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We consider inference about coefficients on a small number of variables of interest
in a linear panel data model with additive unobserved individual and time specific
effects and a large number of additional time-varying confounding variables. We
suppose that, in addition to unrestricted time and individual specific effects, these
confounding variables are generated by a small number of common factors and high-
dimensional weakly dependent disturbances. We allow that both the factors and the
disturbances are related to the outcome variable and other variables of interest. To
make informative inference feasible, we impose that the contribution of the part of
the confounding variables not captured by time specific effects, individual specific
effects, or the common factors can be captured by a relatively small number of terms
whose identities are unknown. Within this framework, we provide a convenient in-
ferential procedure based on factor extraction followed by lasso regression and show
that the procedure has good asymptotic properties. We also provide a simple k-step
bootstrap procedure that may be used to construct inferential statements about the
low-dimensional parameters of interest and prove its asymptotic validity. We pro-
vide simulation evidence about the performance of our procedure and illustrate its
use in an empirical application.

1. INTRODUCTION

The availability of rich, high-dimensional data for use in empirical analyses is
rapidly increasing. High-dimensional data offer many opportunities, but informa-
tive data analysis in high-dimensional data requires the imposition of dimension
reducing structure. Two distinct structures which are common in the econometrics
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literature are sparse structures and factor structures. In this article, we consider es-
timation and inference on a low-dimensional parameter of interest within a panel
data model that accommodates both sparse and factor structures.

Specifically, we consider a linear panel model defined by

yit = αdit + ξ ′
t fi +U ′

itθ + gi + νt + εit , (1.1)

dit = δ′dt fi +U ′
itγd + ζi +μt +ηit , (1.2)

Xit =�t fi +wi +ρt +Uit , (1.3)

where i ≤ n indexes cross-sectional observations, t ≤ T indexes time series ob-
servations, Xit are observed confounding variables, and dit is an a priori spec-
ified “treatment” variable whose coefficient α is the parameter of interest.1 In
(1.1)–(1.3), fi is a K ×1 vector of individual-specific unobservables; and ξt , δdt ,
and �t are, respectively, K × 1, K × 1, and p × K dimensional time-specific
unobservables.2 In each equation, we also allow for unrestricted additive unob-
served individual effects, (gi ,ζi ,w

′
i ), and time specific effects, (νt ,μt ,ρ

′
t ), where

gi , ζi , νt , and μt are scalars and wi and ρt are p × 1 vectors. The term Uit rep-
resents the part of the observed Xit that is orthogonal to the individual-specific
unobservable fi and additive unobserved time and individual specific heterogene-
ity. We allow Uit to be correlated with both the outcome and variable of interest.
Because Uit is high-dimensional, we impose that θ and γd are sparse to facil-
itate informative estimation and inference for α. Following Hahn, Mukeherjee,
and Carvalho (2013), we refer to the model (1.1)–(1.3) as the “panel partial fac-
tor model” (PPFM).3 We note that the only observed variables in (1.1)–(1.3) are
(yit ,dit ,Xit ).

Deviating from much of the literature on factor models, we use subscript i
to denote the common factors, with the understanding that the common factors
are individual-specific. This treatment is motivated by microeconometric, “short
T ,” applications where a major concern when trying to learn structural effects is
confounding due to unobserved, individual specific attributes. For example, in a
state-level panel, one may believe that unobserved features that are potentially
confounded with policies of interest are largely captured by a few state specific
factors such as state laws or policies or state-level social preferences that may
reasonably be taken as time invariant over moderate time horizons but may have
time-varying associations with the variables of interest. The structure in (1.3) then
posits that such factors are associated with many time-varying state-level observ-
ables. Finally, the inclusion of the factor residuals in the equations (1.1)–(1.2)
allows for the confounding between the variable of interest and time varying ob-
servables that are uncaptured by the latent factors, whose presence is reasonable
in many applications. We note that the inclusion of these factor residuals is anal-
ogous to the conventional inclusion of time-varying observables in additive linear
fixed effects models. Of course, the PPFM framework also accommodates many
other environments.
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The first contribution of the present article is offering a practical estimation and
inference procedure that is appropriate for inference for α in the PPFM and pro-
viding a formal treatment of the procedure’s theoretical properties. Specifically,
we proceed by first running a factor extraction step and taking residuals from re-
gressing each observed variable on the estimated factors. Using these residuals,
we then follow the lasso-based estimation and inference procedures of Belloni,
Chernozhukov, Hansen, and Kozbur (2016). We show that the resulting estimator
of α is asymptotically normal with readily estimated asymptotic variance under
sensible conditions. These conditions allow for errors in selection of the elements
of Uit that load after controlling for the factors but maintain sufficiently strong
conditions to allow oracle selection of the number of factors. The theoretical anal-
ysis is substantially complicated by the fact that factors and factor-residuals are
not observed and must be extracted from the data. The estimation error in this ex-
traction then enters the second step nonlinear and nonsmooth lasso problem. Due
to this complication, the theoretical results in this article make use of arguments
that, to our knowledge, are not implied by results existing in the current factor
modeling literature or the current lasso literature which may be of interest outside
of the present article.

By addressing estimation and inference in an interesting high-dimensional fac-
tor augmented regression model appropriate for panel data, our article comple-
ments the large factor model literature and the rapidly growing literature dealing
with obtaining valid inferential statements following regularized estimation. See,
for example, Bai (2003), Bai and Ng (2002), Stock and Watson (2002), and Fan,
Xue, and Yao (2017) for fundamental references on factor models in economet-
rics and Bai and Ng (2006) and Bernanke, Boivin, and Eliasz (2005) for factor
augmented regression. For approaches to obtaining valid inferential statements
in a variety of different high-dimensional settings, see, for example, Belloni,
Chen, Chernozhukov, and Hansen (2012), Belloni, Chernozhukov, Fernández-
Val, and Hansen (2017), Belloni, Chernozhukov, and Hansen (2014), Cher-
nozhukov, Chetverikov, Demirer, Duflo, Hansen, and Newey (2016), Dezeure,
Bühlmann, and Zhang (2017), Fan and Li (2001), van de Geer, Bühlmann, Ritov,
and Dezeure (2014), Wager and Athey (2017), and Zhang and Zhang (2014).

As a second contribution, we offer a new, computationally convenient boot-
strap method for inference. Specifically, we consider a bootstrap where we apply
our main procedure, including extraction of factors and lasso estimation steps,
within each bootstrap replication. As computation of the lasso estimator within
each bootstrap sample may be demanding, we use a k-step bootstrap following
Andrews (2002) where we start at the lasso solution from the full sample and
then iterate a numeric solution algorithm for the lasso estimator for k-steps. We
make use of solution algorithms for which the updates are available in closed form
which leads to fast computation. The k-step bootstrap we propose complements
other bootstrap procedures that have been proposed for lasso-based inference,
for example, Belloni et al. (2017), Chatterjee and Lahiri (2011), Chernozhukov,
Chetverikov, and Kato (2013), and Dezeure et al. (2017). The approach we take
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is something of a middle ground between Chernozhukov et al. (2013), which uses
resampling of model scores to avoid recomputation of the lasso estimator, and
Dezeure et al. (2017) which fully recomputes the lasso solution within each boot-
strap replication. The former approach is computationally convenient and asymp-
totically valid but does not capture any finite sample uncertainty introduced in the
lasso selection, while the latter may be computationally cumbersome due to fully
recomputing the lasso solution within each iteration. We note that the bootstrap
procedure could be easily applied outside of the specific model considered in this
article and that the technical analysis here is new and may be of interest in other
contexts.

The remainder of this article is organized as follows. In Section 2, we provide
further motivation of the PPFM and outline the basic algorithm we will employ
for inference. We present formal results for the proposed procedure in Section 3.
Section 4 describes the k-step bootstrap approach in detail and provides a for-
mal analysis establishing the validity of the resulting bootstrap inference. We
then provide simulation and empirical examples in Section 5. Key proofs are
collected in an appendix with additional results provided online in supplemen-
tary material associated with this article, available at Cambridge Journals Online
(journals.cambridge.org/ect).

1.1. Notation and Asymptotic Sequence

Throughout the article, we use ‖β‖1 and ‖β‖2 to, respectively, denote the �1- and
�2- norms of a vector β; and we use ‖A‖ and ‖A‖F to, respectively, denote the
spectral and Frobenius norms of a matrix A. In addition, we denote the cardinality
of a finite set J as |J |0. Finally, for two positive sequences an,bn , we write an �
bn if an = O(bn) and bn = O(an).

We will take asymptotics where dim(Xit )= p → ∞, n → ∞, and T is either
fixed or growing slowly relative to n and p when stating our formal results, and
we explicitly allow for scenarios where p 	 nT . Having T fixed or increasing
slowly captures microeconometric applications where T is typically similar to or
smaller than n. The number of factors K is assumed fixed throughout the article.
For simplicity in the formal development, we also assume that K is known a
priori, though our procedure admits data-dependent methods (e.g., Bai and Ng,
2002; or Ahn and Horenstein, 2013) for selecting K so long as the estimated
K is consistent; and we strongly recommend that such methods be employed in
practice.

2. DISCUSSION OF THE PANEL PARTIAL FACTOR MODEL AND THE
FACTOR-LASSO ALGORITHM

In this section, we first discuss the panel partial factor model with an emphasis
on relating it to high-dimensional sparse linear models and conventional factor
augmented regression models. We then outline our procedure for estimating and
doing inference for the treatment parameter of interest, α in (1.1).
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2.1. Panel Partial Factor Model

The PPFM defined in (1.1)–(1.3) offers a simple generalization of the high-
dimensional sparse linear fixed effects model and a factor augmented regression
model. This generalization allows us to capture features that may be missed in
either of these useful baseline models.

Specifically, the PPFM generalizes the high-dimensional sparse fixed effects
model examined in Belloni et al. (2016). (1.1)–(1.3) clearly reduces to the high-
dimensional sparse fixed effects model when ξ ′

t fi , δ′dt fi , and all elements of�t fi

are 0 for all i and t . Relative to the high-dimensional sparse fixed effects model,
the PPFM accommodates an important case of strong dependence among the
columns of the observed control variable X via the latent factor structure �t fi .
Importantly, the PPFM also allows all of the X variables to be confounded with
the treatment, captured by fi . In this case, trying to estimate α via the sparse
high-dimensional fixed effects model as in Belloni et al. (2016) could fail as the
confounding may not be captured via controlling directly for a small number of
the observed X variables.

The PPFM also shares many features with factor augmented regression models;
e.g., Bai and Ng (2006) and Bernanke et al. (2005). The key difference between
the standard factor augmented regression model and the PPFM is the presence
of the unobserved high-dimensional vector Uit in (1.1) and (1.2). Adding Uit to
(1.1) and (1.2) can be justified by noting that the Uit contain any explanatory
power remaining in Xit after controlling for common factors. In many settings,
it seems reasonable to believe that the factor structure may fail to capture all
sources of confounding but that any confounding not captured by the latent factor
structure is concentrated among only a few variables. We choose to include Uit

instead of Xit as control variables because the components of Uit are pairwise
weakly correlated and are orthogonal to fi , which facilitates the identification
and estimation of (γd ,θ).4

Another potential approach to accounting for the possibility that a low-
dimensional factor structure may not account for all the confounding variation in
Xit would be to consider a growing number of factors (K → ∞) and penalizing
the coefficients on the factors. The major difficulty of this approach is that K must
grow very slowly compared to p; otherwise, there may be insufficient informa-
tion available to even consistently estimate the individual factors. Using a slowly
growing K without augmenting with factor residuals as in the PPFM then effec-
tively reduces to a pure low-dimensional factor model, which potentially leaves a
significant portion of the information in Xit unexploited.

The PPFM is also related to, but distinct from, interactive fixed effects models
as in Bai (2009), Bai and Li (2014), Moon and Weidner (2017, 2015), Pesaran
(2006), and Su and Chen (2013).5 A simple version of the interactive fixed effects
model analogous to (1.1) is

yit = αdit + z′
itβ+λt fi + εit .
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In this model, zit represents a known, low-dimensional set of variables that must
be controlled for in addition to the factors in fi . There appear to be two key
distinctions between the high-dimensional PPFM and interactive fixed effects ap-
proaches. First, we relax the assumption that one knows the exact identity of the
variables that should appear in the model, zit , by allowing for a high-dimensional
set of observed potential confounds in Xit . Second, we directly extract estimates
of the factors and U from X which can proceed even when T is small, whereas
most approaches in the interactive fixed effects model take T to be large. We
thus view the PPFM and interactive fixed effects approaches as complemen-
tary where one may prefer one or the other depending on the nature of the data
at hand.

Finally, our article is related to the interesting work of Hsiao, Ching, and Wan
(2012) and Li and Bell (2017) but differs in a few key regards. First, the treat-
ment variable of interest in Hsiao et al. (2012) and Li and Bell (2017) appears
on only one or finitely many individuals after a specific time period t > T0,
and these articles use a factor model to predict the counterfactual outcomes for
the periods t > T0. In our model, we consider inference for the coefficient of a
generic time-varying variable of interest that may change continuously across
all individuals and time periods. Second, Hsiao et al. (2012) and Li and Bell
(2017) do not estimate the unknown factors but instead use the factor struc-
ture to show that the outcome variable can be written as a linear combination
of the other observed outcome variables. Third, while Li and Bell (2017) sug-
gest using lasso in a high-dimensional setting, they provide formal results only
in a low-dimensional setting. We thus again view the approaches as complemen-
tary where the preference would depend on the specifics in a given empirical
setting.

We conclude this section by noting that it is possible to check whether the
high-dimensional regressors {Xit } admit a factor structure. In practice, researchers
should employ a consistent estimator for the number of factors (K ) as in, e.g., Ahn
and Horenstein (2013). If K > 0 is estimated, one may apply our full procedure
including factor extraction, and a pure sparsity-based approach may be applied
otherwise. Of course, our full procedure also reduces to the pure sparsity-based
approach when K = 0 is estimated.

2.2. Estimation Algorithm

We take the following steps to estimate α. The estimation algorithm adapts the
approach from Belloni et al. (2016) to allow for the estimation of factors.

