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ABSTRACT

For the construction of bonus-malus systems, we propose to show how to
apply, thanks to simple mathematics, a parametric method encompassing
those encountered in the literature. We also compare this parametric method
with a non-parametric one that has not yet been used in the actuarial
literature and that however permits a simple formulation of the stationary
and transition probabilities in a portfolio whenever we have the intention to
construct a bonus-malus system with finite number of classes.
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1. INTRODUCTION

The distribution of the number of car accidents in an automobile portfolio is
known to be well fitted by mixed Poisson processes. Let us assume that the
number of car accidents is Poisson distributed for each risk in the portfolio.
Of course the portfolio is inhomogeneous and the frequency of the risks
differs from each other. We assume it follows a random variable.

1 This paper has been presented at the XXVIIIth ASTIN Colloquium, Cairns 10-13 August 1997
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If we define N(t) as the number of claims in (0, t] with U(n, t) = P[N(t) = n]
=the probability that a risk causes n accidents in t years, we have

(1)

n(n,t)= / e^'[-^-dU(X) (2)

where A is a random variable with cumulative density function U(X).
Lemaire (1985) used a Gamma distribution for A. This implies that N{t)
follows a Negative Binomial distribution. In this case, the construction of a
bonus-malus system is very easy.

Tremblay (1992) used the Inverse Gaussian distribution for A. This
implies that N(t) follows a Poisson Inverse Gaussian distribution. The
construction of a bonus-malus system, in Tremblay's setting, seems to be
very complicated needing for example the use of modified Bessel functions
which is in fact unnecessary.

In this article, we use a more general parametric distribution and a non-
parametric distribution to fit an automobile portfolio. The construction of
the bonus-malus system is easily done using the Bayes theorem and the form
of the mixed Poisson distribution.

The following properties will be used in the sequel:

*m(s) = U(p,t-te°) (3)

* A(s) = n(o, -s) (4)

where ^x(s) = E[erf] denotes the moment generating function of X.
For comparison purpose, we work with a portfolio published by

Biihlmann (1970) and used by Lemaire (1985) and Tremblay (1992).

TABLE 1

REFERENCE PORTFOLIO

Observed NB fit PIG fit

0 103704 103781,72 103710,04
1 14075 13892,03 14054,65
2 1766 1882,63 1784,91
3 255 256,17 254,49
4 45 34,93 40,42
5 6 4,77 6,94
6 2 0,65 1,26
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As the claim number N(t) is a pure birth process, the estimation of the
intensity of the process

E[N(t+\)-N(t)\N(t)}

needs data reported on a long period of time, a situation which is not
frequently met in practice.

Due to the fact that we have at disposal data reported on one period of
time, the model allows the estimation of the intensity and the construction of
a tarification based only on the total number of claims reported to the
company. This system is comparable to a bonus-malus system but with an
infinite number of classes. Due to the stationarity of the process we have

EE[N(t + 1) - N(t)\N(t)} = EN (I)

and the system is at the equilibrium which is not the case with the bonus-
malus systems met in practice.

2. PARAMETRIC ESTIMATION

For the parametric case, we use a three parameters distribution encompass-
ing the Negative Binomial and the Poisson Inverse Gaussian distributions.
This distribution is due to Hofmann (1955) and has been discussed by
Kestemont and Paris (1985).

The Hofmann's distribution is defined as follows

n(o, t) = e-e{t)

n(/i,o = (-i)"^nW(o,o « = i, 2, ...

°'{t) = (1 Id)" P > °' C > °' a " °
9(0) = 0

By integration, we have

0(t)=pt i f a = O

6(t)=-hx(l+ct) if a = 1
c

e l s e

This distribution encompasses the Poisson (a = 0), the Negative Binomial
(a = 1) and the Poisson Inverse Gaussian (a = j) distributions.

