C. Iwasaki and Y. Morimoto
Nagoya Math. J.
Vol. 101 (1986), 111-130

PRECISE PROPAGATION OF SINGULARITIES FOR A
HYPERBOLIC SYSTEM WITH CHARACTERISTICS
OF VARIABLE MULTIPLICITY

CHISATO IWASAKI anp YOSHINORI MORIMOTO

Introduction

In this paper we consider the Cauchy problem for a hyperbolic system
with characteristics of variable multiplicity and construct a certain solution
whose wave front set propagates precisely along the so-called ‘“broken
null bicharacteristic flow”, in other words, along the admissible trajectory
if we use the terminology of [6].

Let L be a hyperbolic system of the form

Dt + 21(t9 x’ Dx) O

0.1) + B(t,x) on R{XRj,

0 "D, + A % D,)

where 1,(t, x, £) are linear in ¢, that is,
(0.2) Mt = Daut DE,  Jefl -, 0

Here a; ,(t,x) € C~ are real-valued and polynomials of first order with
respect to x;

©.9) @ty ¥) = 3 CRuO%s + ).

We assume that the term of order zero B(¢, x) = (b; (¢, x)) satisfies
(0.4) b0 if j#Ek.

We consider the Cauchy problem
(C.P) LU=0, U0,x)=G, Ge¢

and show the precise propagation of the wave front set of a solution along
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the admissible trajectory, by assuming some hypotheses (See Theorem 1 in
§ 1). Hypotheses of Theorem 1 are fairly complicated, but they are satisfied
for some cases discussed in [6] and [7], for instance, we can apply Theorem
1 to the proof of Theorem 2 of [7] (see also Theorem 2 of [6] and its §7).

In the last section, as another application of Theorem 1 we give an
example of hyperbolic system L on R! X R} for which there exists an
initial value G such that

(0.5) sing supp G = {0}, sing supp U(T) = [— 1, 1],

where U is the solution of (C.P) and T is a fixed positive. For a hyper-
bolic equation of second order, Ichinose-Kumano-go [5] gave a result
similar to (0.5) by using the work of Taniguchi-Tozaki [12], though we do
not know whether the Cauchy problem for their equation is well-posed
until ¢ = T (see Theorem 3.5 of [5]).

In the next paper [11], the proof of Theorem 1 will be applied to show
the precise propagation of wave front sets in Gevrey classes along
“generalized null bicharacteristic flow” defined by Kumano-go-Taniguchi
[9] and Wakabayashi [13] [14].

§1. Notations and main result

We say that a curve {¢, x(¢), &(t)} C R} X T*R; is the bicharacteristic
curve with respect to 2; through (s, y, ) if it satisfies equations

dx/dt = da(t, x, &), d&ldt = — d AL, x, &)
(x9 S)ll=s = (y’ 77)'

For the abbreviation we write bic. curve w.r.t. 1, in what follows. We
denote by (¢, s) the transformation from the cotangent space T*R” to
itself such that (¢, X,(¢, s) (, »)) is bic. curve w.r.t. 2; through (s, y, 7). Since
2; are linear in ¢ and q,, polynomials of the first order with respect to x,
there exist a matrix M,(¢, s) and a vector d,(f, s) such that

1.1) {

(1.2 2,8, 8) (3, ) = (My(2, )y + dy(¢, 8), "My(¢, 8)™'p),
where ‘M-! denotes the inverse of the transposed matrix of M.

For an integer v >0 let J, = (ji, jo, -, Jg "+ 5 Jusr) be a (v 4 1)-re-
peated permutation of elements (1,2, ---, ¢}, that is, j, € {1, ---, ¢} for

1<qg<v+1 Let II, be a set of all J, and let II° be a set of all J,
satisfying j, # j,«: for 1 < g <.
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For a fixed ¢, > 0 let 4° denote an open set of R*(v = 1) as follows;
L={t==0, -, t); >t >8> -+ >1>0. A continuous curve
{@, x(2), £@)); t € [0, t,]} is called a trajectory of step v, issuing from p €
T*R"\0 if for some J, € II} and some {, € 4 it is bic. curve w.r.t. 2,
when te [t,t,.](@=1 ---,v+1¢.,,=0) and (x(0), &0)) = p. We
denote this trajectory by C(J,, f,, p). A point

