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PRECISE PROPAGATION OF SINGULARITIES FOR A

HYPERBOLIC SYSTEM WITH CHARACTERISTICS

OF VARIABLE MULTIPLICITY

CHISATO IWASAKI AND YOSHINORI MORIMOTO

Introduction

In this paper we consider the Cauchy problem for a hyperbolic system

with characteristics of variable multiplicity and construct a certain solution

whose wave front set propagates precisely along the so-called "broken

null bicharacteristic flow", in other words, along the admissible trajectory

if we use the terminology of [6].

Let L be a hyperbolic system of the form

Dt + Ut, x9 Dx) 0

+B(t9x) on R]χRn

x,(0.1)

0 Dt + λt(t, x9 Dx\

where λj(t, x, ξ) are linear in ξ, that is,

(0.2) λj(t, x , ξ ) = Σ aU*> * ) £ * > j e { l , . . - , £ } .

Here ahk(t, x) e C°° are real-valued and polynomials of first order with

respect to x;

(0.3) aJtk(t, x) = Σ C£k(t)xn + Clk(t).
m = l

We assume that the term of order zero B(t, x) = (bjyk(t, x)) satisfies

(0.4) b J ί k φ 0 i f j ψ k .

We consider the Cauchy problem

(C.P) LC7=0, C7(0,Λ) = G , G z δ'

and show the precise propagation of the wave front set of a solution along
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the admissible trajectory, by assuming some hypotheses (See Theorem 1 in

§ 1). Hypotheses of Theorem 1 are fairly complicated, but they are satisfied

for some cases discussed in [6] and [7], for instance, we can apply Theorem

1 to the proof of Theorem 2 of [7] (see also Theorem 2 of [6] and its §7).

In the last section, as another application of Theorem 1 we give an

example of hyperbolic system L on R\ X 7?<J, for which there exists an

initial value G such that

(0.5) sing supp G = {0}, sing supp U(T) = [- 1,1],

where U is the solution of (C.P) and T is a fixed positive. For a hyper-

bolic equation of second order, Ichinose-Kumano-go [5] gave a result

similar to (0.5) by using the work of Taniguchi-Tozaki [12], though we do

not know whether the Cauchy problem for their equation is well-posed

until t = T (see Theorem 3.5 of [5]).

In the next paper [11], the proof of Theorem 1 will be applied to show

the precise propagation of wave front sets in Gevrey classes along

"generalized null bicharacteristic flow" defined by Kumano-go-Taniguchi

[9] and Wakabayashi [13] [14].

§ 1. Notations and main result

We say that a curve {t, x(t), ξ(t)} c R\ X T*R% is the bicharacteristic

curve with respect to λj through (s, y, η) if it satisfies equations

(dxjdt = d,λβ9 x, ξ), dξ/dt = - dMt, x, ξ)

For the abbreviation we write bic. curve w.r.t. λά in what follows. We

denote by Xj(t, s) the transformation from the cotangent space T*R% to

itself such that (t, Xj(t, s) (y, η)) is bic. curve w.r.t. λ5 through (s, y9 η). Since

λj are linear in ξ and ajik polynomials of the first order with respect to x,

there exist a matrix M](t9 s) and a vector dj(t, s) such that

(1.2) Xj(t, s) (y, η) - (M,(ί, s)y + dj(t, s), '

where tM~1 denotes the inverse of the transposed matrix of M.

For an integer v ;> 0 let Jv = (juj2, --,jq9 ,Λ + i) be a (v + ̂ -re-

peated permutation of elements {1, 2, , i}9 t h a t is, j q e {1, •••,-#} for

1 ^ q <: v + 1. Let 77, be a set of all Jv and let 77? be a set of all Jv

satisfying j q Φ j q + 1 for 1 <£ q < v.
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For a fixed t0 > 0 let J°v denote an open set of Rv (v ^ 1) as follows;

Δl = [iv = (tl9 , O; t0 > tx > t2 > > tv > 0}. A continuous curve

{(t, x(t),ξ(t)); te[O, Q} is called a trajectory of step v, issuing from p e

T*Rn\0 if for some Jv e Π\ and some tv e Δ\ it is bic. curve w.r.t. λ1

when t 6 [tq, tq-A (q=l, , v + 1, t + 1 - 0) and (x(0), f(0)) - p. We

denote this trajectory by C(JV, tv, p). A point

(1.3) XJi(t0)t1)ljβ1,t2)" XJV+1(tv,0)p

is called the end point (at t = £0) of the trajectory. It follows from (1.2)

that the end point is equal to

(1.4) (MJXI)y + dJv(l), 'MjJiD-ty, P = (y,η),

where a matrix MJu and a vector dJv are defined by, respectively,

MJv(l) = M^o, OΛ^.tt, O ΛίyB+iα, 0)

dJv(l) - rf. ^o, ίi) + Mh(to, tx)dh{tu t2) +

+ M,/^, td- - ^ ^ - i , tv)djv+1(tv, 0).

