ON A PROBLEM OF CHEVALLEY

KATSUHIKO MASUDA

Recently Prof. Chevalley in Nagoya suggested to the author the following problem: Let k be a field, $K_5 = k(x_1, x_2, x_3, x_4, x_5)$ be a purely transcendental extension field (of transcendental degree 5) of k, s_5 be the cyclic permutation of x: $s_5x_1 = x_2s_5x_2 = x_3s_5x_3 = x_4s_5x_4 = x_5s_5x_5 = x_1$, and let L_5 be the field of invariants of s_5 in K_5 . Is L_5 then purely transcendental over k or not? When the characteristic p of k is not equal to 5, it is answered in the following positively. When the characteristic p of k is equal to 5, it is answered also positively by Mr. Kuniyoshi's result in [2].

Now let $K_n = k(x_1, x_2, x_3, \ldots, x_n)$ be a purely transcendental extension field (of transcendental degree n) of k, s_n be the cyclic permutation of $x: s_n x_1 = x_2 s_n x_2 = x_3 \ldots s_n x_n = x_1$, and let L_n be the field of invariants of s_n in K_n . We suppose from now on throghout the present article that n is not divisible by the characteristic p of k. If the ground field k involves a primitive n-th root c_n of 1, we can see easily that c_n is purely transcendental over c_n . From this fact we obtain in the following that existence of certain sets of primitive generators of c_n over c_n (the definition is shown in the following) is a necessary and sufficient condition for c_n to be purely transcendental over c_n and the existence of such sets of primitive generators are shown for every case of c_n through calculations on factor sets. It looks that a more arithmetical approach will be necessary to solve the problem with reference to general c_n .

1. Let $k'_n = k(\zeta_n)$, $K'_n = K_n(\zeta_n)$ and $\mathfrak G$ be the Galois group of k' over k. We omit all n as subscripts throughout in the following, unless indispensable. Let L' denote the field of invariants of s in K'. K and K' are clearly Galois extension fields over L and L' of the same rank n respectively. Their Galois groups are generated by the automorphism induced by s. We do not distin-

Received June 1, 1954.

¹⁾ Cf. [1] and [3]. Hasse factor sets defined in [3] without the supposition that the absolutely irreducible representations of Galois groups are obtained in the ground field has close relations to the problem of the pure transcendency of L_n over k.

60 K. MASUDA

guish these two Galois groups and the cyclic permutation group of x generated by s and denote them by same \mathfrak{G} . As K is purely transcendental over k, K and k' are linearly disjoint over k^2 and $[K':K] = [L(\zeta):L] = [k':k]$. The restrictions of the Galois group of K' over K into $L(\zeta)$ and k' are the Galois group of $L(\zeta)$ over L and the Galois group of k' over k respectively. We do not distinguish these three Galois groups and denote them by same \mathfrak{G} . Then we can see easily from the Galois theory that $L(\zeta) \cap K = L$ and $[K:L] = [K':L(\zeta)] = [K':L']$. As $L(\zeta) \subset L'$, we obtain now the following Lemma.

LEMMA 1. $L' = L(\zeta), L' \cap K = L \text{ and } [L' : L] = [k' : k].$

Let $y_j = \sum_{i=1}^n \zeta^{-ij} x_i$ and $c_{j,k} = y_j y_k / y_{j+k}$ for $j,k=1,2,\ldots,n$, where we denote by $\overline{j+k}$ the integer determined uniquely by $\overline{j+k} \equiv j+k \mod n$ and $1 \le \overline{j+k} \le n$. $c_{j,k}$ belongs clearly to L'. Let M' denote the field generated over k' by all $c_{j,k}$ for $j,k=1,2,\ldots,n$. From $c_{i,j} = c_{1,j}c_{1,\overline{j+1}} \ldots c_{1,\overline{j+i}}/c_{1,1}c_{1,2} \ldots c_{1,i-1}$ it follows easily that $M' = k'(c_{1,1}c_{1,2},\ldots,c_{1,n})$ and $y^n \in M'$. As y_1 gives an isomorphic irreducible representation of \mathfrak{G} , $[M'(y_1):M']=n$. As y_2,y_3,\ldots,y_n can be written as rational combinations of y_1 and $c_{j,k}$ over M' with coefficients in k', $M'(y_1) = M'(y_1,y_2,\ldots,y_n) = K'$. So [K':M']=n, M'=L' and $L'=k'(c_{1,1},c_{1,2},c_{1,3},\ldots,c_{1,n})$. As the transcendental degree of L' is n, we obtain