(1.3) X5,y 82, (8s 1)+ - X5, (2, O)p

is called the end point (at ¢ = #;) of the trajectory. It follows from (1.2)
that the end point is equal to

(1.4) (M; &)y + dp @), ‘M@, o=,
where a matrix M, and a vector d,, are defined by, respectively,

MJ,,(Zu) = Mjl(t()y tl)sz(tl’ tz)' : 'M]p+1(t»3 0)
d.l,,(zv) = djl(tO’ tl) + Mjl(t(n tl)dj2(t17 tz) + -
+ Mjl(tO) tl)' ¢ .Mjp(t)’—l’ tv)dj,,.m(tw 0) .

DerFiNiTION 1.1. We say that a trajectory C(J, %, p) is e-admissible
for a ¢ = 0 if we have

(15) l(qu - ’ziq+1)(tqy xq’ Eq)[ é 5|§q| for any q € {1! tt Ty y} s

where (x%, §%) = %;,, (¢, t;.0) - - %;,,,(t, 0)p. We say only admissible in place
of 0-admissible.
We remark that a bic. curve is always an adm. traj. of step 0. For
the brevity we often write adm. traj. instead of admissible trajectory.
For J,=(jy, +++,j,s0) € I} and J, = (j{, -+, j..1) € II} we write J, D
J;, if there exists a subset {q}, @3, ---, @ -+, qtsi; @2 < gl }of {1, .-, v41}
such that j,, = j/ for r=1, ---, p+ 1. Obviously, if J, D J; then v = p.

DeFINITION 1.2. For a small ¢ >0 and a fixed trajectory C, =
C(J., T/, p) we say that a trajectory C(J, i, p) is contained in ¢ neigh-
borhood of C, if and only if J, D J, and the following conditions are
satisfied: Suppose that

Jv: (jl) "',jtp "'7ju+1)a Z»:(tly "'attp "'7t»)'

When x = 1, suppose that

J;::(Ji’ "'7j;7 "',j/i“)» Z;‘: (t;’ Tty t;, Tty t:)
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Then there exists a subset {q,, ---, q,} of {1, -+, v} such that
(1.6) b, =t <e, r=1-",p.

And furthermore we have

1.7 12, =t <og for any q € {1, ---, v + 1} satisfying

(18) 9. =29>q—1=gq., and jqijr/, r=17"'y/l+1y

where ¢, =0, ¢,.,, =v + 1 and ¢,,, = 0.
When p# = 0, suppose that J, = (j). Then J,=(j)if v=0. If v>1
we have (1.7) for any 1 < g < v + 1 satisfying j, #j.

THEOREM 1. We assume that

There exists an admissible trajectory C, = C(J, &/. p,) of step . issuing
H-1) | from p, = (¥°, ") € T*R"\0 whose end point
is 8, = (x°, ) (=M, F)y° + d,, (T, "My, () "))
If 1 = 1 then it follows that
det (3,0,(&- (Mo @)Y + dpyEIN#0,  (Brg=1, -+, p).
Let V., be an open e-conic neighborhood of &,
V. =1{§ e R"\0; |&/l§] — &°/1&% < e}
(H-3) + There exist an open neighborhood V, of x* and a 0 < ¢ < 1 such that
any e-admissible trajectory issuing from p, whose end point belongs to
Vi X V. is contained in ¢’-neighborhood of C, if ¢>0 is small enough.

(H-2) {

Then, there exists an initial value G such that

(1.9) WF G = {(»°, cn”); ¢ > 0}
and
(1.10) WEU®,) » 6, = (x, £,

where U is the solution of (C.P).

§2. Proof of Theorem 1

Without loss of generality we may assume that the lower order term
B of L satisfies

0.4y b, =0, b0 if j+k.
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Indeed, let a/t, x) be solutions of equations

(Dt + Zj(t, x, DI))(X] + bj,jC(j == 0, (Xj(o, x) = 1 .

o, 0
A, x) = [ e ]
0 o,

and put U, x) = A-'(@¢, ©)U(t, x) for the solution U of (C.P), we get the
Cauchy problem for U(t, x)

If we put a matrix

@1) LU + A-(L,A + BA)YU =0

' U00,x)=G, Geé,
where L, is the principal term of L. It is easy to see that A-{L,A 4+ BA)
satisfies the condition like (0.4)’. Since the multiplier A does not change
the wave front set of U, it suffices to consider (2.1) instead of (C.P).