Using infinite divisibility arguments (Maceda (1948), Feller (1971) see also
Kestemont and Paris (1985) for a discussion), it can be shown that N(t) may be
interpreted as a Compound Poisson distribution. Therefore we can use
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Panjer's algorithm (Panjer (1981)) to write a recursion for the probabilities
of N(t):

n(o, t) = e-^]

The mean and variance of N(t) are given by

EN(t) =pt

VarN(t) = pt +pcat2

The parameters are estimated by maximizing the loglikelihood:

i=0

where Nj is the number of policies with i claims.
Hurlimann (1990) shows that, for the Hofmann distribution among

others, one has

EN (I) =p = N

where N is the experimental mean.
The other two parameters are found by a numerical maximization.
We find

£ = 0.15514

c = 0.34853

a - 0.44768

/ = -54 609.59

The fit is excellent as shows the following table

TABLE 2

HOKMANN FIT

Observed Fitted

0 103704 103704,40
1 14075 14072,96
2 1766 1769,01
3 255 255,21
4 45 41,99
5 6 7,59
6 2 1,46
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The Chi-Square statistic is 0.4344 with 6 classes.
The Hofmann's distribution is based on a model that is verified on the data

we are studying (Poisson distribution rejected, infinite divisibility, Shaked
theorem). So, by its own nature, it is not surprising that it leads to a good fit.

3. NON-PARAMETRIC ESTIMATION

In the parametric case, we suppose that a U function has been chosen and
that it only remains to estimate the parameters. Here we suppose a mixed
Poisson distribution for which we don't specify a parametric distribution
[/(A) for A.

In that case, Simar (1976) shows that the maximum likelihood estimate of
U will be attained for a discrete distribution function U(X) with a maximum
number m of growing points.

The probabilities H(n, t) are then given by

rv^r- (6)
7 = 1 " •

m

with Y^Pj' = 1> Pi' - 0 Y/ and m, the number of support points, i.e. the
7=1

number of homogeneous classes of risks.
We will suppose in the sequel that 0 < A] < A2 ... < Am.
Simar (1976) gives an algorithm to find the non-parametric maximum

likelihood estimators for an automobile portfolio. Unfortunately the
loglikelihood is not concave everywhere and the algorithm does not
converge certainly to the global maximum. In particular, Simar (1976) did
not verify the fact that

N (7)

in his numerical example (this property is valid for all non-parametric
mixtures of the exponential family (Lindsay (1995))).

The maximum likelihood can also be found using a classical Newton-
Raphson technique. The property (7) can be used to simplify the procedure
by reducing the number of parameters to be estimated.

About the number of mass points m, Simar (1976) shows that the
maximum likelihood estimator will be unique under the following conditions

<- • ( N + 1

m < mm I q,

m < min I q,

2
N+l

if Ai = 0

if Ai > 0

where q is the number of classes for which the observation is different from 0
N is the maximum number of claims per risk
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For our portfolio, we find the following maximum likelihood estimation:

Ai = 0.05461 px = 0.56189

A2 = 0.24599 p2 = 0.41463

A3= 0.95618 />3 = 0.02348

/ = -54 609.456

Of course, the loglikelihood is higher than in any parametric case.
Note that the maximum likelihood method described in this section gives

more information than the simple good guy bad guy model of Lemaire
(1985). Indeed the procedure gives the number of mass points needed to have
the highest likelihood while the good guy bad guy model imposes two mass
points.

The fit is excellent as the following table shows:

TABLE 3

NON-PARAMETRIC HT

Observed Fitted

0 103704 103703,83
1 14075 14075,57
2 1766 1765,36
3 255 255,77
4 45 43,63
5 6 7,50
6 2 1,16

The Chi Square statistic is 0.1245 with 6 classes. The fit is excellent because
we have 5 free parameters for 7 classes. Note that the distribution is not
infinitely divisible in this case.