DEFINITION 1.1. We say that a trajectory C(JV, ίv, p) is ε-admissible

for a ε ^ 0 if we have

(1.5) | ( ^ f - λjq+χtq9 x\ f«)| ^ elf'l for any q e {1, , v},

where (x9, ξq) — %jq+1(tq9 tq + i)' * * ^ + 1 ( ^ , 0)̂ o. We say only admissible in place

of 0-admissible.

We remark that a bic. curve is always an adm. traj. of step 0. For

the brevity we often write adm. traj. instead of admissible trajectory.

For Jv = (jfi, ,Λ+i) e Π°v and Jf

μ = (jί, , j'μ+1) e Π°μ we write Jv Z)

j ; if there exists a subset {g?, qrj, , q°r, • , q°μ+1; q°r < q°r+i} of {1, , v + 1}

such that jqo = j ' r for r = 1, , μ + 1. Obviously, if Jv ZD Jμ then y >̂ μ.

DEFINITION 1.2. For a small ε0 > 0 and a fixed trajectory Ĉ  =

C(Jμ, tμ, ρ) we say that a trajectory C(Jv, tv, p) is contained in εo-neigh-

borhood of Cμ if and only if Jv Z) Jμ and the following conditions are

satisfied: Suppose that

Jv — (jl9 ' * ', jq, ' ' 'jju + l) 9 U = (tl> ' ' *, tq, , tv) .

When μ ^ 1, suppose that
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Then there exists a subset {qt, , qμ] of {1, , v} such that

(1.6) K-t'rKto, r = l , ...,μ.

And furthermore we have

(1.7) \tq — tq^\ < ε0 for any q e {1, , v + 1} satisfying

(1.8) qr^q> tf-l^ <2V-i and jf^Λ', r = 1, , μ + 1,

where q0 = 0, qμ+1 = v + 1 and ίv+1 = 0.

When /i = 0, suppose that j ; = ( ). Then Ju = ( ) if v = 0. If p ̂  1

we have (1.7) for any I <. q <L v + 1 satisfying j q ^j.

THEOREM 1. We assume that

( There exists an admissible trajectory Cμ = C(J'μ, t'μ. ρ0) of step μ issuing

(H-l) I from p0 = (/, ^0) e T*Rn\0 whose end point

{is δQ = (A f°)(-(

ί If μ ^ 1 then it follows that

" 2 ) {

(H-3)

Lei y ε fee an opeλi ε-conic neighborhood of f°,

V£ = {f 6 B \0; |f/|f I - ί°/l?°ll < β}

There exist an open neighborhood Vo of x° and a 0 < σ <I 1 suc/ι ί/ιaί

a^y ε-admissible trajectory issuing from ρ0 whose end point belongs to

VQX Ve is contained in ε°-neighborhood of Cμ if e>0 is small enough.

Then, there exists an initial value G such that

(1.9) WFG = {(y\cv

Q); c > 0}

and

(1.10) W F T O 3 S0 = (x°,ί°),

where U is the solution of (C.P).

§ 2. Proof of Theorem 1

Without loss of generality we may assume that the lower order term

B of L satisfies

(0.4)' & ; , i = 0 , b j 9 k φ θ i f j φ k .
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Indeed, let aβ, x) be solutions of equations

(A + λj(t, x, Dx))aj + buas = 0, α,(0, x) = 1.

If we put a matrix

0-

and put #(*, x) = A"\t, x)U(t, x) for the solution U of (C.P), we get the
Cauchy problem for U(t, x)

(LQU + A-\LQA + BA)U = 0
( ' } [U(0, x) = G, G e «f ,

where Lo is the principal term of L. It is easy to see that A'\L0A
satisfies the condition like (0.4)'. Since the multiplier A does not change
the wave front set of U, it suffices to consider (2.1) instead of (C.P).