Let 7= be the natural projection from T*R* to R". If we put a
transformation from R” to itself

2.2) (s, £) = aX,(s, ha

by means of (1.2) we get

(2'3) ﬂj(s, t)y = MJ(S’ t)y + dj(s, t) = Mj(t’ S)-l(y - dj(t) S)) .
We put I(z, s)f(x) = f(z;(s, t)x) for f ¢ & and put
I.(t, s) 0
I(t, s) = [ - ] .
0 Ie(t> S)

Then, by the method of iteration we get the fundamental solution E(t, s)
for L of the form

E@, s) = I, s) + I "I, )W, 5)d6,
W) = S Wt 9), Wit s)=BOIts),

Wty = [ [ [ W Wt 8- Wit - - dnd,
v=>1.

Hence, if we denote by 4, and dif, the closure of 4° and dt, --- di,
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respectively, the solution U(¢, x) = “(u.(ty, x), - - -, ult, x)) of (C.P) for

initial value G = Yg,, - -+, &) is given in the form
(24) uy(ty, x) = gy(x,(0, t;)x) + Z=:1 1;17 ; B5,81,:.(x, (L.)x)dE,
jlij Y ’
(]=1’ "',Z),
where
(2°5) Tny(Zv) = 7rj,,+1(07 tu)n'j,,(tw tv-l) e 7rjl(tp to) ’
(2'6) ﬁJp = ‘BJV(ZW x)
= ﬁ]&(tm x)ﬁjz(to, t17 x) e ﬁjp(to’ ) tu—h x)
and
(2'7) .qu(tm ) tq—b x) = - ibiq,th(tq, njq(tq’ tq—l) e njl(tl: to)x) P

q=1 .-, v.
It follows from (0.4) that

g, +0 if J,elll
g5, =0 otherwise .

2.8 {
We take, as the initial value of (C.P),

{G=t(g!”g£)’ 8 =8 (.’=1a’€)7
(2.9)

8(x) = X e9(e(x — ¥)) exp ii(x — )

where ¢ € C7 such that ¢(0) = 1 (4 denotes the Fourier transform of ¢).
Here 7 is a positive number such that

(2.10) 0<r<1/2

and {r,};., is a suitable increasing sequence of positive numbers such that
7p41/7s 18 sufficiently large in order to satisfy conditions demanded later
on. The function g is a modification of that given by Hérmander (see
Example 2.3 of [4]). Another modification was used in [10].

We have

(2.11) WF g = {(5, crf); ¢ > 0}.

Indeed, since each term of g is in C> and the supports shrink to 3° it
follows that
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(2.12) sing supp g = {»'}.

Now we have

(2.13) 8 = kZzllfk"“"‘l(/?((E — 7))tk ") exp — (iy°-§) .
We may assume that there exists a positive 7, <7 < 1/2 such that
2.14) |t — Tof it > Tl if R#£FR

because we have for any integer m > 0

m—1
lT . ‘L'/‘T/T—l — lz.l/m _ ,L_Il/m| Z z.7'/7n,z./((m—l—r)/m)—-(l——;r)
r=0
g T[m—l—(l-—;)m]/m + z.r/nLT/((m—l—7)/m)—(l-—y)

r#(m-1-1-y)m]

if |t — ¢’| is large enough. Since we may assume ), 7;' < oo and since
for any N > 0 there exists a constant C, > 0 such that

(2.15) 6z — e’ )| < Cyrg¥ for R+ K,
we have
(2.16) |8(zn")| = =97~ 14(0)/2 if 7, large enough.

Let V be a conic neighborhood of 7°. If & ¢ V, there exist two positive
constants C, and Cj such that

(2.17) 1§ — el = Co(€] + lean’ e
= Chlér,

where we used the Hélder inequality to obtain the second inequality.
Then, for any N > 0 there exists a constant C5 such that

(2.18) 18I < Cilel™ if §e V.