The non-parametric case gives a physical interpretation of the hetero-
geneity of the portfolio: 56% of the risks follow a Poisson distribution with
parameter A = 0.05461, 41% of the risks follow a Poisson distribution with
parameter A = 0.24599 and 2% of the risks follow a Poisson distribution
with parameter A = 0.95618.
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4. OPTIMAL BONUS-MALUS SYSTEM

The bonus-malus system depends only on the number of accidents caused by the
insured in the past. In our model, it is easy to see that it is sufficient to consider
the total number of accidents without reference to the history of the accidents:

dU(X\N(t) - N(t - 1) - k,, ..., N(\) - N(0) = ki)

= ?[N{t)-N(t-\)=kt, ..., N(l)-N(0)=ki\\]dU(\)
P[N(t) -N(t-l)= k,, ..., N(l) - N(0) = ki]

p-dU{\)

where k — ]T)j=1 kj
The premium for the first year is an a priori premium because there is no
information concerning the risk:

For the tth year, as the history of the accidents is unimportant, we take into
account the information which consists in the number of accidents during
the first t years and the premium is:

E[N(t + 1) - N{t)\N(t) = k] = E(A\N(t) = k)

_ A : + in(Ar+ 1,Q

t n(k,t)

This expression is general. It reduces to

p + kc 1 k ct
1 + ct ~ 1 + ct t\+ct

in the binomial negative case and is by far more simple to use than the
formulae derived by Tremblay (1992) for the particular case of the Poisson
Inverse Gaussian distribution.

Assuming that the first premium paid is 100, we can construct a bonus-
malus table depending on k and t with the formula:

100A:+ in(fc+ 1,Q
EA t U(k,t) { '

The following good properties justify the 'optimal bonus-malus' denomination:
1. The system is financially balanced each year:

U(k, t)E(A\N(t) =k)=EA V?
k=0
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2. The more you cause accidents, the more the premium:

E[A\N(t)=k+l]>E[A\N(t)=k] Vt,k

3. The premium always decreases when no more accidents are caused:

jE[A\N(t)=k] <0 Vt,k

The properties 2 and 3 are easily shown by using the Cauchy-Schwartz
inequality.

5. BONUS-MALUS SYSTEM FOR LOADED PREMIUMS

Following Lemaire (1985) and Tremblay (1992), we can construct a bonus-
malus system for charged premiums using an exponential utility function

M W - ( 1 - O 7>0
7

with the principle of zero utility.
Using the formulae (3) and (4) the a priori premium becomes (Gerber

(1979)):

= - In E \ewA] where w = e1 - 1
7

The a posteriori premium is given in the same way than in the previous
section:

P = -lnE[ewA\N(t)=k]

7 n(M

7 \\t-wJ U(k,t)

By normalizing such that the first premium is 100, the bonus-malus table is
constructed with the formula

Once again, this formula is more general and more simple than in Tremblay
(1992).
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6. NUMERICAL EXAMPLES IN THE PARAMETRIC CASE

With the expected value principle formulae, we find

TABLE 4

OPTIMAL BONUS-MALUS TABLE WITH THE HOKMANN FIT

t\k

1
2
3
4
5
6
7
8
9
10
20
50
100

0

87,47
78,92
72,59
67,65
63,66
60,34
57,52
55,09
52,96
51,07
39,48
27,13
20,14

/

162,05
138,18
121,75
109,66
100,33
92,87
86,76
81,64
77,27
73,50
52,10
32,59
22,95

2

278,98
228,80
195,41
171,52
153,53
139,47
128,15
118,84
111,02
104,36
68,49
39,18
26,17

3

424,26
341,68
287,24
248,62
219,78
197,41
179,54
164,94
152,77
142,46
88,35
46,87
29,83

4

582,15
465,47
388,63
334,22
293,66
262,27
237,24
216,82
199,85
185,51
110,94
55,55
33,88

5

744,85
593,78
494,30
423,85
371,35
330,71

- 298,34
271,93
249,99
231,47
135,42
65,05
38,31

The table 4 is comparable with Lemaire's (1985) and Tremblay's (1992).
Due to the choice of the form of 0'(t), we always have

and also

Mm E(A\N(t) = 0) = 0
t—>oo

lim E(A\N{t) = k) = 0 \/k

This fact corresponds to the well-known observation that most of the drivers
are in the cheapest class when the frequency is low.

