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Abstract

We establish the existence of smooth transfer for Guo–Jacquet relative trace formulae
in the p-adic case. This kind of smooth transfer is a key step towards a generalization
of Waldspurger’s result on central values of L-functions of GL2.

1. Introduction

History. The periods of automorphic forms play an important role in the study of automorphic
representations and related number theoretic problems. For example, people believe that
periods of automorphic forms can characterize the Langlands functoriality of automorphic
representations. Recently, Sakellaridis and Venkatesh [SV12] developed an ambitious program,
the so-called relative Langlands program, on this aspect. There are several powerful tools to study
periods. The theory of relative trace formula is one of them, which was first studied by Jacquet.
In [Jac86], Jacquet reproved a remarkable result of Waldspurger [Wal85] on central values of
L-functions of GL2 by comparing relative trace formulae on different groups. In [Guo96], Guo
and Jacquet made a conjecture (see Conjecture 1.1) generalizing Waldspurger’s result to higher
rank cases.

To be precise, let k be a number field, and A its ring of adeles. Consider G = GL2n and
H = GLn×GLn embedded into G diagonally, which are reductive groups over k. Let k′ be a
quadratic field extension of k, and η the quadratic character of A×/k× attached to k′ by class
field theory. Let Z be the center of G. When we say a cuspidal representation π, we always mean
that π is irreducible and automorphic. For a cuspidal representation π of G(A), we consider the
linear forms `H and `H,η on π defined by periods:

`H(φ) :=

∫
H(k)Z(A)\H(A)

φ(h) dh, `H,η(φ) :=

∫
H(k)Z(A)\H(A)

φ(h)η(h) dh,

where φ ∈ π and η(h) := η(deth). We say that π is H-distinguished (respectively (H, η)-
distinguished) if `H 6= 0 (respectively `H,η 6= 0). On the other hand, for a quaternion algebra D
over k containing k′, let G′ = G′D = GLn(D) and H′ = GLn(k′), both viewed as reductive groups
defined over k. View H′ as a subgroup of G′ in the natural way and identify the center of G′

with Z. For a cuspidal representation π′ of G′(A), consider the linear form `H′ on π′ defined by

`H′(φ) :=

∫
H′(k)Z(A)\H′(A)

φ(h) dh, φ ∈ π′.

We say that π′ is H′-distinguished if `H′ 6= 0.

Received 1 August 2013, accepted in final form 7 November 2014, published online 1 June 2015.
2010 Mathematics Subject Classification 11F55 (primary).
Keywords: Guo–Jacquet conjecture, relative trace formula, smooth transfer.
This journal is c© Foundation Compositio Mathematica 2015.

https://doi.org/10.1112/S0010437X15007344 Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
https://doi.org/10.1112/S0010437X15007344


C. Zhang

Denote by X(k′, k) the set of quaternion algebras D over k containing k′. For a cuspidal
representation π of G(A), denote by X(k′, k;π) the subset of X(k′, k) such that the Jacquet–
Langlands correspondence π′D := JL(π) of π exists as a cuspidal representation of G′D(A).

Motivated by Waldspurger’s result in the case n = 1, the following conjecture was made
in [Guo96].

Conjecture 1.1 (Guo–Jacquet). Fix a cuspidal representation π of G(A).

(i) Fix a quaternion algebra D in X(k′, k;π). Suppose that π′D is H′-distinguished. Then π
is both H-distinguished and (H, η)-distinguished.

(ii) Suppose that n is odd and π is both H-distinguished and (H, η)-distinguished. Then
there exists D ∈ X(k′, k;π) such that π′D is H′-distinguished.

Moreover, when n is even, with more restriction, the direction (ii) of Conjecture 1.1 should
also hold. We refer the reader to [FM15, Conjecture 3] and [FMW13, Conjecture 1.5] for more
information.

The periods defined above can be used to study the central value L(1
2 , πk′) = L(1

2 , π)L(1
2 ,

π ⊗ η) where πk′ is the base change of π to G(Ak′). It was shown in [FJ93] that if π is both
H-distinguished and (H, η)-distinguished, then L(1

2 , πk′) 6= 0. One also expects that there exists
a relation between this L-value and the period `H′ on π′.

In [Guo96], a relative trace formula approach called Guo–Jacquet relative trace formulae
today, which is a natural extension of Jacquet’s method in [Jac86], was proposed to attack the
above conjecture. The first step, that is, the fundamental lemma for unit Hecke functions, has
also been established by [Guo96]. The smooth transfer can be viewed as the second step on
the geometric side of Guo–Jacquet relative trace formulae. Since we only focus on the smooth
transfer, which is a local issue, we will not recall the precise form of Guo–Jacquet relative trace
formulae, which is a global issue. We refer the reader to [Guo96] or [FMW13] for more details.

Very recently, Feigon et al. [FMW13] obtained some partial results on Conjecture 1.1, by using
a simple form of Guo–Jacquet trace formulae. They showed the existence of smooth transfer for
Bruhat–Schwartz functions satisfying certain specific properties. Of course, one has to show the
existence of smooth transfer for the full space of Bruhat–Schwartz functions, if one aims to prove
Conjecture 1.1 completely. Due to our result, one can remove some conditions of the results
in [FMW13], as [FMW13, Remark 6.2] states.

There is also a generalization of Waldspurger’s result in another direction: the so-called
Gan–Gross–Prasad conjecture [GGP12] and the refined version of it by Ichino and Ikeda [II10]
in the case of orthogonal groups and by Harris [Har11] in the case of unitary groups. Recently,
Zhang [Zha14a, Zha14b] has made a great advance towards the global Gan–Gross–Prasad
conjecture for unitary groups by using the relative trace formula developed by Jacquet and
Rallis. One of his achievements is his proof of the smooth transfer conjecture in the p-adic case
for the Jacquet–Rallis relative trace formula. His method is close to that of [Jac03]. The several
remarkable successes on the Gan–Gross–Prasad conjecture, both in local and global directions,
will shed some light on the problem considered here.

Results of this article. In this article, we establish the existence of smooth transfer in the p-adic
case for Guo–Jacquet relative trace formulae. Let us briefly explain what the smooth transfer
means. From now on, let F be a p-adic field, which is a completion of k at a finite place. Let E
be a quadratic field extension of F and D a quaternion algebra over F containing E. Notice that
such quaternion algebras are parameterized by F×/NE×, where N is the norm map from E× to
F×. When we want to emphasize the dependence of D on ε ∈ F×/NE×, we write Dε. Let η be
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the quadratic character of F× associated to E/F . We define (G,H) and (G′,H′) over F in the
same way as the global situation. Write G = G(F ), H = H(F ), G′ = G′(F ) and H ′ = H′(F ).

The group H × H (respectively H ′ × H ′) acts on G (respectively G′) by left and right
translations. With respect to this action, we can talk about the notion ofH×H- orH ′×H ′-regular
semisimple (cf. § 3.1) elements in G or G′ respectively. Denote by Grs and G′rs the set of the
regular and semisimple elements in G and G′ respectively. Then there is a natural injection
(cf. Proposition 5.1)

[G′rs] ↪→ [Grs]

from the set of H ′ × H ′-orbits in G′rs to the set of H × H-orbits in Grs. We say that x ∈ Grs

matches y ∈ G′rs and write x ↔ y if the orbit of y goes to that of x under this injection. We say
that x ∈ Grs comes from G′rs if there exists y ∈ G′rs such that x ↔ y. If x ↔ y, their stabilizers
denoted by (H × H)x and (H ′ × H ′)y are isomorphic. Fix a Haar measure on H and a Haar
measure on (H ×H)x for each x ∈ Grs. Note that η|(H×H)x = 1. For each f ∈ C∞c (G), define the
orbital integral of f at x to be

Oη(x, f) =

∫
(H×H)x\H×H

f(h−1
1 xh2)η(deth2) dh1 dh2.

We can define a transfer factor κ (cf. Definition 5.7) which is a function on Grs so that κ(·)Oη(·, f)
only depends on the H ×H-orbits in Grs. Similarly, fix a Haar measure on H ′. We fix the Haar
measure on (H ′×H ′)y for each y ∈ G′rs so that it is compatible with that on (H ×H)x if x ↔ y.
For each f ′ ∈ C∞c (G′), define the orbital integral of f ′ at y to be

O(y, f ′) =

∫
(H′×H′)y\H′×H′

f ′(h−1
1 yh2) dh1 dh2.

For f ∈ C∞c (G) and f ′ ∈ C∞c (G′), we say that f and f ′ are smooth transfers of each other if

κ(x)Oη(x, f) =

{
O(y, f ′) if there exists y ∈ G′rs such that x ↔ y,

0 otherwise.

Denote by C∞c (G)0 the subspace of elements f in C∞c (G) satisfying Oη(x, f) = 0 for any x ∈ Grs

that does not come from G′rs.
Our main result is the following theorem.

Theorem 1.1. For each f ′ ∈ C∞c (G′), there exists f ∈ C∞c (G) that is a smooth transfer of f ′.
Conversely, for each f ∈ C∞c (G)0, there exists f ′ ∈ C∞c (G′) that is a smooth transfer of f .

Now we explain how to reduce the existence of smooth transfer for functions on groups to
the existence of smooth transfer for functions on symmetric spaces. This reduction is a standard
procedure.

There is an involution θ on G such that H = Gθ is the subgroup of G fixed by θ. Let
S := G/H be the p-adic symmetric space associated to (G,H). The group H acts on S by the
conjugate action. There is a symmetrization map s : G → Gι, where ι is the anti-involution
on G defined by ι(g) = θ(g−1) and Gι is the subgroup fixed by ι. The symmetrization map is
given by s(g) = gι(g). Via the map s, we view S as a subset of Gι(F ). An element g ∈ G is
H×H-regular semisimple if and only if x = s(g) ∈ S is H-regular semisimple. Denote by Srs the
subset of regular semisimple elements in S. Let q : C∞c (G) → C∞c (S) be the natural surjection
map defined by

(qf)(x) =

∫
H
f(gh) dh
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if x = s(g). Let x = s(g) ∈ S be regular semisimple. Then its stabilizer Hx is isomorphic to
(H × H)g. We choose the same Haar measure on H as before and the Haar measure on Hx

compatible with that on (H ×H)g. For f̃ ∈ C∞c (S), define the orbital integral of f̃ at x to be

Oη(x, f̃) =

∫
Hx\H

f̃(h−1xh)η(deth) dh.

We define a transfer factor on Srs so that κ(x) = κ(g) if x= s(g). Then, by a routine computation,
we have

κ(g)Oη(g, f) = κ(x)Oη(x, f̃)

for each f ∈ C∞c (G), f̃ = qf ∈ C∞c (S) and x = s(g) ∈ Srs. Thus, the study of orbital integrals
for C∞c (G) with respect to H × H-action is equivalent to that of orbital integrals for C∞c (S)
with respect to H-action. Similarly, the study of orbital integrals for C∞c (G′) with respect to
H ′ × H ′-action is equivalent to that of orbital integrals for C∞c (S′) with respect to H ′-action,
where S′ := G′/H ′ is the p-adic symmetric space associated to (G′,H′).

There is a natural injection (cf. Proposition 5.1)

[S′rs] ↪→ [Srs]

from the set of H ′-orbits in S′rs to the set of H-orbits in Srs. We say that x ∈ Srs matches y ∈ S′rs
and write x ↔ y if the orbit of y goes to that of x. Similarly, for f ∈ C∞c (S) and f ′ ∈ C∞c (S′),
we can define the notion of smooth transfer for them (see § 5.1 for more details). Then we
immediately see that Theorem 1.1 is equivalent to Theorem 5.13 which claims the existence of
smooth transfer at the level of symmetric spaces.

There is also the notion of smooth transfer at the level of Lie algebras, called the Lie algebra
version of smooth transfer. Here, for Lie algebras, we mean the tangent spaces s and s′ of
G/H and G′/H′ at the identity respectively. The notion of smooth transfer in this version is
determined by the orbital integrals with respect to adjoint actions of H and H ′ on s(F ) and
s′(F ) respectively. We refer the reader to § 5 for more details.

Our method of showing the existence of smooth transfer is mainly inspired by Zhang’s
work [Zha14a] on the smooth transfer for the Jacquet–Rallis relative trace formula and
Waldspurger’s work [Wal97] on the endoscopic smooth transfer for Arthur’s stable trace formula.
First, we reduce Theorem 5.13 to Theorem 5.14 which claims the existence of smooth transfer at
the level of Lie algebras. Next we reduce Theorem 5.14 to Theorem 5.16 which asserts that the
Fourier transform preserves smooth transfer up to a nonzero scalar. The several reduction steps
here almost follow those of [Zha14a]. To prove Theorem 5.16, since the absence of a suitable
partial Fourier transform, we could not adapt the inductive argument in [Zha14a, § 4.4] any
more. Our approach is more close to that of [Wal97] where a global argument emerged. However,
there are still some differences between our method and that of [Wal97]. These differences are
caused by the following facts. The first fact is that

[srs(F )] k
⋃

ε∈F×/NE×
[s′ε,rs(F )],

where s′ε is the Lie algebra associated to (G′ε = GLn(Dε),H
′) and [s′ε,rs(F )] (respectively [srs(F )])

is the set of H ′-(respectively H)-regular semisimple orbits. The above two sets are equal if and
only if n = 1. Even worse, the elliptic parts of the above two sets are equal if and only n is
odd. These phenomenons are unlike other cases of relative trace formulae. Now suppose that we
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are in the global setting. The second fact is that if X0 is a global element in srs(k) which does
not come from s′rs(k), then there exist at least two places v1, v2 such that X0 does not come
from s′rs(kv1) or s′rs(kv2). This is unlike the case of endoscopic transfer and prevents us using the

global method to prove Theorem 8.1, which asserts that the orbital integral Oη(X, f̂) = 0 for
X ∈ srs(F ) not coming from s′rs(F ) where f ∈ C∞c (s(F )) is a smooth transfer of some element

in C∞c (s′(F )) and f̂ is its Fourier transform. Instead we will use a pure local argument, which is
due to the referee, to show Theorem 8.1.

To prove Theorem 5.16, we have to show the representability of the Fourier transform
of orbital integrals as distributions (see Theorem 6.1), exhibit ‘limit formulae’ for the kernel
functions (see Proposition 7.1) as Waldspurger did in [Wal95], and also prove analogues of
some results (see Proposition 7.6 and Theorem 8.4) in [Wal97]. These results, which are on
harmonic analysis on certain p-adic symmetric spaces, maybe appear in the literature for the
first time. We expect that the techniques developed in this paper should be probably generalized
to treat some other similar open questions concerning relative trace formulae for symmetric pairs.
Actually, we do successfully generalize this method to prove the existence of smooth transfer for
other relative trace formula in [Zha15]. Here we mention some cases of symmetric pairs where
our results in §§ 6 and 7 should hold. Still let E be a quadratic field extension of a p-adic
field F . The first class of symmetric pairs are ‘inner forms’ of (G,H) or (G′,H′). Now let D
be a central division algebra over F . Let G = GL2m(D) and H = GLm(D) × GLm(D). Then
(G,H) is the symmetric pair considered in [Zha15]. We can also consider the symmetric pair
(G,H) = (GL2m(D),GLm(D⊗F E)), or, more generally, the symmetric pair (G,H) = (GLm(D),
GLm(D′)) where D is a central simple algebra over F containing E and D′ is the centralizer of E
in D. The second class of symmetric pairs are Galois symmetric pairs. Now let H be a connected
reductive group over F , and G = ResE/F (HE) the Weil restriction of the base change of H to
E. Then (G,H) is called a Galois symmetric pair.

Structure of this article. In § 2, we introduce some notations and conventions that are frequently
used in the paper.

In § 3, since (G,H) and (G′,H′) are symmetric pairs, we collect some basic notions and
results on symmetric pairs. In particular, we recall the analytic Luna slice theorem which plays
a pivotal role on the reduction steps of the smooth transfer.

In § 4, we study our specific symmetric pairs (G,H) and (G′,H′) more concretely. We give
a complete description of all the descendants of the corresponding symmetric spaces and their
Lie algebras. We also prove Propositions 4.4 and 4.8, which are about two inequalities. These
inequalities are crucial for bounding the orbital integrals later (see Theorem 6.11).

In § 5, we introduce the main issue of this article, that is, the smooth transfer at the
level of symmetric spaces and its Lie algebra version. We explain why Theorem 5.16 implies
Theorem 5.13. We also prove the fundamental lemma in the Lie algebra version, which is crucial
for our global approach to prove Theorem 5.16.

In § 6, to prove Theorem 5.16, we pay more effort on studying the Fourier transform of
orbital integrals. One of the most important question is to show the representability, that is,
the Fourier transform of an orbital integral considered as a distribution can be represented by
a locally integrable kernel function. We deal with this issue in this section. The representability
itself is also a fundamental question in harmonic analysis on p-adic symmetric spaces.

Section 7 is devoted to showing limit formulae for the kernel functions of the Fourier
transform, which is an analogue of [Wal95, §VIII]. We also construct certain good test functions
which are smooth transfers of each other and whose Fourier transforms are also smooth transfers
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of each other up to a scalar. This construction is an analogue of [Wal97, Proposition 8.2]. Such
test functions are used in the later construction of certain global Schwartz functions.

Finally, in § 8, we finish the proof of Theorem 5.16, basing on the results of § 7 and the
fundamental lemma.

2. Notations and conventions

We now introduce some notations and conventions, which are frequently used in §§ 3–7.

Fields. Let F be a nonarchimedean local field of characteristic 0, with finite residue field. Fix
an algebraic closure F̄ , and denote by ΓF = Gal(F̄ /F ) the absolute Galois group. We denote
by | · |F (respectively vF ) the absolute value (respectively the valuation) of F , and extend them
to F̄ in the usual way. Let OF be the integer ring of F and fix a uniformizer $ of OF . For a
finite extension field L of F , denote by NL/F and TrL/F the norm and trace maps respectively.
Throughout this article, we fix a nontrivial additive unitary character ψ : F → C×.

Varieties and groups. All the algebraic varieties and algebraic groups that we consider are defined
over F except in § 8. We always use a bold letter to denote an algebraic group, an italic letter to
denote its F -rational points, and a Fraktur letter to denote its Lie algebra. For example, let G be
a reductive group. We write G = G(F ) and denote by g the Lie algebra of G. By a subgroup of
G, we mean a closed F -subgroup. We write NG(·) for the normalizer and ZG(·) for the centralizer
of a certain set in G, and write Z for the center of G. For an algebraic variety X, X = X(F )
is equipped with the natural topology induced from F . Thus, X is a locally compact totally
disconnected topological space. Sometimes we treat finite-dimensional vector spaces defined over
F as algebraic varieties over F .

Heights. Let G be a reductive group and G = G(F ). Following Harish-Chandra, we define a
height function ‖ · ‖ on G valued in R>1. If T is a sub-torus of G and T = T(F ), denote by
‖ ·‖T\G the induced height function on G. The precise definitions and some important properties
of height functions are well discussed in [Kot05, § 18].

`-spaces. For a group H acting on a topological X and for a subset ω ⊂ X, we denote by ωH the
set {h · x : x ∈ ω, h ∈ H}, and by cl(ω) the closure of ω in X. For an element x ∈ X, we denote
by Hx the stabilizer of x in H.

For a locally compact totally disconnected topological space X, we denote by C∞c (X) the
space of locally constant and compactly supported C-valued functions, and by D(X) the space
of distributions on X. For f ∈ C∞c (X), we denote by Supp(f) its support. Suppose that H (an
`-group) acts on X. Then H acts on C∞c (X) by

(h · f)(x) = f(h−1 · x) where h ∈ H, f ∈ C∞c (X), x ∈ X,

and acts on D(X) by

〈h · T, f〉 = 〈T, h · f〉 where T ∈ D(X), f ∈ C∞c (X).

For a locally constant character η : H → C×, we say that a distribution T ∈ D(X) is (H, η)-
invariant if h · T = η(h)T for each h ∈ H. We denote by D(X)H,η the space of (H, η)-invariant

distributions on X. If X is a finite-dimensional space and the Fourier transform f 7→ f̂ on
C∞c (X) has already been defined, for T ∈ D(X), we denote by T̂ its Fourier transform, which is

a distribution on X defined by T̂ (f) = T (f̂).
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Fourier transforms. Let G be a reductive group, g its Lie algebra. Fix a nondegenerate symmetric

bilinear form 〈 , 〉 on g(F ), which is invariant under conjugation. For each subspace f of g(F ) on

which the restriction of 〈 , 〉 is nondegenerate, we always equip this subspace with the self-dual

Haar measure with respect to the bi-character ψ(〈 , 〉). Define the Fourier transform f 7→ f̂ on

C∞c (f) by

f̂(X) =

∫
f
f(Y )ψ(〈X,Y 〉) dY.