Theorem 1. L' is purely transcendental over k'.

We call a set (a_1, a_2, \ldots, a_t) of elements in L' a primitive generating set of L' over $k(\zeta)$, if $\sum_{i=1}^t \iota(a_i) = n$ and $L' = k'(a_1, a_1', a_1'', \ldots, a_1^{\iota(\iota(a_1)-1)}, a_2, a_2', a_2'', \ldots, a_2^{\iota(\iota(a_2)-1)}, \ldots, a_t, a_t', a_t'', \ldots, a_t^{\iota(\iota(a_t)-1)})$, where we denote by $\iota(a_i)$ the number of (different) conjugate elements of a_i over L. So the number t of elements in such a set is not greater than n, $\iota(a_i) = [L(a_i) : L]$ and $a_i^{(j)} \neq a_{i'}^{(j')}$ except only when i = i', j = j'. As \mathfrak{B} is an abelian group, $L(a_i)$ is a Galois extension field of L and $L(a_i, a_i', a_i'', \ldots, a_i^{(\iota(a_i)-1)}) = L(a_i)$. Now we prove the following theorem.

THEOREM 2. L is purely transcendental over k, if and only if there exists a primitive generating set of $L(\zeta)$ over $k(\zeta)$.

Proof. (i) Sufficiency. Let (a_1, a_2, \ldots, a_t) be a primitive generating set $\frac{a_1}{a_2}$ Cf. Chap. I. §7 in [4].

of L' over k. Let $k'_i = L(a_i) \cap k'$ for $i = 1, 2, \ldots, t$. Then $L(a_i) = Lk'_i$ and the Galois group of $L(a_i)$ over L is equal to the Galois group of k'_i over k. Let $\omega_{i,1}, \omega_{i,2}, \ldots, \omega_{i,\ell(a_i)}$ be a normal basis of k' over k (accordingly also such one of $L(a_i)$ over L). a_i can be written as $a_i = \sum_{j=1}^{c(a_i)} \omega_{i,j} m_{j,i}$ with $m_{j,i}$ in L for i = 1, 2, ..., t. $a_i, a_i', a_i'', \ldots, a_i^{i(a_i)-1}$ are clearly written as bilinear combinations of $\omega_{i,1}, \omega_{i,2}, \ldots, \omega_{i,\ell(a_i)}$ and $m_{1,i}, m_{2,i}, \ldots, m_{\ell(a_i),i}$. As $a_i, a_i', a_i'', \ldots, a_i^{(\ell(a_i)-1)}$ are algebraically independent over k', these forms are as linear combinations of $m_{1,i}, m_{2,i}, \ldots, m_{\ell(a_i),i}$ with coefficients in k' linearly independent. So $m_{1,i}, m_{2,i}$..., $m_{\iota(a_i),i}$ can be written as linear combinations of $a_i, a_i', a_i'', \ldots, a_i^{(\iota(a_i)-1)}$ with coefficients in k'_i and so $k'(a, a'_i, a''_i, \ldots, a'^{(\ell(a_i)-1)}_i) = k'(m_{1,i}, m_{2,i}, \ldots, m_{\ell(a_i),i})$. Thus we obtain $L' = k'(a_1, a_1', a_1'', \ldots, a_1^{(\iota(a_1)-1)}, a_2, a_2', a_2'', \ldots, a_2^{(\iota(a_2)-1)}, \ldots,$ $a_t, a_t', a_t'', \ldots, a_t^{(\ell(a_t)-1)}) = k'(m_{1,1}, m_{2,1}, \ldots, m_{\ell(a_1),1}, m_{1,2}, m_{2,2}, \ldots, m_{\ell(a_2),2}, \ldots$.., $m_{1,t}$, $m_{2,t}$, ..., $m_{\ell(a_1),t}$). Let $M = k(m_{1,1}, m_{2,1}, \ldots, m_{\ell(a_1),1}, m_{1,2}, m_{2,2}, \ldots$., $m_{\ell(a_2),2},\ldots,m_{1,t},\ m_{2,t},\ldots,m_{\ell(a_\ell)t}$). Then $M\subseteq L$. As Mk'=L',L' is algebraic over M and $[L':M] \leq [k':k]$, so M=L. As the transcendental degree of L(=M) is n, m's are algebraically independent generators of L and L is purely transcendental over k.