For the neighborhood of V, of x° given in the hypothesis (H-3) let
¥(x) be Cy(Vy) such that = 1 near x°. For the proof of Theorem 1 it
suffices to show that for some j € {1, ---, ¢}

(2.19) () (b, 7:87)| = ey =bemrorm,
¢, >0, if ¢, large enough.

If we calculate the Fourier transform of u; by (2.4) in consideration of
(2.8), we get
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A~
(2.20)  (yu))(t, 7:8°)
= ; Tl(cr'-l)n_l(w(j)(rm ) + i: Z . J.A wJ,(Tlcy Ty Zv)dzy> ’

v=1Jyell

v

Ji=y
Where qu(T3 T’; ‘t.v) = G.I,,(T’ T,; iu) exp ifFJ,,(Zu) (V z O, JO = (j))’
(2-21) F./y(zy) = — 50’(MJ,,(ZV)3’O + de(Zv)) ’
@2) G i) = [exp Gy (7 — MG

X (M, @)y + ¥ + d, (2)
X ¢(NBrdy. (B, = pi,|det M, |+ 0).

Here we used the change of variables x to
(2.23) a5ty +y) = M, (7'y + ) + d, .

We note that M, (Z,) is uniformly bounded with respect to v and Z, € 4,
because x,,(%)y is bounded for |[y| <1 and so d, () is bounded. In the
same way as in (2.14) we have for 0 <7, <7

(2.24) |e'y® — oM, (£)&c17! = o

if |/ — 7| is large enough. The integration by parts with respect to y
shows that for any v = 0 and N > 0 there exists a constant C, independent
of v such that

(2.25) |G, (7, 75 )| < Coye if |t — ¢/| large enough.

Since the volume of 4, is equal to ¢/v!, for the proof of (2.19) it suffices
to consider only the term with respect K’ = & in the sum of the right hand
side of (2.20).

For J, € II° (v = 1) we put

(2.26) L@ = | Gy expicFr(di, (2D,

where
222)  G,(r;1) =G (r, 75 1)
= [ exp ety — M, 00 -)
X A M EX "y + 5°) + dr ENG(¥)BrY
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It is easy to see that for any multi-index « there exists a constant C,
independent of v such that

(2.27) 102G, (e; L) < Coort, 0< 7 <1/2.

When v = 0 we also define I, (¢) by the integrand of (2.26). The proof of
Theorem 1 will be completed if we show the following:

Lemma 2.1. Suppose that J, € II} and ¢ is large enough. If J,D J,,
for any N > 0 there exists a constant C, independent of v such that

(2.28) L (D] < Ciemwtmere=olify — ),

where ¢ is the positive in the hypothesis (H-3). If J, X J), for any N >0
there exists a constant C, independent of v such that

(2.29) (o)) = Cye~¥fu!
Furtheromore, there exists a constant ¢, > 0 such that

(2.30) [IJ;, (@] = ez

§3. Proof of Lemma 2.1

Suppose that z is sufficiently large in what follows. In consideration
of supports of ¢(y) and (M, () (z" "ty + »°) + d, (%)) in the right hand side
of (2.22)Y we see that for v > 1

(3'1) MJu(Z»)yO + dJ,,(z:v) € VO if zv € supp GJ,, c Av ’
and
@31y M;(t,, 0)y° 4 dy(t,, 0) € V, if Gy, =0,

where V, is the neighborhood in the hypothesis (H-3) of Theorem 1.

First we consider the case when p > 1. Because the bicharacteristic
curve is admissible and because we get (j) = J;, it follows from (3.1)" and
the hypothesis (H-3) that

(3.2 & = ‘M, 0)' if Gy x0.

Hence, by means of the integration by parts with respect to y we see that
for any N > 0 there exists a constant C, such that

(3.3) Gyl £ Cyr™¥,
which gives the inequality (2.29) with v = 0.
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Let £ > 0 be a small parameter chosen later on. Let A(s) be a C*
function such that 0 < A <1, h=1fors<land h =0 fors > 2. If we
put

(3.4) Vo) = Aoy — M E)E), w1,
the integration by parts with respect to y shows that
(3.5) |G (c; L) < Cye™™ if £, € supp (1 — )
because we have

7" — "M, (&)§| = k"7 on supp(l — ).