Step 1: Remove the unobserved heterogeneity. We begin by taking the within
transformation of all observed variables to remove the additive fixed effects. To
this end, let M̃t = Mt − M̄ for any collection of matrices Mt indexed only by
t and M̄ = 1

T

∑T
t=1 Mt , and let f̃i = fi − 1

n

∑n
i=1 fi . Also, let z̃it = zit − z̄·t −

z̄i· + ¯̄z for any variable zit where z̄·t = 1
n

∑n
i=1 zit , z̄i· = 1

T

∑T
t=1 zit , and ¯̄z =

1
nT

∑n,T
i=1,t=1 zit . We can then define a demeaned model as
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ỹit = αd̃it + ξ̃ ′
t f̃i + Ũ ′

itθ + ε̃it , (2.1)

d̃it = δ̃′dt f̃i + Ũ ′
itγd + η̃it , (2.2)

X̃it = �̃t f̃i + Ũit . (2.3)

Step 2: Estimate f̃i ,Ũit and �̃t . We estimate the (demeaned) latent factors as
well as the (demeaned) idiosyncratic components from the model X̃it = �̃t f̃i +
Ũit .6 Let F̂ = ( f̂1, . . . , f̂n)

′ be the n × K matrix of estimated factors. We discuss
estimation of F̂ via principal components analysis in Supplementary Appendix
D. Given F̂ , we estimate �̃t and Ũit by least squares:

�̂t =
n∑

i=1

X̃it f̂ ′
i (F̂

′ F̂)−1, Ûit = X̃it − �̂t f̂i , i ≤ n, t ≤ T . (2.4)

Step 3: Estimate coefficients on f̃i . Substituting (2.2) to (2.1), we obtain

ỹit = α(δ̃′dt f̃i + Ũ ′
itγd + η̃it )+ ξ̃ ′

t f̃i + Ũ ′
itθ + ε̃it

:= δ̃′yt f̃i + Ũ ′
itγy + ẽit ,

where ẽit = αη̃it + ε̃it , δ̃yt = αδ̃dt + ξ̃t , and γy = αγd + θ. Now let Ỹt =
(ỹ1t , . . . , ỹnt )

′ and D̃t = (d̃1t , . . . , d̃nt )
′ denote the vectors of outcome and treat-

ment variable within each time period t . From the models d̃it = δ̃′dt f̃i +Ũ ′
itγd + η̃it

and ỹit = δ̃′yt f̃i + Ũ ′
itγy + ẽit , we regress Ỹt and D̃t onto the extracted factors F̂

to estimate {δ̃yt}T
t=1 and {δ̃dt}T

t=1:

δ̂yt = (F̂ ′ F̂)−1 F̂ ′Ỹt and δ̂dt = (F̂ ′ F̂)−1 F̂ ′ D̃t . (2.5)

The above two regressions make use of (2.4) which implies
∑N

i=1 f̂i Ûit = 0.
Step 4: Estimate coefficients on Ũit via lasso. Let

γ̃y = arg min
γ∈Rp

1

nT

T∑
t=1

n∑
i=1

(ỹit − δ̂′yt f̂i − Û ′
itγ )

2 +κn‖�̂ yγ ‖1 and (2.6)

γ̃d = arg min
γ∈Rp

1

nT

T∑
t=1

n∑
i=1

(d̃it − δ̂′dt f̂i − Û ′
itγ )

2 +κn‖�̂dγ ‖1, (2.7)

where the tuning parameter κn is chosen as

κn = 2c0√
nT
�−1(1 − qn/(2 p)), log(q−1

n )= O(log p), (2.8)

for some c0 > 1 and qn → 0,7 and �̂ y and �̂d are diagonal penalty loading matri-
ces. Given the fixed effects panel structure, we use the clustered penalty loadings
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of Belloni et al. (2016) which have diagonal elements defined as

[�̂ y]j, j =
√√√√ 1

nT

n∑
i=1

T∑
t=1

T∑
t ′=1

Ûit, j Ûit ′, j êit êit ′ (2.9)

[�̂d ]j, j =
√√√√ 1

nT

n∑
i=1

T∑
t=1

T∑
t ′=1

Ûit, j Ûit ′, j η̂it η̂it ′ , (2.10)

where êit is an estimator of ẽit = ỹit − δ̃′yt f̃i − Ũ ′
itγy and η̂it is an estimator of

η̃it = d̃it − δ̃′dt f̃i − Ũ ′
itγd .8

Final Step: Residual regression using post-lasso-selection. We adopt the
post-double-selection procedure of Belloni et al. (2014). Let Ĵ = {j ≤ p : γ̃y, j �=
0} ∪ {j ≤ p : γ̃d, j �= 0}, and let Ûit, Ĵ be a subvector of Ûit whose elements are

{Ûit, j : j ∈ Ĵ}. We then run the regression of ỹit − δ̂′yt f̂i on Ûit, Ĵ and d̃it − δ̂′dt f̂i

on Ûit, Ĵ and obtain

γ̂y = (

n∑
i=1

T∑
t=1

Ûit, Ĵ Û ′
it, Ĵ
)−1

n∑
i=1

T∑
t=1

Ûit, Ĵ (ỹit − δ̂′yt f̂i ), (2.11)

γ̂d = (

n∑
i=1

T∑
t=1

Ûit, Ĵ Û ′
it, Ĵ
)−1

n∑
i=1

T∑
t=1

Ûit, Ĵ (d̃it − δ̂′dt f̂i ). (2.12)

Note that (2.11) and (2.12) are estimating subvectors, indexed by Ĵ , of the high-
dimensional γ . To make this indexing explicit, one could denote these subvectors
as γ̂y, Ĵ and γ̂d, Ĵ , respectively. However, we keep this indexing implicit and denote
these vectors as γ̂y and γ̂y for notational simplicity.

The final estimator of α is then given by

α̂ = (

n∑
i=1

T∑
t=1

η̂2
it )

−1
n∑

i=1

T∑
t=1

η̂it êit , (2.13)

where êit = ỹit − δ̂′yt f̂i − Û ′
it, Ĵ
γ̂y and η̂it = d̃it − δ̂′dt f̂i − Û ′

it, Ĵ
γ̂d are the residuals

from the regressions specified in (2.11) and (2.12).
Note that the estimator α̂ is numerically equivalent to the coefficient on d̃it in

the regression of ỹit on d̃it , f̂i interacted with time dummy variables, and Ûit, Ĵ .
In Theorem 3.1 of the next section, we verify that inference for α̂ can proceed
using the output from this OLS regression as long as clustered standard errors
(e.g., Liang and Zeger, 1986; and Arellano, 1987) are used.

The following algorithm summarizes the estimation strategy detailed above.
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ALGORITHM (Factor-lasso estimation of α).

(1) Obtain { f̂i ,Ûit }i≤n,t≤T by extracting factors from the model X̃it =
�̃t f̃i + Ũit .

(2) For δ̂yt and δ̂dt defined in (2.5), run the cluster-lasso programs (2.6)
and (2.7) to obtain γ̃y and γ̃d .

(3) Obtain the estimator α̂ and corresponding estimated standard er-
ror as the coefficient on d̃it − δ̂′dt f̂i − Û ′

it, Ĵ
γ̂d and associated clus-

tered standard error from the regression of ỹit − δ̂′yt f̂i − Û ′
it, Ĵ
γ̂y on

d̃it − δ̂′dt f̂i − Û ′
it, Ĵ
γ̂d where Ûit, Ĵ is the subvector of Ûit whose ele-

ments are {Ûit, j : j ∈ Ĵ }.

3. ASSUMPTIONS AND ASYMPTOTIC THEORY

In this section, we present a set of sufficient conditions under which we establish
asymptotic normality of α̂ and provide a consistent estimator of its asymptotic
variance. Throughout we consider sequences of data generating processes (DGPs)
where p increases as n and T increase and where model parameters are allowed
to depend on n and T . We suppress this dependence for notational simplicity. We
use the term “absolute constants” to mean given constants that do not depend on
the DGP.

3.1. Regularity Conditions

Write εt = (ε1t , . . . ,εnt )
′, ηt = (η1t , . . . ,ηnt )

′, and Ut = (U ′
1t , . . . ,U

′
nt )

′. Similarly,
let εi = (εi1, . . . ,εiT )

′, ηi = (ηi1, . . . ,ηiT )
′, and Ui = (U ′

i1, . . . ,U
′
iT )

′.
We assume there are positive absolute constants C1,C2, and C3 such that the

following assumption holds.

Assumption 3.1 (DGP). (i) { fi ,ηi ,εi ,Ui }i≤n are independent and identically
distributed across i = 1,2, . . . ,n and satisfy

E(ηi |εi ,Ui , fi )= 0, E(εi |ηi ,Ui , fi )= 0, E(Ui |ηi ,εi , fi )= 0.

In addition, given { fi }i≤n , the sequence {Ui ,ηi ,εi }i≤n is also conditionally inde-
pendent across i .

(ii) Given { fi }i≤n , the sequence {Ut ,ηt ,εt }t≤T is stationary across t , and satis-
fies a conditional strong-mixing condition. That is, there exists an absolute con-
stant r > 0 such that for all T ∈ R

+,

sup
A∈F0−∞,B∈F∞

T

|P(A|FF )P(B|FF )− P(A ∩ B|FF)| ≤ exp(−C1T r ),
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where F0−∞ and F∞
T denote the σ -algebras generated by {(Ut ,ηt ,εt ) : −∞ ≤

t ≤ 0} and {(Ut ,ηt ,εt ) : T ≤ t ≤ ∞}, respectively, and FF denotes the σ -algebra
generated by { fi : i ≤ n}.

(iii) Almost surely,

max
i≤n,m≤p,t≤T

p∑
k=1

T∑
s=1

|E(Uit,k Uis,m | fi ,εi ,ηi )|< C2.

(iv) There is C3 > 0 so that almost surely (in fi ) and for any s > 0, i ≤ n, j ≤ p
and k ≤ K ,

P(|Uit, j |> s| fi ) ≤ exp(−C3s2), P(| fik |> s) ≤ exp(−C3s2),

P(|ηit |> s| fi ) ≤ exp(−C3s2), P(|εit |> s| fi ) ≤ exp(−C3s2).

(v) Let θm and γd,m be the mth entries of θ and γd , and let λ′
tm be the mth row

of �t . We have

|α|+ max
t≤T

(‖ξt‖+‖δdt‖)+ max
m≤p

(|θm |+ |γd,m|)+ max
m≤p,t≤T

‖λtm‖< C2.

Assumption 3.1 collects reasonably standard regularity conditions that restrict
the dependence across observations and tail behavior of random variables. Condi-
tion (ii) imposes a conditional strong-mixing condition as in Prakasa Rao (2009)
and Su and Chen (2013). Condition (iii) imposes weak conditional dependence
in the factor residuals, Uit . In the simple case where Uit is independent of fi ,
ηi , and εi for all t , this condition reduces to weak intertemporal correlation and
no strong dependence among the columns of Uit . Importantly, it allows correla-
tion among the observed Xit that is not explained by the factors, allowing a rich
covariance structure across elements in Uit . Condition (iv) is somewhat strong.
We use this condition to establish uniform convergence of many sequences,
such as maxk≤p,t≤K ‖ 1

n

∑n
i=1 Uit,k fi‖2, using concentration inequalities for sub-

Gaussian random variables when p is potentially very large. The need to establish
uniform convergence of such sequences is absent in the conventional factor model
literature. Finally, condition (v) requires that all low-dimensional parameters are
well-bounded.

Let eit = αηit + εit .

Assumption 3.2 (Moment bounds). For m ≤ p, i ≤ n, t ≤ T , define

Wim = 1√
T

T∑
t=1

(Uit,m − Ūi·,m)(eit − ēi·).

There are absolute constants c,C > 0, such that
(i) maxi≤n,m≤p E |Wim |3 ≤ C , c <mini≤n,m≤p EW 2

im ≤ maxi≤n,m≤p EW 2
im < C ,

and

Var

(
1√
nT

n∑
i=1

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·)
)
> c.
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max
i≤n

E

∣∣∣∣∣ 1√
T

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·)
∣∣∣∣∣
2+δ

< C, for some δ > 0.

(ii) Almost surely in F = ( f1, . . . , fn)
′,

max
m≤p,t≤T

1

n

n∑
i=1

E(U8
it,m |F) < C, max

t≤T

1

n

n∑
i=1

E(e8
it |F) < C.

Assumption 3.2 collects additional high-level moment bounds. The bounds on
moments of normalized sums in Condition (i) could be established under a vari-
ety of sufficient lower level conditions. Condition (ii) places restrictions on the
dependence between {Uit ,eit }n,T

i=1,t=1 and { fi }n
i=1.9

Before stating the next assumption, we decompose the high dimensional coef-
ficients as

γy = γ 0
y︸︷︷︸

exactly sparse

+ Ry︸︷︷︸
remainder

and γd = γ 0
d︸︷︷︸

exactly sparse

+ Rd︸︷︷︸
remainder

,

where γ 0
y and γ 0

d are sparse vectors that approximate the potentially dense true
coefficient vectors γy and γd and Ry and Rd represent approximation errors. Let
J = {j ≤ p : γ 0

y, j �= 0} ∪ {j ≤ p : γ 0
d, j �= 0} be the union of the support of the

exactly sparse components.

Assumption 3.3 (Rate conditions). (i) ‖Rd‖1 +‖Ry‖1 = o

(√
log p
nT

)
.

(ii) |J |20 log3(p) = O(n) and logγ (p) = o(n) for some γ > 2/r where r is
defined in Assumption 3.1(ii).

(iii) |J |20T = o(n). In addition, the number of factors, K , is constant.10

Condition (i) requires that a sparse approximation provides a high-enough qual-
ity approximation to γy and γd . This condition is similar to the approximate spar-
sity condition imposed, for example, in Belloni et al. (2014), though in Belloni
et al. (2014) the condition is imposed on errors in approximating a general non-
parametric function with a sparse linear model. As we are maintaining a linear
factor structure, we impose the restriction directly on the coefficients. Condition
(ii) imposes restrictions on both the rate of growth of the dimension p and the
decay rate of the strong-mixing coefficient. Condition (iii) imposes that T be
much smaller than n. The need for this condition arises from the fact that we
need to obtain high-quality estimates of Uit in the factor equation, which depends
on accurately estimating both the unknown factors and the loadings. Estimating
the loading matrix �t well for any given t requires a relatively large n, and we
thus require T to be smaller than n as the number of unknown loading matrices
{�t }t≤T is O(T ).
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Our next assumption restricts the covariance matrix of the within-transformed
factor residuals Ũit .

Assumption 3.4 (Sparse eigenvalue). For any δ ∈ R
p\{0}, write

R(δ)= δ′ 1
nT

∑n
i=1
∑T

t=1 Ũit Ũ ′
itδ

δ′δ
.

Define the sparse eigenvalue constants:

φmin(m)= inf
δ∈Rp:1≤‖δ‖0≤m

R(δ),
φmax(m)= sup

δ∈Rp:1≤‖δ‖0≤m
R(δ).

There is a sequence of absolute constants lT → ∞ and c1,c2 > 0 so that with
probability approaching one,

c1 < φmin(lT |J |0)≤ φmax(lT |J |0) < c2.

Maintaining Assumptions 3.1–3.3, a simple sufficient condition for Assump-
tion 3.4 is that all the eigenvalues of 1

nT

∑
i

∑
t E(Uit − Ūi,·)(Uit − Ūi·)′ are

well bounded (see Lemma 4.1 below). Maintaining this condition is standard
in high-dimensional approximate factor models (e.g., Bai, 2003; Stock and Wat-
son, 2002). It ensures that the idiosyncratic components are weakly dependent
and therefore the decomposition X̃it = �̃t f̃i + Ũit is asymptotically identified (as
p → ∞).