It may be unacceptable that a driver pays a premium equal to zero but in
practice there is no problem because the convergence to 0 is attained by far
after the mean driving time. Moreover the problem may be solved by adding
a constant premium in our model:

e'(t) =
{\+ctf

(10)

In this case, the premium has the following asymptotic behaviour:

lim E(A\N{t) =k) = 6 Vk

So the driver always pays a minimum premium 6.
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Note that the following property seems to be verified:

j^E(A\N(t)=k)>0 ~ik

Our experience shows it is true for typical automobile portfolios.
The bonus-malus tables for loaded premiums, obtained with the zero-utility

principle, are also comparable with Lemaire's (1985) and Tremblay's (1992).

TABLE 5

BONUS-MALUS TABLE FOR LOADED PREMIUMS WITH AN HOFMANN KIT; 7 = 0.25

t\k

1
2
3
4
5
6
7
8
9
10
20
50
100

0

86,94
78,16
71,72
66,73
62,72
59,39
56,58
54,15
52,03
50,16
38,69
26,55
19,69

1

162,63
137,83
120,97
108,66
99,22
91,71
85,57
80,44
76,08
72,32
51,10
31,90
22,44

2

281,80
229,38
194,96
170,54
152,28
138,07
126,68
117,33
109,51
102,85
67,23
38,35
25,60

3

429,78
343,39
287,18
247,67
218,36
195,73
177,73
163,06
150,86
140,56
86,77
45,89
29,17

4

590,36
468,26
388,93
333,25
292,01
260,25
235,02
214,51
197,49
183,15
109,00
54,40
33,14

5

755,66
597,60
494,89
422,79
369,41
328,30
295,66
269,13
247,14
228,60
133,10
63,72
37,47

As the following table shows, even for unreasonable values of 7,
difference with table 4 is small.

the

TABLE 6

BONUS-MALUS TABLE KOR LOADED PREMIUMS WITH AN HOFMANN KIT; 7

t\k

1
2
3
4
5
6
7
8
9
10
20
50
100

0

82,46
72,23
65,26
60,09
56,06
52,79
50,07
47,75
45,75
44,00
33,54
22,82
16,88

/

164,77
133,25
113,82
100,45
90,60
82,98
76,88
71,88
67,68
64,10
44,49
27,45
19,24

2

297,94
228,79
187,97
160,83
141,39
126,73
115,25
106,00
98,37
91,96
58,77
33,05
21,96

3

462,39
347,49
280,33
236,09
204,68
181,19
162,94
148,34
136,39
126,42
76,09
39,59
25,04

4

639,07
476,56
381,66
319,23
274,98
241,95
216,34
195,90
179,20
165,29
95,80
46,97
28,45

5

819,90
609,59
486,74
405,91
348,62
305,86
272,72
246,27
224,68
206,70
117,14
55,06
32,18
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7. NUMERICAL EXAMPLES IN THE NON-PARAMETRIC CASE

In this case, the formulae (8) and (9) may be rewritten as

(9)= " » T ? = l P j e ^
[ ] ln{n(0,-w)} E£,/>,«-VA* K '

The asymptotic behaviour of the bonus-malus tables is described as following:
If A, >0 :

w
lim ( 1 2 ) = m i n Ay -

]nU(0,-w)

If A, = 0 :

100
lim (11) = min A,-—- if k > 0
t-^^o A,>O ' EA

= 0 if k = 0

lim (12) = min A,- ——£ if fc > 0
<̂ oo ; A,>0 y lnn(0, -w)

= 0 if A: = 0

The bonus-malus table with the non-parametric fit greatly differs from the
parametric case tables.