- (ii) Necessity. Suppose that L is purely transcendental over k and $L = k(a_1, a_2, \ldots, a_n)$. (a_1, a_2, \ldots, a_n) is clearly a primitive generating set of L' over $k(\zeta)$, q.e.d.
 - 2. Now we prove the following theorem.

THEOREM 3. Let $n \le 7$ and suppose that the characteristic p of k does not divide n. Then L is purely transcendental over k.

- **Proof.** (i) When n = 1, the theorem is trivial.
- (ii) When n=2, it holds [k':k]=1 from p+n and the theorem follows from Theorem 1.
- (iii) When n=3, [k':k]=1 or 2. If [k':k]=1, the theorem follows from Theorem 1. If [k':k]=2, let $a_1=c_{1,3}=x_1+x_2+x_3$ and $a_2=c_{1,1}=(\zeta_3x_1+\zeta_3^2x_2+x_3)^2/\zeta_3^2x_1+\zeta_3x_2+x_3$. Then $\iota(a_1)+\iota(a_2)=1+2=3$ and since $a_2=c_{2,2}=c_{1,2}c_{1,3}/c_{1,1}$ it follows $k'(a_1,a_2,a_2')=k'(c_{1,1},c_{1,2},c_{1,3})=L_3'$. So (a_1,a_2) is a primitive generating set of L_3' over $k(\zeta_3)$ and the theorem follows from Theorem 2.
 - (iv) When n=4, $\lfloor k':k \rfloor = 1$ or 2. If $\lfloor k':k \rfloor = 1$, the theorem fol-

62 K. MASUDA

lows from Theorem 1. When [k':k] = 2, let $a_1 = c_{1,4}$, $a_2 = c_{1,2}$, $a_3 = c_{1,3}$. Then $\iota(a_1) + \iota(a_2) + \iota(a_3) = 1 + 2 + 1$ and since $a'_2 = c_{3,2} = c_{1,3}c_{1,4}/c_{1,1}$ it follows $k'(a_1, a_2, a'_2, a_3) = k'(c_{1,1}, c_{1,2}, c_{1,3}, c_{1,4}) = L'_4$. So (a_1, a_2, a_3) is a primitive generating set of L'_4 over $k(\zeta_1)$ and the theorem follows from Theorem 2.