Finally, we require a high-level condition on the accuracy of F̂ , given in
Assumption D.4 in the Supplemental Appendix. The high-level conditions poten-
tially allow for many estimators of the factors, and we verify that these conditions
hold under more primitive assumptions for the case of estimating the factors using
PCA in the Supplemental Appendix.

3.2. Main Results

The asymptotic variance of α̂ will depend on the quantities

σηε = Var

(
1√
nT

n∑
i=1

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·)
)

and σ 2
η = 1

nT

n∑
i=1

T∑
t=1

Var(ηit − η̄i·)

for which

σ̂ηε = 1

nT

n∑
i=1

(
T∑

t=1

η̂it ε̂it

)2

and σ̂ 2
η = 1

nT

n∑
i=1

T∑
t=1

η̂2
it

are natural estimators. Note that σ̂ηε is just the usual clustered covariance estima-
tor with clustering at the individual level.
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THEOREM 3.1. Suppose n, p → ∞, and T is either fixed or growing. Under
Assumptions 3.1–3.4 and Assumption D.4 in the Supplementary Appendix,
√

nTσ−1/2
ηε σ 2

η (̂α−α)→d N (0,1).
In addition,
√

nT σ̂−1/2
ηε σ̂ 2

η (̂α−α)→d N (0,1).
COROLLARY 3.1. Let P be a collection of all DGP’s such that the as-

sumptions of Theorem 3.1 hold uniformly over all the DGP’s in P . Let ζτ =
�−1(1 − τ/2). Then as n, p → ∞, and T is either fixed or growing with n, uni-
formly over P ∈ P ,

lim
n,p→∞ P

(
α ∈ [̂α± ζτ√

nT
σ̂ 1/2
ηε σ̂

−2
η ]

)
= 1 − τ.

The main implication of Theorem 3.1 and Corollary 3.1 is that α̂ converges at
a

√
nT rate and that inference may proceed using standard asymptotic confidence

intervals and hypothesis tests. Importantly, the inferential results hold uniformly
across a large class of approximately sparse models which includes cases where
perfect selection over which elements of Ũit enter the model is impossible even
in the limit. It is also important to highlight that the conditions on estimation
of the factors rule out the presence of weak factors, and the inferential results
do not hold uniformly over sequences of models in which perfect selection of
the number of factors and fast convergence of the factors and factor loadings do
not hold. The difficulty with handling weak factors arises due to the entry of the
estimation errors of the factors in the cluster-lasso problems (2.6) and (2.7) and the
nonsmooth and highly nonlinear nature of this problem. Extending the results to
accommodate the presence of weak factors and imperfect selection of the number
of factors would be an interesting direction for further research.

4. K -STEP BOOTSTRAP

We now present a computationally tractable bootstrap procedure that can be used
in lieu of the plug-in asymptotic inference formally presented in Theorem 3.1 and
Corollary 3.1. In the following, we introduce a bootstrap procedure which only
approximately solves the cluster-lasso problem within each bootstrap replication
and thus may remain computationally convenient while also intuitively capturing
the sampling variation introduced in the lasso selection.

4.1. The k-step Bootstrap

Let D∗ = {ỹ∗
it , d̃

∗
it , X̃∗

it }i≤n,t≤T denote a sample of bootstrap data obtained through
application of Algorithm (k-Step Wild Bootstrap) below, and let α̂∗ be the esti-
mator obtained by applying the factor-lasso estimator with data D∗. Let B denote
the number of bootstrap repetitions.
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Most algorithms that solve the lasso problem rely on iterations. A potential
computational problem with bootstrap procedures for lasso estimation is that one
needs to solve B lasso problems where B will typically be fairly large. To circum-
vent this problem, we adopt the approach of Andrews (2002) by using the fact
that the complete lasso estimator based on the original data, denoted by γ̃lasso,
should be close to the complete lasso estimator based on bootstrapped data D∗,
denoted by γ̃ ∗

lasso. Hence, within each bootstrap replication, we can use γ̃lasso

as the initial value for solving the lasso problem and iteratively update the lasso
algorithm for k steps rather than computing the full solution on the bootstrap
data, γ̃ ∗

lasso. Denote the resulting k-step bootstrap lasso estimator by γ̃ ∗. We sim-
ply use γ̃ ∗ in place of γ̃ ∗

lasso wherever the solution to a lasso problem shows
up in the factor-lasso problem. The main result of this section is showing that
the k-step bootstrap procedure is first-order valid for statistical inference about
α as long as the minimization error after k steps is less than the statistical error
(i.e., oP∗((nT )−1/2)).

The substantive difference between the present context and Andrews (2002) is
that Andrews (2002) makes use of Newton–Raphson updates for the k-steps while
we face a regularized optimization problem at each iteration. Tractability relies
on the fact that there are a variety of procedures for updating within the lasso
problem that are available in closed form. Using these analytic updates greatly
reduces the overall computational task and makes a k-step bootstrap procedure
attractive within the lasso context.

Specifically, consider the following lasso problems on the bootstrap data. Let

γ̃ ∗
y,lasso = arg min

γ∈Rp
L∗

y(γ )+κn‖�̂ yγ ‖1,

γ̃ ∗
d,lasso = arg min

γ∈Rp
L∗

d (γ )+κn‖�̂dγ ‖1,
(4.1)

where

L∗
y(γ ) = 1

nT

T∑
t=1

n∑
i=1

(ỹ∗
i t − δ̂∗′

yt f̂ ∗
i − Û∗′

i t γ )
2 and L∗

d(γ ) = 1

nT

T∑
t=1

n∑
i=1

(d̃∗
i t − δ̂∗′

dt f̂ ∗
i − Û∗′

i t γ )
2.

The definitions of {ỹ∗
it , d̃

∗
it , δ̂

∗
yt , δ̂

∗
dt , f̂ ∗

i ,Û
∗
it }i≤n,t≤T will be formally given be-

low. Let γ̃y and γ̃d be the lasso solutions obtained from the original data.
Also, note that we fix the value of κn and of the penalty loadings �̂ y and �̂d

to the same values as used to obtain the solutions γ̃y and γ̃d in the original
data.

Within each bootstrap replication, we then approximately solve the lasso
problems (4.1) by applying the following procedure. We note that the maxi-
mum number of steps k to be taken within each bootstrap replication should
be determined on a case-by-case basis according to the available computational
capacity.11
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ALGORITHM (k-Step lasso iteration).
Set k to be a predetermined number of iterations.

(A1) Set l = 0 and initialize at γy,0 = γ̃y , γd,0 = γ̃d .

(A2) Determine one-step iteration mappings Sy,Sd : Rp → R
p . Let

γy,l+1 = Sy(γy,l), γd,l+1 = Sd (γd,l). (4.2)

Set l = l + 1.

(A3) Repeat (A2) until l = k. Let the k-step lasso estimators be

γ̃ ∗
y = γy,k, γ̃ ∗

d = γd,k .

There are a variety of iteration mappings that can be used in Step (A2) of
the k-step lasso problem. A commonly used and simple mapping is the “coor-
dinate descent method,” also known as the “shooting method,” studied by Fu
(1998).12 For solving problem (4.1), write the solution after the l th iteration as
γy,l = (γy,l,1, . . . ,γy,l,p)

′. The coordinate descent method updates γy,l+1 by iter-
atively cycling through all coordinates. Specifically, we solve the following one-
dimensional optimization problem for m = 1, . . . , p,

γy,l+1,m = arg min
g∈R

1

nT

∑
i,t

( ỹ∗
it − δ̂∗′

yt f̂ ∗
i − Û∗′

it,m−γy,l+1,m− − Û∗′
it,m+γy,l,m+ − Û∗

it,m g)2

+κn |�̂ y
m g|.

(4.3)

Here m− = {j : j < m}; and γy,l+1,m− and Û∗
it,m− are R

m−1 dimensional vectors

whose components are, respectively, those of {γy,l+1, j : j < m} and {Û∗
it, j : j <

m}. Similarly, m+ = {j : j > m}; and γy,l,m+ and Û∗
it,m+ are R

p−m dimensional

vectors whose components are, respectively, those of {γy,l, j : j > m} and {Û∗
it, j :

j > m}. When m = 1, m− is empty; and when m = p, m+ is empty. In these
cases, the corresponding subvectors, γy,l+1,m− and Û∗

it,m− or γy,l,m+ , and Û∗
it,m+ ,

are defined as zero. Note that when γy,l+1,m is being updated the previous m − 1
elements have already been updated, while the remaining p − m elements are yet
to be updated. Thus, γy,l+1,m− is a subvector of γy,l+1, but γy,l,m+ is still a sub-

vector of γy,l in the l th update. Denote by γ (m)y,l+1 := (γy,l+1,m−,γy,l+1,m ,γy,l,m+)′

the vector that results immediately after the mth coordinate has been updated dur-
ing the (l + 1)th iteration. When m = p, all the components have been updated;
and we obtain γy,l+1 := γ

(p)
y,l+1.

Importantly, (4.3) is a one-dimensional �1-penalized quadratic problem which
has an analytical solution given by the soft thresholding operation:
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γy,l+1,m =
[

sgn

(
1

nT

T∑
i=1

T∑
t=1

Z∗
it,l,mÛ∗

it,m

)]

×
(∣∣∣∣∣ 1

nT

T∑
i=1

T∑
t=1

Z∗
it,l,mÛ∗

it,m

∣∣∣∣∣− 1

2
κn�̂

y
m

)
+

(
1

nT

T∑
i=1

T∑
t=1

Û∗2
it,m

)−1

,

(4.4)

where Z∗
it,l,m := ỹ∗

it − δ̂∗′
yt f̂ ∗

i − Û∗′
it,m−γy,l+1,m− − Û∗′

it,m+γy,l,m+, (x)+ =
max{x,0}, and sgn(x) takes the sign of x . Therefore, the mappings in (4.2) are
given by

Sy(γy,l)= (γy,l+1,1, . . . ,γy,l+1,p)
′, where each γy,l+1,m is given in (4.4).

Sd (γd,l) is obviously defined similarly.
With the k-step lasso program defined, we now state the complete algorithm for

the proposed k-step bootstrap procedure. We make use of a wild residual bootstrap
to generate the data at each bootstrap replication.

ALGORITHM (k-Step wild bootstrap).
Let { f̂i ,Ûit ,�̂t }i≤n,t≤T denote the estimates of the features of the factor

model using the original data. Let α̂, δ̂dt , δ̂yt , γ̂d , γ̂y be the estimated coeffi-
cients from the original data, defined in (2.4) through (2.13). Also, let

ξ̂t = δ̂yt − α̂δ̂dt , t = 1, . . . ,T, and
θ̂ = γ̂y − α̂γ̂d .

(1) For each i = 1, . . . ,n, let wx
i (x = U,Y,D) be mutually independent

random variables, where {wx
i }i≤n are i.i.d. with mean zero and vari-

ance one. Let

Ũ∗
it =wU

i Ûit , η̃∗
it = wD

i η̂it , ε̃∗
it =wY

i ε̂it , t = 1, . . . ,T .

Define {ỹ∗
it , d̃

∗
it , X̃∗

it }t≤T as

ỹ∗
it = α̂d̃∗

it + ξ̂ ′
t f̂i + Ũ∗′

it θ̂ + ε̃∗
it ,

d̃∗
it = δ̂′dt f̂i + Ũ∗′

it γ̂d + η̃∗
it ,

X̃∗
it = �̂t f̂i + Ũ∗

it .

(2) Apply the Factor-Lasso Algorithm to the bootstrap data
{ỹ∗

it , d̃
∗
it , X̃∗

it }i≤n,t≤T to obtain an estimated alpha α̂∗ replacing
the lasso estimation in Step (2) of the Factor-Lasso Algorithm with
steps (A1)–(A3) from the k-Step Lasso Iteration defined above.
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(3) Repeat the above steps (1)–(2) B times to obtain {̂α∗
b }b≤B .

Let q∗
τ be the τ th upper quantile of {√nT |̂α∗

b − α̂|}b≤B so that

P∗(
√

nT |̂α∗
b − α̂| ≤ q∗

τ )= 1 − τ. (4.5)

Construct the bootstrap confidence interval:[
α̂± q∗

τ√
nT

]
.

In (4.5), P∗ denotes the bootstrap probability measure induced by the bootstrap
resampling. More specifically, it is induced by the conditional distribution of the
bootstrap weights {{wx

i }b
i≤n}b≤B , x = U,Y,D, given the original sample.

4.2. Validity of the k-step Bootstrap Confidence Interval

We now present conditions under which we verify that the bootstrap confidence
intervals are asymptotically valid:

P

(
α ∈

[
α̂± q∗

τ√
nT

])
→ 1 − τ.

The first assumption imposes high-level conditions that will admit the use of
general updating rules in (4.2) of the k-Step Lasso Iteration. Recall that γ̃ ∗

d = γd,k

is the k-step bootstrap solution, and γ̃x,lasso is the complete lasso solution using
the bootstrap data given by (4.1), x ∈ {y,d}.

Assumption 4.1. The following conditions hold for x ∈ {y,d}:
(i) Minimization Error: There is a deterministic sequence an such that an

√
nT =

o(1), and K0 > 0, such that when k > K0,

L∗
x (γ̃

∗
x )+κn‖�̂x γ̃ ∗

x ‖1 ≤ L∗
x (γ̃

∗
x,lasso)+κn‖�̂x γ̃ ∗

x,lasso‖1 + OP∗(an).

(ii) Sparsity: | Ĵ ∗| = OP∗(|J |0), where Ĵ ∗ = {j ≤ p : γ̃ ∗
d j �= 0}∪{j ≤ p : γ̃ ∗

y j �= 0}.
Condition (i) requires that the minimization error should be negligible com-

pared to the statistical error after k iteration steps. Condition (ii) guarantees the
sparsity of the iterated solutions. As a concrete example, we verify both condi-
tions for the coordinate descent method. We note that, to the best of our knowl-
edge, showing the |J |0-sparsity of the k-step iterated coordinate descent estimator
has not been done previously when p is potentially much larger than n and may
be of some independent interest.
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PROPOSITION 4.1. The coordinate descent iteration as given in (4.4) satis-
fies Assumption 4.1.

Remark 4.1. We would like to point out that the original lasso estimators also
satisfy Assumption 4.1(i). In fact, the k-step bootstrap lasso is asymptotically
valid for any k ≥ 0, where k = 0 corresponds to the case that we do not repeat
the lasso step in the bootstrap procedure, treating the index set Ĵ as fixed. While
asymptotically, the k-step bootstrap is equivalent for any k ≥ 0, the major differ-
ence of using k ≥ 1 lies in the finite-sample performance. With a larger k, the
bootstrap may also mimic some of the sampling error from the lasso-estimation
step. Though this estimation error is asymptotically negligible, it does affect the
ultimate estimator’s finite-sample behavior. Therefore, we recommend the use of
k-step bootstrap with k chosen as large as possible within one’s computational
budget.

We next impose a fairly standard notion of regularity on the high-dimensional
component Ũit .