Then
ˆ̂
f(X) = f(−X).

Weil index. At last, we recall the definition of Weil index γψ associated to a quadratic space. Let

q be a nondegenerate quadratic form on a finite-dimensional vector space V over F . If L ⊂ V

is an OF -lattice, set i(L) =
∫
L ψ(q(v)/2) dv and L̃ = {v ∈ V : ∀` ∈ L,ψ(q(v, `)) = 1}. It is well

known that if L̃ ⊂ 2L, then |i(L)| = vol(L)1/2 vol(L̃)1/2, and i(L)|i(L)|−1 is independent of L.

We denote by γψ(q) the value i(L)|i(L)|−1, assuming L̃ ⊂ 2L. Recall that γψ(q) is an eighth root

of unity.

3. Symmetric pairs I: general cases

In this section, we recall some basic theory and necessary results for general symmetric pairs.

We refer the reader to [AG09, RR96] for most of the contents.

3.1 Actions of reductive groups

Fix a reductive group H and an affine variety X with an action by H, both defined over F .

Write H = H(F ) and X = X(F ). Then the categorical quotient X/H of X by H exists. In fact,

X/H = Spec(O(X)H). Let π denote the natural maps X → X/H and X → (X/H)(F ).

Let x ∈ X. We say that x is:

– H-semisimple or H-semisimple if Hx is Zariski closed in X (or equivalently, Hx is closed

in X for the analytic topology);

– H-regular or H-regular if the stabilizer Hx has minimal dimension.

We usually say semisimple or regular without mentioning H if there is no confusion. Denote by

Xrs (respectively Xss) the set of regular semisimple (respectively semisimple) elements in X.

If X is an F -rational finite-dimensional representation of H, we call a point x ∈ X nilpotent

if 0 ∈ cl(Hx). Let N denote the set of nilpotent elements in X, which is called the null-cone of

X. Note that N = π−1(π(0)).

An open subset U ⊂ X is called saturated if there exists an open subset V ⊂ (X/H)(F ) such

that U = π−1(V ).

For x ∈ X a semisimple element, we denote by NX
Hx,x the normal space of Hx at x. Then

the stabilizer Hx acts naturally on the vector space NX
Hx,x. We call (Hx, N

X
Hx,x) the sliced

representation at x, or the descendent of (H,X) at x. Then we have the following analytic

Luna slice theorem (cf. [AG09, Theorem 2.3.17]). There exist:

– an open H-invariant neighborhood Ux of Hx in X with an H-equivariant retract p : Ux →

Hx;

– and an Hx-equivariant embedding ψ : p−1(x) ↪→ NX
Hx,x with an open saturated image such

that ψ(x) = 0.
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Write Zx = p−1(x) and Nx = NX
Hx,x. We call (Ux, p, ψ, Zx, Nx) an analytic Luna slice at x. Let

y ∈ p−1(x) and z := ψ(y). Then we have (cf. [AG09, Corollary 2.3.19]):

– (Hx)z = Hy;

– NX
Hy,y ' N

Nx
Hxz,z

as Hy spaces;

– y is H-semisimple if and only if z is Hx-semisimple.

3.2 Symmetric pairs
A symmetric pair is a triple (G,H, θ) where H ⊂G are reductive groups, and θ is an involution
of G such that H = Gθ is the subgroup of fixed points. For a symmetric pair (G,H, θ) we
define an anti-involution ι : G → G by ι(g) = θ(g−1). Set Gι = {g ∈ G; ι(g) = g} and define a
symmetrization map

s : G → Gι, s(g) = gι(g).

By this symmetrization map we can view the symmetric space S := G/H as a subset of Gι(F ).
We consider the action of H×H on G by left and right translation and the action of H on Gι

by conjugation.
Let θ act by its differential on g = Lie(G). Write h = Lie(H). Thus,

h = {X ∈ g : θ(X) = X}.

Put

s = {X ∈ g : θ(X) = −X},

on which H acts by adjoint action. We also call s the Lie algebra of S for simplicity, though,
in fact s is not a Lie algebra. We always write Xh = h−1 · X = Ad(h−1)X for h ∈ H and
X ∈ s. There exists a G-invariant θ-invariant nondegenerate symmetric bilinear form 〈 , 〉 on g.
In particular, g = h⊕ s is an orthogonal direct sum with respect to 〈 , 〉.

Let (G,H, θ) be a symmetric pair. Let g ∈ G be H ×H-semisimple, and x = s(g). Then the
triple (Gx,Hx, θ|Gx) is still a symmetric pair, and we have (cf. [AG09, Proposition 7.2.1]):

– x is semisimple (both as an element of G and with respect to the H-action);

– Hx ' (H ×H)g and sx ' NG
HgH,H as Hx-spaces, where sx is the centralizer of x in s(F ).

A symmetric pair obtained in this way is called a descendant of (G,H, θ). Note that sx can be
identified with the Lie algebra of Gx/Hx.

Weyl integration formula. Let (G,H, θ) be a symmetric pair. Denote by srs the regular and
semisimple locus in s with respect to the H-action. We call a torus T of G θ-split if θ(t) = t−1

for all t ∈ T. Fix a Cartan subspace c of s, which by definition is a maximal abelian subspace of
s consisting of H-semisimple elements. We always assume that a Cartan subspace is F -rational
when we mention it. Then there is an F -rational θ-split torus denoted by T− whose Lie algebra
is c. Denote by creg the H-regular locus in c. Let T be the centralizer of c in H, which is a torus.
Write t = Lie(T).

For X ∈ creg(F ), we now introduce the factor |Ds(X)|F . Consider the morphism

β : (T\H)× c −→ s, (h,X) 7→ Xh,

which is regular at (1, X). The Jacobian of the differential dβ at (1, X) is equal to

|Ds(X)|F := |det(ad(X); h/t⊕ s/c)|1/2F .
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Denote by Sc the set of roots of T− in g(F̄ ). For any α ∈ Sc, since c ⊂ s, we have θ(α) = −α.
Therefore θ interchanges the root subspaces gα and g−α. Fix a set of positive abstract roots in
Sc, and choose a basis {E1, E2, . . . , Ek} of root vectors for the direct sum of gα with α > 0. Set
g1 =

⊕
α∈Sc

gα so that g = t⊕ c⊕ g1. Then over F̄ :

– {E1, E2, . . . , Ek} ∪ {θ(E1), θ(E2), . . . , θ(Ek)} is a basis for g1;

– {E1 − θ(E1), E2 − θ(E2), . . . , Ek − θ(Ek)} is a basis for s1 := s ∩ g1;

– {E1 + θ(E1), E2 + θ(E2), . . . , Ek + θ(Ek)} is a basis for h1 := h ∩ g1.

Under the adjoint action, elements of c map h1 to s1 and vice versa. There is an involution % on
g1 whose +1-eigenspace is

⊕
α>0 gα and whose −1-eigenspace is

⊕
α<0 gα. Then % interchanges

s1 and h1, and % commutes with ad(X) for X in c(F ). Thus we have

|Ds(X)|F = |det(% ◦ ad(X); h/t)|F = |det(% ◦ ad(X); s/c)|F .

For a Cartan subspace c, let M be its normalizer in H, Wc := M/T be its Weyl group. The
map

(T\H)× creg(F ) −→ srs(F )

obtained from β by restriction is a local isomorphism of p-adic manifolds and its image, denoted
by scrs, is open in s(F ). The fiber of β through (h,X) ∈ (T\H)× creg(F ) has |Wc| elements. We
have

srs(F ) =
⊔
c

scrs,

where the union runs over a (finite) set of representatives c for the set of H-conjugacy classes of
F -rational Cartan subspaces in s. Then, for f ∈ C∞c (s(F )), we have the following Weyl integration
formula (cf. [RR96, p. 106])∫

s(F )
f(X) dX =

∑
c

1

|Wc|

∫
creg(F )

|Ds(X)|F
∫
T\H

f(Xh) dh dX.

The null-cone. Denote by N the null-cone of s(F ) with respect to the H-action. Then, by [AG09,
Theorem 7.3.8], N is also the set of nilpotent elements (considered as elements in g) in s(F ). It
is known that N consists of finitely many H-orbits. Denote by Nq the union of all H-orbits in
N of dimension 6 q, which is closed in Nq+1.

Fix X0 6= 0 in N . Denote by XH
0 the H-orbit of X0, and hX0 the centralizer of X0 in h(F ).

Write r = dim hX0 . Then XH
0 is of dimension d− r where d = dim h(F ), and is open in Nd−r.

Lemma 3.1. There exists a group homomorphism φ : SL2(F ) → G such that

dφ

((
0 1
0 0

))
= X0, dφ

((
0 0
1 0

))
=: Y0, φ

((
t 0
0 t−1

))
=: Dt(X0),

with Y0 ∈ s(F ) and Dt(X0) ∈ H.

Proof. See [AG09, Lemma 7.1.11]. 2

We write d(X0) = dφ
(

1 0
0 −1

)
, which is in h(F ). Actually, we often write d = d(X0) when there

is no confusion. For any X ∈ s(F ), we denote by sX (respectively gX) the centralizer of X in
s(F ) (respectively g(F )).
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Lemma 3.2. We have

sY0 ⊕ [X0, h(F )] = s(F ), sX0 ⊕ [Y0, h(F )] = s(F ).

Proof. We have the following decompositions (cf. [HC70, p. 73]):

gY0 ⊕ [X0, g(F )] = gX0 ⊕ [Y0, g(F )] = g(F ).

From the decomposition

g(F ) = h(F )⊕ s(F ),

we see that

gX0 = hX0 ⊕ sX0 , gY0 = hY0 ⊕ sY0 ,

since

[X0, h(F )] ⊂ s(F ), [X0, s(F )] ⊂ h(F ), [Y0, h(F )] ⊂ s(F ), [Y0, s(F )] ⊂ h(F ).

Thus we have

(hY0 ⊕ sY0)⊕ ([X0, s(F )]⊕ [X0, h(F )]) = h(F )⊕ s(F ),

and

(hX0 ⊕ sX0)⊕ ([Y0, s(F )]⊕ [Y0, h(F )]) = h(F )⊕ s(F ).

Taking the s-parts of the above identities, we prove the assertions of the lemma. 2

Let Γ be the Cartan subgroup of H with the Lie algebra F · d(X0). Let ξ be the rational

character of Γ defined by

Xγ
0 = ξ(γ)X0, Y γ

0 = ξ−1(γ)Y0,

which is not trivial. Let r′ = dim sY0 . The following lemma essentially is a variant of [HC70,

Lemma 34], and the proof is also similar to that of [HC70, Lemma 34].

Lemma 3.3. We can choose a basis Y0 = U1, U2, . . . , Ur′ for sY0 and rational characters ξ1, ξ2,

. . . , ξr′ of Γ such that:

(i) ξ2
i = ξλi , λi > 0;

(ii) ad(−d)Ui = λiUi;

(iii) Uγi = ξ−1
i (γ)Ui, for all 1 6 i 6 r′.

Set

m =
1

2

( ∑
16i6r′

λi

)
=

1

2
Tr(ad(−d)|sY0 ).

4. Symmetric pairs II: specific cases

Now we focus on the symmetric pairs concerned in this article. The notations introduced here

will be used without mention from now on.
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4.1 The case (G,H)
Let G = GL2n and H = GLn×GLn, both defined over F . The group H is viewed as a subgroup
of G by embedding it into G diagonally. Let ε =

(
1n 0
0 −1n

)
and define an involution θ on G by

θ(g) = εgε. Then H = Gθ, and the Lie algebra s associated to (G,H, θ) is

s(F ) =

{(
0 A
B 0

)
: A,B ∈ gln(F )

}
' gln(F )⊕ gln(F ).

If we identify s(F ) with gln(F )⊕ gln(F ), then H acts on s(F ) by

(h1, h2) · (A,B) = (h1Ah
−1
2 , h2Bh

−1
1 ).

Recall that we write Xh = h−1 · X for h ∈ H,X ∈ s(F ). We fix a nondegenerate symmetric
bilinear form 〈 , 〉 on g(F ) defined by

〈X,Y 〉 = tr(XY ) for X,Y ∈ g(F ).

Then 〈 , 〉 is both G-invariant and θ-invariant.
Since H1(F,H) is trivial, we have S = S(F ) where S := G/H and S := G/H. We identify

S with its image in Gι(F ) by the the symmetrization map s. When we want to emphasize the
index n, we write Gn,Hn, θn and sn.

Descendants. Now we describe all theH-semisimple elements x of S and s(F ) and the descendants
(Hx, sx) at x. The results below also hold when F = k is a number field.

Proposition 4.1. (i) Each semisimple element x of S is H-conjugate to an element of the form

x(A,n1, n2) :=


A 0 0 A− 1m 0 0
0 1n1 0 0 0 0
0 0 −1n2 0 0 0

A+ 1m 0 0 A 0 0
0 0 0 0 1n1 0
0 0 0 0 0 −1n2

 ,

with n = m + n1 + n2, A ∈ glm(F ) being semisimple without eigenvalues ±1 and unique up
to conjugation. Moreover, x(A,n1, n2) is regular if and only if n1 = n2 = 0 and A is regular in
gln(F ).

(ii) Let x = x(A,n1, n2) in S be semisimple. Then the descendant (Hx, sx) is isomorphic to
the product (as a representation)

(GLm(F )A, glm(F )A)× (Hn1 , sn1)× (Hn2 , sn2).

Here GLm(F )A and glm(F )A are the centralizers of A in GLm(F ) and glm(F ) respectively, and
GLm(F )A acts on glm(F )A by conjugation.

Proof. See [JR96, Proposition 4.1] or [Guo96, Proposition 1.1] for the first assertion. The second
assertion can be proved by a direct computation. 2

Proposition 4.2. (i) Each semisimple element X of s(F ) is H-conjugate to an element of the
form

X(A) =

0 0 1m 0
0 0 0 0
A 0 0 0
0 0 0 0


with A ∈ GLm(F ) being semisimple and unique up to conjugation. Moreover, X(A) is regular if
and only if m = n and A ∈ GLn(F ) is regular.
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(ii) Let X = X(A) in s(F ) be semisimple. Then the descendant (HX , sX) is isomorphic to
the product (as a representation)

(GLm(F )A, glm(F )A)× (Hn−m, sn−m).

Proof. See [JR96, Propositions 2.1 and 2.2]. 2

The null-cone. Fix X0 6= 0 in the null-cone N of s(F ). Let (X0, d, Y0) be an sl2-triple as before.
Recall d = d(X0).

Lemma 4.3. We have dim sY0 = dim hX0 = r.

Proof. The lemma follows from Lemma 3.2 and the relation

dim hX0 + dim[X0, h(F )] = dim h(F ) = dim s(F ). 2

In [JR96, Lemma 3.1], hX0 is well studied, and an upper bound for Tr(ad(d)|hX0
) is given

there. By a minor modification of the discussion in [JR96, § 3], we study the structure of sY0 .
For our purpose, we want to compare r + m with n2 + (n/2), where r = dim sY0 and m =
1
2 Tr(ad(−d)|sY0 ). The following inequalities will be used in § 6.3.

Proposition 4.4. We have the relations:

(i) r > n;

(ii) r +m > n2 + n/2.

Proof. Write Y = Y0 for short. Let V = V0 ⊕ V1, where Vi = Fn, 0 6 i 6 1. We identify g(F ) =
Hom(V, V ), h(F ) = Hom(V0, V0) ⊕ Hom(V1, V1) and s(F ) = Hom(V1, V0) ⊕ Hom(V0, V1). Given
Y , there is a decomposition V = W1 ⊕ W2 ⊕ · · · ⊕ Wk, where each Wi is an indecomposable
F [Y ]-submodule. We can choose a generator zi of Wi such that zi is in either V0 or V1. Define
deg(zi) = 0 if zi ∈ V0, otherwise deg(zi) = 1. Write wi = dimWi. There is an isomorphism from
sY0 to some space

Z =
⊕

16i,j6k

Sij .

Now we describe Sij precisely. An element bij ∈ Sij is in F [X]/(Xwj ) of the form:

(i) bij(X) =
∑

max{wj−wi,0}6`<wj a
ij
` X

`;

(ii) aij` = 0 when δiδj = (−1)`, where δi := (−1)deg(zi).

We define an operator ρ(d) := X(d/dX) on F [X], and an endomorphism ρ(d) on Z by restriction.
Each Sij is an invariant subspace of ρ(d). Set

rii = dimSii, mii = Tr(ρ(d)|Sii)

for 1 6 i 6 k, and

rij = dimSij + dimSji, mij = Tr(ρ(d)|Sij ) + Tr(ρ(d)|Sij )

for 1 6 i < j 6 k. Then

r =
∑

16i6k

rii +
∑

16i<j6k

rij , m =
∑

16i6k

mii +
∑

16i<j6k

mij .

The following lemma gives a complete list of rii, rij ,mii and mij . One can obtain it by the above
description and a direct computation.
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Lemma 4.5. (i) For 1 6 i 6 k, if wi = 2pi or 2pi + 1, we have

rii = pi, mii = p2
i .

(ii) For 1 6 i < j 6 k, we have the following table.

wi, wj δiδj mij rij

wi = 2pi, wj = 2pj 1 2pipj 2 min(pi, pj)
wi = 2pi, wj = 2pj −1 2pipj − 2 min(pi, pj) 2 min(pi, pj)

wi = 2pi, wj = 2pj + 1, wi < wj ±1 2pipj 2pi
wi = 2pi, wj = 2pj + 1, wi > wj 1 2pipj + 2(pi − pj)− 1 2pj + 1
wi = 2pi, wj = 2pj + 1, wi > wj −1 2pipj 2pj + 1
wi = 2pi + 1, wj = 2pj + 1 1 2pipj 2 min(pi, pj)
wi = 2pi + 1, wj = 2pj + 1 −1 2pipj + 2 sup(pi, pj) 2 min(pi, pj) + 2

Now we continue to prove the proposition.
(1) The first inequality of the proposition can be read off from the above list. It is not hard

to see that r = n if and only if Y 2n = 0 and Y 2n−1 6= 0.
(2) For the second inequality, compare with the proof of [JR96, Lemma 3.1]. We denote by

u the number of indices i such that wi is odd and δi = 1, which is equal to the number of indices
j such that wj is odd and δj = −1. Then

n = u+
∑

16i6k

pi,

where wi = 2pi or 2pi + 1. Thus

n2 +
n

2
= u2 +

u

2
+

(
2u+

1

2

)( ∑
16i6k

pi

)
+
∑

16i6k

p2
i + 2

∑
16i<j6k

pipj .

On the other hand

r +m =
∑

16i6k

(rii +mii) +
∑

16i<j6k

(rij +mij)

is determined by the data

(w1, δ1, w2, δ2, . . . , wk, δk).

We now induct on the number of indices i so that wi is even. First assume all the integers wi
are odd. Then it is not hard to see that

r +m=
∑

16i6k

(p2
i + pi) + 2

∑
16i<j6k

pipj + 2
∑

16i<j6k,δiδj=1

min(pi, pj)

+ 2
∑

16i<j6k,δiδj=−1

(sup(pi, pj) + min(pi, pj) + 1)

=
∑

16i6k

(p2
i + pi) + 2

∑
16i<j6k

pipj + 2
∑

16i<j6k, δiδj=1

min(pi, pj)

+ 2u
∑

16i6k

pi + 2u2
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> 2u2 + (2u+ 1)

( ∑
16i6k

pi

)
+
∑

16i6k

p2
i + 2

∑
16i<j6k

pipj

> n2 +
n

2
.

Now we can arrange the data so that wk is even. If k = 1, then w1 = 2n and r + m = n2 + n
which is strictly greater than n2 + n/2. By induction on the number of indices i with wi even,
we may assume that the inequality has been proved for the data (w1, δ1, . . . , wk−1, δk−1). By the
induction hypothesis, the contribution of the indices (i, j) with 1 6 i 6 j 6 k − 1 is strictly
greater than n′2 + n′/2 where

n′ = u+
∑

16i<k

pi.

Therefore we have to show that the sum of the contributions rik + mik of the pairs (i, k) with
i 6 k is greater than or equal to

n2 +
n

2
− n′2 − n′

2
= p2

k +
pk
2

+ 2
∑

16i<k

pipk + 2upk.