In fact the form of the bonus-malus table reflects the discontinuity of A.
The non-parametric fit shows that there are three classes of risks: those with
A = 0,05461; A = 0,24599 and A = 0,95618. We find those three classes in
the bonus-malus table; locally, the table has the same comportment than a
table constructed with a simple Poisson process: the premiums are almost
indistinguishable because of the lack of heterogeneity. We have

3 = 616,33

^ A 2 = 158,56

^ A , = 35,20
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TABLE 7

OPTIMAL BONUS-MALUS TABLE WITH NON-PARAMLTRIC KIT

t\k

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
50
100

0

87,49
78,96
72,49
67,19
62,64
58,68
55,22
52,20
49,58
47,32
45,38
43,73
42,33
41,15
40,15
39,32
38,62
38,04
37,56
37,15
35,21
35,20

/

161,69
138,44
124,00
114,03
106,19
99,34
92,99
86,97
81,23
75,82
70,77
66,12
61,90
58,11
54,75
51,81
49,24
47,03
45,14
43,52
35,23
35,20

2

280,16
221,85
184,71
162,88
150,05
141,84
135,77
130,54
125,50
120,36
114,99
109,39
103,61
97,72
91,82
86,02
80,41
75,08
70,10
65,52
35,33
35,20

3

439,86
358,64
283,52
227,86
192,90
172,93
161,88
155,54
151,50
148,46
145,74
142,99
140,01
136,70
133,01
128,89
124,36
119,43
114,14
108,57
35,78
35,20

4

553,82
504,79
434,88
354,19
280,92
227,49
194,39
175,84
165,91
160,62
157,66
155,80
154,43
153,19
151,93
150,52
148,91
147,04
144,87
142,36
37,77
35,20

5

598,51
581,46
550,55
499,79
428,59
348,05
276,36
224,97
193,52
176,09
166,92
162,18
159,71
158,36
157,53
156,93
156,40
155,87
155,27
154,57
45,96
35,20

The somewhat curious comportment of our table and the three classes are
very visible for very bad risks. The following graph shows the evolution of
the premium for k = 15.

Of course, because of that, the concavity of the premiums changes.
Such a curious comportment of the bonus-malus table seems very difficult

to apply and so the non-parametric fit should not be used for the
construction of bonus-malus tables.

The same comments apply for the charged premium bonus-malus table.
The surprising results of the non-parametric method are due to the fact
that the estimation of the distribution function U of the random variable
A is based only on the observation of N{\). Even if the period of
observation is longer, the trouble will remain because as the frequency is
low, the number of points on increase of U is always low and the number
of classes of risks is low.
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FIGURI: I: Optimal bonus-malus premium with non-parametric fit; k — 15
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TABLE 8

BONUS-MALUS TABI.F. FOR LOADED PREMIUMS WITH NON-PARAMETRIC FIT; 7 = 0.25

t\k

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
50
100

0

86.96
78.21
71.67
66.35
61.82
57.87
54.42
51.41
48.79
46.54
44.60
42.95
41.55
40.37
39.37
38.54
37.84
37.25
36.77
36.36
34.41
34.40

/

162.36
137.91
122.87
112.67
104.79
98.00
91.74
85.81
80.17
74.83
69.85
65.24
61.06
57.29
53.95
51.02
48.46
46.25
44.36
42.75
34.43
34.40

2

283.71
223.65
184.66
161.59
148.09
139.60
133.47
128.29
123.36
118.35
113.14
107.70
102.07
96.33
90.56
84.87
79.36
74.10
69.18
64.64
34.53
34.40

3

440.49
361.87
286.59
229.18
192.38
171.16
159.40
152.72
148.55
145.49
142.81
140.14
137.27
134.08
130.53
126.56
122.19
117.43
112.31
106.90
34.98
34.40

4

546.34
501.38
435.68
357.35
283.75
228.52
193.61
173.83
163.20
157.54
154.41
152.49
151.10
149.89
148.66
147.31
145.77
143.99
141.91
139.50
36.98
34.40

5

586.53
571.28
543.36
496.74
429.65
351.23
279.03
225.78
192.56
173.94
164.09
159.00
156.36
154.92
154.06
153.45
152.93
152.41
151.83
151.17
45.19
34.40
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8. THE STATIONARY AND TRANSIENT DISTRIBUTIONS OF THE POLICYHOLDERS IN
A BONUS-MALUS SYSTEM WITH FINITE NUMBER OF CLASSES

We have seen in the previous sections the advantage of using a parametric
Mixed Poisson model to construct optimal bonus-malus systems. The non-
parametric model was judged too discontinuous to give a nice form for the
premiums. However this kind of adjustment for Mixed Poisson distributions
presents high interest when one has to evaluate the mean of difficult
functions over the risk's portfolio.