Assumption 4.2 (Restricted strong convexity). There is a constant c > 0, and
a sequence τn = o(|J |−1

0 ) so that for all δ ∈ R
p,

δ′
1

nT

n∑
i=1

T∑
t=1

Ũit Ũ
′
itδ ≥ c

2
‖δ‖2

2 − OP(τn)‖δ‖2
1.

This assumption has been discussed by many authors, and various sufficient
conditions have been provided (e.g., Raskutti, Wainwright, and Yu, 2010; and Loh
and Wainwright, 2015). The following lemma provides a simple sufficient condi-
tion for both Assumption 4.2 and the sparse eigenvalue assumption (Assumption
3.4).

LEMMA 4.1. Suppose Assumption 3.1 holds. Let λ1 ≤ ·· · ≤ λp be the eigen-
values of

1
nT

∑
i
∑

t E
[
(Uit − Ūi,·)(Uit − Ūi·)′

]
. Suppose for some 0< c < C,

c < λ1 ≤ λp < C.

Then Assumptions 3.4 and 4.2 are satisfied.

The following conditions are imposed on the bootstrap weights.

Assumption 4.3. For x = U,Y,D, E[wx
i ] = 0 and Var(wx

i ) = 1. In addition,
there exist L,r > 0, such that for any s > 0, i ≤ n,

P(|wx
i |> s) ≤ exp(−Lsr ).

The subexponential condition for the bootstrap weights enables us to bound
many stochastic processes uniformly in m ≤ p and t ≤ T . In our numerical
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studies, we follow Mammen (1993) and use wx
i = ζ x

1,i/
√

2 + ((ζ x
2,i )

2 − 1)/2 for
x ∈ {U,Y,D} where ζ x

1,i and ζ x
2,i are independent standard normals.

Finally, we impose a high-level assumption on the quality of estimation of the
factors in the bootstrap data, given in Assumption D.5 in the Supplementary Ap-
pendix.

Under these additional conditions, we are able to verify that the confidence
interval resulting from application of the k-step bootstrap procedure has asymp-
totically correct coverage.

THEOREM 4.1. Suppose n, p → ∞, and T is either fixed or growing. Under
Assumptions 3.1–3.4, 4.1–4.3, and Assumptions D.4 and D.5 in the Supplemen-
tary Appendix,
√

nTσ−1/2
ηε σ 2

η (̂α
∗ − α̂)→d∗ N (0,1),

which means for any x ∈ R,
∣∣∣P∗(

√
nTσ−1/2

ηε σ 2
η (̂α

∗ − α̂) < x)−�(x)
∣∣∣ →P 0,

where �(·) denotes the standard normal cumulative distribution function. In ad-
dition,

P(
√

nT |̂α−α| ≤ q∗
τ )→ 1 − τ.

5. NUMERICAL STUDIES AND EXAMPLES

We now present simulation and empirical results in support of the formal analysis
presented in the previous sections.

5.1. Simulation Example

We report results for estimation and inference on α with data generated according
to

yit = αdit + (cξ ξt )
′ fi +U ′

it (cθ θ)+ gi + νt + εit ,

dit = (cδδdt )
′ fi +U ′

it (cγ γd)+ ζi +μt +ηit ,

Xit = (c��t ) fi +wi +ρt +Uit ,

with n = 100, T = 10, K = 3, and p = 100.13 We take εit ∼ N(0,1), ηit ∼
N(0,1), and Uit ∼ N(0p ,�U ) where 0p is a p ×1 vector of zeros, �U has (r,s)
element given by [�U ][r,s] = .7|r−s|, and εit , ηit , and Uit are i.i.d. over i and t
and jointly independent of each other. We generate unobserved individual-specific
and time-specific heterogeneity by taking n i.i.d. draws, one for each individual,
(gi ,ζi ,wi )∼ N(0p+2, Ip+2)where Ip+2 is a (p+2)×(p+2) identity matrix and
taking T i.i.d. draws, one for each time period, (νt ,μt ,ρt )∼ N(0p+2, Ip+2). The
latent factors, fi , are generated as i.i.d. draws from N(0K , IK ). The factor load-
ing vectors ξt and δdt and factor loading matrix�t are drawn independently over
time with each entry generated as an independent draw from a standard normal
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random variable. The individual-specific and time-specific heterogeneity terms
and the factor loadings are drawn once, and the same values are used in each
simulation replication.

We set the j th entry of θ and γd as θj = γd, j = 1
j 2 . c�, cδ , cγ , cξ , and cθ are

scalars that are set to alter the relative strength of fi and Uit in each equation.
We choose c� so that the average R2 from the p regressions of Xit, j on fi is 0.5.
We choose (cδ,cγ ) so that the R2 of the infeasible regression of dit − ζi −μt on
(cδδdt)

′ fi +U ′
it (cγ γd) is 0.7 and the factors account for 0%, 25%, 50%, 75%, or

100% of the explanatory power in this regression. We similarly choose (cξ ,cθ )
so that the R2 of the infeasible regression of yit − αdit − gi − νt on (cξ ξt )

′ fi +
U ′

it (cθ θ) is 0.7 and the factors account for 0%, 25%, 50%, 75%, or 100% of the
explanatory power in this regression. Finally, we set α = 1.

We compare the performance of the procedure developed in this article to sev-
eral benchmarks. Because we consider a design with p < nT , ordinary least
squares of yit on dit , Xit and a full set of individual and time dummy variables
is feasible (OLS). We also consider estimating α based on the assumption that
confounding is entirely captured by latent factors. To implement this procedure,
we extract factors, f̂i , from X̃it by PCA as discussed in Section D in the sup-
plement. We then regress yit on dit , f̂i interacted with a complete set of time
dummy variables, and a full set of individual and time dummy variables to obtain
the estimator for α (Factor). For our third procedure, we directly apply the fixed
effects double-selection procedure of Belloni et al. (2016) which is appropriate
for a sparse high-dimensional model with fixed effects (Double Selection). We
then consider two ad hoc variants of the double-selection approach. In the first,
we extract the first 20 principal components and interact these with a full set of
time dummies. We then apply the fixed effects double-selection procedure of Bel-
loni et al. (2016) to the data (Y,D,X∗) where X∗ denotes the original X variables
augmented to include the interactions of principal components with time dum-
mies (Double Selection F). The second ad hoc procedure extracts factors from
X̃it by PCA. We then obtain estimates Ûit as in (2.4) and apply the fixed effects
double-selection procedure of Belloni et al. (2016) to the data (Y,D,Û∗) where
Û∗ denotes the matrix formed by combining Û with the interactions of principal
components with time dummies (Double Selection U). Finally, we directly ap-
ply the factor-lasso approach outlined in this article (Factor Lasso). We use the
Ahn and Horenstein (2013) procedure to select the number of factors to use in
obtaining the Factor, Double Selection U, and Factor Lasso results.

Figure 1 gives simulation RMSEs for the estimator of α resulting from apply-
ing each procedure. The RMSEs are truncated at 0.1 for readability of the figure.
The most striking feature of Figure 1 is that only the proposed factor lasso pro-
cedure delivers uniformly good performance regardless of the relative strength
of the factors and factor residuals in this simulation design. Each of the other
procedures exhibits behavior that depends strongly on the exact strength of the
factors in the different equations. In terms of RMSE, the factor-lasso procedure
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FIGURE 1. This figure shows the simulation RMSE of each of the estimators described
in the text for estimating the coefficient of interest in a panel partial factor model. RMSE
(truncated at 0.1) is shown in the vertical axis. The horizontal axes give the fraction of the
explanatory power in an infeasible regression of Y on factors and factor residuals, “%Y,”
and the fraction of the explanatory power in an infeasible regression of D on factors and
factor residuals, “%D,” where the infeasible regressions are described in the text.

uniformly dominates regular OLS, Double Selection ignoring the factor struc-
ture, and the ad hoc procedure Double Selection F within the design considered.
The factor-lasso estimator of α is outperformed by the pure factor model in the
case where all of the explanatory power in the outcome equation is contained in
the factors, which corresponds to the case where the pure factor model is cor-
rectly specified and there is no additional confounding based on the factor resid-
uals, and the Double Selection U procedure when the factors have no explanatory
power in the treatment (D) equation but all explanatory power in the Y equation.
It is also important to note that the performance loss is small in these few cases
where the factor lasso is outperformed. A final interesting point to note is that
the conventional lasso-based double selection procedure is outperformed by the
factor lasso even when the factors do not load in either the treatment or outcome
equation.

We report size of 5% level tests based on standard asymptotic approximations
for each of the six procedures considered in Figure 2 where the sizes are truncated
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FIGURE 2. This figure shows the simulation size of 5% level tests based on each of the
estimators described in the text for the PPFM. Size (truncated at 0.3) is shown in the ver-
tical axis. The horizontal axes give the fraction of the explanatory power in an infeasible
regression of Y on factors and factor residuals, “%Y,” and the fraction of the explanatory
power in an infeasible regression of D on factors and factor residuals, “%D,” where the
infeasible regressions are described in the text.

at 0.3 for readability of the figure. In each panel, we report the rejection frequency
of the standard t-test of the null hypothesis that α = 1 with standard errors clus-
tered at the individual level. The most striking feature of the figure is again the
uniformly good performance of tests based on the proposed factor lasso proce-
dure. Tests based on the factor-lasso procedure effectively control size, with size
ranging between 3.3% and 5.3% across the design parameters considered in the
simulation. This behavior is in sharp contrast to the other procedures considered
which may have large size distortions depending upon exactly how large the rela-
tive contribution of the factors is in the D and Y equations. Importantly, this good
behavior does not come at the cost of using an inferior estimator as evidenced by
the RMSE results.

We conclude this discussion by looking at the performance of the k-step boot-
strap. In Figure 3, we report size of 5% level tests using the factor-lasso estimator
and the asymptotic approximation provided in Theorem 3.1, the k-step bootstrap,
and a score bootstrap based on Belloni et al. (2017). The k-step bootstrap and
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FIGURE 3. This figure shows the simulation size of 5% level tests based on the factor-lasso
estimator in the PPFM and the asymptotic Gaussian approximation, the k-step bootstrap,
and a score based bootstrap. Size is shown in the vertical axis. The horizontal axes give
the fraction of the explanatory power in an infeasible regression of Y on factors and factor
residuals, “%Y,” and the fraction of the explanatory power in an infeasible regression of D
on factors and factor residuals, “%D,” where the infeasible regressions are described in the
text.

asymptotic approximation have similar performance that keeps size close to the
promised level. Interestingly, the score-based bootstrap that does not reestimate
the factors or the lasso parts of the model exhibits mild size distortions across all
of the design settings in this example.

5.2. Estimating the Effects of Gun Prevalence on Crime

In this example, we follow Belloni et al. (2016) who build upon the work of
Cook and Ludwig (2006) and attempt to estimate the effect of gun prevalence
on crime in a setting with a high-dimensional set of potential controls. As in
Belloni et al. (2016), we focus exclusively on trying to measure the effect of gun
prevalence on homicide rates. An important difficulty with estimating the effect
of gun prevalence in the United States is that exact gun-ownership numbers are
difficult to obtain. Due to this difficulty, Cook and Ludwig (2006) use the fraction
of suicides committed with a firearm (abbreviated FSS) within a county to proxy
for county-level gun ownership rates.

Both Cook and Ludwig (2006) and Belloni et al. (2016) estimate linear fixed
effects models of the form

logYit = αlog FSSit−1 + X ′
itβ+ gi + νt + εit , (5.1)

where gi and νt are treated as parameters to be estimated, Xit are control vari-
ables, and Yit is one of three dependent variables: the overall homicide rate within
county i in year t , the firearm homicide rate within county i in year t , or the non-
firearm homicide rate within county i in year t . Cook and Ludwig (2006) use
the four variables percent African American, percent of households with female
head, nonviolent crime rates, and percent of the population that lived in the same
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house five years earlier as their set of controls Xit . Belloni et al. (2016) maintain
the assumption of approximate sparsity and employ their variable selection ap-
proach using a much larger set of potential controls generated by taking variables
compiled by the US Census Bureau as Xit . Their variables include county-level
measures of demographics, the age distribution, the income distribution, crime
rates, federal spending, home ownership rates, house prices, educational attain-
ment, voting patterns, employment statistics, and migration rates along with inter-
actions of the initial (1980) values of all control variables with a linear, quadratic,
and cubic term in time.

We employ the PPFM, (1.1)–(1.3), and factor-lasso approach to estimate α us-
ing 909 variables in Xit constructed as in Belloni et al. (2016).14 The PPFM
model seems very appropriate for this data as it directly incorporates a mecha-
nism to accommodate the concern that there are features of counties that are not
directly observed, the fi , but are related to the evolution of the outcome and treat-
ment variable of interest, which is captured by the time-varying factor loadings.
Obviously, exclusion of these factors would then lead to omitted variables bias in
any estimator of α that fails to capture them.

The key assumption that we leverage to allow us to simply accommodate these
latent factors is that the same correlated unobserved factors that lead to confound-
ing are related to the evolution of other observed county-level aggregates and that
we have access to a large number of these auxiliary aggregates. While this key
assumption is strong, the PPFM also naturally provides some robustness to the
presence of shocks (Uit ) that are related to movements of the observed Xit se-
ries as well as movements in the variable of interest and outcome. Such shocks
may be motivated, for example, by the factor structure being misspecified, by the
presence of variables that are not strongly related to factors but are confounded
with the treatment and outcome, and simply by the presence of local shocks not
captured by the factors that are related to the observed series.

We present estimation results in Table 1 with results for each dependent vari-
able presented across the columns and rows corresponding to different estimation
approaches. As a baseline, we report numbers taken directly from the first row of
Table 3 in Cook and Ludwig (2006) in the first row of Table 1 (“Cook and Lud-
wig (2006) Baseline”). We report results obtained from our data in the remaining
rows.15 For these results, we first report the point estimate and estimate of the
asymptotic standard error obtained by clustering by county. Immediately below
these results, we report the 95% confidence interval obtained from applying the
k-step bootstrap procedure in brackets. The rows labeled “Post Double Selection”
apply the procedure of Belloni et al. (2016). The rows labeled “Factor” are based
on a pure factor model; the rows labeled “Factor-Lasso” use the proposed factor-
lasso procedure. All factors are estimated using PCA and the number of factors is
selected using Ahn and Horenstein (2013).