Let π be the natural projection from T*Rn to Rn. If we put a
transformation from Rn to itself

(2.2) πfa t) = τrX/s, t)π~x

by means of (1.2) we get

(2.3) πs{89 t)y = Mό{s, t)y + d,(s, ί) = M,(ί, s ) " ^ - dβ, s)).

We put Iβ, s)f(x) = /(π /s, ί)jc) for / e <?; and put

\Ut,8) 0

0 ϊt(t,8)\

Then, by the method of iteration we get the fundamental solution E(t, s)
for L of the form

E(t, s) = I(t, s) + £ I(t, Θ)W{Θ, s)dθ,

W(t, s) = Σ WXt, s), Wit, s) = B(t)I(t, s),
v = l

W.Ut, s) = J'J'1- -{[""'^(ί, tdWfa, h)- Wt(tM s)dt. • Λ A ,

Hence, if we denote by Δu and dt, the closure of Δl and dU dtu,
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respectively, the solution U(tQ9 x) = ^u^t^ x), , ue(t0, x)) of (C.P) for

initial value G = ι{gu , g£) is given in the form

(2.4) uj(to, x) = gjMO, Qx) + g Σ^ £ βj

Jvgjv+1(πJυ{tv)x)dtv

where

(2.5) πJ v(ίv) = π,,+1(0, O^ v(ί« ίv-i) * * πjfa, to),

(2.6) βJv = ^ ( ί , , *)

= j8yi(ίo, X)i3i2(ί0, ί ί f X) iSy^, ' , t - 1 , «)

and

(2.7) ^ ς ( ί 0 , , ίβ_,, x) = - ibUJq+ι(tq, πJq(tq, tq.,) - - - πh(tu to)x) ,

q = l, - -, v .

It follows from (0.4)' that

(2.8) ίβkΦ° i f JveΠl

[βj» = 0 otherwise .

We take, as the initial value of (C.P),

(2.9) I ~ § l
[g(x) = Σ ^ΦiήΛx ~ f)) exp kk{x - / ) JJ° ,

where φ e CQ such that 0(0) = 1 (^ denotes the Fourier transform of φ).

Here Γ is a positive number such that

(2.10) 0 < r < 1/2

and {τk}κ=1 is a suitable increasing sequence of positive numbers such that

ΐk+ilτk is sufficiently large in order to satisfy conditions demanded later

on. The function g is a modification of that given by Hδrmander (see

Example 2.3 of [4]). Another modification was used in [10],

We have

(2.11) WFg = {(f,cv°); c > 0 } .

Indeed, since each term of g is in C°° and the supports shrink to y° it

follows that
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(2.12) sing supp g = {/}.

Now we have

(2.13) g(f) = Σ ή'-^M - τφτV) exp - (i/ f) .

We may assume that there exists a positive ΪQ < ϊ < 1/2 such that

(2.14) \τk - τk\τ^ > ΓJP if β :£ £'

because we have for any integer τπ > 0

m-l

τ τhτfγ-l _ _ |τVm τ/l/?ft V1

 τr/wΓ/((m-l-r)/m)-(l- r)

r = 0

^> Γ[»ι-l-(l-r)?ft]/77i ι y ^ r/^^/ ((m_i_ ?)/T O)_ ( 1_ r)

if \τ — τ'\ is large enough. Since we may assume 2] τkλ < °° and since

for any JV > 0 there exists a constant CiV > 0 such that

(2.15) \φ((τk - r^V*-1)! ^ CvrΓv for Λ ̂  A',

we have

(2.16) |g(τ^°)|^τr^-V(0)/2 if τk large enough.

Let V be a conic neighborhood of η°. If f g V, there exist two positive

constants Cv and C^ such that

(2.17) I? - rtfVΓ1 ^ CF(|f I + Ir^lM-1

where we used the Holder inequality to obtain the second inequality.

Then, for any N > 0 there exists a constant C'N such that

(2.18) | g ( f ) | ^ C ^ | f r v if f « V .

For the neighborhood of Vo of x° given in the hypothesis (H-3) let

ψ(x) be CQ(V0) such that ψ = 1 near x°. For the proof of Theorem 1 it

suffices to show that for some j e {1, ••-,-#}

(2.19) Kfeίίo,^ 0)!
Cj > 0, if τfc large enough.