Since the volume of 4, is f,/v!, in view of (3.5) it suffices to consider G,
= ,,G,, in place of G, in (2.26). For G), we have the inequality of
the same type as (2.27).

If z, € supp G}, N 4, then the end point of C(J,, i, p,) belongs to V,
% V. with ¢ = r*z772, Indeed, it is the consequence of (3.1) and

(3.6) "Ml — &) < kP17 on supp,,,

where we used ‘M;'x* € 1 for £ small enough.
Let E(J,)) be a subset of 4, defined by

E(J) = {§, € supp G}, N 4,; C(J,, i, p,) is x*z 7*-admissible}.

It follows from (H-3) that if JJ, % J/ then E(J,) = §. In the case J, D J,
if £, ¢ E(J)) we have (1.6) and (1.7) with ¢, = (x’z77"*)’. We note that the
number of possibilities of subset {q,, ---, q¢.} (= Q,) satisfying (1.6) is
inferior to 2. We denote by @/ (j =1, ---, n, n, <2 all such subsets.
For a fixed subset @, ={q,, ---,q.} letq;(j =1, ---,n)) be all elements
of {1, ---,v -+ 1} satisfying (1.8). Clearly, the number n] is superior to
[((v — ¢+ D/2. We put

3.7 928) = Aty — tlfe) 2 Pty — tuy-ile),
where ¢, = (#*z"*)’. For each Q] if we define ¢}, similarly, it follows from
(H-3) that
(38) EW) 0 ((supp (1 — ¢2)) = 9.
.

For a moment we suppose ¢, D J,. Put
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A

. o=t .
b= Gogh, GiL=GuglTI(l—¢5), 2=j=n.,

(3.9) )
= G — g,

For G} and G/ we have the inequalities of the same type as (2.27). We
have a decomposition

(3.10) I0) = SI40 + 1),

where I, I}, I/ are defined by (2.26) with G,, replaced by G, G;,, G

Jy
respectively. It follows from (3.8) that if 7, € supp G/, then there exists
aqe{l,---,v}such that

(8.11) 16, F, (1) = we7?2.

In order to show this inequality we prepare a proposition which is the
immediate consequence of Theorem 2.3 of Kumano-go-Taniguchi-Tozaki [8].

ProposiTionN 3.1. Let ¢t s) = ¢,(¢, s; x, & be solutions of eiconal
equations

(3.12) 0:6; + A;(t, x, d.¢;) = 0, ¢, S)tzls =x& j=1 ---,4.
For a sequence of phase-functions
Gl t), G, 1), -, 65,042, 0)
(J, =y + -+, Juur), L €4) if we denote by @, (4, L, 0; x, &) the multi-product
(5.8 tEG5.(8, LR - - H5,..(2, 0)) (x, €)
then we get
(B13) 2,0500 1, 0: % Do = (= 4, )00 ¥ 60, @=1,,,

where

(xq, sq) - qu+1(tq’ tq+1) st Xj.,+l(tu’ O)(y, 77)
and

20 = (b, b) « - 25,8, 0)(, 1)
Because ¢,(t, s; x, &) = (,(s, )x)-& = M;'(t, s)(x — d,(¢,5))-& we have
D, (4, 1,05 x, 8) = (z,({.)%)- &
=M, (t)"(x — d,{&)-§.
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Then we get
(3.14) alq@JvI?J,,yW s, = (&= *M;!)-0.(d,;, + M;,5") + 8.F,, .
=70

In view of (3.13) and (3.6) we get (3.11) because the first term of the right
hand side of (3.14) is smaller than #z77//2 if we choose ¢ sufficiently small.