The contribution of the pair (k, k) is p2
k+pk > p2

k+pk/2. Now consider the contribution of a pair
(i, k) with i < k. It is always greater than or equal to 2pipk when wi = 2pi. When wi = 2pi + 1,
it is always greater than or equal to 2pipk + 2pk (called the good case) except when wk > wi
and δiδk = −1 (called the bad case). It contributes at least 2pipk in the bad case. However, it
does not matter when bad cases happen. Since if bad cases happen u′ times with δi = −δk, good
cases happen at least u′ times with wj such that wj = 2pj + 1 and δj = δk, which contribute at
least 2u′pk +

∑
j 2pjpk. This concludes the proof of the proposition. 2

4.2 The case (G′,H′)

Let E = F (
√

∆) be a quadratic extension field of F , and D a quaternion algebra over F containing
E. Let η be the quadratic character of F× associated to E by the local class field theory. Denote
by σ the nontrivial element in Gal(E/F ). Sometimes we also write x 7→ x̄ instead of x 7→ σ(x).
Let G′ = GLn(D), H′ = GLn(E), both viewed as reductive groups defined over F . We can write
G′ and H′ in a more concrete form. There is a γ ∈ F× such that, if we denote by Lγ the algebra{(

A γB
B̄ Ā

)
: A,B ∈ gln(E)

}
,

then G′ = G′(F ) = L×γ and H ′ = H′(F ) consists of the ones with B = 0. We will always consider
G′ and H′ in such a form. Note that if γ ∈ NE/FE

×, then G′ ' GL2n. Fix a square root δ of ∆

in E. Let ε′ =
(
δ1n 0

0 −δ1n
)
. Define an involution θ on G′ by θ(g) = ε′gε′−1. Then H′ = G′θ. Let

g′ = Lie(G′), h′ = Lie(H′), and s′ be the Lie algebra associated to the symmetric pair (G′,H′, θ)
so that g′ = h′ ⊕ s′. Thus, s′(F ) is the space{(

0 γB
B̄ 0

)
: B ∈ gln(E)

}
' gln(E).

If we identify s′(F ) with gln(E), then H ′ = GLn(E) acts on s′(F ) by h ·X = hXh̄−1, which is
the σ-twisted conjugation. We fix a nondegenerate symmetric bilinear form 〈 , 〉 on g′(F ) defined
by

〈X,Y 〉 = tr(XY ), X, Y ∈ g′(F ).

By definition, it is easy to see 〈X,Y 〉 ∈ F , and 〈 , 〉 is both G′-invariant and θ-invariant.
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Since H1(F,H′) is trivial, we have S′ = S ′(F ), where S′ := G′/H ′ and S ′ := G′/H′. We
identity S′ with its image in G′ι(F ) by the symmetrization map s. When we want to emphasize
the index n, we write G′n,H

′
n, θn and s′n.

Before we continue, we recall some basic facts about the norm map in theory of base change
(cf. [AC89]). If x ∈ GLn(E), we write N(x) = xx̄, which is called the norm of x. If x ∈ GLn(E),
N(x) is conjugate in GLn(E) to an element y of GLn(F ), and y is uniquely determined modulo
conjugation in GLn(F ). We denote by N(GLn(E)) the subset of elements y in GLn(F ) satisfying
that there exists x ∈ GLn(E) such that y is conjugate to N(x). In fact, if y ∈ N(GLn(E)), there
exists x ∈ GLn(E) such that y = xx̄.

Descendants. Now we describe all the H ′-semisimple elements x of S′ and s′(F ) and the
descendants at x. The results below also hold when F = k is a number field.

Proposition 4.6. (i) Each semisimple elements y of S′ is H ′-conjugate to an element of the
form

y(A,n1, n2) =


A 0 0 γB 0 0
0 1n1 0 0 0 0
0 0 −1n2 0 0 0
B̄ 0 0 A 0 0
0 0 0 0 1n1 0
0 0 0 0 0 −1n2

 ,

with A ∈ glm(F ) being semisimple and unique up to conjugation such that A2 − 1m ∈
γN(GLm(E)) and B ∈ GLm(E) is a matrix unique up to twisted conjugation such that
A2 − 1m = γBB̄ , AB = BA, and n = m + n1 + n2. Moreover, y(A,n1, n2) is regular if and
only if n1 = n2 = 0 and A is regular in gln(F ).

(ii) Let y = y(A,n1, n2) in S′ be semisimple. Then the descendant (H ′y, s
′
y) is isomorphic to

the product (as a representation)

(GLm(E)A ∩GLσ,m(E)B, glm(E)A ∩ glσm(E)B)× (H ′n1
, s′n1

)× (H ′n2
, s′n2

).

Here

GLσ,m(E)B := {h ∈ GLm(E) : hB = Bh̄},
glσm(E)B := {X ∈ glm(E) : X B̄ = BX̄ },

and GLσ,m(E)B acts on glσm(E)B by σ-twisted conjugation.

Proof. See [Guo96, Proposition 1.2] for the first assertion. The second assertion can be proved
by a direct computation. 2

Proposition 4.7. (i) Each semisimple element Y of s′(F ) is H ′-conjugate to an element of the
form

Y (A) =

 0 0 γB 0
0 0 0 0
B̄ 0 0 0
0 0 0 0


where A ∈ GLm(F ) is semisimple and unique up to conjugation such that A ∈ γN(GLm(E)) and
B ∈ GLm(E) is a matrix unique up to twisted conjugation such that A = γBB̄ . Moreover, Y (A)
is regular if and only if A ∈ GLn(F ) is regular.
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(ii) Let Y = Y (A) in s′(F ) be semisimple. Then the descendant (H ′Y , s
′
Y ) is isomorphic to

the product (as a representation)

(GLσ,m(E)B, gl
σ
m(E)B)× (H ′n−m, s

′
n−m).

Proof. See [Guo97, Lemma 2.1] for the first assertion. The second assertion can be proved by a
direct computation. 2

The null-cone. Fix X0 6= 0 in the null-cone N ′ of s′(F ). Let (X0, d, Y0) be an sl2-triple as before.
By the same proof as Lemma 4.3, we have

dim s′Y0 = dim h′X0
.

Write r = dim s′Y0 and m = 1
2 Tr(ad(−d)|s′Y0 ). We still want to compare r + m with n2 + n/2,

which is easier in this case.

Proposition 4.8. We have r +m > n2 + n/2 and m′ < n2 where m′ = 1
2 Tr(ad(−d)|h′Y0 ).

Proof. Write Y0 =
(0 γA
Ā 0

)
. If we change (X0, d, Y0) to be any triple in the H ′-orbit of (X0, d, Y0),

the numbers r and m are unchanged. By [Guo97, Lemma 2.2], we can choose A to be of the
Jordan normal form. At the same time, we can also choose d to be in gln(F ). In such a situation,
it is easy to see that there is a d-equivariant isomorphism s′Y0 ' h′Y0 . Thus r = r′ and m = m′,

where r′ = dim h′Y0 . Since g′Y0 = h′Y0 ⊕ s′Y0 , we have m + m′ = 1
2(4n2 − r − r′). Thus we get

m = 1
4(4n2 − 2r) and r +m = n2 + r/2. The inequality r > 2n implies the lemma. 2

5. Smooth transfer

In this section, we introduce the main object of this article: the smooth transfer between Schwartz
functions on different symmetric spaces. By several reduction steps, we explain why Theorem 5.16
implies Theorem 5.13 in details.

5.1 Definitions

Matching of orbits. We first recall the matching between semisimple orbits in symmetric spaces
S and S′, and then give the definition of matching between semisimple orbits in Lie algebras
s(F ) and s′(F ). These definitions of matching orbits also hold when F = k is a number field.

Proposition 5.1. (i) For each semisimple element y of S′, there exists h ∈ H(E) such that
hyh−1 belongs to S. This establishes an injection of the H ′-semisimple orbits in S′ into the
H-semisimple orbits in S, which carries the orbit of y(A,n1, n2) in S′ to the orbit of x(A,n1, n2)
in S.

(ii) For each semisimple element Y of s′(F ), there exists h ∈H(E) such that hY h−1 belongs
to s(F ). This establishes an injection of the H ′-semisimple orbits in s′(F ) into the H-semisimple
orbits in s(F ), which carries the orbit of Y (A) in s′(F ) to the orbit of X(A) in s(F ).

Proof. See [Guo96, Proposition 1.3] for the first assertion. The second assertion can be proved
in the same way. 2

Definition 5.2. (i) We say that y ∈ S′ss (respectively Y ∈ s′ss(F )) matches x ∈ Sss (respectively
X ∈ sss(F )) and write x ↔ y (respectively X ↔ Y ) if the above map sends the orbit of y
(respectively Y ) to the orbit of x (respectively X).
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(ii) We say that x ∈ Sss (respectively X ∈ sss(F )) comes from S′ss (respectively s′ss(F )) if
there exists y ∈ S′ss (respectively Y ∈ s′ss(F )) such that x ↔ y (respectively X ↔ Y ). We denote
by Sss,0 (respectively sss(F )0) the subset of elements in Sss (respectively sss(F )) coming from S′ss
(respectively s′ss(F )).

Remark 5.3. Denote by Q (respectively Q′) the categorical quotient S/H (respectively S ′/H′),
and by q (respectively q′) the categorical quotient s/H (respectively s′/H′). The maps in
Proposition 5.1 induce natural maps

Q′ ↪→ Q and q′ ↪→ q.

Actually, Q is isomorphic to the affine space An, and the quotient map π : S → Q is given by(
A B
C D

)
7→ (tr∧iBC), i = 1, 2, . . . , n.

The natural map Q′ ↪→ Q is induced by

S ′ −→ Q,
(
A γB
B̄ Ā

)
7→ (tr∧iγBB̄), i = 1, . . . , n.

Similarly, q is isomorphic to the affine space An, and the quotient map π : s → q is given by(
0 A
B 0

)
7→ (tr∧iAB), i = 1, 2, . . . , n.

The natural map q′ ↪→ q is induced by

s′ −→ q,

(
0 γB
B̄ 0̄

)
7→ (tr∧iγBB̄), i = 1, . . . , n.

Remark 5.4. A semisimple element x = x(A,n1, n2) in Sss comes from S′ss if and only if A2−1m ∈
γN(GLm(E)) where m = n − n1 − n2. A semisimple element X = X(A) in sss(F ) comes from
s′ss(F ) if and only if A ∈ γN(GLm(E)).

Remark 5.5. Suppose that x ∈ Sss and y ∈ S′ss match. We want to compare (Hx, sx) with (H ′y, s
′
y).

It suffices to assume that x= x(A,n1, n2) and y = y(A,n1, n2). Thus, by Propositions 4.1 and 4.6,
we have

(Hx, sx) ' (GLm(F )A, glm(F )A)× (Hn1 , sn1)× (Hn2 , sn2),

and

(H ′y, s
′
y) ' (GLm(E)A ∩GLσ,m(E)B, glm(E)A ∩ glσm(E)B)× (H ′n1

, s′n1
)× (H ′n2

, s′n2
)

with A2−1m = γBB̄ and AB = BA. By the proof of Lemma 5.26 below, we see that (GLm(E)A∩
GLσ,m(E)B, glm(E)A∩glσm(E)B) essentially is an inner form of (GLm(F )A, glm(F )A). The other
factors in the descendants are related in a similar manner as (H, s) and (H ′, s′) are. ForX ∈ sss(F )
and Y ∈ s′ss(F ) such that X ↔ Y , by Propositions 4.2 and 4.7 and Lemma 5.26, the factors of
the descendants (HX , sX) and (H ′Y , s

′
Y ) have the similar relations to the above.

Remark 5.6. It is obvious that the maps in Proposition 5.1 send regular semisimple orbits to
regular semisimple ones. We denote by Srs,0 (respectively srs(F )0) the subset of elements in Srs

(respectively srs(F )) coming from S′rs (respectively s′rs(F )). Suppose that x ∈ Srs (respectively
x ∈ srs(F )) and y ∈ S′rs (respectively y ∈ s′rs(F )) match. Then by the above remark, we see that
Hx is an inner form of H ′y. Since they are torus, we have

Hx ' H ′y.
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Transfer factors. To state our results on smooth transfer, we need to define transfer factors for
the symmetric pair (G,H, θ) and its descendants. In general, the transfer factor is defined as
follows (cf. [Zha14a, Definition 3.2]).

Definition 5.7. Let a reductive group H act on an affine variety X, both defined over F . Let η be
a quadratic character of H. Suppose that for all regular semisimple x ∈X = X(F ), the character
η is trivial on the stabilizer Hx. Then a transfer factor is a smooth function κ : Xrs → C× such
that κ(xh) = η(h)κ(x) for any h ∈ H.

Definition 5.8. For convenience, we give an explicit definition of various transfer factors in our
situation as follows.

– Type (H,S): for x =
(
A B
C D

)
∈ S regular semisimple, define κ(x) := η(det(B)).

– Type (Hm, sm): for X =
(

0 A
B 0

)
∈ sm(F ) regular semisimple, define κ(X) := η(det(A)).

– Type (GLm(F )A, glm(F )A): we define κ to be the constant function with value 1.

In cases (1) and (2), η is the nontrivial quadratic character on F× associated to E, while in case
(3) η is the trivial character. In all the cases, it is easy to see that η is trivial on the stabilizers
Hx.

Smooth transfer. Now we give the definition of smooth transfer. First, we fix Haar measures on
H and H ′. Notice that, for x ∈ Srs (respectively x ∈ srs(F )) and y ∈ S′rs (respectively y ∈ s′rs(F ))
such that x ↔ y, their stabilizers Hx and H ′y are isomorphic to each other (see Remark 5.6), and
we fix such an isomorphism. Fix a Haar measure on Hx for each x ∈ Srs (respectively x ∈ srs(F )).
We fix a Haar measure on H ′y for each y ∈ S′rs (respectively y ∈ s′rs(F )) which is compatible with
that of Hx if x ↔ y.

Definition 5.9. For x ∈ Srs (respectively x ∈ srs(F )) and f ∈ C∞c (S) (respectively f ∈
C∞c (s(F ))), define the orbital integral of f at x to be

Oη(x, f) :=

∫
Hx\H

f(xh)η(h) dh.

For y ∈ S′rs (respectively y ∈ s′rs(F )) and f ′ ∈ C∞c (S′) (respectively f ′ ∈ C∞c (s′(F ))), define the
orbital integral of f ′ at y to be

O(y, f) :=

∫
H′y\H′

f(xh) dh.

Definition 5.10. (i) For f ∈ C∞c (S) and f ′ ∈ C∞c (S′), we say that f and f ′ are smooth transfers
of each other if for each x ∈ Srs

κ(x)Oη(x, f) =

{
O(y, f ′) if there exists y ∈ S′rs such that x ↔ y,

0 otherwise.

We denote by C∞c (S)0 the subspace of elements f in C∞c (S) satisfying Oη(x, f) = 0 for any x in
Srs but not in Srs,0.

(ii) For f ∈ C∞c (s(F )) and f ′ ∈ C∞c (s′(F )), we say that f and f ′ are smooth transfers of each
other if for each X ∈ srs(F )

κ(X)Oη(X, f) =

{
O(Y, f ′) if there exists Y ∈ s′rs(F ) such that X ↔ Y,

0 otherwise.

We denote by C∞c (s(F ))0 the subspace of elements f in C∞c (s(F )) satisfying that Oη(X, f) = 0
for any X in srs(F ) but not in srs(F )0.
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Remark 5.11. The definition of smooth transfer depends on the Haar measures on H and H ′,

but the existence of smooth transfer does not depend on them. Sometimes, we will write transfer

in place of smooth transfer for short.

Remark 5.12. For semisimple x ∈ S and semisimple y ∈ S′ such that x ↔ y, by Remark 5.5, we

can define the notion of smooth transfer between elements in C∞c (sx(F )) and those in C∞c (s′y(F )),

determined by the orbital integrals with respect to the action of Hx on sx(F ), the action of H ′y
on s′y(F ), and the transfer factor κ defined as above. Similarly, for semisimple X ∈ s(F ) and

semisimple Y ∈ s′(F ) such that X ↔ Y , we can also define the notion of smooth transfer between

elements in C∞c (sX(F )) and those in C∞c (s′Y (F )).

Our main theorems are as follows.

Theorem 5.13. For each f ′ ∈ C∞c (S′), there exists f ∈ C∞c (S) that is a smooth transfer of f ′.

Conversely, for each f ∈ C∞c (S)0, there exists f ′ ∈ C∞c (S′) that is a smooth transfer of f .

Theorem 5.14. For each f ′ ∈ C∞c (s′(F )), there exists f ∈ C∞c (s(F )) that is a smooth transfer

of f ′. Conversely, for each f ∈ C∞c (s(F ))0, there exists f ′ ∈ C∞c (s′(F )) that is a smooth

transfer of f .

In the later subsections, we will show that Theorem 5.14 implies Theorem 5.13.

Lemma 5.15. To prove Theorem 5.14, it suffices to prove it for the case s = sε when ε = 1.

Proof. Let

s′(F ) =

{
Y (B) =

(
0 B
B̄ 0

)
: B ∈ gln(E)

}
.

Choose a representative γ ∈ F× of the nontrivial element in F×/NE×. Let

s′γ(F ) =

{
Yγ(B) =

(
0 γB
B̄ 0

)
: B ∈ gln(E)

}
.

Identify H ′ with GLn(E). Then there is a natural H ′-equivariant isomorphism

j : s′(F )
∼
→ s′γ(F ), Y (B) 7→ Yγ(B),

which implies the lemma. 2

Fourier transform. Define the Fourier transform f 7→ f̂ on C∞c (s(F )) (respectively C∞c (s′(F )))

with respect to the fixed bilinear form 〈 , 〉 and the additive character ψ. The following theorem

is the key point in proving the existence of smooth transfer.

Theorem 5.16. There exists a nonzero constant c ∈ C such that if f ∈ C∞c (s(F )) and f ′ ∈
C∞c (s′(F )) are smooth transfers of each other, then f̂ and cf̂ ′ are also smooth transfers of each

other.

In the later subsections, we will prove the following main result of this section.

Proposition 5.17. Theorem 5.16 implies Theorem 5.14.
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5.2 Fundamental lemma
In this subsection, we prove the following fundamental lemma (Lemma 5.18). This is an important
example of the smooth transfer and also a crucial lemma for us to prove Theorem 5.16 by using
global method.

Now assume that γ = 1. Thus, G′ is isomorphic to G. Suppose that F is of odd residual
characteristic and E is unramified over F . We choose the Haar measures on H and H ′ so that
vol(H(OF )) = 1 and vol(H′(OF )) = 1 respectively.

Let f0 ∈ C∞c (s(F )) and f ′0 ∈ C∞c (s′(F )) be the characteristic functions of the standard lattices

L = gln(OF )⊕ gln(OF ), L′ = gln(OE)

respectively.

Lemma 5.18. The characteristic functions f0 and f ′0 are smooth transfers of each other.

Remark 5.19. The group version of the above fundamental lemma was proved in [Guo96]
(cf. [Guo96, Theorem]).

Proof. Let X ∈ srs(F ). It suffices to consider X of the form
(

0 1n
A 0

)
with A ∈ GLn(F ) being

regular semisimple. Then we have

κ(X)Oη(X, f0) =

∫
HX(F )\H(F )

f0(h−1
1 h2, h

−1
2 Ah1)η(h1h2) dh1 dh2

=

∫
(GLn(F )A\GLn(F ))×GLn(F )

f0(h2, h
−1
2 h−1

1 Ah1)η(h2) dh2 dh1.

Let K = GLn(OF ) and K ′ = GLn(OE). For r = (ri,j) ∈ gln(F̄ ), put |r| = maxi,j |ri,j |F . Then
for r, t ∈ gln(F ), the value f(r, t) 6= 0 if and only if |r| 6 1, |t| 6 1. Let ΦA be the characteristic
function of the set of (r, t) ∈GLn(F )×GLn(F ) satisfying |r|6 1, |t|6 1 and |det(rt)|F = |detA|F .
Then ΦA belongs to C∞c (GLn(F )×GLn(F )) and is bi-K-invariant both for the variables r and t.
Let ΨA be the function on GLn(F ) defined by

ΨA(g) =

∫
GLn(F )

ΦA(h, h−1g)η(h) dh.

Then ΨA belongs to C∞c (GLn(F )), and is bi-K-invariant (that is, ΨA is a Hecke function). We
have

κ(X)Oη(X, f0) =

∫
GLn(F )A\GLn(F )

ΨA(g−1Ag) dg.

If Y =
(

0 B
B̄ 0

)
∈ s′rs(F ), we have

O(Y, f ′0) =

∫
GLσ,n(E)B\GLn(E)

f ′0(h−1Bh̄) dh.

