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ON PROPERTIES OF SEMIPREINVEX FUNCTIONS

X.M. YANG, X.Q. YANG AND K.L. T E O

In this paper, we first discuss some basic properties of semipreinvex functions. We
then show that the ratio of semipreinvex functions is semipreinvex, which extends
earlier results by Khan and Hanson [6] and Craven and Mond [3]. Finally, saddle
point optimality criteria are developed for a multiobjective fractional programming
problem under semipreinvexity conditions.

1. INTRODUCTION

Let R" denote an n-dimension Euclidean space. In [4], Hanson considered the real
differentiable function f(x) on R" whose gradient Vf(x) satisfies the condition: for any
x,y £ R", there exists a vector rj(x,y) G R" such that

Craven [2] called this an invex function. Later, Weir and Mond [10] and Weir and
Jeyakumar [9] introduced preinvex functions defined as follows.

Let K CW and / : K —> R. Then / is preinvex if for any x,y G K, there exists a
vector T)(x, y) G R", for all a G [0,1], y + ar)(x, y) G K

f(y + ar](x, y)) ^ af{x) + (1 - a)f(y).

It is easy to show that preinvexity is a generalisation of invexity for nondifferentiable
function.

In [11], Yang and Chen presented a wider class of generalised convex functions,
called semipreinvex functions, which includes the classes of preinvex functions and arc-
connected convex functions. The class of generalised convex functions preserves some
nice properties that convex functions have (Noor [8]).

A set K in Rn is said to satisfy the "semi-connected" property, if for any x, y

G K and a G [0,1], there exists a vector rj(x, y, a) G R", such that y + ar)(x,y,a)
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€ K. Let A" be a set in R" having the "semi-connected" property with T/(X, y,a) : K
x [0,1] —> Rn and f(x) be a real function on K. Then / is called semi-preinvex with
respect to TJ(X, y, a) if for x,y 6 K and a 6 [0,1],

f(y + ar}(x, y, a)) < af(x) + (1 - a)f(y)

holds and lim 077(1,1/, a) = 0.
a 4-0

In this paper, we give some new properties of semipreinvex functions. In particular,
we show that the ratio of two semipreinvex functions is a semipreinvex function. This
result extends the property, that if / and — g are invex then f/g is invex, obtained by
Khan and Hanson [6] and Craven and Mond [3]. We also point out that a statement made
by Noor in [8] is not correct. Also, saddle point optimality criteria involving semipreinvex
functions are developed for a multiobjective fractional programming problem.

2. SOME NEW PROPERTIES OF SEMIPREINVEX FUNCTIONS

The following results characterise semipreinvex functions.

THEOREM 2 . 1 . Let K be a semi-connected set with respect to 77(1, y, a). A func-

tion f : K —> R is semipreinvex with respect to the same T)(x, y, a) if and only if, for all

x,yeK,ae [0,1], and u, v € R,

f(x) < u and f(y) < v =>• f(y + ar)(x, y, a)) < au + (1 — a)v.

P R O O F : Let / be semipreinvex with respect to 77, and let f(x) < u, f(y) < v,

0 < a < 1. From the definition of semipreinvexity, we have

f(y + ar){x,y,a)) < af(x) + (1 - a)f(y) <au+(l-a)v.

Conversely, let x,y € K, a € [0,1]. For any 6 > 0, f{x) < f(x) + 6, f(y) < f(y) + 6. By
the assumption of the theorem, we have, for 0 < a < 1,

f(y + aV(x, y, a)) < a{f(x) + 6) + ( l - a)(f(y) + 6)= af(x) + (1 - a)f(y) + S.

Since 6 > 0 can be arbitrarily small, it follows that

f{y + an(x,y,a)) ^ af(x) + (1 - a)f(y), o 6 ( 0 , l ) .

Hence, / is semipreinvex on K. This completes the proof. u

THEOREM 2 . 2 . Let K be a semi-connected set with respect to r){x, y,a). A func-

tion f : K —¥ R is semipreinvex with respect to the same T](X, y, a) if and only if the

set
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is semi-connected with respect to T)\ : F(f) x F(f) x [0,1] —> R"+1, where

Vi((y,v),{x,u),a) = (r)(y,x,a),v-u),

forall{x,u),(y,v)eF{f).