We shall show that for any N > 0 there exists a constant C, such
that

(3.15) I Cor™ ol

For a fixed z, let >3; ¥4 ,(,) = 1 be a partition of unity on supp G7, N 4,
such that the number of + whose supports superpose each other is in-
ferior to 2 and we have

(3.16) It, — | < k¥ if %,% € suppj,,
(3.17) |07, 45,] = Cozrlel?

for a constant C, independent of = and v. In fact, we can make such a
partition of unity by putting

i = hy ?jjhj, hy(t) = h(t, — E|e~>7%)
for suitable points £/ € supp G7 N 4,. By (8.11) and (3.16) we see that
(3.18) 0., F,| = £z*[3 on supp s,

because £* € k. Note that

(3.19) L di, = dt---dt,dt,, e dt d,.

tg+1

By means of (3.18) it follows from the integration by parts that

(3.20) [ erpiGrat, = 1— ie GG F) Vil

tg+1

e [ e, (160 F) ity

tg+1

where for the brevity we wrote v instead of JJ,. Noting that
(3-21) FJ,,(Zv)ltq=lq+1 = F.Ig_l (tb ) tq—b tq+17 Tt tu)

for J =y =y dg-1Jasss **sJurr) in view of (3.17)-(3.20) we have
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I7(2) = o770 Lyg_ () + o1, (0)),
q

where the first term of the right hand side is the sum with respect to all
q satisfying (3.18) for each +j,. Here I~qu_l(r), I,(z) are defined, as in
(2.26), with phases F,;_, F, and amplitudes G, G,, satisfying inequalities
of the same type as (2.27), respectively, because the number of the super-
position of 4, is inferior to 2’ and because we have (3.17) and (3.18). If
Ja-1 ¥ Jge1 In J2,, we can use the above procedure for fJg_‘(r) instead of
I/(r) because we have the inequality similar to (3.11) if #,_, € supp G o
N 4,_,. Note that for J, € II, we have

~1 )

1

(322) FJV(Z») = FJ;_l(Zy—l) if jq = jq+1 )

where J)_, and f,_, are defined by removing j, and ¢, in J, and 7,, respec-
tively. If we define (2.26) also for J, € II,\II) then we get

(323) IJ,,(T) = IJ;_l(T) lf jq = jq+1 )
where the amplitude of I,, (r) is given in the form

Gy (e, B)dt, .

tg+1

It follows from the formula (3.23) with J, = J%, that we can use the
above procedure also for I,;_(z) when j,_, =j,,, in J2, Repeating the
integration by parts with respect to ¢, in view of 37/2 —1<0 we get
(8.15) because (2.29) with v = 0 is verified.
When J, X J/, the method which gives (3.15) is applicable to show
(2.29) for I,(z) because E(J)) =@ and so we have (8.11) if , € supp G,
To get (2.28) it suffices to show

(324) lI}(T)] é Cvz--;l/z—a‘r(v—p)ﬂ/v!

for a constant C independent of r and v, because n, < 2. We consider a
Ij(z). For the simplicity we write j = 0. Noting the hypothesis (H-3) and
support of ¢, defined by (3.7), we can see that there exist two subsets
{p, -+, p,} and {pf, -- -, p.} of {1, ---,v} such that

< g <D =1 .-,
(3.25) {pJ =g =p; (U ©

pfi<pj+l (J=1,,l!—’1)

and with ¢ = (#*z77%)° we have
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(326) [tpr_tp;|=_<—”€0, r=1,"'7/1

{ltﬂr - tpr—ll Z‘ &o

(2.27)
[tp§—tp,'»+1'2€0 7'=1, oy My tu+1:0
if %, € suppGY, N 4,.

Note that the number of possibilities of subsets {p,, ---,p,} (= P,) and
{pi, -+, p.} (= Pj)) is inferior to 4*. We denote by (P, P))(j =1, ---,n/,
n’ < 4*) all couples of two subsets.