Let ΨB be the characteristic function of the set of r ∈ GLn(E) satisfying |r| 6 1 and |det r|F =
|detB|F . Then ΨB belongs to C∞c (GLn(E)), and is bi-K ′-invariant. We have

O(Y, f ′0) =

∫
GLσ,n(E)B\GLn(E)

ΨB(h−1Bh̄) dh.

Denote by
bc : H(GLn(E),K ′) −→ H(GLn(F ),K)
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the base change map between the two spaces of Hecke functions. Then, in fact, it was shown
in [Guo96, Corollary 3.7] (can be read off from the proof of [Guo96, Proposition 3.7]) that ΨA = 0
if A /∈ N(GLn(E)), and ΨA = bc(ΨB) if A = BB̄. Recall that ΨA = bc(ΨB) implies that

κ(X)Oη(X, f0) = O(Y, f ′0) if X ↔ Y.

Hence the lemma follows. 2

5.3 Reduction steps
The main aim of this subsection is to reduce Theorem 5.13 to Theorem 5.14. The reduction steps
here are almost the same as those in [Zha14a, § 3].

Descent of orbital integrals. The following proposition essentially is [Zha14a, Proposition 3.11],
whose proof is also valid here.

Proposition 5.20. Let X be any one of S, S′, s(F ) or s′(F ). Let x ∈ X be semisimple and
(Ux, p, ψ, Zx, Nx) an analytic Luna slice at x. Then there exists a neighborhood ξ ⊂ ψ(p−1(x))
of 0 in Nx satisfying the following properties.

– For each f ∈ C∞c (X), there exists fx ∈ C∞c (Nx) such that for all regular semisimple z ∈ ξ
with z = ψ(y) we have ∫

Hy\H
f(yh)η(h) dh =

∫
Hy\Hx

fx(zh)η(h) dh.

– Conversely, for each fx ∈ C∞c (Nx), there exists f in C∞c (X) such that above equality holds
for any regular semisimple z ∈ ξ.

Here H = H ′ and η = 1 when X is S′ or s′(F ).

Reduction to local transfer. Recall that we denote by Q (respectively Q′) the categorical quotient
S/H (respectively S ′/H′), and by q (respectively q′) the categorical quotient s/H (respectively
s′/H′). By Remark 5.3, we always view Q′ and q′ as closed subsets of Q and q respectively. Let
X be any one of S,S ′, s or s′, and Q the quotient Q,Q′, q or q′ of X. Let Q(F )rs be the regular
semisimple locus in Q(F ). Since H1(F,H) = H1(F,H′) = 1, the natural map π : X(F ) → Q(F )
is a surjection. For x ∈ Q(F )rs, the fiber π−1(x) consists of precisely one orbit.

Definition 5.21. Let X and Q be as above. Write X = X(F ) and Q = Q(F ).

(i) Let Φ be a function on Qrs which vanishes outside a compact set of Qrs. For x ∈ Q,
we say that Φ is a local orbital integral around x, if there exists a neighborhood U of x and a
function f ∈ C∞c (X) such that for all y ∈ Urs and z with π(z) = y we have

Φ(y) = κ(z)Oη(z, f).

(ii) For f ∈ C∞c (X), define a function π∗(f) on Qrs to be

π∗(f)(x) = κ(y)Oη(y, f) for x ∈ Qrs, y ∈ π−1(x).

Here κ = 1 and η = 1 when X is S ′ or s′.

The following result is [Zha14a, Proposition 3.8].
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Proposition 5.22. Let Φ be a function on Qrs which vanishes outside a compact set Ξ of Q. If
Φ is a local orbital integral at each x ∈ Ξ, it is an orbital integral. Namely there exists f ∈ C∞c (X)
such that for all y ∈ Qrs, and z with π(z) = y we have

Φ(y) = κ(z)Oη(z, f).

Definition 5.23. For x ∈ Q(F ) (respectively x ∈ q(F )), we say that local transfer around x
exists, if for each f ′ ∈ C∞c (S′) (respectively f ′ ∈ C∞c (s′(F ))), there exists f ∈ C∞c (S)0 (respectively
f ∈ C∞c (s(F ))0) such that in a neighborhood U of x, the equality

π∗(f) = π∗(f
′) on U ∩Q(F )rs (respectively U ∩ q(F )rs)

holds, and conversely for each f ∈ C∞c (S)0 (respectively f ∈ C∞c (s(F ))0), there exists f ′ ∈ C∞c (S′)
(respectively f ′ ∈ C∞c (s′(F ))) satisfying the above equality.

Corollary 5.24. To prove Theorems 5.13 and 5.14, it suffices to prove the existence of local
transfer around all elements of Q(F ) and q(F ).

Proof. This is a direct consequence of Proposition 5.22. 2

Reduction to local transfer around zero.

Lemma 5.25. To prove the existence of local transfer around an element z in Q(F ) (respectively
q(F )), it suffices to prove the existence of smooth transfer for the sliced representations (Hx, sx)
and (H ′y, s

′
y) where x in Sss (respectively sss(F )) and y in S′ss (respectively s′ss(F )) are such that

x ↔ y and π(x) = π(y) = z.

Proof. This result partially follows from Proposition 5.20 and the fact that for f ′ ∈ C∞c (S′)
(respectively C∞c (s′(F ))) and f ∈ C∞c (S) (respectively C∞c (s(F ))) the functions π∗(f

′) and π∗(f)
are locally constant on Q(F )rs (respectively q(F )rs). It remains to prove Lemma 5.29 ahead,
which shows the compatibility of the transfer factors under the semisimple descent. 2

Lemma 5.26. (i) Given semisimple A ∈ glm(F ) such that A2 − 1m = γBB̄ , AB = BA with
B ∈ GLm(E), the smooth transfer exists for the sliced representations

(GLm(F )A, glm(F )A) and (GLm(E)A ∩GLσ,m(E)B, glm(E)A ∩ glσm(E)B).

(ii) Given semisimple A ∈ GLm(F ) such that A = γBB̄ with B ∈ GLm(E), the smooth
transfer exists for the sliced representations

(GLm(F )A, glm(F )A) and (GLσ,m(E)B, gl
σ
m(E)B)

Proof. Firstly, we prove the second assertion. We can assume that γ = 1 and A is of the form
diag(A1, A2, . . . , Ak) such that

GLm(F )A =

k∏
i=1

GLmi(Fi),

where Fi = F [Ai] is a field and Ai is in the center of GLmi(Fi). For each 1 6 i 6 k, let Li =
E ⊗F Fi. Since A ∈ N(GLm(E)), there exists Bi ∈ GLmi(Li) such that Ai = N(Bi) for each i.
We can choose B to be diag(B1, B2, . . . , Bk). Then GLσ,mi(Li)Bi is an inner form of GLmi(Fi),
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and GLσ,m(E)B =
∏k
i=1 GLσ,mi(Li)Bi . For X ∈ glσm(E)B, it is easy to see that X B̄ ∈ glσ,m(E)B,

where
glσ,m(E)B = {Y ∈ glm(E) : YB = BȲ },

which is the Lie algebra of GLσ,m(E)B. For X ∈ glσm(E)B and h ∈ GLσ,m(E)B, we
have h−1Xh̄B̄ = h−1X B̄h. Therefore, timing B̄ on right, we get a GLσ,m(E)B-equivariant
isomorphism

glσm(E)B −→ glσ,m(E)B,

where GLσ,m(E)B acts on glσ,m(E)B by conjugation. Since the existence of smooth transfer
between GLm(Fi) and its inner forms is known, we complete the proof.

The first assertion is proved in the same way. By the above discussion, we know that the
smooth transfer holds for

(GLm(F )A2−1m , glm(F )A2−1m) and (GLσ,m(E)B, gl
σ
m(E)B).

We can choose some scalar λ ∈ F so that A + λ ∈ GLm(F ). Then A + λ ∈ GLm(F )A2−1m and
A+ λ ∈ GLσ,m(E)B. Hence

(GLσ,m(E)B)A+λ = GLm(E)A ∩GLσ,m(E)B

is an inner form of
(GLm(F )A2−1m)A+λ = GLm(F )A.

The rest of the proof is the same as that of the first assertion. 2

Proposition 5.27. To prove the existence of local transfer around all elements of Q(F ) or q(F ),
it suffices to prove the existence of local transfer around zero of q(F ).

Proof. By Lemma 5.25, it suffices to prove the existence of smooth transfer for the sliced
representations (Hx, sx) and (H ′y, s

′
y) where x ↔ y. By Remark 5.5 and Lemma 5.26, it suffices

to prove the existence of smooth transfer for (Hm, sm) and (H ′m, s
′
m), that is, the existence of

local transfer around zero of q(F ). 2

Corollary 5.28. Theorem 5.14 implies Theorem 5.13.

Explicit analytic Luna slices. We now describe explicit analytic Luna slices at semisimple elements
of S or s(F ). We refer the reader to [JR96, p. 76] for the discussions on s, and to [JR96, § 5.2]
for the discussions on S.

First let X ∈ s(F ) be semisimple. Write s(F ) = sX ⊕ s⊥X , where s⊥X is the orthogonal
complement of sX in s(F ) with respect to 〈 , 〉. Set

Z = {ξ ∈ sX : det([ad(X + ξ)2]|s⊥X ) 6= 0},

which is a nonempty open set of sX and invariant under HX . Let ZX = {X+ξ : ξ ∈ Z}. Consider
the map

φ : H × ZX −→ s(F ), (h,X + ξ) 7→ Adh(X + ξ),

which is everywhere submersive. Let UX be the image of φ, which is an open H-invariant set in
s(F ). Then ZX and UX are what we want, and ψ is the natural map:

ψ : ZX −→ sX , X + ξ 7→ ξ.

1843

https://doi.org/10.1112/S0010437X15007344 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007344


C. Zhang

Next let x ∈ S be semisimple. Write x = s(g) for some g ∈ G, where s is the symmetrization
map. Consider the map

φ : H ×Gx ×H −→ G, (h, ξ, h′) 7→ hξgh′.

Let Z ′ be the set of ξ such that φ is submersive at (1, ξ, 1), which is also the set of ξ in Gx such
that

det([1−Ad s(ξg)]|g⊥x ) 6= 0.

Let

W ′ = {X ∈ sx : det(1 +X) det(1−X) 6= 0},

which is an open neighborhood of 0 in sx. Consider the Cayley transform

λ : W ′ −→ Gx, X 7→ (1−X)(1 +X)−1,

and denote by V the image of W ′ under λ. Put Z = Z ′ ∩ V and W = λ−1(Z). Let Ux be the
image of φ(H × Z × H) under the symmetrization map s, and Zx the image of φ(1 × Z × 1)
under s. Then Zx and Ux are what we want.

The lemma below follows from the above construction and a direct computation by choosing
x = x(A,n1, n2) and X = X(A) in a standard form. We omit the proof here.

Lemma 5.29. Let x ∈ S (respectively X ∈ s(F )) be semisimple. Then we may choose an
Hx-invariant (respectively HX -invariant) neighborhood of x (respectively X) such that for any
regular semisimple y in this neighborhood, κ(y) is equal to a nonzero constant times κ(ψ(y)).

5.4 Proof of Proposition 5.17
Now we can prove Proposition 5.17 with the help of the following results.

Theorem 5.30. Denote by N the null-cone of s(F ), by N ′ the null-cone of s′(F ).

(i) Let T ∈ D(s(F ))H,η be such that Supp(T ) ⊂ N and Supp(T̂ ) ⊂ N . Then T = 0.

(ii) Let T ∈ D(s′(F ))H
′

be such that Supp(T ) ⊂ N ′ and Supp(T̂ ) ⊂ N ′. Then T = 0.

Proof. The first assertion is proved in [JR96, Proposition 3.1] when η is the trivial character.
The same proof goes through for the quadratic character η. The same proof is also valid for the
second assertion, noting the relation m′ < n2 in Proposition 4.8. 2

The following corollary is a direct consequence of the above theorem (cf. [Zha14a,
Corollary 4.20]).

Corollary 5.31. (i) Let C0 =
⋂
T ker(T ) where T runs over all (H, η)-invariant distributions

on s(F ). Then each f ∈ C∞c (s(F )) can be written as

f = f0 + f1 + f̂2,

with f0 ∈ C0 and fi ∈ C∞c (s(F )−N ), i = 1, 2.

(ii) Let C0 =
⋂
T ker(T ) where T runs over all H ′-invariant distributions on s′(F ). Then each

f ∈ C∞c (s′(F )) can be written as

f = f0 + f1 + f̂2,

with f0 ∈ C0 and fi ∈ C∞c (s′(F )−N ′), i = 1, 2.
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Proof of Proposition 5.17. Now we assume that Theorem 5.16 is true. First we consider the

converse direction: given f ∈ C∞c (s(F ))0, we want to show its smooth transfer exists in C∞c (s′(F )).

For a general element f in C∞c (s(F )), we say that f ′ ∈ C∞c (s′(F )) is a smooth transfer of f if

O(y, f ′) = κ(x)Oη(x, f), x ↔ y,

for each y ∈ s′rs(F ). We can and do assume that there exists a nonzero c ∈ C such that if f ′

is a smooth transfer of f ∈ C∞c (s(F )), then cf̂ ′ is a smooth transfer of f̂ . This assumption is

proved in Theorem 8.2. Based on this assumption, we will show the following stronger form of

Theorem 5.14: for each f ∈ C∞c (s(F )), there exists f ′ ∈ C∞c (s′(F )) that is a smooth transfer

of f . We use an induction argument to show this result. Suppose that the stronger form of

Theorem 5.14 holds for C∞c (sm(F )) and C∞c (s′m(F )) for every m< n. Thus, by Corollary 5.24 and

Lemma 5.26, for each f ∈ C∞c (s(F )−N ), its smooth transfer exists. Therefore, by Corollary 5.31,

it suffices to show the existence of smooth transfer for f̂ with f ∈ C∞c (s(F ) − N ), which is

guaranteed by the assumption.

For the other direction in Theorem 5.14 the proof is the same. 2

6. Representability

For X ∈ srs(F ), it is more convenient to consider the normalized orbital integral

Iη(X, f) := |Ds(X)|1/2F Oη(X, f), f ∈ C∞c (s(F )).

Similarly, for Y ∈ s′rs(F ), we consider the normalized orbital integral

I(Y, f ′) := |Ds′(Y )|1/2F O(Y, f ′), f ′ ∈ C∞c (s′(F )).

If X ↔ Y , it is not hard to see that |Ds(X)|F = |Ds′(Y )|F . Hence it does not matter if we

consider the smooth transfer with respect to the normalized orbital integrals instead of the

orbital integrals introduced before. The Fourier transform of the normalized orbital integral IηX
is defined to be

Îη(X, f) = Iη(X, f̂).

For Y ∈ s′rs(F ), we define ÎY similarly.

To prove Theorem 5.16, we first need to study the Fourier transform of orbital integrals. In

this section, we prove the following fundamental theorem on the representability of ÎηX and ÎY .

Theorem 6.1. (i) For each X ∈ srs(F ), there exists a locally constant H-invariant function îηX
defined on srs(F ) which is locally integrable on s(F ), such that for any f ∈ C∞c (s(F )) we have

Îη(X, f) =

∫
s(F )

îηX(Y )κ(Y )f(Y )|Ds(Y )|−1/2
F dY.

(ii) For each X ∈ s′rs(F ), there exits a locally constant H ′-invariant function îX defined on

s′rs(F ) which is locally integrable on s′(F ), such that for any f ∈ C∞c (s′(F )) we have

Î(X, f) =

∫
s′(F )

îX(Y )f(Y )|Ds′(Y )|−1/2
F dY.
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We also write îη(X,Y ) (respectively î(X,Y )) instead of îηX(Y ) (respectively îX(Y )), which
is viewed as a function on srs(F ) × srs(F ) (respectively s′rs(F ) × s′rs(F )). Then it is not hard
to see that îη(X,Y ) (respectively î(X,Y )) is locally constant on srs(F ) × srs(F ) (respectively
s′rs(F )×s′rs(F )), (H, η)-invariant (respectively H ′-invariant) on the first variable and H-invariant
(respectively H ′-invariant) on the second variable. Our method to prove Theorem 6.1 follows that
of [HC70, HC99]. Some of our treatment also follows that of [Kot05]. We only prove the assertion
for ÎηX . The assertion for ÎX can be proved in the same way and is left to the reader.

6.1 Reduction to the elliptic case

In this subsection we reduce the question of the representability of ÎηX to that for elliptic elements
X ∈ srs(F ). For X ∈ srs(F ), we say that X is elliptic if its stabilizer HX is an elliptic torus.
Thus, if X =

(
0 A
B 0

)
, X is elliptic if and only AB is elliptic in GLn(F ) in the usual sense.

For convenience, we suppose that X ∈ srs(F ) is of the form
(

0 1n
A 0

)
. From now on, we also

suppose that X is not elliptic, or equivalently, A is not elliptic. Then there exists a proper Levi
subgroup M0 of GLn such that A ∈M0. Let P0 be a proper parabolic subgroup of GLn such
that M0 is a Levi component of P0. Let U0 be the unipotent subgroup of P0. Set m0 = Lie(M0),
p0 = Lie(P0) and u0 = Lie(U0). Then p0 = m0⊕u0, and gln = p0⊕ ū0 where ū0 is the Lie algebra
of the unipotent subgroup Ū0 opposite to U0.

Write s = s+ ⊕ s−, where

s+ =

{(
0 B
0 0

)
: B ∈ gln

}
, s− =

{(
0 0
C 0

)
: C ∈ gln

}
.

Identify s+ (respectively s−) with gln. Under this identification, let r+ ⊂ s+ (respectively r− ⊂ s−)
be the subspace that corresponds to m0, n+ ⊂ s+ (respectively n− ⊂ s−) the subspace that
corresponds to u0, n̄+ ⊂ s+ (respectively n̄− ⊂ s−) the subspace that corresponds to ū0. Set
r = r+ ⊕ r−, n = n+ ⊕ n− and n̄ = n̄+ ⊕ n̄−. Then s = r ⊕ n ⊕ n̄ and X ∈ r(F ). Notice that r
is isomorphic to a product of sni with

∑
ni = n. Also notice that n⊥ = r ⊕ n and (r ⊕ n)⊥ = n

under the fixed pairing 〈· , ·〉 on s.
We call a subspace f of s a proper Levi subspace if f is of the form r as above for some r.
Let P = P0 × P0, which is a parabolic subgroup of H = GLn×GLn. There is a Levi

decomposition P = MU and p = m ⊕ u, with M = M0 ×M0, U = U0 × U0, m = m0 ⊕ m0

and u = u0 ⊕ u0. Notice that (M, r) '
∏

(Hni , sni) for some (Hni , sni). We fix an open compact
subgroup K of H such that H = MUK and η|K is trivial. Recall that we write M = M(F )
and U = U(F ). Here we choose the Haar measure on H so that vol(K) = 1, and choose Haar
measures on M and U so that for any f ∈ C∞c (H),∫

H
f(h) dh =

∫
M

∫
U

∫
K
f(muk) dmdudk.

We choose the Haar measure on Lie algebra u(F ) compatible with that on U under the
exponential map, and choose Haar measures on r(F ), n(F ), n̄(F ) according to the above
identifications.

For f ∈ C∞c (s(F )), we define f r ∈ C∞c (r(F )) to be

f r(Y ) :=

∫
n(F )

f(Y + Z) dZ,

define f̃ ∈ C∞c (s(F )) to be

f̃(Y ) =

∫
K
f(Y k) dk,
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and define f (r) ∈ C∞c (r(F )) to be

f (r) := (f̃)r.

Definition 6.2. Let Tr be a distribution on r(F ). We define the distribution isr(Tr) on s(F ) to
be

isr(Tr)(f) := Tr(f
(r)) for f ∈ C∞c (s(F )).

The above process is an analogue of parabolic induction in the usual sense (cf. [HC99, § 1]
or [Kot05, § 13]), and has the following similar properties. Notice that M acts on r by the adjoint
action, which is induced from the action of H on s. Denote by rrs the regular semisimple locus
of r with respect to the action of M. If Y is in srs(F ), then it is also in rrs(F ). If Y ∈ rrs(F ), put

|Dr(Y )|F = |det(ad(Y );m/t⊕ r/c)|1/2,

where c is the Cartan space of r containing Y and t is the Lie algebra of the centralizer of Y in
M. The normalized orbital integral Iη,MX (f ′), for f ′ ∈ C∞c (r(F )), is defined to be

|Dr(X)|1/2F

∫
HX\M

f ′(Xm)η(m) dm.

Then Iη,MX is a distribution on r(F ). In the proposition below, we write Iη,HX instead of IηX to

distinguish it from Iη,MX .

