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ABSTRACT: A new expansion for the gravitational potential of the asteroid 
belt is derived in this paper on the basis of binomial expansions. Its 
advantages are: (l)the unified form both for the inner and for the outer 
regions of the belt; (2)suitability for discussing the motions of the 
celestial bodies with perihelions within but apohelions beyond the belt; 
(3)rapidity of convergence. 

The perturbations due to the asteroid belt are studied by using 
our expansion. 

1. INTRODUCTION 

According to the present knowledge about the solar system, the total 
mass of the asteroid belt is believed to be about o.l% of that of the 
Earth and, generally speaking, there is no need to consider its influence 
when the motions of celestial bodies in the solar system are studied. 
However, with the development of planetary exploration and the increase 
in the accuracy of observations, the perturbations due to the asteroid 
belt have become a factor not to be ignored. The effect of the asteroid 
belt on the orbit of Mars has been studied by A.P.May6,, who obtained 
the perturbations of the order of several kms within 700 days. They are 
big enough to be detected by modern observational techniques. 

Similarly to Liu et al 3and Mayo, who both studied the influence of 
the asteroid belt on Mars, Plakhov^discussed the effect of Saturn's ring 
on the satellite orbits about the planet. In these studies, the disturbing 
function is expanded into a Laurent series in the heliocentric radius 
r of the disturbed body. The forms of the expansion at radii within the 
ring and at those, beyond it are quite different. In fact, the disturbing 
function has the form of a power series in r in the first case, while 
it can only be expanded into a power series in l/r in the latter case. 
When r is close to the inner or outer radius of the ring, the convergence 
of the expansion will be broken. The most serious defect of the expansion 
is that it cannot be used to discuss the motions in those orbits with 
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perihelions within but aphelions beyond the ring. But, as we know, that 
is precisely the form of motion in the case of the spacecraft exploring 
the outer solar system. 

To avoid these drawbacks, another expansion of the disturbing 
function is provided in this paper on the basis of binomial expansion. 
Its advantages are: (l)the same form both for the inner and outer regions 
of the belt; (2)suitability for studying the motions of the celestial 
bodies with perihelions within but apohelions beyond the asteroid belt, 
such as Beira (147^) and Ganymed (1036); (3)rapidity of convergence. 

Section 2 deals with the expansion of the disturbing function. 
Section 3 is devoted to decomposition of the disturbing function. In 
section k we will derive the short-period and secular (together with the 
long-period) perturbations respectively, being confined to the first 
nine terms of the expansion. Finally, some numerical results are given 
in the last section. 

2. EXPANSION OF THE DISTURBING FUNCTION 

For a point P(Yi 4^1*0» lying outside a belt with constant density and 
arbitrary thickness, the disturbing function by the belt can be written 
as 

U = k>jjjir 5 c 0 4? / d r / df d N : * (1) 

Owing to the axlsymmetry of the belt, the indirect part of the disturbing 
function vanishes. 

According to the binomial formula, 1/A can be expressed as 

^ = (r^r
a-2rra>5H)-,/1=£-^)! (r+r)"Un+Vrn(i+cosH)\ (2) 

By introducing a constant C^(r + r'), (r + r')~ can be expanded as 

m = o tn-

In fact, for any concrete problem only a finite number of terms in (3) 
are needed. The number M is determined according to the magnitude of 
l-(r + r')/C and the accuracy desired. On the other hand, (1+cosH) can be 
expanded according to the cosine law in spherical trigonometry and the 
addition theorem for the Legendre polynomials, and then, all the odd 
zonal harmonics and the tesseral harmonics will vanish after integration 
because of the belt symmetry. 

After some calculations and arrangements we obtain finally 
on fWal u 
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where 

g = 47rk
JjDAVc , (5) 

V -lili ^ ^ *T (-\f(2n+m)< 
N<? 22' n=N, m ^ - n p ^ n (N"")! fn-2^)! (n-f2<j+ I )!(m-p)I (f>-N+n)l 

N, = max(2^,N-M) » (7) 

V- , ,3-J (2<j+2j)i / h A"+l (8) 
^e,^ jr^ (<{+j)!(̂ -j;!(-2j+i)! {2H> ^-j 

In (B/A) , f-2j + 2 = 0 > 
G..-H . _. . (9) I 

<-2j+2 , *-2j + 2 # 0 , 

h, A, B denote the thickness, outer radius and inner radius of the belt, 
respectively. 

The only limit during the process of expansion of the disturbing 
function is that P must be outside the belt.But there is no limit to 
its radius r. Therefore,(4) is a unified form of the disturbing 
function U for all the outside points, no matter r ? A or r < B . 

To improve the convergence of (4), we arrange it as 
oo CM/21 

U = £ £ E FN. (r/a)
N
Sin

ilu , (10) 

where 

Sin u = sinaj/sinl • C^2; 

Expression (10) has a better feature of convergence than (4). 

3. DECOMPOSITION OF THE DISTURBING FUNCTION 

While using numerical method, we only need the partial derivatives 3U/dr 
and dU/3op, both of which can easily be obtained from (10). 

However, when the analytical method is used, the disturbing function 
must be expressed in terms of the orbital elements of the disturbed body 
and separated into secular, long- and short-periodic parts. 
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fo r example, we take (N, l ) = ( 1 , 0 ) , ( 2 , 0 ) , ( 3 , 0 ) , ( 4 , 0 ) , ( 2 , 1 ) , ( 3 , 1 ) , 
( 4 , 1 ) , ( 5 , 1 ) , ( 6 , 1 ) and use e c c e n t r i c anomaly E a s t he independent v a r i a b l e , 
then U can be expressed in c losed form 

U = £ TZ ( - i ) l [ (Rc-Qi ,co-s2co)ccAtE + V l - e * R; s i n 2 a j i m tE j> ( 1 3 ) 

where 

P ^ ^ L g foo^Fjo + g pkl(e>Fk(J , 

Pj 0 ( e ) i P|<i(e)» <lk(e)» r k ( e ) being polynomials in e . 