For a (P, P;) we put

(328 fu@) = [TA =W, — ol = B — tyalled -

If we define fJ, for each (P}, P,’) similarly as f,,, then we get by means
of (H-3)

supp Gj, N 4, N (ﬂ supp (1 — fﬁ)) =0.
Jj=1

Then we have a decomposition

(3.29) () = > I%(0)
j=1

where I}/ are defined by (2.26) with G,, replaced by
) o= .
n=GLf;, G}/ = Gﬁufva_.l(l — 1), j=2,
for which we have inequalities of the same type as (2.26).
We consider a I)/(c). For the brevity we write j = 0. We take the
change of variables #, = (¢, ---, t,) to (5,, 0., 0,,) as follows: We put
§;x = (817 ey, s#)
S, = (tpr + tl’)7+1 + -+ tz';)/(p:- - pr + 1) .
For any pair (g,¢ — (@ =1, ---,v) except (p,,p, — 1) (r=1, ---, 1) we
put
w,=1t,.,—1t, if |t,.,—t,|<ve, on supp G},
UV, =t — ¢, otherwise,

and put

wvlz(wly""wvl)a l~)u2:(v1; "',U,,z).
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It follows from (3.7) that
(3.30) wzn = — e+ 1.

By the above change of variables we get
(3.31) 109) = dwnj d, f G2 exp icF, ds,,
D1 Do
where é};"(t; §,, W,, 0,,) = G%r; t,) and F 78, W,,, 0,,) = F,(%,). Here
D, = {w;; 0 £ w; < ez},
D2={ng(); f:ngto}.
i=1
In view of (3.21) and (3.22) it follows from (H-3) that
(3‘32) FJ,,(gln O, ﬁvz) = FJ"H(‘S.;I) .
Noting (3.13) and (3.14), we can see by (H-2) and (H-3) that
(3.33) S, =00, F,G)=0 for g=1,--,p,

if §, € «* supp G}’;”, where z* is the natural projection from R, X R; X R;
to R,. By (H-2) we get

(3.34) det (aspasqﬁ 7.8 Wiy, D,) % 0 on supp é‘}’f N R;x D, x D,

if we choose « small enough. On account of (3.33) and (3.34), the implicit
function theorem shows the existence of the unique solution 3.(w,,, U,,) of
the equation

0. (-, 0)=0, q=1 -, p

if (,, U,,) varies on D, X D,. Regarding (&,, U,,) as parameters we see
by means of the stationary phase method (see §1-2 of [2]) that

3.35) I, (z;w, D)= I Gz}v" exp ifﬁ’hd@ ~ (2z/c)**| det Q| etri/hsEna

X DRG] oo,
where
Q = Qu, D)
— (0.0 o 0, w0 B2 AT,
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R=i<@Q"9,, 3,>/2 and G}E, b, 0) = GG, w, D). Here (3, w, §) —
§, is a C~ mapping such that

5;(5;17 lb> 5) = §/x - §,,(lI), 5) -+ O(lgy - §F(II), 5)l2) )

F,(5,,w,0) = F, (5, 0), w, D) + < Q5,5 >/2.

3

Since volumes of D; and D, are estimated by z-"»//y;! and t?/v,! respec-
tively, in view of (3.35) and (3.30) it is easy to see that I}°(z) is inferior
to the right hand side of (3.24). It follows from (3.29) that we get (3.24),
which shows (2.28).

When J, = J, we note that n, of (3.10) and n;’ of (3.29) are 1 and that
the change of variables #, — (3,, ,,, U,,) is not necessary, that is, §, = i,.
Hence the formula (3.35) gives (2.30) if we show that there exists a constant
¢; > 0 such that

(3.36) G, (55 1) = ¢, > 0.

Since & = ‘M,, ()7 it follows from (2.22) that

(B30 G = j«z»(M.,m) @y + 9 + drE))e()8r.dy .

Noting (2.8) and the change of variables (2.23), we see that fj, is almost

equal to a non-zero constant on supp ¢ when ¢ is sufficiently large (note

the argument of 4 in (8.37)). Then we get (3.36) if ¢ is large enough.
We consider the case when x = 0. If J) = (j), that is, the admissible

trajectory C, is bic. curve w.r.t.,, 2; then there exists a constant ¢, >0
such that

(3.36)Y |G| =, >0 if r large enough,
which shows (2.30). Inequality (2.29) is obtained in the same manner as
in the case ¢ > 1. If we replace the definition of ¢, (%,) by
3.7 () = [ Aty — ty,_|Je) with & = (e,
s

the second term of the right hand side of (3.10) is estimated by the right
hands side of (2.29), and the first term of the right hand side of (3.10)
estimated by the right hand side of (2.28) because the volume of 4, N
supp ¢,, 1s inferior to #z~“/uv! Then we have (2.28) when y = 0.