- (v) When n = 5, [k':k] = 1 or 2 or 4. If [k':k] = 1, the theorem follows from Theorem 1. When [k':k] = 4, let $a_1 = c_{1,5}$, $a_2 = c_{1,2}$. Then $\iota(a_1) + \iota(a_2) = 1 + 4 = 5$ and it follows from $a'_2 = c_{2,4} = c_{1,4}c_{1,5}/c_{1,1}$, $a''_2 = c_{1,3}$, $a'''_2 = c_{5,4} = c_{1,4}c_{1,5}/c_{1,2}$ that $k'(a_1, a_2, a'_2, a''_2, a'''_2) = k'(c_{1,1}, c_{1,2}, c_{1,3}, c_{1,4}, c_{1,5}) = L'_5$. So (a_1, a_2) is a primitive generating set of L'_5 over $k(\zeta_5)$, and the theorem follows from Theorem 2. If [k':k] = 2 it is easily seen that one of the following three sets $(c_{1,5}, c_{1,2}, c_{2,1})$, $(c_{1,5}, c_{1,2}, c_{1,3})$, $(c_{1,5}, c_{1,2}, c_{2,4})$ becomes a primitive generating set of $L(\zeta_5)$ over $k(\zeta_5)$.
- (vi) When n = 6, [k':k] = 1 or 2. When [k':k] = 1, the theorem follows from Theorem 1. When [k':k] = 2, let $a_1 = c_{1,6}$, $a_2 = c_{1,2}$, $a_3 = c_{1,4}$, $a_4 = c_{1,5}$, then $\iota(a_1) + \iota(a_2) + \iota(a_3) + \iota(a_4) = 1 + 2 + 2 + 1 = 6$, and it follows from $a'_2 = c_{5,4} = c_{1,5}$, $c_{1,6}/c_{1,3}$, $a'_3 = c_{5,2} = c_{1,5}$, $c_{1,6}/c_{1,1}$ that $k'(a_1, a_2, a'_2, a_3, a'_3, a_4) = k'(c_{1,1}, c_{1,2}, c_{1,3}, c_{1,4}, c_{1,5}, c_{1,6}) = L'_6$. So (a_1, a_2, a_3, a_4) is a primitive generating set of L'_6 over $k(\zeta_6)(=k'(\zeta_3))$ and the theorem follows from Theorem 2.
- (vii) When n=7, [k';k]=1 or 2 or 3 or 6. If [k':k]=1, the theorem follows from Theorem 1. In the case of [k':k]=6, let $a_1=c_{1,7}$, $a_2=c_{1,3}$. Then $c(a_1)+c(a_2)=1+6=7$, and $a_2'=c_{2,3}$, $a_2''=c_{2,6}$, $a_2'''=c_{4,6}$, $a_2''''=c_{4,5}$, $a_2''''=c_{4,6}$, $a_2'''=c_{4,6}$, $a_2''=c_{4,6}$, $a_2''=c$

In the following we give polynomials of x which are algebraically independent generators of L_n over k for $n \le 4$ obtained easily from the above primitive generators.

When
$$n = 1$$
; x_1 .
 $n = 2$; $x_1 + x_2$, $x_1 x_2$.
 $n = 3$; $x_1 + x_2 + x_3$, $(\sum_{i=1}^{3} x_i x_{i+1}^{2} - x_1 x_2 x_3)/(\sum_{i=1}^{3} x_i^2 - \sum_{i=1}^{3} x_i x_{i+1})$, $(\sum_{i=1}^{3} x_i x_{i+1}^{2} - x_1 x_2 x_3)/(\sum_{i=1}^{3} x_i^2 - \sum_{i=1}^{3} x_i x_{i+1})$.

$$n = 4; \quad x_1 + x_2 + x_3 + x_4, \quad \sum_{i=1}^4 x_i^2 - 2(x_1 x_3 + x_2 x_4)$$

$$\sum_{i=1}^4 x_i^3 - \sum_{i \neq j} x_i^2 x_j + 2 x_1 x_2 x_3 x_4, \quad -\sum_{i=1}^4 x_i^2 x_{i+1} + \sum_{i=1}^4 x_i^2 x_{i+3}.$$

This shows that $L_n \cap k[x_1, x_2, \ldots, x_n]$ is purely transcendental integral domain over k, when n = 1, 2, 4.

REFERENCES

- H. Hasse: Invariante Kennzeichnung Galoisschen Körper mit vorgegebener Galoisgruppe, Crelle J., 187 (1949).
- [2] H. Kuniyoshi: On a problem of Chevalley, the present volume of this Journal.
- [3] K. Masuda: One valued mappings of groups into fields, Nagoya Math. J., 6 (1953).
- [4] A. Weil: Foundations of Algebraic Geometry, New York (1946).

Department of Mathematics Yamagata University