Proposition 6.3. (i) Suppose that Tr is an (M,η)-invariant distribution on r(F ), then isr(Tr) is
an (H, η)-invariant distribution on s(F ).

(ii) We have isr(I
η,M
X ) = Iη,HX .

(iii) Suppose that Tr is an (M,η)-invariant distribution on r(F ), which is represented by a
function Θr which is locally constant on rrs(F ) and locally integrable on r(F ). In other words,
for any f ∈ C∞c (r(F )),

Tr(f) =

∫
rrs(F )

Θr(Y )κ(Y )f(Y )|Dr(Y )|−1/2
F dY.

Then the distribution isr(Tr) is represented by the function

Θs(Y ) =
∑
Y ′

Θr(Y
′),

where Y ′ runs over a finite set of representatives for the M -conjugacy classes of elements in r(F )
which are H-conjugate to Y . The function Θs is locally constant on srs(F ) and locally integrable
on s(F ), and, for any f ∈ C∞c (s(F )),

isr(Tr)(f) =

∫
srs(F )

Θs(Y )κ(Y )f(Y )|Ds(Y )|−1/2
F dY.

(iv) The map f 7→ f (r) commutes with the Fourier transform, and therefore isr(T̂r) = îsr(Tr).

Proof. (i) For f ∈ C∞c (s(F )) and h ∈ H, define hf ∈ C∞c (s(F )) by hf(Y ) = f(Y h). To prove
assertion (i), it suffices to observe the following relation: for p = mu ∈ P and Y ∈ r(F ), we have
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(pf)r(Y ) =

∫
n(F )

pf(Y + Z) dZ =

∫
n(F )

f(Y p + Zp) dZ

=

∫
n(F )

f(Y m + Zp) dZ

= |det(Ad(p); n)|F
∫
n(F )

f(Y m + Z) dZ.

It is easy to verify that

|det(Ad(p); n)|F = |det(Ad(p); u)|F = δP (p),

where δP is the modulus character of P . Therefore (pf)r(Y ) = δP (p)f r(Y m). The rest arguments
are routine.

(ii) Write T = HX for simplicity. For f ∈ C∞c (s(F )),∫
T\H

f(Xh)η(h) dh=

∫
T\M

∫
U

∫
K
f(Xmuk)η(m) dk du dm

=

∫
T\M

∫
U
f̃(Xmu)η(m) du dm.

Write Y = Xm. Notice that the map

α : U −→ n, u 7→ u−1Y u− Y

is an isomorphism of algebraic varieties, whose Jacobian is

|det(% ◦ ad(Y ); u)|F .

Also note that

|det(% ◦ ad(Y ); u)|F = |det(% ◦ ad(Y ); u⊕ ū)|1/2F

=
|det(% ◦ ad(Y ); h/t)|1/2F

|det(% ◦ ad(Y );m/t)|1/2F

=
|Ds(Y )|1/2F

|Dr(Y )|1/2F

.

Therefore

Iη,H(X, f) =

∫
T\M

∫
n(F )
|Dr(Xm)|1/2F f̃(Xm + Z)η(m) dZ dm

= |Dr(X)|1/2F

∫
T\M

f (r)(X)η(m) dm

= Iη,M (X, f (r)).

The assertion (iii) is a consequence of Weyl integration formula, and the assertion (iv) is
obvious. 2

Let sell be the open subset of elliptic regular semisimple elements in s(F ).

Lemma 6.4. Suppose that φ ∈ C∞c (sell). Then φ(r) and (φ̂)(r) are identically zero for every proper
Levi subspace r of s. Moreover, for any regular semisimple element X of s(F ) lying in r(F ), we
have

Iη(X,φ) = Îη(X,φ) = 0.
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Proof. The vanishing of φ(r) is obvious. The vanishing of (φ̂)(r) is a consequence of
Proposition 6.3(iv). The vanishing of the orbital integrals follows from the first assertion and
Proposition 6.3(ii). 2

Let c be an elliptic Cartan subspace of s, which means that one (any) element of creg(F ) is
elliptic. Let T be the centralizer of c in H, and Z the center of G which is also contained in T .
Then Z\T is compact since c is elliptic. Now we require that vol(Z\T ) = 1 here, which does not
matter.

Let scrs = (creg(F ))H and φ ∈ C∞c (scrs). We define the distribution Iφ ∈ D(s(F ))H,η to be

Iφ(f) =

∫
Z\H

∫
s(F )

f(Y )φ(Y h)η(h) dY dh.

This distribution is well defined:∫
Z\H

∫
s(F )
|f(Y )φ(Y h)| dY dh

=

∫
Z\H

dh

(∫
c(F )
|Ds(Y )|F dY

∫
Z\H
|f(Y h′)| · |φ(Y h′h)| dh′

)
=

∫
c(F )
|Ds(Y )|F dY

(∫
(Z\H)×(Z\H)

|f(Y h′)| · |φ(Y h)| dh′ dh
)

=

∫
creg(F )

I(Y, |f |) · I(Y, |φ|) dY <∞,

since I(Y, |φ|) ∈ C∞c (creg(F )). Here I(·, f) is the normalized orbital integral without twisting η.
We also define the distribution I

φ̂
∈ D(s(F ))H,η to be

I
φ̂
(f) =

∫
Z\H

∫
s(F )

f(Y )φ̂(Y h)η(h) dY dh.

We have the relation ∫
s(F )

f(Y )φ̂(Y h) dY =

∫
s(F )

f̂(Y )φ(Y h) dY.

Thus ∫
Z\H

η(h) dh

(∫
s(F )

f(Y )φ̂(Y h) dY

)
=

∫
Z\H

η(h) dh

(∫
s(F )

f̂(Y )φ(Y h) dY

)
,

by the absolute convergence of the latter one, which shows that I
φ̂

is well defined and I
φ̂

= Îφ.
In summary, we have the following lemma.

Lemma 6.5. Let c be an elliptic Cartan subspace of s and φ ∈ C∞c (scrs). Then Îφ = I
φ̂
.

In the next subsection, we will reduce Theorem 6.6 to the following theorem whose proof
will be given in §§ 6.3 and 6.4.

Theorem 6.6. Let c be an elliptic Cartan subspace of s and φ ∈ C∞c (scrs). Then Îφ is represented
by a locally integrable function on s(F ) which is locally constant on srs(F ).

6.2 Proof of Theorem 6.1
To show the representability of the Fourier transform of orbital integrals, we need the following
relative version of Howe’s finiteness theorem (Theorem 6.7). Let us introduce some notation. If
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ω is a compact set in s(F ), put

J (ω)η = {T ∈ D(s(F ))H,η : Supp(T ) ⊂ cl(ωH)}.

Let L ⊂ s(F ) be a lattice (a compact open OF -submodule). Denote by Cc(s(F )/L) the space of
f ∈ C∞c (s(F )) which is invariant under translation by L. Let jL : J (ω)η → Cc(s(F )/L)∗ be the
composition of the maps,

jL : J (ω)η ↪→ D(s(F ))
res−→ Cc(s(F )/L)∗,

where Cc(s(F )/L)∗ is the vector space dual to Cc(s(F )/L) and res is the restriction map. Then
Howe’s finiteness theorem is the following.

Theorem 6.7. For any lattice L and any compact set ω in s(F ), we have

dim jL(J (ω)η) < +∞.

Proof. It was shown in [RR96, Theorem 6.1] that Howe’s finiteness theorem holds in a more
general setting when η = 1. It is not hard to check that it still holds when η is our quadratic
character. 2

The following variant of Howe’s theorem is often used, and we refer the reader to [Kot05,
§ 26] for more details. Let ĵL : J (ω)η → D(L) be the composition of the maps

ĵL : J (ω)η ↪→ D(s(F ))
F−→ D(s(F ))

res−→ D(L),

where F denotes the Fourier transform.

Theorem 6.8. For any lattice L and any compact set ω in s(F ),

dim ĵL(J (ω)η) < +∞.

Proof. See [Kot05, Theorem 26.3]. 2

Corollary 6.9. Let ω be compact, and let V be a subspace of J (ω)η. Let L be any lattice in
s(F ). Then ĵL(V ) = ĵL(cl(V )).

Proof. See [Kot05, Proposition 26.1]. 2

Proof of Theorem 6.1. By Proposition 6.3, it suffices to show that ÎηX can be represented when
X lies in creg(F ) for some elliptic Cartan subspace c of s. Then Theorem 6.1 follows from
Theorem 6.6, Lemma 6.10 and the fact that s(F ) =

⋃
lattice L. 2

Lemma 6.10. Let X ∈ creg(F ) be an elliptic element and ω a compact open neighborhood of X

in creg(F ). Then given a lattice L in s(F ), there exists φ ∈ C∞c (ωH) such that ÎηX and Îφ have
the same restriction to L.

Proof. The proof is similar as that of [Kot05, Lemma 26.5]. We first show that IηX lies in the
closure of the linear space

Iω := {Iφ : φ ∈ C∞c (ωH)},

which is a subspace of J (ω)η. It suffices to show that if Iφ(f) = 0 for all φ ∈ C∞c (ωH), then
IηX(f) = 0. Note that

Iφ(f) =

∫
ω
IηY (f) · IηY (φ) dY.
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We may shrink ω so that every function ϕ ∈ C∞c (ω) arises as Y 7→ IηY (φ) for some φ ∈ C∞c (ω).

Thus IηX(f) = 0 if Iφ(f) = 0 for all φ ∈ C∞c (ωH). By Corollary 6.9, we see that ĵL(IηX) ∈ ĵL(Iω)

for any lattice L. In other words, given a lattice L, there exists a φ ∈ C∞c (ωH) such that ÎηX and

Îφ have the same restriction to L. 2

6.3 Bounding the orbital integrals
In this subsection, we will show the boundedness of the normalized orbital integrals along a
Cartan subspace (Theorem 6.11), which is crucial for proving Theorem 6.6. We follow the same
line as the proof of [HC70, Theorem 14], where there are no Shalika germs involved.

Theorem 6.11. (i) Let c be a Cartan subspace of s and f ∈ C∞c (s(F )). Then

sup
X∈creg(F )

|Iη(X, f)| < +∞.

(ii) Let c′ be a Cartan subspace of s′ and f ′ ∈ C∞c (s′(F )). Then

sup
X∈c′reg(F )

|I(X, f ′)| < +∞.

We will prove only the first assertion with respect to s. The second assertion can be proved
in the same way. We use inductive method to prove this theorem. In the case n = 1, our case
essentially is the Gan–Gross–Prasad conjecture for unitary groups of rank 1. Thus Theorem 6.11
follows from the discussions in [Zha14a, § 4.1] (in particular, [Zha14a, Lemma 4.1]). Now we
assume that Theorem 6.11 holds for C∞c (sm(F )) for every m < n.

Lemma 6.12. Fix a compact set ω of s(F ) and a Cartan subspace c. Then the set of all X ∈ c(F )
such that X ∈ cl(ωH) is relative compact in c(F ).

Proof. It suffices to assume ω is closed. Consider the closed inclusion i : (c/W )(F ) → (s/H)(F )
where W is the Weyl group of c, and the natural map π : s(F ) → (s/H)(F ). Then π(ω) and
thus i−1(π(ω)) is compact. The lemma follows from the fact that the map c(F ) → (c/W )(F ) is
a proper map between locally compact Hausdorff spaces. 2

Corollary 6.13. For f ∈ C∞c (s(F )), Iη(X, f) = 0 for X ∈ creg(F ) lying outside a compact
subset of c(F ).

We first prove Theorem 6.11 in the following situation.

Lemma 6.14. Let f be in C∞c (s(F )−N ). Then Iη(·, f) is bounded on creg(F ).

Proof. By Lemma 6.12 and Corollary 6.13, it suffices to prove that, given X0 ∈ c(F ), we can
choose a neighborhood V of X0 in c(F ) such that

sup
X∈V ′

|Iη(X, f)| < +∞ where V ′ = V ∩ srs(F ).

When X0 6= 0, using the descent of orbital integrals (Proposition 5.20), we reduce to considering
the orbital integrals for C∞c (sX0) with respect to the action of HX0 . Since X0 6= 0, (HX0 , sX0) is
of the form

(GLm(F )A, glm(F )A)× (Hn−m, sn−m(F ))

for some semisimple A in GLn(F ) and some integer 0 < m 6 n. Then the result follows from the
inductive hypothesis on n−m and the bound of the usual orbital integrals for C∞c (glm(F )A) by
the work of Harish-Chandra. When X0 = 0, since Supp(f)∩N = ∅, we can find a neighborhood
V of X0 such that Iη(X, f) = 0 on V ′. 2
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Now let s0 be the set of Y ∈ s(F ) such that there exists an open neighborhood ω of Y in

s(F ) so that supX∈creg(F ) |Iη(X, f)| < ∞ for all f ∈ C∞c (s(F )) with Supp(f) ⊂ ω. Since N is

closed in s(F ), Lemma 6.14 implies that s(F ) −N ⊂ s0. To prove Theorem 6.11, it remains to

show that N ⊂ s0. We need some preparation below.

Fix X0 6= 0 in N . Let (X0, d(X0), Y0) be an sl2-triple as in Lemma 3.1. Consider the map

ψ : H × sY0 −→ s(F ), (h, U) 7→ (X0 + U)h.

By the same discussion as that of [HC70, part VI, § 4], we see that ψ is everywhere submersive.

Set ω = ψ(H × sY0), which is an open and H-invariant subset of s(F ). Since ψ is everywhere

submersive, we have a surjective linear map

C∞c (H × sY0) −→ C∞c (ω), α 7→ fα

such that ∫
ω
fα(X)p(X) dX =

∫
H×sY0

α(h, u)p((X0 + U)h) dh dU

for every locally integrable function p on ω.

Let Γ be the Cartan subgroup of H with the Lie algebra F ·d(X0). Please refer to Lemma 3.3

and Proposition 4.4 for the notations below. Put t = ξ(γ) and write Uγ = ξ(γ)Uγ
−1

for U ∈ sY0 ,

γ ∈ Γ. We have

(X0 + Uγ)γh = (X0 + tUγ
−1

)γh = t(X0 + U)h.

For γ ∈ Γ and α ∈ C∞c (H × sY0), define α′ ∈ C∞c (H × sY0) to be

α′(h, U) = α(γ−1h, Uγ−1).

Lemma 6.15. Fix γ ∈ Γ and α ∈ C∞c (H × sY0). Then

fα(t−1X) = |t|2n2−r−m
F fα′(X), X ∈ ω.

Proof. Choose any function α in C∞c (ω). We have∫
s(F )

fα(t−1X)p(X) dX

= |t|2n2

F

∫
s(F )

fα(X)p(tX) dX

= |t|2n2

F

∫
H×sY0

α(h, U)p(t(X0 + U)h) dh dU

= |t|2n2

F

∫
H×sY0

α(h, U)p((X0 + Uγ)γh) dh dU

= |t|2n2

F

∫
H×sY0

α(γ−1h, Uγ−1)p((X0 + U)h)

∣∣∣∣dUγ−1

dU

∣∣∣∣
F

dh dU.

It remains to compute the Jacobian |dUγ−1/dU |F . Choose a basis U1, . . . , Ur of sY0 as in
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Lemma 3.3. Write U =
∑

16i6r aiUi. Then

Uγ−1 = t−1Uγ = t−1
∑
i

aiU
γ
i

= t−1
∑
i

aiξi(γ
−1)Ui.

Hence ∣∣∣∣dUγ−1

dU

∣∣∣∣
F

= |t|−rF
∏

16i6r

|t|−λi/2F = |t|−r−mF ,

which implies the lemma. 2

For X ∈ creg(F ), there is a unique distribution τηX on sY0 such that Iη(X, fα) = τηX(βα) where

βα(U) =

∫
H
α(h, U)η(h) dh, α ∈ C∞c (H × sY0).

For f ∈ C∞c (ω), define f ′ ∈ C∞c (ω) to be f ′(X) = f(t−1X). It is easy to see that

Iη(X, f ′) = |t|(1/2)(2n2−n)
F Iη(t−1X, f).

Now fix α ∈ C∞c (H × sY0), and set f = fα, f ′ = f ′α, β = βα and β′ = βα′ . Note that

f ′ = |t|2n2−r−m
F fα′ .

We have

β′(U) =

∫
H
α(γ−1h, Uγ−1)η(h) dh = η(γ)β(t−1Uγ), U ∈ sY0 .

So we obtain

|t|(1/2)(2n2−n)
F Iη(t−1X, f) = |t|2n2−r−m

F Iη(X, fα′) = |t|2n2−r−m
F τηX(β′),

or

Iη(t−1X, f) = |t|n
2+(n/2)−r−m
F (Iη(X, f) + τηX(β′ − β)). (1)

By Proposition 4.4, we know n2 + (n/2)− r −m < 0.

Now we continue to prove Theorem 6.11. Let X0 ∈ N and suppose X0 6= 0. We want to

construct an open neighborhood ω0 of X0 such that Iη(·, f) is bounded on creg(F ) as soon as

Supp(f) ⊂ ω0. Recall that we denote by Nq the union of all H-orbits in N of dimension less

than or equal to q, and notice that X0 ∈ N2n2−r and N2n2−n = N . Hence we can choose an open

neighborhood ω1 of X0 in ω such that ω1 ∩N2n2−r ⊂ XH
0 , and can assume ω1 = ωH1 . By [HC70,

Lemma 37], we can choose an open neighborhood U of zero in sY0 such that X0 + U ⊂ ω1 and

(X0 + U) ∩XH
0 = {X0}.

Fix γ ∈ Γ such that η(γ) = 1 and |t|F = |ξ(γ)|F > 1. Choose an open neighborhood U0 of

zero in U such that t−1Uγ0 ∪ tU
γ−1

0 ⊂ U . Put N ∗ = N − {0}.

Lemma 6.16. We have N ∗ ⊂ s0.
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Proof. We induct on r = dim sY0 for X0 ∈ N ∗. Put ω0 = (X0 +U0)H , which is an open invariant

neighborhood of X0. Consider the surjective map

H × U0 −→ ω0, (h, U) 7→ (X0 + U)h,

which is everywhere submersive. Consider the surjective linear map

C∞c (H × U0) −→ C∞c (ω0), α 7→ fα,

which is the restriction of the map C∞c (H × sY0) → C∞c (ω) as before. Let f ∈ C∞c (ω0) and

choose α ∈ C∞c (H × U0) such that f = fα. Set β = βα, β
′ = βα′ and f ′ = f ′α as before. Then

β−β′ ∈ C∞c (U), and 0 /∈ Supp(β−β′). Define α0(h, U) = α1(h)(β(U)−β′(U)) for h ∈ H,U ∈ U ,

where α1 ∈ C∞c (H) and
∫
H α1(h)η(h) dh = 1. For X ∈ creg(F ), we have

Iη(X, fα0) = τηX(βα0) = τηX(β − β′),

and Supp(fα0) ∩N2n2−r = ∅. Now we start the induction on r = dim sY0 .

First assume that r = n. Note that r = n is the initial step. In such a case we have n2 +

n/2− r −m = −n/2 and

Iη(t−1X, f) = |t|−n/2F (Iη(X, f) + τηX(β′ − β)),

by (1). Put c = |t|−n/2F < 1. Since Supp(fα0) ∩N = ∅ (N = N2n2−n), by Lemma 6.14, we have

a = sup
X∈creg(F )

|τηX(β′ − β)| < +∞.

Iteration gives

Iη(t−dX, f) = |t|−dn/2F Iη(X, f) +
∑

16k6d

|t|−kd/2F τη
tk−dX

(β′ − β), (d > 1),

or

Iη(X, f) = cdIη(tdX, f) +
∑

16k6d

cdτη
tkX

(β′ − β), (d > 1).

Since limd→+∞ I
η(tdX, f) = 0, we get

|Iη(X, f)| 6 a
∑

16k<∞
ck 6 a

c

1− c
.

Now assume r > n. Since Supp(fα0) ∩ N2n2−r = ∅, by the inductive hypothesis and

Lemma 6.14, Iη(X, fα0) is bounded on creg(F ) and so is τηX(β−β′). Applying the same argument

as the case r = n, we complete the proof of the lemma. 2

Applying the same arguments as those of [HC70, part VI, § 7], we have the following lemma.

Lemma 6.17. We have 0 ∈ s0.

At last, Theorem 6.11 follows from Lemmas 6.14, 6.16 and 6.17.
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6.4 Proof of Theorem 6.6
Now we continue to prove Theorem 6.6. Let c0 be an elliptic Cartan subspace of s and φ0 ∈
C∞c (sc0rs). For simplicity, we write φ = φ̂0, and denote by Θ the distribution Iφ, that is, for
f ∈ C∞c (s(F )),

Θ(f) :=

∫
Z\H

∫
s(F )

f(Y )φ(Y h)η(h) dY dh.