If we calculate the Fourier transform of ψuj by (2.4) in consideration of

(2.8), we get
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(2.20) (fUjXt,, ^ξ")

= Σ τ%-^(wU)(τk, r».) + Σ Σ f w,.(τk, τk,; l)d'Δ ,
k' \ v = l JvGΠV J j v I

where wJ(ι(τ, τ'; I) = Gj,{τ, τ'; t,) exp iτF,,(ί.) (u ̂  0, Jo = (j)),

(2.21) FJXI) =-?• (MjXDf + dj.(t,)),

(2.22) G,,(r, τ'; ί.) = J exp (iy.fr'τf -

X

X Φ(y)βjdy. {β'Ju = βί, Idet MJt\ Φ 0) .

Here we used the change of variables x to

(2.23) π-jKτ^y+f) = M^τpy + /) + d, .

We note that MJv(tv) is uniformly bounded with respect to v and tv e Δv

because πJυ(tv)y is bounded for \y\ ̂  1 and so dJv(tv) is bounded. In the

same way as in (2.14) we have for 0 < ΐ0 < ΐ

(2.24) |τy - τ'Mjβ^ξY7'1 ^ r"

if |τ' — τ| is large enough. The integration by parts with respect to y

shows that for any v ̂  0 and N > 0 there exists a constant CN independent

of v such that

(2.25) |G/y(r, τ7; ί,)| ^ Cv

Nτ~N if |r - r r | large enough.

Since the volume of Δv is equal to tjv!, for the proof of (2.19) it suffices

to consider only the term with respect h! = k in the sum of the right hand

side of (2.20).

For Jv e Π°v (v ̂  1) we put

(2.26) Ijv{τ) = f GJv(τ; tv) exp iτFJv(t)dtv (v^ΐ),

where

(2.22)' GJXT I) = Gj£τ, τ; t,)

— exp(iV(^° — 'MjXt^^ y)

X ψiMjXUiτ'-'y + y°) + djXl))φ{y)β'jβy.
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It is easy to see that for any multi-index a there exists a constant Ca

independent of v such that

(2.27) |3fyGJr l)\ £ C;r"β|, 0 < r < 1/2 .

When v = 0 we also define IJv(τ) by the integrand of (2.26). The proof of

Theorem 1 will be completed if we show the following:

LEMMA 2.1. Suppose that Jv e 77° and τ is large enough. If Jv Z) J^,

/or any N > 0 Λ̂ere exists a constant Cx independent of v such that

(2.28) IJ J v(r)| rg Cϊτ-"*-rW/(v -μ)l,

where σ is the positive in the hypothesis (H-3). If Jv i? J£, /or any N> 0

there exists a constant CN independent of v such that

(2.29) \ijXτ)\^σNτ-ηv\

Furthervmore, there exists a constant c0 > 0 such that

(2.30) \Ij,(τ)\^coτ-^.

§ 3. Proof of Lemma 2.1

Suppose that τ is sufficiently large in what follows. In consideration

of supports of φ(y) and ψ{MJv(tv)(τr-ιy + / ) + dJv(ίv)) in the right hand side

of (2.22)r we see that for v ^ 1

(3.1) MjXDf + dj£l) e Vo if tv e supp GJv c Δv,

and

(3.1/ Mj(t0, 0)f + dfa, 0) e Vo if GU) * 0,

where Vo is the neighborhood in the hypothesis (H-3) of Theorem 1.

First we consider the case when μ ^ 1. Because the bicharacteristic

curve is admissible and because we get (j) =̂  J'μ, it follows from (3.1/ and

the hypothesis (H-3) that

(3.2) ξ° * 'Mjfo, 0)-^ if Gω * 0.

Hence, by means of the integration by parts with respect to y we see that

for any N > 0 there exists a constant CN such that

(3.3) \GU)\£CNτ-»,

which gives the inequality (2.29) with v — 0.
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Let κ > 0 be a small parameter chosen later on. Let h(s) be a C°°

function such that 0 <Ξ Λ ̂  1, Λ = 1 for s ̂  1 and h = 0 for s :> 2. If we

put

(3.4) ψ,w(f v) = h(ιc-*>τr'2\η0 - 'M^

the integration by parts with respect to y shows that

(3.5) \Gj£τ; l)\ < Cv

Nτ~N if tv e supp(l - ψJv)

because we have

\τf - 'MJXDΠ ^ ^τ-r^ on supp (1 - ψJυ) .