We see that the estimates and inferential statements produced for the firearm
homicide rate (“Gun”) and the nonfirearm homicide rate (“non-Gun”) are broadly
consistent with each other. In all cases, there is a fairly large positive point
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TABLE 1. Estimates of the effect of gun prevalence on homicide rates

Overall Gun Non-Gun
Cook and Ludwig (2006) baseline 0.086 (0.038) 0.173 (0.049) −0.033 (0.040)
post double selection 0.062 (0.042) 0.138 (0.059) −0.055 (0.042)

[−0.019,0.143] [0.036,0.240] [−0.139,0.029]
Factor 0.104 (0.043) 0.210 (0.064) −0.022 (0.040)

[0.019,0.189] [0.097,0.323] [−0.099,0.055]
Factor-Lasso 0.069 (0.036) 0.167 (0.046) −0.048 (0.040)

[0.000,0.138] [0.078,0.256] [−0.128,0.032]

This table presents estimates of the effect of gun ownership on homicide rates for a panel
of 195 US Counties over the years 1980–1999. The columns “Overall”, “Gun”, and
“non-Gun”, respectively, report the estimated effect of gun prevalence on the log of the
overall homicide rate, the log of the gun homicide rate, and the log of the nongun
homicide rate. Each row corresponds to a different specification as described in the text.
In each specification, the outcome corresponding to the column label is regressed on
lagged log(FSS) (a proxy for gun ownership) and additional covariates as described in the
text. Each specification includes a full set of year and county fixed effects. Standard errors
clustered by county are provided in parentheses. k-step bootstrap 95% confidence
intervals are given in brackets.

estimate for the effect on the firearm homicide rate with corresponding 95% con-
fidence intervals that exclude zero, suggesting positive association between the
used measure of gun prevalence and gun homicides. For the nonfirearm homicide
rate, all point estimates are negative and confidence intervals include both positive
and negative values. The broad results for the overall homicide rate (“Overall”)
are slightly more mixed. The baseline results for Cook and Ludwig (2006) and re-
sults from a pure factor model suggest a strongly significant, positive effect of gun
prevalence on the overall homicide rate. Assuming sparsity and applying Belloni
et al. (2016) yields a positive estimate of the effect which is statistically insignifi-
cant at the 5% level. Finally, the factor-lasso estimator is similar in magnitude to
the sparsity-based estimator but borderline significant at the 5% level using the
bootstrap confidence interval.

A more interesting comparison can be made by looking more closely and con-
sidering the variable and factor selection results. The “Post Double Selection”
procedure ends up selecting three variables for estimating the effect on over-
all homicide rates, three variables for gun homicide rates, and two variables for
nongun homicide rates. The pure factor model uses one factor. The factor-lasso
approach then uses one factor in all cases but selects eight additional variables
for estimating the effect on the overall homicide rate, eight additional variables
for the gun homicide rate, and five additional variables for the nongun homi-
cide rate. These results suggest that the “Post Double Selection” and “Factor”
results may be based on models that fail to adequately capture the effect of poten-
tial confounds. We also see that the “Factor” estimates are substantially shifted
away from the “Factor Lasso” estimates relative to standard errors and that the
factor-lasso estimates are the most precise in the sense of having the
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shortest confidence intervals. Both findings are consistent with the asymptotic
theory and with the simulation results.

NOTES

1. Our results will immediately apply to the case where dit is an r ×1 vector with r fixed. We also
note that our results clearly apply to models without additive fixed effects or to a single cross-section,
though we treat only the PPFM defined in (1.1)–(1.3) in the formal analysis. We also consider only
the case where dit is exogenous, but note that it would be straightforward to extend the results to
accommodate endogenous dit when a low-dimensional set of excluded instruments is available. We
provide results for a cross-sectional instrumental variables version of the model in both a simulation
and an empirical example in the Supplemental Appendix.

2. Though the same set of fi appears in both the outcome and treatment equations, components of
ξt and δdt in (1.1) and (1.2) may be zero and these zeros may occur at different positions. Thus, the
outcome and the treatment are allowed to depend on different elements of fi .

3. Hahn et al. (2013) consider a similar structure to (1.1)–(1.3) which excludes the individual and
time effects and imposes that the εit are i.i.d. Gaussian innovations. They refer to this model as a
partial factor model.

4. Note that (1.1)–(1.2) are observationally equivalent to models that replace Uit with Xit or that
include Xit in addition to Uit , under (1.3), after suitable redefinition of all parameters except α, which
is unchanged by the substitution.

5. See also Bonhomme and Manresa (2015) for a distinct but related approach based on a grouped
fixed effects model.

6. We note that recovering the untransformed fi and Uit would only be possible with large n
and T due to the presence of the unrestricted fixed effects. Fortunately, recovering these quantities is
unnecessary within the model with common coefficients θ , γd , and α as only f̃i and Ũit appear in the
equations of interest. This simplification would not generally occur if we allowed heterogeneity in θ ,
γd , or α over time or across individuals, and we would need to consider incidental parameters bias
introduced by removing the additive fixed effects. We leave exploration of this issue to future research.

7. We use c0 = 1.1 and qn = 0.1/ log(n) in the simulation and empirical examples.
8. We obtain êit and η̂it through an iterative algorithm similar to that of Belloni et al. (2014).

First, we start from preliminary estimates [�̂ y]0
j, j :=

√
1

nT
∑n

i=1
∑T

t=1
∑T

t ′=1 Ûit, j Ûit ′, j ỹit ỹit ′ and

[�̂d ]0
j, j :=

√
1

nT
∑n

i=1
∑T

t=1
∑T

t ′=1 Ûit, j Ûit ′, j d̃it d̃it ′ . We then run (2.6) and (2.7) with the diagonal

entries of �̂ y and �̂d replaced with [�̂ y ]0
j, j and [�̂d ]0

j, j . This procedure provides an initial estimator

(γ̃ 0
y , γ̃

0
d ) which then provides êit = ỹit − δ̂′yt f̂i − Û ′

it γ̃
0
y and η̂it = d̃it − δ̂′dt f̂i − Û ′

it γ̃
0
d .

9. It is straightforward to check that Assumption 3.2 holds in the simple case that {Ut ,εt ,ηt ,}t≤T
are independent across t , and {Uit ,ηit ,εit }i≤n,t≤T are independent of { fi }i≤n .

10. We follow the standard approach taken in the high-dimensional factor models literature by
assuming K to be fixed. It would be straightforward to allow for K to grow at a slow rate as in Li, Li,
and Shi (2017) at the cost of further technical and notational complication. Importantly, K would need
to grow much more slowly than p for the purpose of dimension reduction using common factors; see
discussion in Section 2.

11. In applications where obtaining the full lasso solution is not too burdensome, one may simply
iterate to convergence.

12. Another commonly used iterative scheme that could readily be applied in the present setting
is the “composite gradient method” (e.g., Nesterov, 2007; and Agarwal, Negahban, and Wainwright,
2012). We choose to focus on the coordinate descent method as our concrete example as it does
not rely on additional tuning parameters and performed well numerically in preliminary simulation
experiments. In addition, coordinate descent requires weaker regularity conditions than the composite
gradient method for our theoretical analysis.

13. We have also experimented with p = 10 and p = 50 though we do not report the results to
conserve space. The results with p = 50 are similar to those reported here. In line with the theory, no
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procedure works well with p = 10 as factor extraction is difficult but models which do not attempt to
extract the factors are misspecified.

14. The exact identities of the variables are available upon request. The data is from the U.S. Census
Bureau USA Counties Database, http://www.census.gov/support/USACdataDownloads.html.

15. All results are based on weighted regression where we weight by the within-county average
population over 1980–1999.
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APPENDIX A: Proofs of Theorem 3.1 and Corollary 3.1

Recall

ỹit = αd̃it + ξ̃ ′
t f̃i + Ũ ′

it θ + ε̃it , (A.1)

d̃it = δ̃′dt f̃i + Ũ ′
it γd + η̃it , (A.2)

X̃it = �̃t f̃i + Ũit . (A.3)

https://doi.org/10.1017/S0266466618000245 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466618000245


THE FACTOR-LASSO AND K -STEP BOOTSTRAP APPROACH 493

Let Ũ be the (pT )× n matrix of Ũit defined in Section D. Let (K T )× 1 matrices �̃=
(ξ̃ ′

1, . . . , ξ̃
′
T )

′ and �̃d = (δ̃′d1, . . . , δ̃
′
dT )

′. Also define the n × K matrix F̃ = ( f̃1, . . . , f̃n)′.
Then (A.1) and (A.2) can be written in the matrix form:

Ỹ = D̃α+ (IT ⊗ F̃)�̃+ Ũθ+ ε̃
D̃ = (IT ⊗ F̃)�̃d + Ũγd + η̃.

Note that η̂ = MÛĴ
(IT ⊗ MF̂ )D̃. Hence,

α̂ = (̂η′η̂)−1η̂′ MÛĴ
(IT ⊗ MF̂ )Ỹ

= α+ (̂η′η̂)−1η̂′MÛĴ
(IT ⊗ MF̂ )[(IT ⊗ F̃)�̃+ Ũθ + ε̃]

= α+ (̂η′η̂)−1 (̂η− η̃)′MÛĴ
(IT ⊗ MF̂ )ε̃+ (̂η′η̂)−1η̃′ MÛĴ

(IT ⊗ MF̂ )ε̃

+(̂η′η̂)−1η̂′ MÛĴ
(IT ⊗ MF̂ F̃)�̃+ (̂η′η̂)−1η̂′MÛĴ

(IT ⊗ MF̂ )Ũθ.

Note that η̃′MÛĴ
(IT ⊗ MF̂ )ε̃= η̃′ε̃− η̃′(IT ⊗ PF̂ )ε̃− η̃′ PÛĴ

ε̃+ η̃′ PÛĴ
(IT ⊗ PF̂ )ε̃.Hence,

√
nT

(
1

nT
η̂′η̂
)
(̂α−α)= 1√

nT
η̃′ε̃+

6∑
i=1

Ai , (A.4)

where

A1 = 1√
nT

(̂η− η̃)′MÛĴ
(IT ⊗ MF̂ )ε̃, A2 = 1√

nT
η̂′ MÛĴ

(IT ⊗ MF̂ F̃)�̃,

A3 = − 1√
nT
η̃′(IT ⊗ PF̂ )ε̃, A4 = 1√

nT
η̂′ MÛĴ

(IT ⊗ MF̂ )Ũθ,

A5 = − 1√
nT
η̃′ PÛĴ

ε̃, A6 = 1√
nT
η̃′ PÛĴ

(IT ⊗ PF̂ )ε̃ = 0.

We shall prove that Ai = oP (1) for i = 1, . . . ,6 and 1
nT η̂

′η̂− 1
nT η̃

′η̃ = oP (1). Note

η̂ = MÛĴ
(IT ⊗ MF̂ )D̃ = MÛĴ

(IT ⊗ MF̂ )((IT ⊗ F̃)�̃d + Ũγd + η̃)
= MÛĴ

(IT ⊗ MF̂ F̃)�̃d + MÛĴ
(IT ⊗ MF̂ )Ũγd + MÛĴ

(IT ⊗ MF̂ )η̃.

Using the fact that MF̂ F̂ = 0, it can be proven that

1√
nT
(̂η− η̃)= 1√

nT
MÛĴ

(IT ⊗ MF̂ (F̃ H − F̂)H−1)�̃d

+ 1√
nT

MÛĴ
(IT ⊗ MF̂ )Ũγd − 1√

nT
PÛĴ

η̃− 1√
nT

MÛĴ
(IT ⊗ PF̂ )η̃.

(A.5)

In the subsequent subsections, we provide bounds for Ai for i = 1, . . . ,6 and for
1√
nT

‖η̂− η̃‖2.
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A.1. Bounding η̂− η̃
Write

ψn := κn |J |1/20 +‖Ry‖1 +�F |J |0 +
√ |J |0

n
. (A.6)

PROPOSITION A.1. 1√
nT

‖η̂− η̃‖2 = OP (ψn).

Proof. Note that ‖�̃d‖2 = O(
√

T ). Hence by Lemma H.1,

‖ 1√
nT

MÛĴ
(IT ⊗ MF̂ (F̃ H − F̂)H−1)�̃d‖2 ≤ OP(1)

1√
nT

‖F̃ H − F̂‖F‖�̃d‖2 = OP(�F )

‖ 1√
nT

MÛĴ
Ũγd‖2 = OP

(
κn|J |1/20 +‖Ry‖1 +�F |J |0 +

√ |J |0
n

)
,

‖ 1√
nT

MÛĴ
(IT ⊗ PF̂ )Ũγd‖2 ≤ ‖ 1√

nT
(IT ⊗ PF̂ )Ũγd‖2 = OP

(√ |J |0
n

+�F |J |0
)
,

‖ 1√
nT

MÛĴ
(IT ⊗ PF̂ )η̃‖2 ≤ ‖ 1√

nT
(IT ⊗ PF̂ )η̃‖2 = OP

(
1√
n

+�F

)
,

‖ 1√
nT

PÛĴ
η̃‖2 = OP

(√
|J |0 log p

nT

)
.

Hence, equation (A.5) implies 1√
nT

‖η̂− η̃‖2 = OP (ψn). �

A.2. Showing A1, A3, A5, A6 = oP(1)

By equation (A.5), Lemma H.10, PÛĴ
(IT ⊗ PF̂ ) = 0, and noting that PÛĴ

MÛĴ
= 0, we

can show that

A1 = 1√
nT

(̂η− η̃)′MÛĴ
(IT ⊗ MF̂ )ε̃

= ε̃′ 1√
nT

MÛĴ
(IT ⊗ MF̂ )Ũγd + ε̃′ 1√

nT
MÛĴ

(IT ⊗ MF̂ (F̃ H − F̂)H−1)�̃d .

It then follows from Lemma H.3(i)(v) that A1 = oP (1).
We can also immediately apply Lemma H.3(iii) to establish that A3 = oP (1).
Also, it follows from Lemma H.1(iv) that, since |J |20 log2 p = o(nT ),

|A5| =
∣∣∣∣ 1√

nT
η̃′ PÛĴ

ε̃

∣∣∣∣≤ √
nT

∥∥∥∥ 1√
nT

PÛĴ
ε̃

∥∥∥∥
2

∥∥∥∥ 1√
nT

PÛĴ
η̃

∥∥∥∥
2

= OP

( |J |0 log p√
nT

)
= oP (1).

Finally, it follows immediately from Lemma H.10 that A6 = 0.
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A.3. Showing A2 = oP(1)

By (A.5),

A2 = 1√
nT

η̂′MÛĴ
(IT ⊗ MF̂ (F̃ H − F̂)H−1)�̃

= 1√
nT

η̃′MÛĴ
(IT ⊗ MF̂ (F̃ H − F̂)H−1)�̃ (A.7)

+ �̃′(IT ⊗ H
′−1(F̃ H − F̂)′MF̂ )

1√
nT

MÛĴ
(IT ⊗ MF̂ (F̃ H − F̂)H−1)�̃d (A.8)

− �̃′(IT ⊗ H
′−1(F̃ H − F̂)′MF̂ )

1√
nT

MÛĴ
(IT ⊗ PF̂ )η̃ (A.9)

+ �̃′(IT ⊗ H
′−1(F̃ H − F̂)′MF̂ )

1√
nT

MÛĴ
(IT ⊗ MF̂ )Ũγd . (A.10)

It follows from Lemma H.3(i) that (A.7) is oP (1). By the Cauchy–Schwarz inequality and
under the assumption that

√
nT�2

F = o(1), (A.8) is bounded by

|�̃′(IT ⊗ H
′−1(F̃ H − F̂)′MF̂ )

1√
nT

MÛĴ
(IT ⊗ MF̂ (F̃ H − F̂)H−1)�̃d |

≤ 1√
nT

max
G=�̃,�̃d

‖G′(IT ⊗ H
′−1(F̃ H − F̂)′MF̂ )MÛĴ

‖2
2

≤ 1√
nT

max
G=�̃,�̃d

‖G′(IT ⊗ H
′−1(F̃ H − F̂)′MF̂ )‖2

2

≤ 1√
nT

max
gt =ξ̃t ,δ̃dt

∑
t

‖g′
t H

′−1(F̃ H − F̂)′MF̂ ‖2
2

≤ OP (

√
T√
n
)‖F̃ H − F̂‖2

F = OP (
√

nT�2
F )= oP (1).