Let us assume/(A), a complicated function of A. If we are interested in
/"OO

E/(A) = / f{\)dU{\)
Jo

(13)

even a numerical integration may be untractable.
However, it is clear that using the non-parametric structure function of A

will be more efficient. We know it gives a better fit and there won't be
numerical integration needed. Only a convex combination of some/(A) will
be performed. Equation (13) becomes

E/(A) = E/(A/)/>,- 04)

which most of the time will be a sum with 3 of 4 terms.
Let us apply this technique to find the stationary and transient

distributions of a typical Markov chain used in automobile insurance.
The bonus-malus systems with finite numbers of classes are used for a

long time in most European countries. These bonus-malus systems are
characterized by s + 1 classes with growing premium percentages
Cj, i = 0, ..., s. The movements of the drivers between the classes is given
by transition rules depending on the number of accidents caused during one
year. Most of the time, these transition rules give the model the Markov
property. Even when it is not the case, a redefinition of the classes can give
the Markov property to the model (see Lemaire (1985) for an application to
the Belgian bonus-malus system).

For illustration, we will use the following bonus-malus system:

TABLE 9

PERCENTAGE PREMIUMS

s 0

Cs 75

7

80

2

90

3

95

4

100

5

150

6

170

7

185

8

250
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Transition rules: —1 if no accident during the year
+3 per accident during the year
+0 if any accident in class 8
—0 if no accident in class 0

Let X, be the class at time t. The transition rules Yt is defined as

3(JV(0 - N(t - 1)) N{t) - N(t - 1) = 1, 2, ...
1 N(t)-N(t-l) = 0

0 ]V(<)-JV((-1)>0 I,_i=8
0 N(t)-N(t- l) = 0 X,-i = 0

We have X, = X,-i + Y,.
Under the hypothesis that the Y, are independent random variables,
Dufresne (1988) has given a recursive technique to find the stationary
distribution of the risks in the bonus-malus system.

Note that the Dufresne's technique would not be applicable, to bonus-
malus systems with nonuniform penalties per claim while the technique
described hereunder remains applicable for every bonus-malus system.

The independence condition means that the general Mixed Poisson
process can not be used for N(t). However a Poisson process is adequate.
Dufresne (1995) has used the Poisson distribution to find recursively, as a
function of A, the stationary distribution of risks with mean A. He finds
extremely complicated functions of A and a software handling symbolic
computations is welcome.

Then with this expression of the stationary distribution, Fx(x,s) where x
is the class, Dufresne (1995) proposed to find the unconditional stationary
distribution by

F(x,s)= [°° F\x,s)dU(\)
Jo

As we mentioned above, this integration will be very easy if one has a
non-parametric fit for N(t). Moreover, as we know that only a few values
of A are needed, the algorithm of Dufresne (1988) may be forgotten at the
benefit of the traditional technique of norming the left eigenvector of the
transition probability matrix. This is the method we finally use to calculate
the stationary distribution of the policyholders in our bonus-malus system.
Note that all this remains true for the transient distribution functions.
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For our bonus-malus system, the transition probability matrix is given by:

TABLE 10

TRANSITION PROBABILITY MATRIX

0
1

2

3
4
5

6
7
8

0

P(O)
/>(0)
0
0
0
0

0
0
0

1

0
0

/>(0)
0
0
0

0
0
0

2

0
0
0

/>(0)
0
0

0
0
0

/>(!)
0
0
0

/>(0)
0

0
0
0

4

0

/>0)
0
0
0

/>(0)
0
0
0

5

0
0

/>(')
0
0
0

P(O)
0
0

6

/>(2)
0
0

/>(')
0
0
0

/>(0)
0

7

0

/>(2)
0
0

0
0
0

MO)