PROOF: Necessity. Let (x,u) G F{f) and {y,v) G F(f), that is, f(x) < u and
f(y) < v. From the semipreinvexity of / , we have

OT)(x,y,a)) s* (1 - a)f(x) + af{y) < (l-a)u + av, a€ (0,1).

It follows that

(x + ar)(y, x, a), (1 - a)u + av) G F(f), a G (0,1).

That is,
(x,u)+a(v(y,x,a),v-u) G F(f), a€ (0,1).

Hence, F(f) is a semi-connected set with respect to 7?i((j/,v), (x,u),a) — (r](y,x,a),v

Sufficiency. Assume that F(f) is a semi-connected set with respect to

m((y,v)Ax,u),o:) = (7)(y,x,a),v-u).

Let x,y e K and u,v e R such that / (# ) < u, f{y) < v. Then, (x,u) G F(f) and (j/,u)
G F(f). From the semi-connectedness of the set F(f) with respect to r?i ((y, D), (X, U), a )
= (rj(y, x, a), v - u), we have

(x, u) + c^! ((y,«), (x, u), a) e F(/) , a G (0,1).

It follows that

(x + 077(2/, >̂ a), (1 ~ ot)u + av) G F(f), a G (0,1).

That is,
f(y + ar)(x,y, a)) < au+(l-a)v.

Then, by Theorem 2.1, / is a semipreinvex function with respect to r/(x, y, a) on K. D
In Noor [8], the following statement is given: a function / : K —> R is semipreinvex

with respect to r](x, y, a) if and only if the epigraph of / ,

G(f) = {(x,u) :x<=K,ue R,/(x) ^ u}

is semi-connected with respect to the same 77. This statement contains an error, that is,
the set G(f) is semi-connected with respect to i]i((y,v),(x,u),a) = (j](y,x,a),v - u),
but not with respect to 77. We give a correction of this statement below.
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THEOREM 2 . 3 . Let K be a semi-connected set with respect to T](X, y,ct). A func-
tion f : K —> R is semipreinvex with respect to the same T)(X, y, a) if and only if the
set

G(f) = {(*. u) : x e K, u 6 R, f(x) < u}

is a semi-connected set with respect to T)\ : G{f) x G(f) —> Rn+1, where

Vi((y,v),(x,u),a) = (r)(y,x,a),v-u),

forall(x,u),(y,v)eG(f).

PROOF: Necessity. Let (x,u) € G(f) and (y, v) E G(f), that is, f(x) ^ u and

f{y) ^ v- From the semipreinvexity of / , we have

f(y + ar](x, y, a)) < (1 - a)f(x) + af(y) < (1 - a)u + av, a£ (0,1).

It follows that

(x + at](y, x, a), (1 - a)u + av) £ G{f) a £ (0,1).

That is,
(x, u) + a(r)(y, x, a), v-u) e G(f), a € (0,1).

Hence, G(f) is a semi-connected set with respect to 7?i((y,v), (x,u),a) = (r](y,x,a),v
-u).

Sufficiency. Assume that G(f) is a semi-connected set with respect to

m ((y, v), (x, u), a) = {r]{y,x, a), v - u).

Let x,y £ K and u, v € R such that f(x) ^ u, f(y) ^ v. Then, (x, u) 6 G(f) and (y, v)
€ G(f). From the semi-connectedness of the set G(f) with respect to rji ((y, v), (x, u), a)
=• (r)(y,x,a),v — u), we have

(x,u) + arh((y,v),(x,u),a)eG(f), a € (0 ,1) .

It follows that

(x + ar1(y,x,a),(l-a)u + av) eG(f), a e ( 0 , l ) .

That is,
f(y + a>T)(x, y, a)) ^ au + (1 - a)v.

Hence, / is a semipreinvex function with respect to 7j(x, y, a) on K. 0

THEOREM 2 . 4 . Let K c Rn + 1 and

f(x) = inf{u : u € R,(x,u) € K},Vx G Rn.
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If K is a semi-connected set with respect to 771 : K x K x [0,1] —> R n + 1 and TJ :

R" x I " x [0,1] —> R" satisfying

Vi({y,v),{x,u),a) = (n(y,x,a),v-u), for all {x,u),{y,v) € K,

then f : Rn —• R is a semipreinvex function with respect to 77 on Rn.