Since the volume of Δv is tjv!, in view of (3.5) it suffices to consider Gf

Jv

= ψjβjv i n place of G^̂  in (2.26). For G'Jv we have the inequality of

the same type as (2.27).

If tυ 6 supp Gjv Π Δv then the end point of C(JV, tv, p0) belongs to Vo

X Vε with ε — κvτ~ΐ/2. Indeed, it is the consequence of (3.1) and

(3.6) γMj^-ξ^ύ^τ-^ on supp ψJυ,

where we used tMj]κv < 1 for κ small enough.

Let E(JV) be a subset of Δv defined by

E(JV) = {ίv e supp Gjυ Π ̂ ; C(JV, ?υJ p0) is /cvr~^-admissible}.

It follows from (H-3) that if Jυ 5? j ; then E(JV) - 0. In the case Jυ 3 j ,

if ίy e E{JV) we have (1.6) and (1.7) with ε0 = (Λ^Γ''72)'. We note that the

number of possibilities of subset {qu - - -, qμ}(= Qμ) satisfying (1.6) is

inferior to 2V. We denote by Qj

μ (j = 1, , nv, nv ̂  2V) all such subsets.

For a fixed subset Qμ = {g1? , ̂ } let ĝ  ( = 1, , n'v) be all elements

of {1, - >,v + l} satisfying (1.8). Clearly, the number n'v is superior to

[(v - μ + l)/2]. We put

(3.7) φJv(O = ± K\tqr - K\lε0) Σ K\tq>j ~ t^l/εo) ,
r = l j=l 3

where ε0 = (/cvτ~ΐ/2)σ. For each QJ

μ if we define φ3

Jv similarly, it follows from

(H-3) that

(3.8) E(JV) Π (Π supp (1 - φίή = 0 .

For a moment we suppose Jv Z) J'μ. Put
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= GJ»ΦJV Π (1 ~ ΦJJ > ^ ^ 7 ^ 72V,

(3.9)

For Gj and G" we have the inequalities of the same type as (2.27). We

have a decomposition

(3.io) ijv(τ) = Σijχτ) + iyχτ),

where ΓJv, Ij

Jv, ΓJv are defined by (2.26) with GJv replaced by G'Jv, G
J

Jv, Gj'v,

respectively. It follows from (3.8) that if tv e supp G"v then there exists

a q e {1, , v} such that

(3.11) \dtqFj(tu)\^κ»τ-rη2.

In order to show this inequality we prepare a proposition which is the

immediate consequence of Theorem 2.3 of Kumano-go-Taniguchi-Tozaki [8].

PROPOSITION 3.1. Let φj(t, s) = φs{t, s; x, ξ) be solutions of eίconal

equations

(3.12) dtφj + λ ό { t , x , d x φ 3 ) = 0 , φj(t, s ) \ = x - ξ j = 1, , ί .
t = s

For a sequence of phase-functions

(Jv = (jl9 - ., j v + 1 ) , tv e Δv) if we denote by ΦJv(t0, tv9 0; x, ξ) the multi-product

(3.13) 3tqΦJv(tQ, L 0; x, ξ)\χatv = (λjq - λJq+i)(tq, x\ξ«), q = 1,
«=?

where

(*', f ?) = X,,+1(ί?, ί ϊ + 1) Xh+ι(t,, 0)(y, η)

and

z = ̂ X ί 0 , 0 ZJ>+1(<

Because ^(ί, s; x, f) = (^(s, ί)*) ? = Λί/Xί, s)(x - dj(t, s)) ξ we have

Φ,Sh, tυ,0; x,ξ) = (πjβ.)x) ξ
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Then we get

(3.14) dtqΦJv\x=Mjvyo+dJv = (ί° - tMj^)^dtq(dJv + MJvf) + dtqFJv .

In view of (3.13) and (3.6) we get (3.11) because the first term of the right

hand side of (3.14) is smaller than κvτ~r/2/2 if we choose κ sufficiently small.

