2)

whereas the coefficient of x in Ψ(l(G); x) is

kn

2n(k − 1)m

[
(−k)m−nan−1

2(k − 1)
k

]
. (4.3)

Note that l(G) has m(k − 1) edges. From (4.2), (4.3) and Lemma 4.2,

K′(l(G))
2m(k − 1)

= −
2(k − 1)

k
an−2

an−1
+

(m − n)(k − 1)
k

.

Substituting (4.1) and m = (kn)/2 into the above equation yields

K′(l(G)) =
2(k − 1)2

k
K′(G) +

n2(k − 1)2(k − 2)
2

,

as desired. By a similar discussion, we can also show that (ii)–(iv) hold. �

The following results are a direct consequence of Theorems 4.1 and 4.3.

Corollary 4.4. Let G be a connected k-regular graph with n > 2 vertices. Then

K′(l(G)) > 2(k − 1)2(n − 1)2 +
n2(k − 1)2(k − 2)

2
,

K′(s(G)) > 8k(n − 1)2 + nk(nk − 2n + 1),

K′(r(G)) > 6k(n − 1)2 +
n2k(3k − 2)

2
,

K′(q(G)) > 2k(k + 1)(n − 1)2 +
n2k3

2
.

Equality holds in each case if and only if G is a complete graph.
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5. The number of spanning trees of l(G), s(G), r(G) and q(G)

Let G be a regular graph. In this section, we give some formulae for the number
of spanning trees of l(G) (respectively s(G), r(G) and q(G)). Our results are motivated
directly from [7, 22, 23]. We use τ(G) to denote the total number of spanning trees of
a graph G.

The following result is a known formula for the number of spanning trees in the line
graph l(G) (see, for example, [2, page 36]). We use a new method to prove this result.

Theorem 5.1 [2]. Let G be a connected k-regular graph with n > 2 vertices and m
edges. Then

τ(l(G)) = 2m−n+1km−n−1τ(G).

Proof. Let Ψ(G; x) = xn + a1xn−1 + · · · + an−2x2 + an−1x and 0 = λ1 < λ2 6 · · · 6 λn be
the normalised Laplacian eigenvalues of l(G). Then

n∏
k=2

λk = (−1)n−1an−1

and, by Theorem 2.1(iii),

kn(−1)n−1an−1 = 2mτ(G). (5.1)

In view of (4.3), the coefficient of x in Ψ(l(G); x) is

kn

2n(k − 1)m

[
(−k)m−nan−1

2(k − 1)
k

]
.

Note that
∏m

i=1 di(l(G)) = 2m(k − 1)m and l(G) has m(k − 1) edges, so, by
Theorem 2.1(iii),

2m(k − 1)m
[
(−1)m−1 kn

2n(k − 1)m (−k)m−nan−1
2(k − 1)

k

]
= 2m(k − 1)τ(l(G)). (5.2)

Substituting (5.1) into (5.2) yields the desired conclusion. �

Theorem 5.2. Let G be a connected k-regular graph with n > 2 vertices and m edges.
Then

τ(s(G)) = 2m−n+1τ(G).

Proof. Let Ψ(G; x) = xn + a1xn−1 + · · · + an−2x2 + an−1x. From Theorem 3.6,

Ψ(s(G); x) = (− 1
2 )n(x − 1)m−n[2nxn(2 − x)n + · · · + an−222x2(2 − x)2 + an−12x(2 − x)].

Consequently, the coefficient of x in Ψ(s(G); x) is

(− 1
2 )n(−1)m−n4an−1.

Note that
∏m+n

i=1 di(s(G)) = 2mkn and s(G) has 2m edges, so, by Theorem 2.1(iii),

2mkn[(−1)m+n−1(− 1
2 )n(−1)m−n4an−1] = 4mτ(s(G)). (5.3)

Substituting (5.1) into (5.3) yields the desired conclusion. �
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Remark 5.3. For Theorem 5.2, we may give an easy combinatorial proof. It is easy to
see that τ(s(G)) = 2m−n+1τ(G), by noting that for every spanning tree of G, there are
2m−n+1 spanning trees for s(G) by looking at each vertex which came from an edge of
G. If that edge of G is part of the spanning tree, use both adjacent edges in s(G). If it is
not part of a spanning tree, then use only one of the two adjacent edges in s(G). Note
that there are m − (n − 1) of the latter (that is, m edges and n − 1 of them have already
been accounted for by the spanning tree edges coming from G).

Zhang et al. [23] proved that if G is a k-regular graph with n vertices and m edges,
then

τ(l(s(G))) = km−n−1(k + 2)m−n+1τ(G),

which inspired us to consider the formulae for τ(s(l(G))) with the same constraints
on G. Note that the line graph of a regular graph is still regular, so that our results can
be used to determine s(l(G)). But the edge subdivision graph is generally not regular
and so l(s(G)) is not determined by the result in [23]. Combining Theorems 5.1 and 5.2
yields the following result.

Corollary 5.4. Let G be a connected k-regular graph with n > 2 vertices and m edges.
Then

τ(s(l(G))) = 2m(k−1)−n+2km−n+1τ(G).

Theorem 5.5. Let G be a connected k-regular graph with n > 2 vertices and m edges.
Then

τ(r(G)) = 2m−n+13n−1τ(G).

Proof. Let Ψ(G; x) = xn + a1xn−1 + · · · + an−2x2 + an−1x. From Theorem 3.7, the
coefficient of x in Ψ(r(G); x) is

1
4n [(−1)m−n(−3)n2an−1].

Note that
∏m+n

i=1 di(r(G)) = 2m(2k)n = 2m+nkn and r(G) has 3m edges, so, by
Theorem 2.1(iii),

2m+nkn
[
(−1)m+n−1 1

4n ((−1)m−n(−3)n2an−1)
]

= 6mτ(r(G)). (5.4)

Substituting (5.1) into (5.4) yields the desired result. �

Theorem 5.6. Let G be a connected k-regular graph with n > 2 vertices and m edges.
Then

τ(q(G)) = 2m−n+1(k + 1)m−1τ(G).

Proof. Let Ψ(G; x) = xn + a1xn−1 + · · · + an−2x2 + an−1x. From Theorem 3.8, the
coefficient of x in Ψ(q(G); x) is

1
2nkm [(−k − 1)m2an−1].
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As
∏m+n

i=1 di(q(G)) = (2k)mkn = 2mkm+n and q(G) has m(k + 1) edges, Theorem 2.1(iii)
gives

2m+nkn
[
(−1)m+n−1 1

2nkm (−k − 1)m2an−1

]
= 2m(k + 1)τ(q(G)). (5.5)

Substituting (5.1) into (5.5) yields the result. �

Remark 5.7. While Theorem 5.2 has an easy combinatorial proof, the results of
Section 5 should all have combinatorial explanations and it might be interesting to
find them.
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