Our goal is to prove that the distribution Θ can be represented by a locally integrable function
on s(F ) which is locally constant on srs(F ). We follow the strategy of the proof of [HC70,
Theorem 16].

For t > 1, let Ωt denote the set of all h ∈ H such that 1 + log ‖h‖Z\H 6 t. Then Ωt is a
compact set modulo Z. Let Φt denote the characteristic function of Ωt. Then we have

Θ(f) = lim
t→+∞

∫
Z\H

Φt(h)

∫
s(F )

f(Y )φ(Y h)η(h) dY dh

= lim
t→+∞

∫
s(F )

f(Y )Θt(Y ) dY,

where

Θt(Y ) =

∫
Z\H

Φt(h)φ(Y h)η(h) dh.

We will first show that limt→+∞Θt(Y ) exists for all Y ∈ srs(F ), and then will give an estimation
on Θt to apply Lebesgue’s theorem.

Lemma 6.18. Given a compact subset ω of s(F ), we can choose c0 > 0 such that

1 + log ‖h‖T\H 6 c0(1 + log(max{1, |Ds(X)|−1
F }))

for h ∈ H,X ∈ creg(F ) such that Xh ∈ ω.

Proof. The proof is the same as that of [Kot05, Lemma 20.3]. 2

We choose a compact set ω ⊂ s(F ) such that Supp(φ) ⊂ ω,Supp(f) ⊂ ω. Fix a Cartan
subspace c ⊂ s. Let T be the centralizer of c in H, and A the maximal split torus in T . Notice
that A consists of elements of the form diag(a, a) where a ∈ A0 for some split torus A0 contained
in GLn(F ). Let ωc be the set of X ∈ c(F ) such that Xh ∈ ω for some h ∈ H. Then ωc is compact.
For X ∈ ωc, h ∈ H, set

φX(h) = φ(Xh)η(h).

Note that φX has the following properties.

(i) Supp(φX) ⊂ CX for some subset CX ⊂ H which is compact modulo A and φX(ah) = φX(h)
for h ∈ H, a ∈ A.

(ii) If P ′0 is a proper parabolic subgroup in GLn(F ) with Levi decomposition P ′0 = M ′0U
′
0, and

A′0 ⊂ A0 where A′0 is the center of M ′0, then∫
U ′
φX(uh) du = 0 for each h ∈ H,

where U ′ = U ′0 × U ′0 is a unipotent subgroup of H.
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Let K ′1 be an open subgroup of K ′ = GLn(OF ) such that ‖k‖ = 1, η(k) = 1 for all k ∈ K ′1.
Here we choose the Haar measure on H so that vol(K ′1×K ′1) = 1. Fix an open compact subgroup
K ′0 of GLn(F ) such that

K ′0 ⊂ (Ū ∩K ′1)(M ∩K ′1)(U ∩K ′1)

for any parabolic subgroup P ′ =M ′U ′ in P(A0), where we denote by P(A0) the set of all parabolic
subgroups P ′ = M ′U ′ of GLn(F ) such that A0 is the center of M ′. Set K0 = K ′0 ×K ′0 ⊂ H. For
an element y ∈ H, put K0(y) = K0 ∩Ky

0 . Set

‖CX‖T\H = sup
h∈CX

‖h‖T\H .

The following lemma is an analogue of [HC70, Theorem 20], and we omit the details of the proof
since it is the same as that of [HC70, Theorem 20].

Lemma 6.19. There exists a number c > 1 with the following property. Let y ∈ H, and Ω = Ω
(CX , y) be the set of h ∈ H such that

1 + log ‖h‖Z\H 6 c(1 + log ‖CX‖T\H)(1 + log ‖y‖T\H).

Then ∫
K0(y)

φX(ykh) dk = 0

unless h ∈ Ω.

Now suppose that X ∈ creg(F ) and y ∈ H are such that Xy ∈ ω. Then X ∈ ωc. By
Lemma 6.18, there is a positive constant c0, only depending on ω and c, such that

1 + log ‖y‖T\H 6 c0(1 + log(max{1, |Ds(X)|−1
F })).

Set ω′c = ωc ∩ creg(F ). Then for any X ∈ ω′c we can choose a subset CX of H such that:

(1) Supp(φX) ⊂ CX and CX is compact modulo A;

(2) 1 + log ‖CX‖T\H 6 c0(1 + log(max{1, |Ds(X)|−1
F })).

Let ΩX (X ∈ ω′c) be the set of h ∈ H such that

1 + log ‖h‖Z\H 6 c1(1 + log(max{1, |Ds(X)|−1
F }))

2,

where c1 = c · c2
0 with c as in Lemma 6.19. Let ΦX denote the characteristic function of ΩX .

Then we have

Θt(X
y) =

∫
Z\H

Φt(h)φ(Xyh)η(h) dh

=

∫
Z\H

Φt(h)

∫
K1

φ(Xykh)η(h) dk dh.

Note that ‖kh‖ = ‖h‖ for k ∈ K1. By Lemma 6.19 we have∫
K1

φ(Xykh) dk =

∫
K1

φX(ykh) dk = 0,

unless
1 + log ‖k1h‖Z\H 6 c(1 + log ‖CX‖T\H)(1 + log ‖y‖T\H),
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where k1 runs over a set of representatives of K1/K0(y0) in K1. Since ‖kh‖ = ‖h‖ and

c(1 + log ‖CX‖T\H)(1 + log ‖y‖T\H) 6 cc2
0(1 + log(max{1, |Ds(X)|−1

F }))
2,

the integral
∫
K1
φ(Xykh) = 0 unless h ∈ ΩX . Thus, if

t > c1(1 + log(max{1, |Ds(X)|−1
F }))

2,

we get

Θt(X
y) =

∫
Z\H

Φt(h)ΦX(h)η(h)

∫
K1

φ(Xykh) dk dh

=

∫
Z\H

ΦX(h)

∫
K1

φ(Xykh) dk dh

=

∫
Z\H

∫
K1

φ(Xykh)η(h) dk dh.

Therefore limt→+∞Θt(X
y) exists for Xy ∈ ω∩srs(F ). By enlarging ω, limt→+∞Θt(X) exists for

all X ∈ srs(F ).
Now we estimate Θt(X). All the notations are the same as above. We have

|Θt(X
y)|6

∫
Z\H

ΦX(y−1h)|φ(Xh)| dh

=

∫
A\H
|φ(Xh)| dh

∫
Z\A

ΦX(y−1ah) da.

Recall that φ(Xh)η(h) = φX(h) = 0 unless h ∈ CX . Suppose h ∈ CX . We can assume log ‖h‖ 6
log ‖CX‖ and log ‖y‖ = log ‖y‖T\H . Then ΦX(y−1ah) = 0 unless y−1ah ∈ ΩX . Since

1 + log ‖a‖Z\H 6 (1 + log ‖h‖)(1 + log ‖y−1ah‖Z\H)(1 + log ‖y‖),

we have ΦX(y−1ah) = 0 unless

1 + log ‖a‖Z\H 6 c2(1 + log(max{1, |Ds(X)|−1
F }))

4,

where c2 = c1c
2
0. Therefore∫

Z\A
ΦX(y−1ah) da6

∫
1+log ‖a‖Z\H6c2(1+log(max{1,|Ds(X)|−1

F }))4
da

6 c3(1 + log(max{1, |Ds(X)|−1
F }))

4`,

where c3 is a positive constant, independent of the choice of X ∈ ω′c, and ` = dimZ\A. This
shows that

|Θt(X
y)| 6 c3(1 + log(max{1, |Ds(X)|−1

F }))
4`

∫
A\H
|φ(Xh)| dh.

Notice that Theorem 6.11 also holds when η = 1. Then we have

sup
X∈ω′c

|Ds(X)|1/2F

∫
A\H
|φ(Xh)| dh < +∞.

Hence
|Θt(X

y)| 6 c4|Ds(X)|−1/2
F (1 + log(max{1, |Ds(X)|−1

F }))
4`
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for all X ∈ c(F ) and y ∈ H such that Xh ∈ ω′ = ω ∩ srs(F ). Since there are only finitely many
nonconjugate Cartan subspaces in s, there exists a constant c5 such that

|Θt(X)| 6 c5|Ds(X)|−1/2
F (1 + log(max{1, |Ds(X)|−1

F }))
4`

for all X ∈ ω′ and all t > 1.
It follows from the lemma below that the function

X 7→ |Ds(X)|−1/2
F (1 + log(max{1, |Ds(X)|−1

F }))
4`

is locally integrable on s(F ). Then Theorem 6.6 follows from Lebesgue’s theorem.

Lemma 6.20. There exists ε > 0 such that the function |Ds(X)|−εF is locally integrable on c(F )
for any Cartan subspace c of s.

Proof. See [Zha14a, Lemma 4.3]. 2

7. Local calculations

7.1 Limit formulae

In this subsection, we obtain formulae for îη(X,Y ) (X,Y ∈ srs(F )) and î(X,Y ) (X,Y ∈
s′rs(F )) at ‘infinity’, which are analogues of [Wal95, Proposition VIII.1]. The proof of [Wal95,
Proposition VIII.1] is very technical. Here we modify Waldspurger’s proof a little to make it
available in our situation.

Statement. Let c be a Cartan subspace of s, and T− the maximal θ-split torus in G whose Lie
algebra is c. Let T be the centralizer of c in H, and write t = Lie(T). For X,Y ∈ creg(F ), define
a bilinear form qX,Y on h(F )/t(F ) by

qX,Y (Z,Z ′) = 〈[Z,X], [Y,Z ′]〉,

where the pairing 〈· , ·〉 is the same one as before. One can check that the form qX,Y is
nondegenerate and symmetric. One can also verify that qX,Y = qY,X . We write γψ(X,Y ) =
γψ(qX,Y ) for simplicity. Recall that, by conventions, T = T(F ), H = H(F ).

Let c′ be a Cartan subspace of s′. Similarly, we denote by T′− the maximal θ-split torus in
G′ whose Lie algebra is c′, by T′ the centralizer of c′ in H′, and by t′ the Lie algebra of T′. For
X,Y ∈ c′reg(F ), we also define a nondegenerate, bilinear and symmetric form qX,Y on h′(F )/t′(F )
in the same way as above.

The following formulae depend on the choices of the Haar measures on T and H (also on T ′

and H ′). Here we equip H or T with the Haar measure so that the exponential map preserves
the measure in a neighborhood of 0 in h(F ) or t(F ). We make the similar choices for the Haar
measures on T ′ and H ′.

Proposition 7.1. Let the notations be as above.

(i) Let X ∈ srs(F ) and Y ∈ creg(F ). Then there exists N ∈ N such that if µ ∈ F× satisfying
vF (µ) < −N , we have the equality

îη(µX, Y ) = κ(Y )
∑

h∈T\H,h·X∈c

η(h)γψ(µh ·X,Y )ψ(〈µh ·X,Y 〉),

and
îη(X,µY ) = κ(µY )

∑
h∈T\H,h·X∈c

η(h)γψ(µh ·X,Y )ψ(〈µh ·X,Y 〉).
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(ii) Let X ∈ s′rs(F ) and Y ∈ c′reg(F ). Then there exists N ∈ N such that if µ ∈ F× satisfying
vF (µ) < −N , we have the equality

î(µX, Y ) = î(X,µY ) =
∑

h∈T ′\H′,h·X∈c′
γψ(µh ·X,Y )ψ(〈µh ·X,Y 〉).

In particular, the above expression is zero if X is not conjugate to any element of c(F ) (or
c′(F )).

Proof of Proposition 7.1. We now prove the formula for îη(µX, Y ). The formula for îη(X,µY )
can be deduced from it. We leave the proof of the formulae for î(µX, Y ) and î(X,µY ) to the
reader. They can be proved in the same way.

Firstly, we introduce some notations. Let q (respectively p) be the unique complement of t
(respectively c) in h (respectively s) which is stable under the adjoint action of T. Denote by Sc
the set of roots of T− in g(F̄ ). For each subspace f ⊂ g(F ) such that the restriction of 〈· , ·〉 to
f is nondegenerate and for each OF -lattice L ⊂ f, set L̃ = {` ∈ f : ∀`′ ∈ L,ψ(〈`′, `〉) = 1}. We
denote by Lc the OF -lattice of c(F ) such that

L̃c = {Z ∈ c(F ) : ∀α ∈ Sc, vF (α(Z)) > 0}.

Fix OF -lattices Lp ⊂ p(F ), Lt ⊂ t(F ) and Lq ⊂ q(F ). Set Ls = Lc⊕Lp, Lh = Lt⊕Lq, L = Ls⊕Lh.
For simplicity, write d = dimF (g(F )) = 4n2. Denote by F [U ]d the set of monic polynomials

of degree d with coefficients in F . For P ∈ F [U ]d, write

P (U) =

d∑
i=0

si(P )Ud−i.

For a ∈ Z and P1, P2 ∈ F [U ]d, we write P1 ≡ P2 mod $aOF if vF (si(P1)− si(P2)) > a for each
i = 0, 1, . . . , d. For each Z ∈ g(F ), denote by PZ the characteristic polynomial of ad(Z) acting
on g(F ). Then PZ ∈ F [U ]d.

Fix an integer c ∈ N satisfying the following conditions.

(i) For each a ∈ N, a > c, we have the following.

– We have the inclusions $aLh ⊂ Vh and $aL ⊂ Vg.
– The group Ka := exp($aLh) is a subgroup of K = GLn(OF )×GLn(OF ), and η|Ka = 1.

– The action of Ka stabilizes Ls (hence stabilizes L̃s).

(ii) For each a ∈ N, a > c, and each Z ∈ $aLh, we have:

– (expZ) · Y − Y − [Z, Y ] ∈ $2a−cLs;

– (expZ) · Y − Y − [Z, Y ]− 1
2 [Z, [Z, Y ]] ∈ $3a−cLs.

(iii) Denote by C(X) the set of X ′ ∈ c(F ) satisfying that there exists h ∈ H such that
h ·X ′ = X, which is a finite set. We require that the following hold.

– If a ∈ N, a > c, X ′, X ′′ ∈ C(X), and γ ∈ Ka satisfying γ ·X ′ = X ′′, then X ′ = X ′′.

– For each X ′ ∈ C(X), denote by L̃X
′

q the dual of Lq in q(F ) with respect to the form

qX′,Y ; then require $cL̃X
′

q ⊂ 2$−cLq.

(iv) If Z ∈ p(F ) satisfying [Y,Z] ∈ L̃h, then Z ∈ $−cL̃p.
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(v) For each h ∈ H, denote by c(h) the unique element of Z such that

Xh ∈ $−c(h)L̃s −$−c(h)+1L̃s.

Since X ∈ srs(F ), the set {c(h), h ∈ H} has a lower bound. We require that the following holds.

– For each h ∈ H, c(h) > −c.

(vi) Fix a basis B of g(F̄ ) formed of basis of c(F̄ ) and t(F̄ ), and root vectors associated to
Sc. We require that the following hold.

– For each Z ∈ L̃p, the coefficients of the matrix representation of ad(Z) with respect to
the basis B are of valuation > −c.

– For each i = 0, 1, . . . , d, vF (si(PX)) > −c.

(vii) There exists an open compact set Ω ⊂ creg(F ) such that if Z ∈ creg(F ) satisfying PZ ≡
PX mod $cOF , then Z ∈ Ω.

The integer c is fixed from now on. We also fix an open compact Ω satisfying condition (vii).
The following lemma actually is [Wal95, Lemme VIII.3], and whose proof can be applied in our
situation.

Lemma 7.2. There exists c′ ∈ N, c′ > c, such that if a ∈ N, a > c′, and Z ∈ Ω +$a+c′L̃p, then
there exists γ ∈ Ka such that γ · Z ∈ Ω.

From now on, we fix an integer c′ as in the above lemma. Set

N = 2(d+ 8)c+ 6c′ + 12. (1)

Let µ ∈ F× be such that vF (µ) < −N . Choose m ∈ N such that the following hold.

– The functions Y ′ 7→ îη(µX, Y ′), Y ′ 7→ |Ds(Y ′)|F and κ(Y ) are constant on Y +$mLs.

– For each X ′ ∈ C(X), µX ′ ∈ $−mL̃s.

Let f be the characteristic function of Y + $mLs, and f ′ be the characteristic function of
$−mL̃s. Then we have

Îη(µX, f) =

∫
s(F )

îη(µX, Y ′)κ(Y ′)f(Y ′)|Ds(Y ′)|−1/2
F dY ′

= vol($mLs)|Ds(Y )|−1/2
F κ(Y )̂iη(µX, Y ). (2)

On the other hand, it is easy to verify that

f̂(Y ′) = vol($mLs)ψ(〈Y, Y ′〉)f ′(Y ′).

Hence

Îη(µX, f) = |Ds(µX)|1/2F vol($mLs)

∫
T\H

f ′(µXh)ψ(〈Y, µXh〉)η(h) dh.

Set
a = [−vF (µ)/2]− 2c− c′ − 1. (3)

By (1), a > c. Fix a set of representatives Γ in H for the double coset T\H/Ka. By condition (iii),
we can suppose that if there exist h ∈ Γ and h′ ∈ ThKa such that Xh′ ∈ c(F ), then Xh ∈ c(F ).
Then we have

îη(µX, Y ) = |Ds(µX)Ds(Y )|1/2F κ(Y )
∑
h∈Γ

vol(T\ThKa)f
′(µXh)η(h)i(h),
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where

i(h) =

∫
Ka

ψ(〈Y, µXhγ〉) dγ.

Fix h ∈ Γ. Choose b ∈ N such that:

• (c+ c(h)− vF (µ))/2 6 b 6 c(h)− vF (µ)− 1− 2c;

• if c(h) 6 c, b 6

{
−(d+ 2)c− 1− vF (µ),

−c− c′ − 1− a− vF (µ),

(4)

which implies b > a. Fix a set of representatives Γ′ of Ka/Kb. Then we have

i(h) =
∑
g∈Γ′

i(h, g),

where

i(h, g) =

∫
Kb

ψ(〈Y, µXhgγ〉) dγ.

Fix g ∈ Γ′, and set X ′ = Xhg. Then

i(h, g) =

∫
$bLh

ψ(〈expZ · Y, µX ′〉) dZ.

Notice that since Kb stabilizes Ls and L̃s, then c(hg) = c(h). In particular, X ′ ∈$−c(h)L̃s. By (4),
we have

ψ(〈Z, µX ′〉) = 1

for each Z ∈ $2b−cLs. Notice that b > c. For Z ∈ $bLh, by condition (ii), we have

ψ(〈expZ · Y, µX ′〉) = ψ(〈Y + [Z, Y ], µX ′〉)
= ψ(〈Y, µX ′〉)ψ(〈Z, [Y, µX ′]〉).

Therefore we see that i(h, g) = 0 if [Y, µX ′] /∈ $−bL̃h. We make the following claim:

(∗) if [Y, µX ′] ∈ $−bL̃h then Xh ∈ c(F ).

Now we prove this claim. Suppose [Y, µX ′] ∈ $−bL̃h, in other words, [Y,X ′p] ∈ µ−1$−bL̃q, where
X ′ = X ′c +X ′p is the decomposition of X ′ with respect to s = c⊕ p. Thus, by condition (iv),

X ′p ∈ µ−1$−b−cL̃p. (5)

Moreover, by (4), X ′p ∈ $−c(h)+1L̃p. By the definition of c(h) and that c(hg) = c(h), we deduce
that

X ′c ∈ $−c(h)L̃c −$−c(h)+1L̃c.

Set R = {α ∈ Sc : vF (α(X ′c)) < −c(h) + 1}. The above relation and the definition of L̃c imply
that R 6= ∅. Set r = #R, we calculate the coefficient sr(PX′). This is a sum of products of the
coefficients of the matrix representations of adX ′c and adX ′p with respect to the basis B. By (4),
(5) and condition (vi), the coefficients of adX ′p are of valuation > −c(h) + 1. The same relation
holds for the coefficients of adX ′c other than that of α(X ′c) for α ∈ R. The term

∏
α∈R α(X ′c),

which occurs in sr(PX′), is of the valuation strictly less than that of any other term. Thus

vF (sr(PX′)) = vF

(∏
α∈R

α(X ′c)

)
< r(−c(h) + 1).
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Since X ′ is conjugate to X by the action of H, then PX′ = PX . By condition (vi), we have

−c < r(−c(h) + 1),

therefore

c(h) 6 c. (6)

Let i ∈ {1, 2, . . . , d}. We now compare the coefficients si(PX′) and si(PX′c). Their difference is

a sum of products of coefficients of the matrix representations of adX ′c and adX ′p with respect

to the basis B, and at least one coefficient of adX ′p is involved in these products. By (6), the

coefficients of adX ′c are of valuation greater than or equal to −c(h) > −c. By (4)–(6) and

condition (vi), the coefficients of adX ′p are of valuation greater than or equal to dc. Therefore

vF (si(PX′)− si(PX′c)) > −(i− 1)c+ dc > c.