PROOF: It suffices to show that the function / : R" —> R is a semipreinvex function
with respect to r](y,x, a). To see this, let x, y € R". Since AT is a semi-connected set
with respect to ??i((j/,w), (x,u),a), we have, for any (x,u), (y,v) € K,

(x, u) + am ((y, v), (x, u),a)e K, Va e (0,1).

It follows from 771 {(y, v), (x, u),a) — (r](y, x, a), v - u) that

(x, u) + arji ((y, v), (x, u), a) = (x + ar)(x, y, a), (I- a)u + av) e K, Va e (0,1).

By the definition of / , we obtain

f(x + ar){x, y, a)) ^ af(y) + (1 - a)f(x), Va 6 (0,1).

Hence, / is a semipreinvex function with respect to 77 on R". D

THEOREM 2 . 5 . Let I be an index set. If (5j),e/ is a family of semi-connected
subsets in Rn+1 with respect to the same function % : Rn+1 x R"+1 x [0,1] —> Rn+1,
then their intersection f"| Si is a semi-connected set with respect to the same function 771.

PROOF: Let {x,a), (j/,/3) e fl Si. Then, for each i 6 /., (x,a), (y,0) e St. Since S{
16/

is a semi-connected set with respect to the same function 771, for each i € I, it follows
that

(y + aiji(i, y, a), aa + (1 - a)0) € Su 0 ^ a ^ 1
Thus

f]u Va € [0,1].

Hence, the result follows. D

THEOREM 2 . 6 . Let K C I " be a semi-connected set with respect to

77: R" x R" x [0,1] —> Rn,

and a family of real-valued functions (fi)iei be semipreinvex with respect to the same -n
and bounded from above on K. Then, the function f(x) = supig/ fi(x) is a semipreinvex
function with respect to the same 77 on K.

PROOF: Since each fi is a semipreinvex function for the same function 77 on K, it
follows from Theorem 2.3 that its epigraph

G(fi) = { (x ,a ) \xeK,ae R,/.-(*) ^ a }
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is a semi-connected set in R" x R with respect to % = (77(2/, x, a), v - u). Therefore, their
intersection

--{{x,a)\xeK,aeR,fi(x)£a,i€l}

= {(x,a) \x € K,aeR,f(x) ̂  a}

is also a semi-connected set in R" x R with respect to 771 = (r)(y, x,a), v-u),by Theorem
2.5. This intersection is the epigraph of / . Hence, by Theorem 2.3, / is a semipreinvex
function with respect to 77 on K. D

The following theorem is due to Khan and Hanson [6] and Craven and Mond [3].

THEOREM 2 . 7 . Let Xo c R" and let f and g be real-valued functions defined on
Xo- If fix) ^ 0, g(x) > 0, f{x) and —g(x) are invex with respect to the same r](x,y) on
Xo, then f(x)/g(x) is an invex function with respect torj(x,y) = (g{y)/g{x))r){x,y).

Now we present a similar result in:

THEOREM 2 . 8 . Let Xo C Rn and let f and g be real-valued functions deGned on
Xo- If f{x) ^ 0, g(x) > 0, f(x) and —g(x) are semipreinvex with respect to a same
T](x,y,a) on Xo, then f(x)/g(x) is a semipreinvex function with respect to Tj(x,y,a)
= (9(y))I'(a9{y) + (1 - a)g{x))r){x,y,a).

PROOF: Since f(x) and — g(x) are semipreinvex functions with respect to the same
77(x, y, a) and f(x) ^ 0, g{x) > 0, we have, for any x,y e Xo, and a € [0,1],

— )(y + af}(x, y,a)) — —.—•—_ ' '
gj\* n g(y + ar)(x,y,a))

_ f{y + °<{9(y))/{°<9(y) + (1 - a)g(x))v(2, y, QQ)
~ 9(y + a(g{y))/{ag(y) + (1 - a)g{x))r){x,y,a))

< (Qg(y))/(«g(i/) + (1 - <x)g(z))f(x) + (1 - (<*9(y))/(<x9{y) + (i - a)gW))/(y)
^ (<*g(y))/(ag(y) + (1 - a)g(x))g(x) + (1 - (ag(y))/(ag{y) + (1 - a)g{x)))g{y)

That is, (f(x))/(g(x)) is a semipreinvex function with respect to T}(X, y, a). D
From Theorem 2.8, it is easy to prove the following result.