We shall show that for any N > 0 there exists a constant CN such

that

For a fixed τ, let 2L ΨJX^) Ξ I be a partition of unity on supp G'Jv Π Δv

such that the number of ψJ

Jv whose supports superpose each other is in-

ferior to 2V and we have

(3.16) \l-tί\£ fc2vτ'ΐ/2 if I, tί 6 supp ψ£y,

(3.17) [d'M^Cyw*

for a constant Ca independent of τ and v. In fact, we can make such a

partition of unity by putting

3

for suitable points t{ e supp G'J (Ί Δv. By (3.11) and (3.16) we see that

(3.18) | 3 Λ I ^ ^ " r / 2 / 3 o n S U PPΨ^

because κ2v < κv. Note that

(3.19) ί dtv = ί dti- dtq^dtq + ι dtv ^ d ^ .
J Δv J Δv-\ J tq + i

By means of (3.18) it follows from the integration by parts that

(3.20) I'*'*ehFψvG'y'dtq = [- iτ'ΨτFψvG[\dtqFy'}\ιz\ι-\
J tq+i

where for the brevity we wrote v instead of J». Noting that

(3.21) Fjβ,)\tt.u+1 = Fj,_x{tu •••, t Q . u ί ι + I, , O

for J ' . , - OΊ, , Λ-i, Λ + i, -J.Λ i n v i e w o f (3 17)-(3.20) we have
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where the first term of the right hand side is the sum with respect to all

q satisfying (3.18) for each ψJ

Jv. Here ϊj^^τ), IJv(τ) are defined, as in

(2.26), with phases Fjq_t, FJv and amplitudes GJQ_I9 GJV satisfying inequalities

of the same type as (2.27), respectively, because the number of the super-

position of ψ3

Jv is inferior to 2V and because we have (3.17) and (3.18). If

j q _ x ^ψjq+1 in e/jLj, we can use the above procedure for Z ^ ^ r ) instead of

Ijv{τ) because we have the inequality similar to (3.11) if ίv_j € supp GJQ^
(Ί Λ-i Note that for Jv e Πv we have

(3.22) FJv(i) = Fjrjl.d if jq=jq + l9

where Jr

v_x and tv.x are defined by removing j q and tq in Jv and tvy respec-

tively. If we define (2.26) also for Jv e Π\Π°V then we get

(3.23) IJXT) = Ij.Jτ) if jq=jq + 1,

where the amplitude of Ij^^τ) is given in the form

JXT, l)dtq.Γ
It follows from the formula (3.23) with Jv — J?_x that we can use the

above procedure also for Ij^^τ) when j q _ 1 = j ? + 1 in JVLX. Repeating the

integration by parts with respect to tq9 in view of 3Γ/2 — 1 < 0 we get

(3.15) because (2.29) with v = 0 is verified.

When Jv 5? Jf

μ9 the method which gives (3.15) is applicable to show

(2.29) for IJv(τ) because E(JV) = 0 and so we have (3.11) if tv e supp G'Jv.

To get (2.28) it suffices to show

(3.24) \Ii(τ)\^Cvτ-^-^-^/v\

for a constant C independent of τ and v, because nv ̂  2\ We consider a

Jj(τ). For the simplicity we write j = 0. Noting the hypothesis (H-3) and

support of φJv defined by (3.7), we can see that there exist two subsets

{Pi, --,Pμ} and {pi, , p'μ) of {1, , v} such that

(3.25) χr,=m,=.r, 0 =

and with ε0 = (κvτ~7/2)σ we have
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(3.26) \tPr- tp,\£vε0, r = 1, , μ

(2.27)
" J J I > ε r — 1 a

p'r+1\ == fco ' — xf 9 r-i

if tv e s u p p G°Jυ n J , .

N o t e t h a t t h e n u m b e r of possibi l i t ies of subse t s {pl9 •--,pμ}(=Pμ) a n d

{pi, "-9pμ}(= P'μ) i s infer ior t o 4\ We d e n o t e by (P>, P'μ
j) (7 = 1 , . . . , < ,

n" fg 4") a l l couples of t w o subsets .

F o r a (Pμ, P$ we p u t

(3.28) fJv(l) = Π (1 - Λ)( | ί p r - ^ . i l /eoXl - h)(\tp, - tp, + 1\/ε0) .
r = l

If we define /j^ for each (PJ

μ> Pμ

j) similarly as fJv9 then we get by means

of (H-3)

supp G°Jv Π Δv Π ( π supp(l - /iυ)) - 0 .

Then we have a decomposition

/Q OQ\ TO / _ \ XΠ 70, 7'/ \

where Pyj are defined by (2.26) with GJv replaced by

G^1 = G°jJ}v9 G°yJ = G°jjjv χ;1 (1 - ffy, j ^ 2,

for which we have inequalities of the same type as (2.26).