In other words, PX′c ≡ PX′ mod $cOF . Thus, by condition (vii), X ′c ∈ Ω. By (4)–(6), X ′p ∈
$a+c′L̃p. By (1) and (3), a > c′. By Lemma 7.2, there exists γ ∈ Ka such that γ ·X ′ ∈ c(F ). By

the choice of Γ, we have Xh ∈ c(F ). Now we have finished the proof the claim.
From now on, we suppose that Xh ∈ c(F ). Thus f ′(µXh) = 1 by the condition on f ′. Notice

that the multiplication by h−1 induces an isomorphism from T\ThKa to T\TKa. Now we have

îη(µX, Y ) = κ(Y )|Ds(µX)Ds(Y )|1/2F vol(Ka)
−1 vol(T\TKa)

∑
X′=Xh∈C(X)

η(h)j(X ′), (7)

where

j(X ′) =

∫
Ka

ψ(〈Y, µX ′γ〉) dγ

=

∫
$aLh

ψ(〈expZ · Y, µX ′〉) dZ.

Fix X ′ ∈ C(X). By (1) and (3), ψ(〈Y ′, µX ′〉) = 1 for Y ′ ∈ $3a−cLs. Since Y,X ′ ∈ c(F ), then for
any Z ∈ g(F ), 〈[Z, Y ], X ′〉 = 〈Z, [Y,X ′]〉 = 0. By condition (ii), we have

j(X ′) = ψ(〈Y, µX ′〉)
∫
$aLh

ψ

(
1

2
〈[Z, [Z, Y ]], µX ′〉

)
dZ

= ψ(〈Y, µX ′〉)
∫
$aLh

ψ

(
1

2
〈[Z, Y ], [µX ′, Z]〉

)
dZ

= ψ(〈Y, µX ′〉) vol($aLt)

∫
$aLq

ψ

(
1

2
qµX′,Y (Z)

)
dZ.

Since a 6 −c− vF (µ)/2 and by condition (iii), we obtain

j(X ′) = vol($aLt) vol($aLq)
1/2 vol($−aĽq)

1/2γψ(qµX′,Y )ψ(〈Y, µX ′〉), (8)

where Ľq is the dual lattice of Lq with respect to the form qµX′,Y . There is a relation:

vol(Ka) = vol(T\TKa) vol(T ∩Ka) = vol(T\TKa) vol($aLt). (9)
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By definition

Ľq = {Z ∈ q(F ) : ∀Z ′ ∈ Lq, ψ(〈[Z, µX ′], [Y,Z ′]〉) = 1}
= {Z ∈ q(F ) : ∀Z ′ ∈ Lq, ψ(〈[[Z, µX ′], Y ], Z ′〉) = 1}
= {Z ∈ q(F ) : [[Z, µX ′], Y ] ∈ L̃q}.

In other words,
(adY ) ◦ (adµX ′)(Ľq) = L̃q,

and
vol(Ľq) = |Ds(Y )Ds(µX ′)|−1

F vol(L̃q). (10)

On the other hand, we have the relation

vol(Lq) vol(L̃q) = 1. (11)

Then Proposition 7.1 follows.

7.2 Formulae for γψ(X,Y )

For X,Y ∈ creg(F ) or c′reg(F ), since γψ(X,Y ) appears in the expression of îη(X,Y ) or î(X,Y ) as
in Proposition 7.1, we need to know an explicit formula of γψ(X,Y ). In this subsection, we show
a formula (see Proposition 7.3) of γψ(X,Y ) for X,Y lying in a Cartan subspace of the Lie algebra
associated to a general symmetric pair. This result is an analogue of [Wal95, Lemme VIII.5].

Now we introduce some notations. Assume that (G,H, θ) is a general symmetric pair, as
introduced in § 3. Let s be the Lie algebra associated to (G,H, θ), and c a Cartan subspace of
s. Let T be the centralizer of c in H and write t = Lie(T). Fix a G-invariant and θ-invariant
nondegenerate symmetric bilinear form 〈 , 〉 on g(F ). Then, for X,Y ∈ creg(F ), the bilinear form
qX,Y on h(F )/t(F ) defined by

qX,Y (Z,Z ′) = 〈[Z,X], [Y,Z ′]〉

is nondegenerate and symmetric. Write γψ(X,Y ) = γψ(qX,Y ). For any subspace f of g(F ) such
that the restriction of 〈 , 〉 on f is nondegenerate, we write γψ(f) for the Weil index associated to
ψ and the form 〈 , 〉 on f.

Let T− be the maximal θ-split torus in G whose Lie algebra is c. Denote by Sc the set of
roots of T− in g(F̄ ). Write ΓF for the absolute Galois group Gal(F̄ /F ). Then ΓF acts on Sc.
For α ∈ Sc, denote by mα its multiplicity in g(F̄ ). Since c ⊂ s, for α ∈ Sc, we have θ(α) = −α
and mα = m−α. For α ∈ Sc, denote by Γ±α the stabilizer of {α,−α} in ΓF , by F±α the fixed
field of Γ±α in F̄ , and by S∗c a fixed set of representatives of orbits {α,−α}. Notice that, if
X,Y ∈ creg(F ), then α(X)α(Y ) ∈ F±α.

For α ∈ S∗c , denote by ψ′ the character ψ ◦ TrF±α/F of F±α. Set

γF±α(α(X)α(Y ), ψ′) =
γψ′(α(X)α(Y )q)

γψ′(q)

where q is the quadratic form on F±α defined by q(λ) = λ2.

Proposition 7.3. Let the notations be as above. Then, for X,Y ∈ creg(F ), we have

γψ(X,Y ) = γψ(t(F ))−1γψ(h(F ))

×
∏
α∈S∗c

((α(X)α(Y ), 2)F±αγF±α(α(X)α(Y ), ψ′))mα ,

where ( , )F±α is the Hilbert symbol on F±α.
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Proof. Notice that for α ∈ Sc we have mσα = mα for every σ ∈ ΓF . For each root space gα
associated to α ∈ Sc we can choose its basis {E1

α, . . . , E
mα
α } so that: (1) σ(Eiα) = Eiσα for each

σ ∈ ΓF ; (2) θ(Eiα) = Ei−α; (3) 〈Eiα, E
j
−α〉 = δij .

Consider the homomorphism

τ :
∏
S∗c

mαF±α −→ g(F̄ ), (λiα) 7→
∑
α

mα∑
i=1

∑
σ∈Γ/Γ±α

σ(λiα)(Eiσα + Ei−σα).

In fact the image of τ lies in g(F ) and τ defines an isomorphism∏
S∗c

mαF±α
∼−→ q(F ),

where q is the unique complement of t in h which is stable under the adjoint action of T. For
(λiα) ∈

∏
S∗c
mαF±α, we have

qX,Y (τ((λiα))) =
∑
α∈S∗c

mα∑
i=1

∑
σ∈Γ/Γα

σ(λiα)2〈[Eiσα + Ei−σα, X], [Y,Eiσα + Ei−σα]〉

=
∑
α,i,σ

σ(λiα)2(−σα(X)σα(Y ))〈Eiσα − Ei−σα, Eiσα − Ei−σα〉

=
∑
α,i,σ

σ(λiα)2σα(X)σα(Y )〈Eiσα + Ei−σα, E
i
σα + Ei−σα〉

=
∑
α∈S∗c

mα∑
i=1

qX,Y,α(λiα),

where qX,Y,α(λ) is the quadratic form on F±α defined by

qX,Y,α(λ) = TrF±α/F (2α(X)α(Y )λ2).

Therefore
γψ(X,Y ) =

∏
α∈S∗c

γψ(qX,Y,α)mα .

For α ∈ S∗c , let q′X,Y,α be the quadratic form on F±α defined by

q′X,Y,α(λ) = 2α(X)α(Y )λ2.

Then γψ(qX,Y,α) = γψ′(q
′
X,Y,α), and

γψ′(q
′
X,Y,α) = (α(X)α(Y ), 2)F±αγF±α(α(X)α(Y ), ψ′)γψ′(q

′
α),

where q′α is the quadratic form on F±α defined by q′α(λ) = 2λ2. Therefore

γψ(qX,Y,α) = (α(X)α(Y ), 2)F±αγF±α(α(X)α(Y ), ψ′)γψ(qα),

where
qα(λ) = TrF±α/F (2λ2) = TrF±α/F (〈Eiα + Ei−α, E

i
α + Ei−α〉λ2).

In summary, we deduce that

γψ(X,Y ) =
∏
α∈S∗c

((α(X)α(Y ), 2)F±αγF±α(α(X)α(Y ), ψ′)γψ(qα))mα .
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On the other hand, by the same argument as above, we can show that

γψ(q(F )) =
∏
α∈S∗c

γψ(qα)mα .

Together with the obvious relation

γψ(q(F )) = γψ(t(F ))−1γψ(h(F )),

we complete the proof. 2

7.3 Comparison lemma
To obtain the main result of this subsection, we need the following lemma.

Lemma 7.4. Let X ∈ creg(F ) and Y ∈ c′reg(F ) be such that X ↔ Y . Then there exists an
element x ∈ GL2n(E) such that Ad(x)Y = X, and Ad(x) induces isomorphisms Ad(x) : t′ → t
and Ad(x) : c′ → c over F .

Proof. It suffices to prove this for X =
(

0 1n
A 0

)
and Y =

( 0 γB
B̄ 0

)
, where A ∈ GLn(F ) is regular

semisimple and A = γBB̄ . Then we have

c(F ) =

{(
0 C
AC 0

)
: C ∈ gln(F ),AC = CA

}
,

t(F ) =

{(
D 0
0 D

)
: D ∈ gln(F ),AD = DA

}
,

c′(F ) =

{(
0 γP
P̄ 0

)
: P ∈ gln(E),BP̄ = PB̄

}
,

and

t′(F ) =

{(
Q 0
0 Q̄

)
: Q ∈ gln(E),BQ̄ = QB

}
.

Take x =
(1n 0

0 γB

)
∈ GL2n(E). We claim that Ad(x) satisfies the required condition. By the above

relation, it is easy to see that:

(i) Ad(x) ·
(0 γP
P̄ 0

)
=
(

0 γPB−1

APB−1 0

)
, APB−1 = PB−1A;

(ii) Ad(x) ·
(Q 0

0 Q̄

)
=
(Q 0

0 Q

)
, AQ = QA.

Therefore we have to show that PB−1 ∈ gln(F ), Q ∈ gln(F ).
Note that since A = BB̄ , A commutes with B. It is easy to see that P and Q also commute

with A. Hence P and Q commute with B, since A is regular. Therefore the relation BP̄ = PB̄
implies that PB−1 = P̄B̄

−1
; the relation BQ̄ = QB implies that Q̄ = Q, which concludes the

proof. 2

Now let X ∈ creg(F ) and Y ∈ c′reg(F ) be such that X ↔ Y . Then we can take an x ∈ GL2n(E)
as in the above lemma. For any V ∈ c′reg(F ), put U = Ad(x)V .

Lemma 7.5. Let X,Y, U, V be as above. Then we have the following relations

〈X,U〉 = 〈Y, V 〉,

and
γψ(X,U) = γψ(h(F ))γψ(h′(F ))−1γψ(Y, V ).

Proof. The first relation follows directly from the above lemma. The second relation follows from
the above lemma, Proposition 7.1 and the similar arguments of [Wal95, p. 96, (6)]. 2
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7.4 Test functions

This subsection is devoted to showing that we can construct specific C∞c -functions satisfying

certain ‘good’ matching conditions. Such functions will play an important role in proving

Theorem 5.16 by global method. The result below is an analogue of [Wal97, Proposition in

§ 8.2].

Proposition 7.6. Let Y0 ∈ c′reg(F ) ⊂ s′rs(F ) and X0 ∈ creg(F ) ⊂ srs(F ) be such that X0 ↔ Y0.

Then there exist functions f ∈ C∞c (s(F )) and f ′ ∈ C∞c (s′(F )) satisfying the following conditions.

(i) If X ∈ Supp(f), there exists Y ∈ c′reg(F ) such that X ↔ Y .

(ii) If Y ∈ Supp(f ′), Y is H ′-conjugate to an element in c′reg(F ).

(iii) The functions f and f ′ are smooth transfers of each other.

(iv) There is an equality

κ(X0)Îη(X0, f) = cÎ(Y0, f
′) 6= 0,

where c = γψ(h(F ))γψ(h′(F ))−1.

Proof. Let Wc (respectively Wc′) be the Weyl group associated to c (respectively c′), i.e. Wc =

NH(c)/ZH(c) (respectively Wc′ = NH′(c
′)/ZH′(c

′)). Set

C(X0) = {X ∈ creg(F ) : X = i(X0) for some i ∈Wc},

and

C(Y0) = {Y ∈ c′reg(F ) : Y = i(Y0) for some i ∈Wc′}.

By Lemma 7.4, we fix an isomorphism ϕ : c′(F ) → c(F ) such that ϕ(Y0) = X0. Fix V0 ∈
c′reg(F ) and U0 := ϕ(V0) ∈ creg(F ) so that if X ∈ C(X0)−X0 (respectively Y ∈ C(Y0)− Y0), we

have 〈X −X0, U0〉 6= 0 (respectively 〈Y − Y0, V0〉 6= 0), and moreover, κ(U0) = κ(X0). We make

the following choices.

(i) Fix an integer r > 1 such that the following hold.

– We have 1 +$rOF ⊂ F×2.

– The sets i((1 + $rOF )U0) (respectively i((1 + $rOF )V0)), for i ∈ Wc (respectively

i ∈Wc′), are mutually disjoint.

(ii) There exists an integer N such that if µ ∈ F× satisfying vF (µ) < −N , we have the

following.

– For each X ∈ C(X0) − X0 (respectively Y ∈ C(Y0) − Y0), the character α 7→
ψ($rµα〈X −X0, U0〉) (respectively α 7→ ψ($rµα〈Y − Y0, Y0〉)) is nontrivial on OF .

(iii) Fix N and µ ∈ F× with vF (µ) < −N such that the following hold.

– We have η(µ) = 1.

– The condition (ii) above is satisfied.

– The formulae of Proposition 7.1 hold for îη(X0, i(µU0)) and î(Y0, i
′(µV0)) for all i ∈Wc

and i′ ∈Wc′ .
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(iv) Set ω0 = µ(1 + $rOF )U0 and ω′0 = µ(1 + $rOF )V0. Denote by d (respectively d′) the
F -vector space generated by U0 (respectively V0), and fix a complement e (respectively e′) in
c(F ) (respectively c′(F )), i.e. c(F ) = d⊕ e (respectively c′(F ) = d′⊕ e′). If U ∈ c(F ) (respectively
V ∈ c′(F )), denote by Ud (respectively Vd′) its projection on d (respectively d′). We choose open
compact neighborhoods ωe and ω′e′ of 0 in e and e′ small enough so that if we set ω = ω0 ⊕ ωe

and ω′ = ω′0 ⊕ ω′e′ , then we have the following.

– The sets i(ω) (respectively i′(ω′)), for i ∈ Wc (respectively i′ ∈ Wc′), are mutually
disjoint.

– We have ω ⊂ creg(F ), ω′ ⊂ c′reg(F ), ϕ(ω′) = ω, and therefore, for U ∈ ω, V ∈ ω′, they
match with each other if and only if ϕ(V ) = U .

– For each X ∈ C(X0) (respectively Y ∈ C(Y0)), and each U ∈ ω (respectively V ∈ ω′),

îη(X,U) = îη(X,Ud), î(Y, V ) = î(Y, Vd′).

– The function κ is constant on ω, which hence equals κ(X0).

Define a function fω (respectively f ′ω′) on ω (respectively ω′) by

fω(U) = ψ(−〈X0, Ud〉) for U ∈ ω,
f ′ω′(V ) = ψ(−〈Y0, Vd′〉) for V ∈ ω′.

Now we fix a function f ∈ C∞c (s(F )) (respectively f ′ ∈ C∞c (s′(F ))) such that

Supp(f) ⊂ ωH and κ(U)Iη(U, f) = fω(U) for each U ∈ ω,
Supp(f ′) ⊂ ω′H′ and I(V, f ′) = f ′ω′(V ) for each V ∈ ω′.

Then, we have, for X ∈ srs(F ),

κ(X)Iη(X, f) =

{
fω(U) if X is H-conjugate to some U ∈ ω,
0 otherwise,

and for Y ∈ s′rs(F ),

I(Y, f ′) =

{
f ′ω′(V ) if Y is H ′-conjugate to some V ∈ ω′,
0 otherwise.

Thus the assertions (i), (ii) and (iii) of the proposition follow from the above construction and
Lemma 7.5.

To prove the assertion (iv), we observe that

κ(X0)Îη(X0, f) = κ(X0)

∫
s(F )

îη(X0, U)κ(U)f(U)|Ds(U)|−1/2 dU

= |Wc|−1κ(X0)

∫
c(F )

îη(X0, U)κ(U)Iη(f, U) dU

= κ(X0)

∫
ω
îη(X0, U)fω(U) dU

=
∑
i∈Wc

κ(X0)

∫
ω
η(i)κ(U)γψ(i(X0), U)ψ(〈i(X0), U〉)fω(U) dU

=
∑

X∈C(X0)

vol(ωe)κ(X)κ(U)

∫
ω0

γψ(X,Ud)ψ(〈X −X0, Ud〉) dUd
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=
∑

X∈C(X0)

vol(ω)κ(X)κ(U)

×
∫
OF

γψ(X,µ(1 +$rα)U0)ψ(〈X −X0, µ(1 +$rα)U0〉) dα.

By condition (i),

γψ(X,µ(1 +$rα)U0) = γψ(X,µU0) for any α ∈ OF .

If X 6= X0, by condition (ii),∫
ω0

ψ(〈X −X0, µ(1 +$rα)U0〉) dα = 0.

Therefore,
κ(X0)Îη(X0, f) = vol(ω)γψ(X0, µU0) 6= 0.

The same computation goes for Î(Y0, f
′) and we get

Î(Y0, f) = vol(ω′)γψ(Y0, µV0) 6= 0.

Then the conclusion follows from Lemma 7.5 and vol(ω) = vol(ω′). 2

8. Proof of Theorem 5.16

In this section, we will prove Theorem 5.16. We divide this theorem into two parts,
i.e. Theorems 8.1 and 8.2 below.

Theorem 8.1. If f is in C∞c (s(F ))0, so is f̂ .

Theorem 8.2. There exists a nonzero constant c ∈ C satisfying that if f ∈ C∞c (s(F )) and
f ∈ C∞c (s′(F )) are smooth transfers of each other, then

κ(X)Îη(X, f) = cÎ(Y, f ′)

for any X ∈ srs(F ) and Y ∈ s′rs(F ) such that X ↔ Y .

We will use a local method to prove Theorem 8.1, and a global method to prove Theorem 8.2,
as we have said before. The global method is a modification of that of [Wal97].

8.1 Proof of Theorem 8.1
By Lemma 5.15, it suffices to only consider the case s′ = s′ε when ε = 1. Throughout this
subsection, we assume that ε = 1.

Recall that srs(F )0 is the subset of elements in srs(F ) coming from s′rs(F ). Let C0 be the set of
Cartan subspaces of s coming from those of s′, and |C0| a set of representatives for H-conjugacy
classes of Cartan subspaces in C0.

Let f be in C∞c (s(F ))0. Then, by the Weyl integration formula, we have

Îη(X, f) =

∫
s(F )

îη(X,Y )κ(Y )f(Y )|Ds(Y )|−1/2 dY

=
∑
c

|Wc|−1

∫
creg(F )

îη(X,Y )κ(Y )Iη(Y, f) dY

=
∑
c∈|C0|

|Wc|−1

∫
creg(F )

îη(X,Y )κ(Y )Iη(Y, f) dY.

Thus, to show Îη(X, f) = 0 for any X /∈ srs(F )0, it suffices to show the following lemma.
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Lemma 8.3. For any X /∈ srs(F )0 and any Y ∈ srs(F )0, we have îη(X,Y ) = 0.

Proof. First we need some preparation. Define an involution τ on C∞c (s(F )) : f τ (X) := f(Xt),
where X =

(
0 A
B 0

)
∈ s(F ) and Xt is its transpose. The following two properties can be easily

checked.