Remark 1. Tt follows from Lemma 2.1 that if U is the solution of
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(C.P) for the initial value G defined by (2.9) we have

(3.39) & < [T (b3 78] eto7m oo < o5t
if k>=k, k&, large enough,
where the function v € Cy(V,) was taken before (2.19) and ¢, is a positive

constant independent of z,. By means of the formula (3.35) and the argu-
ment in getting (3.36) we see that

(3.39) ¢, = cildet (@,,0.,8 - (M,, ()5 + dy, (DN,

where ¢, is a positive constant independent of x and the choice of ¢
Cy(V,) such that 4+ = 1 near x°. We note that the number k, of (3.38)
depends on the choice of 4.

Remark 2. The proof of Theorem 1 is also valid when there exist
plural admissible trajectories which link p, with g, = (x° &% if numbers of
step are different each other, the condition (H-2) is satisfied for each adm.
traj. and the following condition is verified:

Let V. be a e-conic neighborhood of £. There exist an open
neighborhood V, of x° and 0 < ¢ < 1 such that any e-admissible
(H-3) A trajectory issuing from p, whose end point belongs to V, X V. is
contained in e’-neighborhood of some admissible trajectory given

above if ¢ > 0 small enough.

Indeed, it is clear if we note that the contribution with respect to the
admissible trajectory of the smallest step is dominant.

§4. Application of Theorem 1

We consider an example of L with [ = 2 on R} X R. whose 4, and 1,
are defined

(4'1) '21 = a(t)Dzy ’2? = - '21 ’
where «a(t) is a C= function such that
aB) =0, (—=a(®>0 if ¢ e (3, pi)

“2 () %0, [latide =270

for a sequence {8;}7., satisfying

https://doi.org/10.1017/50027763000000350 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000350

128 CHISATO IWASAKI AND YOSHINORI MORIMOTO

0=5<pp<--<f<-<T, B=>T (j—o0).

Here T is a fixed positive. We can show the existence of «(f) in the same
way as in Proposition 1.3 of [5].

If we take B, (j=1,2, ---) as a fixed positive £, in the definition of
the trajectory, we have 27 admissible trajectories issuing from (0, 7°), 7° %0
whose end points are (+(2k — 1)277, 3%, k=1, ---, 27! (see Fig.) Each

tA

P
Bl
Bl

Y
5

adm. traj. satisfies hypotheses of Theorem 1. In fact, (H-1) and (H-2) are
verified because each adm. traj. is isolated in the sense of the Definition
1.2. We can take arbitrary positive ¢ smaller than 1 in (H-3) because
(B %0 (B<j). It is easy to check the hypothesis (H-2) because M;
(=1, 2) in (1.2) are identity and because

atqd./;,(i,u) = atqdjq(tq—l; tq) + atqdjq+1(tqs tq+1)

= *a(t) — (Falt)) = =2a(t,) .
It follows from Theorem 1 that there exists an initial value G such that
WF G = {0, cr); ¢ > 0}

(4'3) WF U(JBJ) = {(i(Zk - 1)2_j, C’]°)§ k = 1) tt Ty 2j-l’ c > 0} )
where U is the solution of (C.P) for the initial value G. Here we used
Theorem 3.4 of [9] to show another direction of inclusion in (4.3). Because

we take G uniformly with respect to 8; (j = 1,2, ---) and because WF U
c T*(R: X R.) is closed, we have

THEOREM 2. Let L be the hyperbolic system of this section. Then there
exists an initial value G such that

“4.4) WFG = {0,cr"); c >0} WFU(T) = [—1,1] X {cr°; ¢ > 0},

https://doi.org/10.1017/5S0027763000000350 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000350

HYPERBOLIC SYSTEM 129

where U is the solution of (C.P).

CoroLLARY. For G and U in Theorem 2 we have

{sing supp G = {0}

(4.5) .
sing supp U(T) = [— 1, 1].

As stated in Introduction, the result analogous to (4.4) had been given
by [5] by using the work of [12], that is, the precise propagation of
singularities for the equation

6 — 93 — at',

where @ is a constant and s = 1,2, -- -, (cf. [1] [3]).
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