Term (A.9) equals

− 1√
nT
�̃′(IT ⊗ H

′−1(F̃ H − F̂)′MF̂ )MÛĴ
(IT ⊗ PF̂ )η̃

= − 1√
nT
�̃′(IT ⊗ H

′−1(F̃ H − F̂)′MF̂ )(IT ⊗ PF̂ )η̃= 0,

where the first equality is due to PÛĴ
(IT ⊗ PF̂ ) = 0 and the second equality is due to

MF̂ PF̂ = 0 and the fact that the Kronecker product satisfies (A⊗ B)(C ⊗ D)= AC ⊗ B D.
Finally, using MF̂ PF̂ = 0 and PÛĴ

(IT ⊗ PF̂ )= 0, (A.10) equals

�̃′(IT ⊗ H
′−1(F̃ H − F̂)′ MF̂ )

1√
nT

MÛĴ
(IT ⊗ MF̂ )Ũγd (A.11)

= �̃′(IT ⊗ H
′−1(F̃ H − F̂)′MF̂ )

1√
nT

MÛĴ
Ũγd
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− �̃′(IT ⊗ H
′−1(F̃ H − F̂)′MF̂ )

1√
nT

MÛĴ
(IT ⊗ PF̂ )Ũγd

= �̃′(IT ⊗ H
′−1(F̃ H − F̂)′MF̂ )

1√
nT

MÛĴ
Ũγd = oP (1),

where the last equality follows from Lemma H.3 (vi).
Hence, A2 = oP (1).

A.4. Showing A4 = oP(1)

A4 = 1√
nT

η̂′MÛĴ
(IT ⊗ MF̂ )Ũθ

= 1√
nT

η̃′MÛĴ
(IT ⊗ MF̂ )Ũθ (A.12)

+ 1√
nT

θ ′Ũ ′(IT ⊗ MF̂ )MÛĴ
(IT ⊗ MF̂ )Ũγd (A.13)

+ 1√
nT

θ ′Ũ ′(IT ⊗ MF̂ )MÛĴ
(IT ⊗ MF̂ (F̃ H − F̂)H−1)�̃d . (A.14)

It follows from Lemma H.3(iii) that term (A.12) is oP (1).
By Lemma H.1(i) and (ii), we can bound term (A.13) by

1√
nT
θ ′Ũ ′(IT ⊗ MF̂ )MÛĴ

(IT ⊗ MF̂ )Ũγd

≤ √
nT max

g=θ,γd

∥∥∥∥ 1√
nT

MÛĴ
(IT ⊗ MF̂ )Ũ g

∥∥∥∥2

2

≤ 2
√

nT max
g=θ,γd

∥∥∥∥ 1√
nT

MÛĴ
Ũ g

∥∥∥∥2

2
+2

√
nT max

g=θ,γd

∥∥∥∥ 1√
nT

(IT ⊗ PF̂ )Ũ g

∥∥∥∥2

2

≤ √
nT OP

(
‖Ry‖2

1 +κ2
n |J |0 +|J |20�2

F + |J |0
n

)
= oP (1),

under the assumption
(
κ2

n |J |0 +‖Ry‖2
1 +�2

F |J |20 + |J |0
n

)√
nT = o(1).

The same argument as that employed in the bound given by equation (A.11) yields that
term (A.14) is oP (1).

A.5. Proof of Theorem 3.1

(i) Write ιit := (ηit − η̄i·)2.
Step 1: Show | 1

nT η̂
′η̂− 1

nT
∑

it E ιit | = oP (1).

It follows from Proposition A.1 that | 1
nT η̂

′η̂− 1
nT η̃

′η̃| = oP (1). Also,

1

nT
η̃′η̃ = 1

nT

∑
i,t

η̃2
it = 1

nT

∑
i,t

(ηit − η̄i·)2 − 1

T

∑
t

η̄2·t + ¯̄η2.
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We have that E
[

1
T
∑

t η̄
2·t
]
= 1

T
∑

t
1

n2

∑
i E
[
η2

it

]
= O(1/n) and that ¯̄η2 = oP (1). Hence,

1

nT
η̃′η̃ = 1

nT

∑
it

(ηit − η̄i·)2 +oP (1)= 1

nT

∑
it

ιit +oP (1).

Note that

Var(
1

nT

∑
it

ιit )= 1

n2T 2

∑
i

Var(
∑

t

ιit )= O(1/n).

Hence, | 1
nT
∑

it ιit − 1
nT
∑

it E ιit | = oP (1). We then have

| 1

nT
η̃′η̃− 1

nT

∑
it

E ιit | = oP (1), | 1

nT
η̂′η̂− 1

nT

∑
it

E ιit | = oP (1), (A.15)

and 1
nT η̂

′η̂ is bounded away from zero.

Let mn,i = 1√
T

∑
t (ηit − η̄i·)(εit − ε̄i·), bn =

[
Var( 1√

n

∑
i mn,i )

]−1/2
, and gn,i =

bnmn,i . In addition, let s2
n =∑i Var(gn,i )=

∑
i Var(mn,i )b

2
n = n.

Step 2: Show bn√
nT
η̃′ε̃ = 1

sn

∑
i gn,i +oP (1).

By Assumption 3.1, {ηi ,εi }i≤n are independent over i . Hence

E

(
1

T

∑
t

η̄·t ε̄·t
)2

= 1

T

∑
t

1

n

∑
i

1

n

∑
j

1

T

T∑
s=1

1

n

n∑
l=1

1

n

n∑
v=1

Eηlsεvsηit εj t

=
∑

t

1

n4

∑
i

1

T 2

T∑
s=1

Eηisεisηit εit

+ 1

T

∑
t

1

n4

∑
i

∑
j �=i

1

T

T∑
s=1

Eηj sεj t Eεisηit

+ 1

T

∑
t

1

n4

∑
i

∑
j �=i

1

T

T∑
s=1

Eηisηit Eεj sεj t = O

(
1

n2

)
.

In the above, by Assumption 3.1, there is C > 0, |Eηj sεj sηit εit |+|Eηisηit |+|Eεj sεj t |<
C for all i, j,s, t . Thus the right hand side of the second equality equals O( 1

n3 + 1
n2 + 1

n2 )=
O
(

1
n2

)
.

We have E[mn,i ] = 0. We also have, under our assumptions, Var(mn,i ) and bn bounded
away from both zero and infinity uniformly in i . Then

bn√
nT
η̃′ε̃ = bn√

nT

∑
it

(ηit − η̄i·)(εit − ε̄i·)− bn
√

nT

T

∑
t

η̄·t ε̄·t +bn
√

nT ¯̄η ¯̄ε

= 1

sn

∑
i

gn,i +oP (1).
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Step 3: Apply the CLT.
We now verify the Lindeberg condition for the triangular array {gn,i }. By Assumption

3.2 there is δ > 0 so that maxi E |mn,i |2+δ < C and that λmin(
1
n
∑

i Var(mn,i )) > c0, we

have bn < C , and E |gn,i |2+δ ≤ C E |mn,i |2+δ < C. For any ε > 0, and by Holder’s in-

equality: E |ab| ≤ (E |a|1+δ/2)1/(1+δ/2)(E |b|δ′ )1/δ′ , for δ′ = (2+ δ)/δ,

s−2
n

∑
i

E
[
g2

n,i 1{|gn,i |> εsn}
]

≤ 1

n

∑
i

(E |gn,i |2+δ)1/(1+δ/2)P(|gn,i |> εsn)
1/δ′

≤ max
i
(E |gn,i |2+δ)1/(1+δ/2)(E |gn,i |)1/δ′(ε

√
n)−1/δ′ → 0.

This implies, by the Lindeberg central limit theorem, bn√
nT
η̃′ ε̃ →d N (0,1).

In the previous subsections, we have proven Ai = oP (1) for i = 1, . . . ,6. Hence, it
follows from (A.4) that

√
nT ( 1

nT η̂
′η̂)(̂α−α)= 1√

nT
η̃′ε̃+oP (1). In addition, recall ιit :=

(ηit − η̄i·)2,

bn |( 1

nT
η̂′η̂− 1

nT

∑
i,t

E[ιit ])
√

nT (̂α−α)|

≤ bn | 1

nT
η̂′η̂− 1

nT

∑
i,t

E[ιit ]|( 1

nT
η̂′η̂)−1| 1√

nT
η̃′ ε̃+oP (1)| = oP (1).

Therefore,

σ
−1/2
ηε σ 2

η

√
nT (̂α−α)= bn

1

nT

∑
i,t

E[ιit ]
√

nT (̂α−α)= bn
1

nT
η̂′η̂

√
nT (̂α−α)+oP (1)

= bn√
nT
η̃′ε̃+oP (1)→d N (0,1).

(ii) To verify normality with the estimated asymptotic variance, we need to prove consis-
tency of σ̂ηε and σ̂ 2

η . We have previously shown | 1
nT η̂

′η̂− 1
nT
∑

i,t E[ιit ]| = oP (1) which

establishes consistency of σ 2
η = 1

nT
∑

i,t E[ιit ]. Hence, it remains to prove σ̂ηε −σηε =
oP (1). Recall that

σηε = Var

⎛⎝ 1√
nT

n∑
i=1

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·)

⎞⎠ .
Step 1: Bound �1 := σ̂ηε − 1

nT
∑n

i=1(
∑T

t=1 η̃it ε̃it )
2. We have

�1 = 1

nT

n∑
i=1

⎡⎢⎣
⎛⎝ T∑

t=1

η̂it ε̂it

⎞⎠2

−
⎛⎝ T∑

t=1

η̃it ε̃it

⎞⎠2
⎤⎥⎦

= 1

nT

n∑
i=1

⎡⎣ T∑
t=1

(̂ηit ε̂it + η̃it ε̃it )

⎤⎦⎡⎣ T∑
t=1

(̂ηit ε̂it − η̃it ε̃it )

⎤⎦
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= 1

nT

n∑
i=1

⎡⎣ T∑
t=1

(̂ηit ε̂it − η̃it ε̃it )

⎤⎦2

(A.16)

+ 2

n

n∑
i=1

⎛⎝ 1

T

T∑
t=1

η̃it ε̃it

⎞⎠ T∑
s=1

(̂ηis ε̂is − η̃is ε̃is ). (A.17)

By Lemma H.4, term (A.16) is oP (1).
For term (A.17), we have

E

[
1

n

∑
i

| 1

T

T∑
t=1

η̃it ε̃it |2
]

= E

[
1

n

∑
i

| 1

T

T∑
t=1

(ηit − η̄·t )(εit − ε̄·t )− (η̄i· − ¯̄η)(ε̄i· − ¯̄ε)|2
]

= O

(
1

T

)
.

since the process {(ηt ,εt )}+∞
t=−∞ satisfies the strong mixing condition with exponential

tails. Thus by Cauchy–Schwarz,[
1

n

n∑
i=1

(
1

T

T∑
t=1

η̃i t ε̃i t )

T∑
s=1

(̂ηi s ε̂i s − η̃i s ε̃i s)

]2

≤
[

1

n

n∑
i=1

(
1

T

T∑
t=1

η̃i t ε̃i t )
2

][
1

n

n∑
i=1

(

T∑
s=1

(̂ηi s ε̂i s − η̃i s ε̃i s))
2

]

≤ OP

(
1

T

)
1

n

n∑
i=1

(
T∑

s=1

(̂ηi s ε̂i s − η̃i s ε̃i s)

)2

= oP (1).

This result then implies �1 = oP (1).
Step 2: Bound �2 := 1

nT
∑n

i=1(
∑T

t=1 η̃it ε̃it )
2 − 1

nT
∑n

i=1(
∑T

t=1(ηit − η̄i·)(εit −
ε̄i·))2.

Note that
T∑

t=1

η̃it ε̃it =
T∑

t=1

(ηit − η̄i·)(εit − ε̄i·)−
T∑

t=1

η̄·t (εit − ε̄·t )−
T∑

t=1

ηit ε̄·t + T ¯̄η(ε̄i· − ¯̄ε)+ T η̄i· ¯̄ε︸ ︷︷ ︸
Bi

and that 1
T
∑T

t=1(ηit − η̄i·)(εit − ε̄i·)= 1
T
∑T

t=1ηit εit − η̄i· ε̄i·. Hence,

1

nT

n∑
i=1

(

T∑
t=1

η̃it ε̃it )
2 = 1

nT

n∑
i=1

(

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·)+ Bi )
2

= 1

nT

n∑
i=1

(

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·))2 + 1

nT

n∑
i=1

B2
i

+ 2

nT

n∑
i=1

Bi

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·).

Note that⎡⎣ 1

nT

n∑
i=1

Bi

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·)

⎤⎦2

≤ 1

nT

∑
i

B2
i

1

n

∑
i

⎛⎝ 1√
T

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·)

⎞⎠2
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= 1

nT

∑
i

B2
i OP

⎛⎝ 1

n

∑
i

Var(
1√
T

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·))

⎞⎠
= 1

nT

∑
i

B2
i OP (σηε).

Therefore, |�2| ≤ 1
nT
∑

i B2
i + ( 1

nT
∑

i B2
i )

1/2OP (1). It suffices to prove 1
nT
∑

i B2
i =

oP (1). In fact, 1
nT
∑

i B2
i ≤ C

∑4
l=1 Āl for a constant C > 0 and

Ā1 = 1

nT

n∑
i=1

⎛⎝ T∑
t=1

ηit ε̄·t

⎞⎠2

, Ā2 = 1

nT

n∑
i=1

⎛⎝ T∑
t=1

η̄·t (εit − ε̄·t )
⎞⎠2

,

Ā3 = T

n
¯̄ε2

n∑
i=1

η̄2
i·, Ā4 = T

n
¯̄η2

n∑
i=1

(ε̄i· − ¯̄ε)2,

where each Āl = OP (E Āl). We then have

E Ā1 = 1

n3T

n∑
j=1

n∑
i=1

n∑
m=1

T∑
s=1

T∑
t=1

Eηit εj tηisεms = 1

n3T

n∑
i=1

T∑
s=1

T∑
t=1

Eηit εitηisεis

+ 1

n3T

n∑
i=1

∑
j �=i

T∑
s=1

T∑
t=1

Eηitηis Eεj sεj t = O

(
T

n

)
= o(1).