Now, the Hamiltonian i s 

where 

The secular part of H* is given by 

(ITT 

<H,>=~\ H,<U = (P0+yP,)-(G(o+f GL,)oo*2u>, (17) 

and the corresponding first-order generating function by 

s1-^j (H1-<H,>)d«-^sr , <18) 

5 , * = f (P,-Q,««3«u)s.-r,E + £ ^ [ f (R...+ R-4|)+ Pi j s.niE -

1=1 

v- c-nlre 

( P ; = GU=Ri i f t € [ i , 6 ] ) . (19) 

Having eliminated the short-periodic terms, the new Hamiltonian can 
be written as 

H*=Ho+£<H( > + ()(£'>. (2°) 
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4. PERTURBATIONS 

(a) Short-periodic perturbations 

The short-periodic perturbations of the orbital elements can be obtained 
immediately from the generating function S^. But in many cases the 
perturbations of the coordinates are required. 

Let Sr, rSu and 8z denote the components of the displacement of the 
celestial body due to the belt along the directions of radial, cross 
and perpendicular to the orbital plane, respectively. Then 

a5 r „„• c fie*,_-,, 3Sf , I-*-1 
o-r=£7^-[-es;«E(3Sr + 2 a | J + ^ ) + 

+ ̂ ( e _ a > s E ) ( J I 7 ^ H 1 - | f f ) + 2(ffH,J , (21) 

+ asinE (2 + e ^f)(H,-j=p;|J)] , (22) 

S2 = £ ^ [ ^ ( f ^ ) ^ l | f - - C f 4 a > ) 5 ^ I ^ g f y , (23) 

where 

H>H,-<H,>. (24) 

(b) Secular and long-periodic perturbations 

Let a, e, I, ̂ ,_J\t M be the averaged keplerian elements. As H is 
independent of M and *l, we have the integrals immediately 

I = const, cos2I (|-€i)= const . (25) 

The second integral indicates that I well increases as e decreases, 
and vice versa. 

If at the beginning we have 

5 = 1 = 0 , (26) 

then the state will conserve forever. 

The variations of the other elements are governed by the averaged 
equations of motion, especially we have 
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(2?) 

(28) 

(29) 

(30) 

where Gk(e), Aj0(e), Akl(e), Ak,(e), Bk(e), BK(e) are all polynomials 
in e. 

Finally we conclude that (l)if <̂  = ymr, A=(-l) B, then equations 
(27),(28) have stationary solution; (2)if A=0,u3will oscillate around 
a libration point. 

5. NUMERICAL RESULTS 

Assuming 

a = 2.7, e = 0.5, I = 26°.5, <̂  = 5," 

A = 4, B = 2, h = 2/3, m = 0.00lme, 

we have derived the following numerical results by taking G = 11.23s 

£= 2.53xl0"U; 

Coefficients FNein the expansion (10) (see Sec. 2)s 

N 

1 

2 

3 

4 

5 

6 

l 

0 

0 

0 

0 

0 

0 

F (xlCf2) 

-1 .06 

0.26 

- 0 . 8 3 

0 .23 

N 

2 

3 

4 

5 

6 

F (xlO"2) 

-0.72 

0.45 

-0.23 

0.14 

-0.05 
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Short-periodic perturbations (km)s 

s° 
0 

10 

20 

30 

4o 

50 

60 

70 

80 

90 

100 

110 

120 

130 

140 

150 

.160 

170 

Sr 
-0.10 

-0.08 

-0.11 

-0.15 
-0.21 

-0.26 

-0.31 

-0.34 

-0.36 

-0.37 

-0.38 

-0.38 

-0.38 

-0.38 

-0.38 

-0.38 

-0.39 
-0.40 

r£u 
0.28 

0.14 

0.00 

-0.11 

-0.20 

-0.27 

-0.32 

-0.35 

-0.37 

-0.39 

-0.39 

-0.39 

-0.38 

-0.35 
-0.32 

-0.27 

-0.20 

-0.13 

Sz 

0.034 

0.013 

-0.007 
-0.024 

-0.037 
-0.044 

-0.045 

-0.042 

-0.034 

-0.026 

-0.017 

-0.010 

-0.007 

-0.009 
-0.016 

-0.028 

-0.044 

-0.062 

£° 

180 

190 

200 

210 

220 

230 

240 

250 

260 

270 

280 

290 

300 

310 

320 

330 

340 

350 

Sr 
-0.41 

-0.42 

-0.43 

-0.45 

-0.46 

' -0 .48 

-0.50 

-0.53 

-0.55 

-O.56 

-0.56 

-0.55 

-0.53 

-0.48 

-0.41 

-0.32 

-0.23 

-0.15 

rSu 

-0.05 

0.03 

0.11 

0.19 
0.26 

0.32 

0.38 

0.43 

0.47 

0.51 

0.5^ 

0.57 
0.60 

0.61 

0.61 

0.58 

0.51 
0.41 

Iz 
-0.080 

-0.096 

-0.108 

-0.114 

-0.113 

-0.104 

-0.089 

-O.O67 

-0.040 

-0.012 

0.017 
0.042 

0.063 

0.076 

0.082 

0.079 

0.069 

0.053 

Long-periodic perturbations: 

de /d t = 1.45xlOH 3sin2^ (day"1), 

dw/dt = - ( 7 . 6 0 + 3 . l 6 c o s 2 w ) x l 0 " 8 ( " / d a y ) . 
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