THEOREM 2 . 9 . Let x0 C R", and let f and g be real-valued differentiate func-
tions defined on Xo. If f{x) ^ 0, g(x) > 0, f(x) and -g(x) are semipreinvex with respect
to the same TJ(X, y, a) on Xo, and lim rj(x, y, a) = T]{x, y), then (f(x))/(g(x)) is an invex
function with respect to

In particular, we wish to point out that the following question remains open: Is there
a similar result as that of Theorem 2.9 for preinvex functions?
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A P P L I C A T I O N S T O M U L T I O B J E C T I V E FRACTIONAL P R O G R A M M I N G

The following notations for vector orderings in R" will be used:

x > y if and only if Xi>yt, i = l , 2 , . . . , n ;

i ^ j i if and only if Xi^yu 1 = 1,2,..., n;

x ~2 y if and only if xt ^ yit i — l,2,...,n, but x ^ y;

x J£ y is the negation of x ~£ y;

x ^ y is the negation of x > y;

Multiobjective fractional programming problems have been studied by many au-
thors. In this section, we obtain saddle point optimality criteria and Lagrangian type
duality results for multiobjective fractional programming problems involving semiprein-
vex functions. We consider the following problem.

Primal Problem (FP):

Minimise

subject to h(x) 1 0 , i £ l

Assume that fj(x) ^ 0, gj{x) > 0, 1 ^ j ^ k, Vi e X.

DEFINITION 3.1: x* is said to be an efficient solution of (FP) if it is feasible for

(FP) and there exists no other feasible solution x of (FP) such that

/(*) < /(**)
g(x)^ g(x*Y

DEFINITION 3.2: x* is said to be a properly efficient solution of (FP) if it is efficient
for (FP) and if there exists a scalar M > 0 such that, for each i,

(fi(x*)/9i(x*)) - (fi(x)/9i(x)) ,
(fj(x))/(9j(x)) - (/;(*•))/(&(*•)) =

for some j such that (fj(x))/(gj(x)) > {fj{x*))/(gj(x')) whenever x is feasible for (FP)
and {fi(x))/(gi(x)) < (/*(*•)•)/(*(*•)).

Following Bector's parametric approach reported in [1], we consider the following
multiobjective optimisation problem.

Primal Problem (MPV):

Minimise (fi{x) - vigi(x),..., fk{x) - vkgk(x))

subject to h(x) 4 0, x e X.

The following Lemma can be proved using similar lines to that given in Kaul and

Lyall [7].
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LEMMA 3 . 1 . Let x* be a properly efficient solution of (FP). Then, x* is a properly
efficient solution of(MPv.) with v* = (f(x*))/(g(x*)).

Conversely if x* is a properly efficient solution of (MPV<) wherevj = (fj(xm))/(gj(x*)),
j — 1,2,... ,k, then x* is a properly efficient solution of (FP).

Following Geoffrion's idea reported in [5], we consider the scalar programs corre-
sponding to (FP) and (MPV-).

Primal Problem (FP)a-:

M i n i m i s e a ( ^
\g{x)

subject to : h(x) i O , i G l .

Primal Problem (MPv.)a.:

Minimise a*T(f(x) — v*g(x))
subject to : h(x) £. 0, x € X.

The following results are due to Geoffrion [5].

LEMMA 3 . 2 . Ifx* is an optimal solution of(FP)a for some a* € R* with strictly
positive components, then x* is a properly efficient solution of (FP).

LEMMA 3 . 3 . Ifx* is an optimal solution of(MPv- )a for some a* 6E R* with strictly
positive components, then x* is a properly efficient solution of (FP).

The following Lemma shows that the converse of the result reported Lemma 3.2 is
valid under semipreinvexity.

LEMMA 3 . 4 . Ifx* is a properly efficient solution of(FP), and / j , —git i — 1,2,..., k,
and hj,j = 1,2,..., m, are semipreinvex functions with respect to a same t] on X, then
x* is an optimal solution of(MPV')a-, where vj = (fj(x*))/(gj(x*)), j = 1,2,..., k, and

o* € a+ - < a € R* : a > 0, y]eg - 1 >.

PROOF: Let x* be a properly efficient solution of (FP), then x* (by Lemma 3.1) is a
properly efficient solution of (MPV.), where vj — (fj(x*))/(gj(x*)), j = 1,2,..., k. Since
fi, —9i> i — 1) 2 , . . . , fc, and hj, j = 1,2,..., m, are semipreinvex functions with respect to
the same i), it follows that /; — v*gi is a semipreinvex function with respect to the same
•q for each i — 1,2,... ,k. Using a similar proof to [10, Theorem 3.2], we see that x* is
an optimal solution of (MPV')Q- where a* G a+. D

Now we define the vector saddle point Lagrangian for (FP) as follows:

9k{x)
fe>)
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where e = ( 1 , 1 , . . . , 1) 6 Kfc.