We consider a Ij\j(τ). For the brevity we write j — 0. We take the

change of variables tv — (tl9 , tv) to (sμ9 wvi9 vP2) as follows: We put

— pr + 1).

For any pair (q, q — ΐ)(q = 1, , v) except (pr, pr — 1) (r = 1, , μ) we

put

Γu^ = ίβ_j — tq if |ίβ_j — ̂ l ^ yεo on supp G°;°,

1̂ 9 = ^-1 — tq otherwise ,

and put

wUl = (wu , wv) , 7j,2 = (LΊ, , vv) .
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It follows from (3.7) that

(3.30) v1 ^ n'v > [(v - μ + l)/2] .

By the above change of variables we get

(3.31) I° °(τ) - f dwvι f dϋ^ [ G^ exp iτFJv dsμ,

where G£°(τ; §„, ΰ>vi, δ j - G°yv°(τ; I) and FJs,, ιẐ , ϋj = F J U Here

A = {^; 0^w,^i^r- ' ' 2 ) },

A = {^ ̂  0; g ^ ̂  ίoj .

In view of (3.21) and (3.22) it follows from (H-3) that

(3.32) Fjυ(sμ, 0, ϋv) = Fj,μ(sμ) .

Noting (3.13) and (3.14), we can see by (H-2) and (H-3) that

(3.33) S, = ?; 4=φ 3,^^(5,) = 0 for q - 1, , μ ,

if sμ € 7Γ* supp Gji°, where π* is the natural projection from R~SX R^X Rϋ

to Rs By (H-2) we get

(3.34) det (dSpdSqFJv(sμ, wvι, vj) ^ 0 on supp G°j°y Π i?s~ χD.χD,

if we choose Λ: small enough. On account of (3.33) and (3.34), the implicit

function theorem shows the existence of the unique solution sμ(wVί, vV2) of

the equation

dSqFjv(-, wVl, vj = 0, q = 1, , μ

if (wui, vV2) varies on D1 χ D2. Regarding (wvi, v,2) as parameters we see

by means of the stationary phase method (see § 1-2 of [2]) that

(3.35) IJv(τ; W, V) - ί G°yv° exp iτFJvdsμ - (2π/rK| det Q\-v*&**»>**«Q

where

Q = Qiw, v)

w, v), w,v); p

q
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R = i < Q-%,μ, d~s,μ > /2 and Go/v

o(s'μ, w, ϋ) = G°/v°(sμ, w, v). Here (sμ) w, ΰ)

sμ is a C°° mapping such that

sμ(sμ9 w, v) = s μ - sμ(w, v) + 0(\sμ - sμ(iυ, ΰ)f),

FJu(sμ, w, v) = Fj£sμ(w, δ), ώ, S) + < Qs^, s

Since volumes of Dx and D2 are estimated by τ'"7^2^! and CM! respec-

tively, in view of (3.35) and (3.30) it is easy to see that Ij'v°(τ) is inferior

to the right hand side of (3.24). It follows from (3.29) that we get (3.24),

which shows (2.28).

When Jv = j ; we note that nv of (3.10) and n'J of (3.29) are 1 and that

the change of variables tv —> (sμ, wvi, vV2) is not necessary, that is, sμ = tμ.

Hence the formula (3.35) gives (2.30) if we show that there exists a constant

c1 > 0 such that

(3.36) IG^ίr ί J I ^ X ) .

Since ξ° - 'Mj.βffl it follows from (2.22)/ that

(3.37) GJμ(τ; Vμ) = ^ψ(Mrμ(tμ)(τ^y + f) + dJμ(t'μ))φ(y)β'jdy.

Noting (2.8) and the change of variables (2.23), we see that βjv is almost

equal to a non-zero constant on supp φ when τ is sufficiently large (note

the argument of ψ in (3.37)). Then we get (3.36) if τ is large enough.

We consider the case when μ = 0. If Jf

μ = (j), that is, the admissible

trajectory Cμ is bic. curve w.r.t., λs then there exists a constant c2 > 0

such that

(3.36)/ \GU){τ)\ ^ c2 > 0 if τ large enough,

which shows (2.30). Inequality (2.29) is obtained in the same manner as

in the case μ 2> 1. If we replace the definition of φJv(tv) by

(3.7/ φjXl)=f\h(\tq,-tq,J_ί\lε0) with εo = (κ»τ-r'y,

the second term of the right hand side of (3.10) is estimated by the right

hands side of (2.29), and the first term of the right hand side of (3.10)

estimated by the right hand side of (2.28) because the volume of Δv Π

is inferior to tlτ~ayv\v\ Then we have (2.28) when μ = 0.