(i) The involution τ commutes with Fourier transform, i.e. (f̂)τ = f̂ τ .

(ii) For X =
(

0 A
B 0

)
∈ srs(F ), Iη(X, f τ ) = η(detAB)Iη(X, f) for any f ∈ C∞c (s(F )).

In particular, if Y ∈ srs(F )0, then Iη(Y, f τ ) = Iη(Y, f); if an elliptic X is not in srs(F )0, then
Iη(X, f + f τ ) = 0.

Now let X /∈ srs(F )0 be an elliptic element. For any f ∈ C∞c (s(F ))0, by the above discussion,
we see that

0 = Îη(X, f + f τ ) = 2
∑
c∈|C0|

|Wc|−1

∫
creg(F )

îη(X,Y )κ(Y )Iη(Y, f) dY.

For any Y0 ∈ srs(F )0 we may choose a specific f0 ∈ C∞c (s(F ))0 so that∑
c∈|C0|

|Wc|−1

∫
creg(F )

îη(X,Y )κ(Y )Iη(Y, f) dY = îη(X,Y0).

Therefore îη(X,Y ) = 0 for any elliptic X /∈ srs(F )0 and any Y ∈ srs(F )0.
Now let X /∈ srs(F )0 be a nonelliptic element. It suffices to assume that X is of the form

X(A) =
(

0 1n
A 0

)
for some A ∈ GLn,rs(F ). Since X /∈ srs(F )0 is nonelliptic, we can assume that

A is of the form
(
A1 0
0 A2

)
where A1 ∈ GLn1,rs(F ) is elliptic and not in N(GLn1(E)), and A2 is

in GLn2,rs(F ). Recall the discussions in § 6.1. There is a subspace r ' sn1 × sn2 of s such that

X ∈ r. Moreover, under the natural isomorphism ι : r
∼
→ sn1 × sn2 , the image of X is (X1, X2)

where Xi = X(Ai) for i = 1, 2. Write si = sni for i = 1, 2. Let M = H1 × H2 where Hi = Hni

for i = 1, 2. Then M acts on r naturally. For Z ∈ rrs(F ), let îη,r(Z, ·) be the kernel function that
represents the distribution f 7→ Îη,M (Z, f) for f ∈ C∞c (r(F )). It is obvious that

îη,r(Z, Y ) = îη,s1(Z1, Y1)̂iη,s2(Z2, Y2)

where (Z1, Z2) and (Y1, Y2) are the images of Z and Y under ι in s1×s2 respectively, and îη,si(Zi, ·)
is the kernel function that represents the distribution f 7→ Îη,Hi(Zi, f) for f ∈ C∞c (si(F )) for
i = 1, 2.

By Proposition 6.3, we have

îη(X,Y ) =
∑
Y ′

îη,r(X,Y ′),

where Y ′ runs over a set of representatives for the finitely many M -conjugacy classes of elements
of r(F ) which are H-conjugate to Y . Therefore we can and do assume that Y ∈ srs(F )0 is in
r(F ) and of the form Y = (Y1, Y2) under the natural map ι where Yi ∈ si,rs(F )0. Then

îι,r(X,Y ) = îη,s1(X1, Y1)̂iη,s2(X2, Y2) = 0,

since X1 /∈ s1,rs(F )0 is elliptic and Y1 ∈ s1,rs(F )0. We complete the proof of the lemma. 2
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8.2 A result on convergence
Now let k be a number field, and A = A∞ × Af its ring of adeles. Let k′ be a quadratic field
extension of k, D a quaternion algebra over k containing k′, and η the quadratic character of
A×/k× attached to k′ by the class field theory. We define the global symmetric pairs (G,H) and
(G′,H′) over k with respect to k′ and D similarly as the local cases. Let s, s′ be the corresponding
global ‘Lie algebras’ associated to (G,H) and (G′,H′) respectively, which are defined over k.
Denote by S(s(A)) (respectively S(s′(A))) the space of Schwartz functions on s(A) (respectively
s′(A)). Denote by H(A)1 the set of (h1, h2) ∈ H(A) such that |deth1| = |deth2| = 1, and by
H′(A)1 the set of h ∈H′(A) such that |deth| = 1. The groups H(A)1 and H′(A)1 are subgroups
of H(A) and H′(A) respectively. We have the following theorem concerning the issue about
convergence.

Theorem 8.4. For each φ ∈ S(s(A)),∫
H(k)\H(A)1

∑
X∈sell(k)

|φ(Xh)| dh <∞.

Similarly, for each φ′ ∈ S(s′(A)),∫
H′(k)\H′(A)1

∑
Y ∈s′ell(k)

|φ′(Y h)| dh <∞.

Proof. We prove the first assertion of Theorem 8.4 as follows. Here we still write Z = (X,
Y ) ∈ s = gln ⊕ gln and h · Z = (Adh)Z where h ∈ H for convenience. Recall that Z = (X,Y )
is in sell(k) if and only if neither XY nor Y X is contained in a proper parabolic subgroup of
GLn(k). Let P0 be the minimal parabolic subgroup of GLn consisting of the upper-triangular
one. Put P = P0 ×P0 ⊂ H. Identify R×+ with the subgroup of A×∞ consisting of elements whose
components at each place are the same and belong to R×+. For each real number c > 0, put A0

c

the set of a = diag(a1, . . . , an) ∈ SLn(R) such that ai/ai+1 > c for all 1 6 i 6 n− 1 and ai ∈ R×+
for all 1 6 i 6 n, and set

Ac = A0
c ×A0

c ⊂ H(R) ⊂ H(A∞).

By reduction theory, we know that there exists a maximal compact subgroup K of H(A), a
compact subset ω ⊂ P(A) ∩H(A)1 and a c > 0 such that, if we set

G = {pak; p ∈ ω, a ∈ Ac, k ∈ K},

we have the equality H(A)1 = H(k)G, and thus, for each measurable function φ on H(k)\H(A)1

with value greater than or equal to 0, the integral∫
H(k)\H(A)1

φ(x) dx

is convergent if and only if the integral ∫
G
φ(x) dx

is convergent. Fix such K, ω, c. Then the integral is convergent if there exists C > 0 such that
for each p ∈ ω, k ∈ K, ∫

Ac

∑
Z∈sell(k)

|φ((pak) · Z)|δP(a)−1 da 6 C,
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where δP is the modulus character of P. There exists a compact set Ω ⊂ H(A)1 such that for
all p ∈ ω, a ∈ Ac, k ∈ K we have a−1pak ∈ Ω. Then there exists φ′ ∈ S(s(A)) such that for all
Z ∈ s(A) and h ∈ Ω, we have |φ(h ·Z)| 6 φ′(Z). It suffices to consider φ′ of the form φ′ = φ′∞⊗φ′f ,
where φ′∞ ∈ S(s(A∞)), φ′f ∈ S(s(Af)) both with values greater than or equal to 0, and suffices to
consider the integral ∫

Ac

∑
Z∈sell(k)

φ′(a · Z)δP(a)−1 da.

Choose an Ok-lattice L in s(k) such that s(k) ∩ Supp(φf) ⊂ L. Denote Lell = L ∩ sell(k). Since
φ′f(a · Z) = φ′f(Z), it suffices to consider the integral∫

Ac

∑
Z∈Lell(k)

φ′∞(a · Z)δP(a)−1 da.

If xv ∈ kv and v is an infinite place of k, write |xv| for the usual absolute value of xv. For
every x = (xv) ∈ A∞, put |x| = maxv|xv|. For X = (xi,j) ∈ gln(A∞), put |X| = maxi,j |xi,j |. For
Z = (X,Y ) ∈ s(A∞), write |Z| = max{|X|, |Y |}. Then the following lemma implies the theorem.

Lemma 8.5. Assume that n > 2. There is a positive valued polynomial function P on the real
vector space s(A∞), which depends on L and c, such that

P (a · Z) >

(n−1∏
i=1

ai
ai+1

· bi
bi+1

)
|Z|,

for all a = diag(a1, . . . , an, b1, . . . , bn) ∈ Ac and all Z ∈ Lell.

Proof. Take a positive valued polynomial function P1 on s(A∞) such that

P1(X,Y ) > max{|XY |, |Y X|} for all (X,Y ) ∈ s(A∞).

Take a positive number cL such that

(X,Y ) ∈ L, d is a nonzero entry of XY or Y X ⇒ |d| > cL.

Let a = (a1, a2, . . . , an, b1, b2, . . . , bn) in Ac and let Z = (X,Y ) = ((xi,j), (yi,j)) in Lell. Write (ui,j)
for XY . Fix i0 = 1, 2, . . . , n− 1. Since XY is not contained in a proper parabolic subalgebra of
gln(k), there are i > i0 + 1 and j 6 i0 such that

ui,j 6= 0.

Then
|ui,j | > cL,

and we have

P1(a · Z) > |aiui,ja−1
j | > cLaia

−1
j > cLc

i−i0−1ci0−jai0a
−1
i0+1

> cLc
n−2ai0a

−1
i0+1.

This implies that

a−1
n =

n−1∏
i=1

(ai/ai+1)i/n 6

(
1

cLcn−2
P1(a · Z)

)(n−1)/2

,
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and

a1 =

n−1∏
i=1

(ai/ai+1)(n−i)/n 6

(
1

cLcn−2
P1(a · Z)

)(n−1)/2

.

Similarly,
P1(a · Z) > cLc

n−2bi0b
−1
i0+1,

and

b1, b
−1
n 6

(
1

cLcn−2
P1(a · Z)

)(n−1)/2

.

For all i, j = 1, 2, . . . , n, we have
|a · Z| > ai|ai,j |b−1

j .

Therefore,

|ai,j |6 a−1
i bj |a · Z| 6 c−(n−i)−(j−1)a−1

n b1|a · Z|

6 c−(2n−2)

(
1

cLcn−2

)n−1

P1(a · Z)n−1|a · Z|.

Similarly,

|bi,j | 6 c−(2n−2)

(
1

cLcn−2

)n−1

P1(a · Z)n−1|a · Z|.

By timing ai/ai+1 and bi/bi+1 on both sides of the above inequality, we get the lemma. 2

The convergence of the second integral (for φ′ ∈ S ′(s(A))) in Theorem 8.4 can be deduced
easily from [Wal97, Lemma 10.8], since the twisted conjugation by Ac is the usual conjugation.

2

By the above theorem, we have a well-defined distribution Iη on s(A), defined by

Iη(φ) =

∫
H(k)\H(A)1

∑
X∈sell(k)

φ(Xh)η(h) dh, φ ∈ S(s(A)),

and a well-defined distribution I on s′(A), defined by

I(φ′) =

∫
H′(k)\H′(A)1

∑
Y ∈s′ell(k)

φ′(Y h) dh, φ′ ∈ S(s′(A)).

If φ =
∏
v φv, φ

′ =
∏
v φ
′
v, it is routine to see that

Iη(φ) =
∑

X∈[sell(k)]

τ(HX)
∏
v

κv(X)Iη(X,φv),

I(φ′) =
∑

Y ∈[s′ell(k)]

τ(H′Y )
∏
v

I(Y, φ′v),

where

τ(HX) = vol(HX(k)\(HX ∩H(A)1)), τ(H′Y ) = vol(H′Y (k)\(H′Y ∩H′(A)1)),

[sell(k)] denotes the set of H(k)-orbits in sell(k), and [s′ell(k)] denotes the set of H′(k)-orbits in
s′ell(k). If X ∈ srs(k) and Y ∈ s′rs(k) so that X ↔ Y , then HX 'H′Y (for the same reason as the
local case). We choose Haar measures on HX(A) and H′Y (A) so that they are compatible. Thus,
if X ∈ sell(k), Y ∈ s′ell(k) such that X ↔ Y , we have

τ(HX) = τ(H′Y ).
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8.3 Proof of Theorem 8.2

Now, we fix f ∈ C∞c (s(F )) and f ′ ∈ C∞c (s′(F )) so that they are smooth transfers of each

other. Here we allow that f may not lie in C∞c (s(F ))0, as we have mentioned in the proof

of Proposition 5.17. We also refer the reader to the proof of Proposition 5.17 to see the definition

of smooth transfer in this more general situation.

Fix X0 ∈ srs(F ), Y0 ∈ s′rs(F ) such that X0 ↔ Y0. Our aim is to search for a nonzero constant

c which is independent of f, f ′, X0 and Y0 such that

κ(X0)Îη(X0, f) = cÎ(Y0, f
′).

In the following, we choose some global data.

Fields. We choose a number field k, a quadratic field extension k′ of k, and a quaternion algebra

D over k containing k′ so that the following hold.

(i) The number field k is totally imaginary.

(ii) There exists a finite place w of k such that kw ' F, k′w ' E and D(kw) ' D.

(iii) There exists another finite place u of k such that u is inert in k′.

Such a number field k and a quaternion algebra D do exist (cf. [Wal97, Proposition in § 11.1]).

From now on, we identify kw with F , k′w with E, and D(kw) with D. Denote by A the ring of

adeles of k, by Ok the ring of integers of k, and Ok′ the ring of integers of k′. Fix a continuous

character A/k whose local component at w is our fixed character ψ of kw. Denote by ψ this

global character, when there is no confusion.

Groups. We define the global symmetric pairs (G,H) and (G′,H′) over k with respect to k′

and D similarly as the local case. We still use h and h′ to denote the Lie algebras of H and H′

respectively, and use s and s′ to denote the global Lie algebras corresponding to (G,H) and

(G′,H′) respectively, if there is no confusion. Thus X0 ∈ srs(kw) and Y0 ∈ s′rs(kw).

Places. Denote by V (respectively V∞, Vf) the set of all (respectively archimedean, nonarchime-

dean) places of k. Fix two Ok-lattices: L = gln(Ok)⊕ gln(Ok) ⊂ s(k) and L′ = gln(Ok′) ⊂ s′(k).

For each v ∈ Vf , put Lv = L⊗Ok Ok,v,L′v = L′⊗Ok Ok,v. We fix a finite set S ⊂ V such that the

following hold.

(i) The set S contains u,w and V∞.

(ii) For each v ∈ V −S, everything is unramified, i.e. G and G′ are unramified over kv, Lv and

L′v are self-dual with respect to ψv and 〈 , 〉.

We denote by S′ the subset S − V∞ − {w} of S.

Orbits. For each v ∈ Vf , we choose an open compact subset Ωv ⊂ s′(kv) such that the following

hold.

(i) If v = w, we require that Y0 ∈ Ωw ⊂ s′rs(kw), Î(·, f ′) is constant on Ωw, and κ(·)Îη(·, f) is

constant and hence equal to κ(X0)Îη(X0, f) on the set of X ∈ srs(kw) which matches an

element Y in Ωw.

(ii) If v = u, we require Ωu ⊂ s′ell(ku).

(iii) If v ∈ S but v 6= w, u, choose Ωv to be any open compact subset.

(iv) If v ∈ Vf − S, let Ωv = L′v.
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Then by the strong approximation theorem, there exists Y 0 ∈ s′(k) such that Y 0 ∈ Ωv for each
v ∈ Vf . Furthermore, by the condition (ii) above, Y 0 ∈ s′ell(k). Take an element X0 ∈ sell(k) such
that X0

↔ Y 0.

Functions. For each v ∈ V , we choose functions φv ∈ S(s(kv)) and φ′v ∈ S(s′(kv)) as follows.

(i) If v = w, let φv = f and φ′v = f ′.

(ii) If v ∈ S′, by Proposition 7.6, we require that the following hold.

– If Xv ∈ Supp(φv), there exists Yv ∈ c′Y 0(kv) such that Xv ↔ Yv, where we denote by
c′Y 0 the Cartan subspace in s′ containing Y 0.

– If Yv ∈ Supp(φ′v), there exists Y ′v ∈ c′Y 0(kv) such that Yv and Y ′v are H′(kv)-conjugate.

– The function φv is a transfer of φ′v.

– κv(X
0)Îη(X0, φv) = cv Î(Y 0, φ′v) 6= 0, where cv = γψ(h(kv))γψ(h′(kv))

−1.

(iii) For v ∈ V −S, set φv = 1Lv , φ
′
v = 1L′v ; then φv = φ̂v, φ

′
v = φ̂′v, and by Lemma 5.18 we have

κv(X
0)Îη(X0, φv) = κv(X

0)Iη(X0, φv) = I(Y 0, φ′v) = Î(Y 0, φ′v).

(iv) For v ∈ V∞, identifying (H(kv), s(kv)) with (H′(kv), s
′(kv)), we choose φv = φ′v ∈ S(s(kv))

such that the following hold.

– We have Îη(X0, φv) = Î(Y 0, φ′v) 6= 0.

– If X ∈ s(k) is H(kv)-conjugate to an element in the support of φ̂v at each place v ∈ V ,
then X is H(k)-conjugate to X0.

– If Y ∈ s′(k) is H′(kv)-conjugate to an element in the support of φ̂′v at each place v ∈ V ,
then Y is H′(k)-conjugate to Y 0.

This is possible. The key point is that, by invariant theory, we have natural maps
(cf. Remark 5.3)

s′/H′ ↪→ s/H −→ An
k ,

where An
k is the n-dimensional affine space over k so that An

k = Spec(O(s)H). We refer
the reader to [Wal97, Lemme in § 10.7] for the proof in the endoscopic case, and a similar
argument is also valid here.

Set φ ∈ S(s(A)) and φ′ ∈ S(s′(A)) to be

φ =
∏
v∈V

φv, φ′ =
∏
v∈V

φ′v.

Final proof. According to the conditions on φu (respectively φ′u), we know that if X ∈ s(k)
(respectively Y ∈ s′(k)) is such that X ∈ Supp(φ)H(A) (respectively Y ∈ Supp(φ′)H

′(A)), then
X ∈ sell(k) (respectively Y ∈ s′ell(k)). Here we use Supp(φ)H(A) to denote the union of H(A)-
orbits intersecting Supp(φ), and Supp(φ′)H

′(A) to denote the union of H′(A)-orbits intersecting
Supp(φ′). Suppose that X ∈ sell(k) is such that

Iη(X,φ) =
∏
v∈V

Iη(X,φv) 6= 0.

Then, by the conditions on φv, X comes from s′(kv) at each place v not equal to w. We claim
that X must come from s′(k). If not, there exists at least two places v1 and v2 such that X does
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not come from s′(kv), which is a contradiction. Therefore we have

Iη(φ) = I(φ′),

since φv is a transfer of φ′v at each place v not equal to w and is a partial transfer of φ′v at the
place v = w by the requirements we have imposed.

On the other hand, according to the conditions on φ̂v and φ̂′v, we know that if X ∈ s(k)

(respectively Y ∈ s′(k)) is such that X ∈ Supp(φ̂)H(A) (respectively Y ∈ Supp(φ̂′)H
′(A)), then X

is H(k)-conjugate to X0 (respectively Y is H′(k)-conjugate to Y 0).
By the Poisson summation formula, we have∑

X∈s(k)

φ(Xh) =
∑

X∈s(k)

φ̂(Xh) for all h ∈ H(A),

and ∑
Y ∈s′(k)

φ′(Y h) =
∑

Y ∈s′(k)

φ̂′(Y h) for all h ∈ H′(A).

Therefore, by the conditions on φ and φ′, we have

Iη(φ) = Iη(φ̂), I(φ′) = I(φ̂′).

Hence we obtain
Iη(φ̂) = I(φ̂′),

or, equivalently,

τ(HX0)
∏
v∈V

κv(X
0)Îη(X0, φv) = τ(H′Y 0)

∏
v∈V

Î(Y 0, φ′v).

Note that for v ∈ V − S , we have

κv(X
0)Îη(X0, φv) = Î(Y 0, φ′v) 6= 0,

and for almost all v ∈ V − S,

κv(X
0)Îη(X0, φv) = Î(Y 0, φ′v) = 1.

For v ∈ S′ and v ∈ V∞, we have

κv(X
0)Îη(X0, φv) = cv Î(Y 0, φ′v) 6= 0.

Therefore
κw(X0)Îη(X0, f) = cÎ(Y 0, f ′),

where

c =

(∏
v∈S′

cv

)−1

=
∏
v∈S′

γψ(h(kv))
−1γψ(h′(kv)).

Notice that if v ∈ V∞ or v ∈ V − S,

γψ(h(kv)) = γψ(h′(kv)) = 1.

Also notice that ∏
v∈V

γ(h(kv)) =
∏
v∈V

γψ(h′(kv)) = 1.

Therefore
c = γψ(h(kw))γψ(h′(kw))−1.

Since
κw(X0)Îη(X0, f) = κw(X0)Îη(X0, f), Î(Y0, f

′) = Î(Y 0, f ′),

we complete the proof of the theorem. 2
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