Similarly, E Ā2 = o(1). In addition, ¯̄ε2 = OP (n
−1) and ¯̄η2 = OP (n

−1), so Ā3 and Ā4 are
each OP (T/n)= oP (1). Combining verifies that

�2 := 1

nT

n∑
i=1

⎛⎝ T∑
t=1

η̃it ε̃it

⎞⎠2

− 1

nT

n∑
i=1

⎛⎝ T∑
t=1

(ηit − η̄i·)(εit − ε̄i·)

⎞⎠2

= oP (1). (A.18)

Step 3: Bound �3 := 1
nT
∑n

i=1(
∑T

t=1(ηit − η̄i·)(εit − ε̄i·))2 −σηε .

Note that σηε = E

[
1

nT
∑n

i=1

(∑T
t=1(ηit − η̄i·)(εit − ε̄i·)

)2
]

, and let

mn,i = 1√
T

∑
t

(ηit − η̄i·)(εit − ε̄i·).

Then �3 = 1
n
∑n

i=1(m
2
n,i − Em2

n,i ). Because 1
n
∑

i Var(m2
n,i )= O(1), we have

E�2
3 = Var(�3)= Var

⎛⎝ 1

n

∑
i

m2
n,i

⎞⎠= 1

n2

∑
i

Var(m2
n,i )= o(1), (A.19)

which implies

�3 := 1

nT

n∑
i=1

⎛⎝ T∑
t=1

(ηit − η̄i·)(εit − ε̄i·)

⎞⎠2

−σηε = oP (1). (A.20)
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Combining the above three steps, we reach |̂σηε −σηε | = oP (1).

Proof of Corollary 3.1. Given Theorem 3.1, the corollary follows from the same argu-
ment as that of Corollary 1(i) of Belloni et al. (2014). We thus refer to Belloni et al. (2014)
for details. �

Appendix B: Convergence of the k-step Bootstrap Lasso

In this section, we obtain the statistical convergence rate (in OP∗ ) of the k-step bootstrap
lasso estimators γ̃ ∗

d and γ̃ ∗
y . We focus on γ̃ ∗

y , as the proof of γ̃ ∗
d is similar. Recall that

L∗
y(γ )=

1

nT

T∑
t=1

n∑
i=1

( ỹ∗
it − δ̂∗′

yt f̂ ∗
i − Û∗′

it γ )
2,

γ̃ ∗
y,lasso = arg min

γ∈Rp
L∗

y(γ )+κn‖�̂ yγ ‖1, (B.1)

and that

γ̂y = the post-lasso estimator based on the original data
γ̃ ∗

y = the k-step lasso estimator based on the bootstrap data
γ̃ ∗

y,lasso = the lasso estimator based on the bootstrap data
if a complete lasso program is carried out.

In particular, γ̂y is used as the coefficient when generating the bootstrap data.
We divide the proof into three subsections. Section B.1 proves the statistical convergence

of ‖γ̃ ∗
y,lasso − γ̂y‖1 in the bootstrap sampling space. Section B.2 quantifies the computa-

tional error ‖γ̃ ∗
y − γ̃ ∗

y,lasso‖1 and shows that the computational error of the k-step lasso is
negligible using the assumed high-level conditions on the iterative scheme Sy(·). Section
B.3 verifies the high-level conditions for the coordinate descent, or “shooting”, method (Fu
(1998); Kadkhodaie, Sanjabi, and Luo (2014)).

Let P∗ denote the probability measure in the bootstrap sampling space. More specifi-
cally, it is the probability measure generated by the conditional distribution of the bootstrap
weights {{wx

i }b
i≤n}b≤B , x = U,Y,D, given the data. We employ the usual definition of

oP∗ (1) and OP∗ (1). We say that a sequence X∗
n in the bootstrap sampling space is oP∗ (1)

if for any ε,δ > 0,

P{P∗(|X∗
n |> ε) > δ} → 0,

and that X∗
n = OP∗ (1) if for any δ > 0, there is M > 0, such that

P{P∗(|X∗
n |> M) > δ} → 0.

B.1. The Convergence of Lasso on Bootstrap Data

The main result in this subsection is the following proposition.

PROPOSITION B.1. ‖γ̃ ∗
y,lasso − γ̂y‖1 = OP∗(κn |J |0).
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Proof. Recall that F̂ , δ̂yt , and γ̂y , respectively, denote the estimated factors, the esti-
mator of δyt , and the post-lasso estimator of γy using the original data. We also have that
Ũ∗

t denotes the wild bootstrapped idiosyncratic term in the factor equation and that the
following relations hold:

Ỹ ∗
t = F̂ δ̂yt + Ũ∗

t γ̂y + ẽ∗
t , ẽ∗

t = ε̃∗t + η̃∗
t α̂. (B.2)

In addition, recall that δ̂∗yt and Û∗
t denote the estimates obtained from the bootstrap data.

Define

M∗
t = F̂ δ̂yt − F̂∗ δ̂∗yt + (Ũ∗

t − Û∗
t )γ̂y, �∗

γ = γ̂y − γ̃ ∗
y,lasso. (B.3)

By definition, L∗
y(γ̃

∗
y,lasso)+κn‖�̂ y γ̃ ∗

y,lasso‖1 ≤L∗
y(γ̂y)+κn‖�̂ y γ̂y‖1, which implies

1

nT

T∑
t=1

(
‖Û∗

t �
∗
γ ‖2

2 +2(ẽ∗′
t + M∗′

t )Û
∗
t �

∗
γ

)
+κn‖�̂ y γ̃ ∗

y,lasso‖1 ≤ κn‖�̂ y γ̂y‖1. (B.4)

By Lemma H.17 and κn = 2c0√
nT
�−1(1−qn/(2p)) for some c0 > 1,

| 1

nT

T∑
t=1

2(ẽ∗′
t + M∗′

t )Û
∗
t �

∗
γ |

≤ ‖ 1

nT

T∑
t=1

2ẽ∗′
t Ũ∗

t �̂
y−1‖∞‖�̂ y�∗

γ ‖1 + (‖ 1

nT

T∑
t=1

2ẽ∗′
t (Û

∗
t − Ũ∗

t )‖∞

+‖ 1

nT

T∑
t=1

2M∗′
t Û∗

t �
∗
γ ‖∞)‖�̂ y�∗

γ ‖1 max
m
(�̂

y
m)

−1

≤
[

2√
nT
�−1(1− qn

2p
)(1+oP∗ (1))+oP∗

(√
log p

nT

)]
‖�̂ y�∗

γ ‖1

≤ (c0 +1)√
nT

�−1
(

1− qn

2p

)
‖�̂ y�∗

γ ‖1 = c0 +1

2c0
κn‖�̂ y�∗

γ ‖1

with P∗ approaching one. Equation (B.4) then implies, for the support set Ĵ of γ̂y ,

1

nT

T∑
t=1

‖Û∗
t �

∗
γ ‖2

2 + c0 −1

2c0
κn‖(�̂ y�∗

γ ) Ĵ c‖1 ≤ κn‖(�̂ y�∗
γ ) Ĵ ‖1

3c0 +1

2c0
. (B.5)

Hence, ‖(�∗
γ ) Ĵ c‖1 ≤ c‖(�∗

γ ) Ĵ ‖1 for some c > 0. This also implies for some generic C >

0, ‖�∗
γ ‖2

1 ≤ C‖�γ, Ĵ ‖2
1 ≤ C‖�∗

γ ‖2
2OP (|J |0) as | Ĵ |0 = OP (|J |0). (by Proposition F.1 to

be proved in Appendix F, | Ĵ |0 = OP (|J |0)).
We can now apply Lemma H.17 to obtain

1

nT

T∑
t=1

‖Û∗
t �

∗
γ ‖2

2 ≥ 1

nT

T∑
t=1

‖Ũt�
∗
γ ‖2

2 −‖�∗
γ ‖2

2oP∗ (1).
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In addition, the sparse-eigenvalue condition implies the restricted eigenvalue condition:
For any m > 0, there is φ > 0 so that, for | Ĵ |0 = OP (|J |0), with probability arbitrarily
close to one,

inf
δ∈Rp:‖δ Ĵ ‖1≤m‖δ Ĵ c ‖1

δ′ 1
nT
∑n

i=1
∑T

t=1 Ũit Ũ ′
it δ

δ′δ ≥ φ.

Hence 1
nT
∑T

t=1 ‖Û∗
t �

∗
γ ‖2

2 ≥ φ‖�∗
γ ‖2

2/2. Then (B.5) and maxm |�̂ y
m | = OP (1) (where

�̂ y is a diagonal matrix with �̂ y
m as its m th diagonal entry) imply, for some C > 0,

‖�∗
γ ‖2

2 ≤ κnC‖(�∗
γ ) Ĵ ‖1 ≤ κnC‖(�∗

γ ) Ĵ ‖2

√
| Ĵ |0.

Together with | Ĵ |0 = OP (|J |0), we have ‖�∗
γ ‖2 ≤ OP (κn

√|J |0) and the previously

proved inequality implies ‖�∗
γ ‖2

1 ≤ C‖�∗
γ ‖2

2 OP (|J |0) = OP (κ
2
n |J |20). Still by (B.5),

1
nT
∑T

t=1 ‖Û∗
t �

∗
γ ‖2

2 ≤ Cκn‖�∗
γ ‖1. Thus,

1

nT

T∑
t=1

‖Û∗
t �

∗
γ ‖2

2 = OP∗ (κ2
n |J |0), ‖�∗

γ ‖1 = OP∗(κn |J |0). (B.6)

�

B.2. The Computational Error of the k-Step Lasso

The main result in this subsection is the following proposition.

PROPOSITION B.2. (i) ‖γ̃ ∗
y − γ̃ ∗

y,lasso‖1 ≤ c‖γ̂y − γ̃ ∗
y,lasso‖1 +

OP∗
(

an
κn

+√
an |J |0

)
for some c > 0.

(ii) ‖γ̂y − γ̃ ∗
y ‖1 = OP∗

(
κn |J |0 + an

κn
+√

an |J |0
)

,

(iii) 1
nT
∑T

t=1 ‖Û∗
t (γ̂y − γ̃ ∗

y )‖2
2 = OP∗ (κ2

n |J |0 +an ).

Proof. (i) We apply Lemma B.1 below. Note that condition (B.7) in this lemma is satis-
fied under Assumption 4.1 with bn = OP∗ (an). Hence applying Lemma B.1 with γ = γ̃ ∗

y
immediately implies the result.

(ii) The conclusion follows immediately from part (i) of this proposition and Proposition
B.1.

(iii) By equation (B.8) given below in the proof of Lemma B.1 with bn = OP∗ (an),

2

nT

∑
it

‖Û∗
it (γ̃

∗
y − γ̃ ∗

y,lasso)‖2
2 = OP∗ (an).

Hence by (B.6), 1
nT
∑T

t=1 ‖Û∗
t (γ̂y − γ̃ ∗

y )‖2
2 ≤ OP∗(κ2

n |J |0 +an). �

Below, L∗ denotes either L∗
y or L∗

d . Correspondingly, �̂ denotes either �̂ y or �̂d , and
γ̃ ∗

lasso denotes either γ̃ ∗
y,lasso or γ̃ ∗

d,lasso.
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LEMMA B.1. For each γ , suppose for some bn (either stochastic or deterministic),

L∗(γ )+κn‖�̂γ ‖1 ≤ L∗(γ̃ ∗
lasso)+κn‖�̂γ̃ ∗

lasso‖1 +bn . (B.7)

Then

‖γ − γ̃ ∗
lasso‖1 ≤ C‖(γ̂y − γ̃ ∗

y,lasso) Ĵ ‖1 + bn

κn
+ OP∗ (

√
bn |J |0),

‖γ − γ̃ ∗
lasso‖2 ≤ b1/2

n +oP∗
(
|J |−1/2

0

)(
C‖(γ̂y − γ̃ ∗

y,lasso) Ĵ ‖1 + bn

κn

)
.

Proof. We prove for L∗ = L∗
y . The case with L∗ = L∗

d follows by the same argument.

Step 1: Show ‖�‖2
2 ≤ OP∗ (bn)+‖�‖2

1oP∗ (|J |−1
0 ). Here �= γ − γ̃ ∗

y,lasso.

Since L∗
y(γ ) is quadratic, for any γ1,γ2,

L∗
y(γ1)−L∗

y(γ2)= (γ1 −γ2)
′∇L∗

y(γ2)+ (γ1 −γ2)
′∇2L∗

y(γ2)(γ1 −γ2),

where

∇L∗
y(γ2)= − 2

nT

T∑
t=1

n∑
i=1

Û∗
it ( ỹ

∗
it − δ̂∗′

yt f̂ ∗
i − Û∗′

it γ2),

∇2L∗
y(γ2)= 2

nT

T∑
t=1

n∑
i=1

Û∗
it Û∗′

it .

Now let γ1 = γ, and γ2 = γ̃ ∗
y,lasso. Condition (B.7) then implies

�′ 2

nT

T∑
t=1

n∑
i=1

Û∗
it Û∗′

it �≤ bn +κn‖�̂ y γ̃ ∗
y,lasso‖1 −κn‖�̂ yγ ‖1 −�′∇L∗

y(γ̃
∗
y,lasso)

≤ bn (B.8)

where, to establish the last inequality, we used κn‖�̂ y γ̃ ∗
y,lasso‖1 − κn‖�̂ yγ ‖1 −

�′∇L∗
y(γ̃

∗
y,lasso) ≤ 0 which follows due to the first order condition of (B.1) and the con-

vexity of ‖.‖1. (See the proof of Lemma 11 of Agarwal, Negahban, and Wainwright et al.
(2012).)

We now establish a lower bound for the left hand side of (B.8).

�′ 2

nT

T∑
t=1

n∑
i=1

Û∗
it Û∗′

it �= 2

nT

T∑
t=1

‖Û∗
t �‖2

2

≥(a) 2

nT

T∑
t=1

‖Ũt�‖2
2 −‖�‖2

1oP∗ (|J |−1
0 )

≥(b) c‖�‖2
2 −‖�‖2

1oP∗ (|J |−1
0 ),

where (a) follows from the inequality (a.1) of (H.48) and (b) follows from Assumption 4.2.
Substituting this lower bound in for the left-hand-side of (B.8) then yields

‖�‖2
2 ≤ bn +‖�‖2

1oP∗ (|J |−1
0 ). (B.9)
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Step 2: Show ‖�‖1 ≤ bn/κn + ‖(γ̂y − γ̂ ∗
y,lasso) Ĵ ‖1 + ‖�‖2 OP (

√|J |0). Recall � =
γ − γ̃ ∗

y,lasso. We revisit the proof of Proposition B.1. Note that (B.5) implies, for some
c > 0,

κn‖(γ̂y − γ̃ ∗
y,lasso) Ĵ c‖1 ≤ κn‖(γ̂y − γ̃ ∗

y,lasso) Ĵ ‖1c.

The same argument also applies using γ in place of γ̃ ∗
y,lasso due to Condition (B.7), yield-

ing

κn‖(γ̂y −γ ) Ĵ c‖1 ≤ κn‖(γ̂y −γ ) Ĵ ‖1c +bn .