Remark 1. It follows from Lemma 2.1 that if U is the solution of
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(C.P) for the initial value G defined by (2.9) we have

(3.38) c3 ^ \(ψU)(t0; τkξ°)\τ^n + ̂ ^ <g c-ι

if k ^> k0, k0 large enough,

where the function ψ e Cs°(V0) was taken before (2.19) and c3 is a positive

constant independent of τk. By means of the formula (3.35) and the argu-

ment in getting (3.36) we see that

(3.39) c3 = ci|det(3£,3£ei°-(Mj;i(i;)/ + dJfμ(t)))\~^ ,

where c4 is a positive constant independent of μ and the choice of ψ e

Co(Vo) such that ψ = 1 near x°. We note that the number kQ of (3.38)

depends on the choice of ψ.

Remark 2. The proof of Theorem 1 is also valid when there exist

plural admissible trajectories which link pQ with δ0 = (x°, ξ°) if numbers of

step are different each other, the condition (H-2) is satisfied for each adm.

traj. and the following condition is verified:

(H-3)'

Let Vε be a ε-conic neighborhood of £°. There exist an open

neighborhood Vo of x° and 0 < σ ^ 1 such that any ε-admissible

trajectory issuing from p0 whose end point belongs to Vo X Vε is

contained in εσ-neighborhood of some admissible trajectory given

above if ε > 0 small enough.

Indeed, it is clear if we note that the contribution with respect to the

admissible trajectory of the smallest step is dominant.

§ 4. Application of Theorem 1

We consider an example of L with I = 2 on R\ X Rx whose λλ and λ2

are defined

(4.1) λx = a ( t ) D X 9 λ , = - λ l 9

where a(t) is a C°° function such that

fa(βj) = 0, (~ΐ)ja(t) > 0 if t 6 (βj9 βj + 1)

(4.2)

for a sequence {βj}J=0 satisfying
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Q = βo<βχ<- <βj< <T9 β,-+T ( j - o o ) .

Here T is a fixed positive. We can show the existence of a(t) in the same

way as in Proposition 1.3 of [5].

If we take /3; (j = 1, 2, ) as a fixed positive t0 in the definition of

the trajectory, we have 2j admissible trajectories issuing from (0, rf), η° =̂  0

whose end points are (±(2k — 1)2"J, 3?°), k = 1, , 27"1 (see Fig.) Each

adm. traj. satisfies hypotheses of Theorem 1. In fact, (H-l) and (H-2) are

verified because each adm. traj. is isolated in the sense of the Definition

1.2. We can take arbitrary positive σ smaller than 1 in (H-3) because

a'(βk) ^F 0 (k < j). It is easy to check the hypothesis (H-2) because Ms

(j — 1, 2) in (1.2) are identity and because

dtdjβμ) = dtdjq(tq_u tq) + dtqdjq+ί(tqy tq+1)

- ±a(tq) - ( + a(tq)) = ±2a(tq).

It follows from Theorem 1 that there exists an initial value G such that

WFG = {(0,cη°); c>0}

(4.3) WF U(βj) = {(±(2k - 1)2-^, φ; k = 1, . . , 2>-\ c > 0} ,

where [7 is the solution of (C.P) for the initial value G. Here we used

Theorem 3.4 of [9] to show another direction of inclusion in (4.3). Because

we take G uniformly with respect to β3 (/ = 1, 2, ) and because WF U

c T*(i?J X Rl) is closed, we have

THEOREM 2. Let L be the hyperbolic system of this section. Then there

exists an initial value G such that

(4.4) WFG = {(0, cη°); c > 0} WFU(T) = [- 1,1] χ {cη°; c > 0},
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where U is the solution of (C.P).

COROLLARY. For G and U in Theorem 2 we have

ίsing supp G = {0}

jsing supp U(T) - [-1,1].

As stated in Introduction, the result analogous to (4.4) had been given
by [5] by using the work of [12], that is, the precise propagation of
singularities for the equation

d]- t2sdl~ at-%,

where a is a constant and s — 1,2, , (cf. [1] [3]).
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