/?(> 3)

y?(> 3)

M>2)
M>2)
p{> .2)
M> i)
/?(^" 1 )

p(> i)

where />(A:) = P[N(t + 1) - JV(/) = k] with iV(0 ~ Po(A/).
From section 3, we know that

- 56,187% of the poiicyholders have a frequency A = 0,05461
- 41,464% of the poiicyholders have a frequency A = 0,24600
- 2,348% of the poiicyholders have a frequency A = 0,95619

Therefore we can calculate the stationary probability vector for those values
of A as well as their weighted mean which is the stationary probability vector
of the portfolio. We find:

TABLE 11

STATIONARY PROBABILITY VECTOR

0
1

2
3
4
5
6
7

8

A = 0,05461

0,8278
0,0464

0,0490
0,0518
0,0095
0,0075
0,0052
0,0014

0,0009

A = 0,24600

0,2598
0,0724

0,0926
0,1185
0,0876
0,0942
0,0977
0,0880

0,0888

A = 0,95679

0,0005
0,0008
0,0022
0,0057
0,0145
0,0369
0,0939
0,2386
0,6066

Portfolio

0,5728
0,0561
0,0660
0,0783
0,0420
0,0441
0,0457
0,0429

0,0516
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This technique solves a problem encountered by Coene and Doray (1996)
who used simulation to find the stationary distribution of a portfolio with
N(t) negative binomial distributed. By simply taking powers of the
transition probability matrix, we also find transient probabilities.

If we suppose that all the policyholders are in the beginning class

JCO = (O, 0, 0, 0, 1, 0, 0, 0, 0)

then their distribution after 10 years is given by:

TABLE 12

TRANSIENT no YEARS) PROBABILITY VECTOR

0

I
L

3

4

5

6

7
8

A = 0,05461

0,8042
0,0379

0,0797

0,0493

0,0081
0,0078

0,0099
0,0014

0,0012

A = 0,24600

0,2448
0,0441

0,1739

0,0930

0,0587
0,0829

0,1429

0,0725
0,0868

A = 0,95619

0,0008

0,0008

0,0035

0,0057

0,0140
0,0368

0,0959

0,2369

0,6053

Portfolio

0,5533

0,0396

0,1170
0,0664

0,0292

0,0397

0,0671
0,0364

0,0509

9. CONCLUSION

In this paper we have clarified how to construct a bonus-malus table using
the net premium principle or the principle of zero utility when working with
mixed Poisson distributions. The formulae are easily derived using the Bayes
theorem and the form of the mixed Poisson distribution.

The parametric mixed Poisson distribution we use is more general than
the traditional Negative Binomial or the Poisson Inverse Gaussian
distributions. It has the disadvantage that three parameters have to be
estimated (however the experimental mean directly gives one parameter for
the maximum likelihood estimation). The fit is slightly better than the NB or
the PIG fits.

In terms of goodness of fit, the non-parametric case is better than our
three parameters parametric distribution. The estimation of the parameters
is not too difficult due to the simple form of the non-parametric mixed
Poisson distribution.

About the construction of a bonus-malus table, the parametric approach
should be preferred because of its 'continuity'. Indeed the continuous form
of the distribution of A gives a nice form to the bonus-malus table while the
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discontinuity of the non-parametric distribution gives the bonus-malus table
a curious comportment with local almost constant premiums.

The tables constructed with the parametric distribution may be used as a
starting point for methods like the one proposed by Coene and Doray (1996)
to 'fit' bonus-malus tables with classes.

The non-parametric fit shows its interest when one needs to evaluate the
mean of difficult functions of A over the portfolio. It replaces a complicated
numerical integration by a short summation. The calculation of the
stationary and transient distributions of a portfolio for a bonus-malus
system with finite number of classes is a typical example of the advantage of
the non-parametric fit. Other quantities like the mean asymptotic efficiency
of Loimaranta (1972) can also be easily evaluated with the help of the non-
parametric fit.
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