Adding these two inequalities and using the triangle inequality, we have

‖(�) Ĵ c‖1 = ‖(γ − γ̃ ∗
y,lasso) Ĵ c‖1 ≤ ‖(γ̂y − γ̃ ∗

y,lasso) Ĵ c‖1 +‖(γ̂y −γ ) Ĵ c‖1

≤ ‖(γ̂y − γ̃ ∗
y,lasso) Ĵ ‖1c +‖(γ̂y −γ ) Ĵ ‖1c + bn

κn

≤ 2c‖(γ̂y − γ̃ ∗
y,lasso) Ĵ ‖1 +‖(�) Ĵ ‖1c + bn

κn

≤ 2c‖(γ̂y − γ̃ ∗
y,lasso) Ĵ ‖1 +‖(�) Ĵ ‖2c

√
| Ĵ |0 + bn

κn
.

Note that the first inequality in the above follows from the triangle inequality. We then
obtain

‖�‖1 ≤ ‖(�) Ĵ c‖1 +‖(�) Ĵ ‖1

≤ 2c‖(γ̂y − γ̃ ∗
y,lasso) Ĵ ‖1 +‖�‖2 OP∗(

√|J |0)+ bn

κn
.

(B.10)

Step 3: Complete the proof. Substituting (B.10) in for the right-hand-side of (B.9) gives

‖�‖2
2 ≤ bn +oP∗ (|J |−1

0 )

(
C‖(γ̂y − γ̃ ∗

y,lasso) Ĵ ‖1 + bn

κn

)2
+‖�‖2

2oP∗ (1),

yielding ‖�‖2
2 ≤ bn +oP∗ (|J |−1

0 )
(

C‖(γ̂y − γ̃ ∗
y,lasso) Ĵ ‖1 + bn

κn

)2
, and thus we reach the

second result of Lemma B.1:

‖�‖2 ≤ b1/2
n +oP∗ (|J |−1/2

0 )

(
C‖(γ̂y − γ̃ ∗

y,lasso) Ĵ ‖1 + bn

κn

)
.

Substituting this bound back in for ‖�‖2 in (B.10) then yields the first result of Lemma
B.1:

‖�‖1 ≤ C‖(γ̂y − γ̃ ∗
y,lasso) Ĵ ‖1 + bn

κn
+ OP∗ (

√
bn |J |0). (B.11)

�

https://doi.org/10.1017/S0266466618000245 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466618000245


506 CHRISTIAN HANSEN AND YUAN LIAO

B.3. Verifying Assumption 4.1

We now prove Proposition 4.1, which states that the shooting method of Fu (1998) satisfies
Assumption 4.1.

We make use of the following lemma in proving Lemma B.3. Below, L∗ denotes either
L∗

y or L∗
d . Correspondingly, �̂ denotes either �̂ y or �̂d , and γ̃ ∗

lasso denotes either γ̃ ∗
y,lasso

or γ̃ ∗
d,lasso.

LEMMA B.2. Recall that γ̂ denotes the post-lasso estimator using the original data
and γ ∗

lasso denotes the lasso estimator using the bootstrap data. We have that

0 ≤ L∗(γ̂ )+κn‖�̂γ̂ ‖1 − (L∗(γ̂ ∗
lasso)+κn‖�̂γ̂ ∗

lasso‖1)= OP∗ (κ2
n |J |0). (B.12)

Proof. The first inequality follows from the definition of γ̂ ∗
lasso.

We now show the equality. Note that for each γ ,

L∗(γ )= 1

nT

T∑
t=1

(
‖Û∗

t (γ̂ −γ )‖2
2 +‖M∗

t + ẽ∗
t ‖2

2 +2(ẽ∗′
t + M∗′

t )Û
∗
t (γ̂ −γ )

)
+κn‖�̂γ ‖1,

where M∗
t and ẽ∗

t are defined in the proof of Proposition B.1. Hence by Proposition B.1
and Lemma H.17,

L∗(γ̂ )+κn‖�̂γ̂ ‖1 − (L∗(γ̂ ∗
lasso)+κn‖�̂γ̂ ∗

lasso‖1)

= κn‖�̂ y γ̂ ‖1 −κn‖�̂γ̂ ∗
lasso‖1 − 1

nT

T∑
t=1

(
‖Û∗

t (γ̂ − γ̂ ∗
lasso)‖2

2 + 2(ẽ∗′
t + M∗′

t )Û
∗
t (γ̂ − γ̂ ∗

lasso)
)

≤ κn‖�̂ y(γ̂ − γ̂ ∗
lasso)‖1 +‖ 2

nT

T∑
t=1

(ẽ∗′
t + M∗′

t )Û
∗
t ‖∞‖γ̂ − γ̂ ∗

lasso‖1

≤ OP∗ (κn)‖γ̂ − γ̂ ∗
lasso‖1 = OP∗ (κ2

n |J |0).

�

Below, γ̃ ∗ denotes the k-step lasso estimator based on the bootstrap data, which equals
either γ̃ ∗

y (for the y equation) or γ̃ ∗
d (for the d equation).

LEMMA B.3. For the shooting method, (i) L∗(γl) + κn‖�̂γl‖1 ≤ L∗(γl−1) +
κn‖�̂γl−1‖1.
(ii) L∗(γ̃ ∗)+κn‖�̂γ̃ ∗‖1 ≤ L∗(γ̂ ∗

lasso)+κn‖�̂γ̂ ∗
lasso‖1 + OP∗ (κ2

n |J |0).
(iii) | Ĵ∗|0 = OP∗ (|J |0).

Proof. Write γl = (γl,1, . . . ,γl,p)
′, where γl can be either γd,l or γy,l , to denote the

solution after the l th iteration. Note that γk = γ̃ ∗ is the k-step lasso estimator.
(i) For the shooting method, each γl,m for m ≤ p is defined as

γl,m = argmin
g

1

nT

∑
i,t

(ỹ∗
it − δ̂∗′

yt f̂ ∗
i − Û∗′

it,m−γl,m− − Û∗′
it,m+γl−1,m+ − Û∗

it,m g)2 +κn |�̂m g|.

As discussed in Section 4.1, after the mth element is updated in the l th iteration, the

vector becomes γ (m)l := (γl,m− ,γl,m ,γl−1,m+ )′, where m− = {j : j < m}, m+ = {j :
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j > m}, γl,m− represents the subvector of γl whose indices are in m−, and γl−1,m+
represents the subvector of γl−1 whose indices are in m+. With this notation, after the

(m − 1)th element is updated in the l th iteration, the current solution vector is γ (m−1)
l =

(γl,(m−1)− ,γl,m−1,γl−1,(m−1)+)′. This vector can be rearranged as

(γl,(m−1)− ,γl,m−1,γl−1,(m−1)+)
′ = (γl,m− ,γl−1,m ,γl−1,m+ )′.

It can be seen that the loss function is nonincreasing after the mth element is updated:

L∗(γ (m)l )+κn‖�̂γ (m)l ‖1

= L∗((γl,m− ,γl,m ,γl−1,m+ ))

+κn‖�̂m−γl,m−‖1 +κn |�̂mγlm |+κn‖�̂m+γl−1,m+‖1

≤ L∗((γl,m− ,γl−1,m ,γl−1,m+ ))

+κn‖�̂m−γl,m−‖1 +κn |�̂mγl−1,m |+κn‖�̂m+γl−1,m+‖1

= L∗((γl,(m−1)− ,γl,m−1,γl−1,(m−1)+ ))

+κn‖�̂(m−1)−γl,(m−1)−‖1 +κn |�̂m−1γlm−1|+κn‖�̂(m−1)+γl−1,(m−1)+ ‖1

= L∗(γ (m−1)
l )+κn‖�̂γ (m−1)

l ‖1.

Note that γ (p)
l = γl . Hence by (B.12) in Lemma B.2,

L∗(γl )+κn‖�̂γl‖1 ≤ L∗(γ (1)l )+κn‖�̂γ (1)l ‖1 ≤ L∗(γ (p)
l−1)+κn‖�̂γ (p)

l−1‖1

= L∗(γl−1)+κn‖�̂γl−1‖1.

(ii) From (i), L∗(γk)+κn‖�̂γk‖1 ≤ L∗(γ0)+κn‖�̂γ0‖1 = L∗(γ̂ )+κn‖�̂γ̂ ‖1. In ad-
dition, by (B.12) in Lemma B.2,

L∗(γ̂ )+κn‖�̂γ̂ ‖1 − (L∗(γ̂ ∗
lasso)+κn‖�̂γ̂ ∗

lasso‖1)= OP∗ (κ2
n |J |0)

for γ̂ and γ ∗
lasso, respectively, denoting the completed lasso estimator (as opposed to the k-

step lasso solution) using the original data and the bootstrap data. Note that κ2
n |J |0

√
nT =

o(1) and γk = γ̃ ∗,

L∗(γ̃ ∗)+κn‖�̂γ̃ ∗‖1 ≤ L∗(γ̂ )+κn‖�̂γ̂ ‖1

≤ L∗(γ̂ ∗
lasso)+κn‖�̂γ̂ ∗

lasso‖1 +oP∗ ((nT )−1/2),

which verifies Assumption 4.1(i).
(iii) We now focus on the k-step lasso estimator γk = γ̃ ∗ and let γk,m denote its mth

element. By the KKT condition, if γk,m �= 0, then

−κn�̂msgn(γk,m ) = 2

nT

∑
it

Û∗
it,m (ỹ

∗
it − δ̂∗′

yt f̂ ∗
i − Û∗′

it,m−γk,m− − Û∗′
it,m+γk−1,m+ − Û∗

it,mγk,m )

= 2

nT

∑
it

Û∗
it,m (ỹ

∗
it − δ̂∗′

yt f̂ ∗
i − Û∗′

it γ
(m)
k )

= 2

nT

∑
it

Û∗
it,m (M

∗
it + ẽ∗

it + Û∗′
it (γ̂ −γ (m)k )), (B.13)
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where γ (m)k := (γk,m− ,γk,m ,γk−1,m+)′, and M∗
it , ẽ∗

it are, respectively, defined in (B.2)–
(B.3). Let Û∗

it, Ĵ ∗ denote the subvector of Û∗
it , consisting of {Û∗

it,m : γk,m �= 0,m ≤ p} =
{Û∗

it,m : m ∈ Ĵ∗}. Let �̂( Ĵ∗) be a | Ĵ∗|0 ×1 subvector consisting of the diagonal entries of

�̂ (which equals either �̂ y or �̂d ), with elements in Ĵ∗. Then the vector form of (B.13) is

−κn�̂( Ĵ
∗)sgn(γk,m : m ∈ Ĵ∗)= 2

nT

∑
it

Û∗
it, Ĵ ∗(M

∗
it + ẽ∗

it )+ A,

where (without loss of generality, we assume {m ≤ p : γk,m �= 0} = {1, . . . , | Ĵ∗|0})

A =

⎛⎜⎜⎜⎝
2

nT
∑

it Û∗
it,1Û∗′

it (γ̂ −γ (1)k )

...
2

nT
∑

it Û∗
it,| Ĵ ∗|0Û∗′

it (γ̂ −γ (| Ĵ ∗|0)
k )

⎞⎟⎟⎟⎠=

⎛⎜⎜⎜⎝
2

nT Û∗′
1 Û∗(γ̂ −γ (1)k )

...
2

nT Û∗′
| Ĵ ∗|0Û∗(γ̂ −γ (| Ĵ ∗|0)

k )

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎝
(γ̂ −γ (1)k )′ 2

nT Û∗′
0 · · · 0

0
. . .

0 · · · (γ̂ −γ (| Ĵ ∗|0)
k )′ 2

nT Û∗′

⎞⎟⎟⎠
⎛⎜⎜⎝

Û∗
1
...

Û∗
| Ĵ ∗|0

⎞⎟⎟⎠ := 2

nT
BÛĴ ∗.

Therefore

κn‖�̂( Ĵ∗)‖2 ≤ max
j

| 2

nT

∑
it

Û∗
it, j (M

∗
it + ẽ∗

it )|
√

| Ĵ∗|0 +‖ 2√
nT

B‖‖ 1√
nT

ÛĴ ∗‖. (B.14)

Note that here the norm in both ‖ 2√
nT

B‖ and ‖ 1√
nT

ÛĴ ∗‖ is the operator norm and we

have used the inequality ‖BÛĴ ∗‖2 ≤ ‖B‖‖ÛĴ ∗‖.
Now by (H.46),

1

nT
‖Û ∗̂

J ∗‖2 ≤ 2

nT
‖Ũ ∗̂

J ∗‖2 + 2

nT
‖Û ∗̂

J ∗ − Ũ ∗̂
J ∗‖2

≤ 2φmax(| Ĵ∗|0)+ 2

nT

T∑
t=1

n∑
i=1

∑
m∈ Ĵ ∗

(Û∗
it,m − Ũ∗

it,m )
2

≤ 2φmax(| Ĵ∗|0)+ OP∗ (�∗2
F + log(pT )

n
)| Ĵ∗|0, and

1

nT
‖B‖2 = max

m∈ Ĵ ∗
4

nT
‖Û∗(γ̂ −γ (m)k )‖2

≤ 8

nT
‖Û∗(γ̂ − γ̃ ∗

lasso)‖2
2 + max

m∈ Ĵ ∗
8

nT
‖Û∗(γ̃ ∗

lasso −γ (m)k )‖2
2

≤ OP∗ (κ2
n |J |0),

(B.15)

where 1
nT ‖Û∗(γ̂ − γ̃ ∗

lasso)‖2
2 = OP∗(κ2

n |J |0) follows from (B.6). To show

max
m∈ Ĵ ∗

8

nT
‖Û∗(γ̃ ∗

lasso −γ (m)k )‖2
2 = OP∗(κ2

n |J |0),
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we note that part (i) and (B.12) demonstrate

L∗(γ (m)k )+κn‖�̂γ (m)k ‖1 ≤ L∗(γ0)+κn‖�̂γ0‖1

= L∗(γ̂ )+κn‖�̂γ̂ ‖1 ≤ L∗(γ̂ ∗
lasso)+κn‖�̂γ̂ ∗

lasso‖1 + OP∗ (κ2
n |J |0).

Thus, the same argument as used in equation (B.8) leads to

max
m∈ Ĵ ∗

8

nT
‖Û∗(γ̃ ∗

lasso −γ (m)k )‖2
2 ≤ OP∗(κ2

n |J |0).

By Lemma H.17, maxj | 2
nT
∑

it Û∗
it, j (M

∗
it + ẽ∗

it )| = oP∗ (κn) and κn‖�̂( Ĵ∗)‖2 ≥
cκn
√| Ĵ∗|0. Hence, (B.14) and (B.15) imply

κ2
n | Ĵ∗|0 ≤ (Cφmax(| Ĵ∗|0)+ OP∗

(
�∗2

F + log(pT )

n

)
| Ĵ∗|0)κ2

n |J |0.

We thus obtain exactly the same inequality as given (F.4). The rest of the proof then fol-
lows from the same argument as used to show Proposition F.1(ii). We conclude | Ĵ∗|0 =
OP∗ (|J |0) which verifies Assumption 4.1(ii). �
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