The vector saddle point problem for (FP) is the problem of finding x* € X, y* 6 E m ,
y* 2. 0 such that

f(x*)+yTh(x*)e f(x*) + y*Th(x')e
g{x*) * 5 ( i«)

,9x f(x*)+y*Th(x*)e f(x) + y*Th(x)e

for all x e X, y e Rm, y ^ 0.

THEOREM 3 . 1 . If (x*, y*) is a solution of the vector saddle point problem and
f, -g and h are semipreinvex with respect to a same 77, then x* is properly efficient for
(FP).

P R O O F : Clearly, (1) implies that h(x*) ^ 0, or else (1) can be violated by appro-
priately making a component of y infinitely large in magnitude. Now taking y = 0 in
(1) yields: y*Th(x*) ^ 0. Noting that y* i 0 and h(x*) ± 0 imply that ytTh(x*) 4 0,
we have y*Th(x*) = 0. Hence, x* is a feasible solution of (FP). (2) is equivalent to the
following statement: The inequality

has no solution on X. From the fact that / , — g and h are semipreinvex with respect to
the same 77, it follows from [11, Lemma 1] that we can find scalars a,' > 0, i = 1,2,..., k,

such that

Q; —; r + > a ; r— i . > a

for all i E l

The equality yTh(x*) = 0 and (3) give that

9i(x)

for a feasible solution x of (FP). Then x* is an optimal solution of (FP)O.. Thus, by

Lemma 3.1, it follows that x* is a properly efficient solution of (FP). D

The program (FP) will be said to satisfy the generalised Slater constraint qualifica-

tion if h is semipreinvex with respect to 77 and there exists Xi £ X such that g(x\) < 0.

THEOREM 3 . 2 . Let x* be a properly efficient solution for (FP). If the generalised

Slater's constraint qualification is satisfied, and f, —g and h are semipreinvex with respect
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to a same 77, then there exists a y* i 0 such that (x*, y*) is a solution of the vector saddle
point problem.

PROOF: Since x* is a properly efficient solution of (FP), it is also an optimal solution
of(MPv.)a., by Lemma 3.4, where v] = (fj{x*))/(gj(x*)), j = 1,2,...,k, and a* € a+.

Since a*T(/ — v*g) is semipreinvex on X with respect to 77, it can be shown by following
an similar line to that given for [10, Theorem 4.1] that there exists a y* € Km, y* 2. 0
such that y'Th(x*) = 0 and

(4) L(x*,y)^L(x',y*)*:L(x,y*)

for all x € X, y € Rm, y ^ 0, where L(x, y) = a*(f(x) - v*g(x) + yTh(x)e).

If (1) is not true, then, for some i € {1,2,.. . , k}, y e Km, y ^ 0, we have

y*Th(x*)
+ (>)[ ) 9i(x*) 9i(x*) >

 9i(x*)

and

,6 ) /j(x') , y*THx*) L fox*) | yTh{x*)
9j(x*) 9j{x*) ~ gj(x') gj{x*)

for all j y£ i-

Multiply (5) by a*gi(x*) and (6) by aj<?j(z*) for j ^ i. Then, add them together.
This, however, yields a contradiction to the first inequality in (4) for y — y. Similarly if
(2) is not true, then, for some i € {1,2, . . . , k}, x G X, we have

(7) Mx') , y'Th{x*) > ft{x) { y'Th(x)

•9i(x') gi{x') 9i(x) gi(x)

and

( 8 ) /,-(») , V'Th{x) , /,(**) | y*Th(x*)

9j{*) 9j(x) ~ 9j(x*) g-j(x')

for all j ^ i.

Multiply (7) and (8) by a*#,(x), i = 1, 2 , . . . , k. Then, add them together. This again
yields a contradiction to the second inequality of (4) in view of the fact that y'Th(x*) — 0
and v\ = (fi(x*))/(gi(x*)), i = l,2,...,k. Thus, (1) and (2) hold. Therefore, (x*,y*) is
a solution of the vector saddle point problem. D
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