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Abstract

This work is concerned with the problem{
∂t u − c(t)∂2

x u = f
u|∂D\0T = 0

posed in the domain
D = {(t, x) ∈R2

| 0< t < T, ϕ1(t) < x < ϕ2(t)},

which is not necessary rectangular, and with

0T = {(T, x) | ϕ1(T ) < x < ϕ2(T )}.

Our goal is to find some conditions on the coefficient c and the functions ( ϕi ) i=1,2 such that the solution
of this problem belongs to the Sobolev space

H1,2(D)= {u ∈ L2(D) | ∂t u ∈ L2(D), ∂x u ∈ L2(D), ∂2
x u ∈ L2(D)}.

2000 Mathematics subject classification: primary 35K05, 35K20; secondary 35K.
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1. Introduction

In the domain

D = {(t, x) ∈ R2
| 0< t < T, ϕ1(t) < x < ϕ2(t)},

we consider the problem {
∂t u − c(t)∂2

x u = f
u|∂D\0T = 0,

(P0)

where:
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(i) 0T = {(T, x) | ϕ1(T ) < x < ϕ2(T )};
(ii) c is a positive coefficient depending on time;
(iii) (ϕi )i=1,2 and c are differentiable functions on ]0, T [ satisfying some assumptions

to be made precise later on.

The second member f of the equation will be taken in the Lebesgue space L2(D).
We look for a solution u of problem (P0) in the anisotropic Sobolev space

H1,2(D)= {u ∈ L2(D) : ∂t u ∈ L2(D), ∂x u ∈ L2(D), ∂2
x u ∈ L2(D)}.

The study of this kind of problems when the coefficient c is constant and T <+∞ has
been treated in [19]. In [13], the authors investigated the case when

f is in a non-Hilbertian Lebesgue space Lp(D)
c = 1
T <+∞

ϕ1 = 0 and ϕ2(t)= tα,

they found some conditions on the exponents α and p assuring the optimal regularity
of the solution of problem (P0). It is possible to consider similar questions with some
other operators (see, for example, [11, 12]).

Observe that the case where the domain D is cylindrical and T <+∞ is known,
for example, in [15] or [1] when the coefficient c is not regular.

During the last decades numerous authors have been interested in the study of
many problems posed in bad domains. Among these we can cite [2, 3, 5–11, 16–
18, 20]. For bibliographical references see, for example, those of books by [4–7] and
the references therein.

In this paper we are interested in particular in the case T = +∞, ϕ1(0)= ϕ2(0)
and c depends on the time. Our main result shows that, thanks to some assumptions
on the functions (ϕi )i=1,2 and c, problem (P0) has a (unique) solution u with optimal
regularity, that is u ∈ H1,2(D) when

D = {(t, x) ∈ R2
| 0< t <+∞, ϕ1(t) < x < ϕ2(t)},

and ϕ1(0)= ϕ2(0). The proof of this result will be undertaken in four steps:

(1) case of a bounded domain which can be transformed into a rectangle;
(2) case of an unbounded domain which can be transformed into a half strip;
(3) case of a bounded triangular domain;
(4) case of a sectorial domain.

2. The case of a bounded domain which can be transformed into a rectangle

Let us consider the problem{
∂t u − c(t)∂2

x u = f ∈ L2(D1)

u|∂D1\0T = 0,
(P1)
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where

D1 = {(t, x) ∈ R2
| 0< t < T, ϕ1(t) < x < ϕ2(t)},

with the following hypotheses on the functions (ϕi )i=1,2 and c:

(i)
{
(ϕi )i=1,2 and c are continuous functions on [0, T ], differentiable on ]0, T [;

the derivatives (ϕ′

i )i=1,2 are uniformly bounded;

(ii) there exist two constants αi > 0, i = 1, 2, such that α1 ≥ c(t)≥ α2, for all t ∈

[0, T ];
(iii) ϕ1(t) < ϕ2(t), for all t ∈ [0, T ];
(iv) T <+∞.

Let (H1) denote these conditions.
The change of variables (t, x) to (t, (x − ϕ1(t))/(ϕ2(t)− ϕ1(t))) transforms D1

into R = ]0, T [ × ]0, 1[ and problem (P1) becomes{
∂t u + a(t, x)∂x u − b(t)∂2

x u = f ∈ L2(R)
u|∂R\{T }× ]0,1[ = 0,

(P ′

1)

where

a(t, x)= −
x(ϕ′

2(t)− ϕ′

1(t))+ ϕ′

1(t)

ϕ2(t)− ϕ1(t)
,

and

b(t)=
c(t)

(ϕ2(t)− ϕ1(t))2
.

Observe that, thanks to hypothesis (H1), the coefficient a is bounded. So the
operator a(t, x)∂x : H1,2(R)→ L2(R) is compact. Hence, it is sufficient to study the
following problem {

∂t u − b(t)∂2
x u = f ∈ L2(R)

u|∂R\{T }× ]0,1[ = 0.
(P ′′

1 )

It is clear that problem (P ′′

1 ) admits a (unique) solution u ∈ H1,2(R) because
the coefficient b satisfies the ‘uniform parabolicity’ condition (see, for example,
[1]). On other hand, it is easy to verify that the change of variables (t, x) to
(t, (x − ϕ1(t))/(ϕ2(t)− ϕ1(t))) conserves the spaces L2 and H1,2. Consequently, we
have the following theorem.

THEOREM 1. If hypothesis (H1) is satisfied, problem (P1) admits a (unique) solution
u ∈ H1,2(D1) in D1.

The uniqueness of the solution may be obtained by developing the scalar product
(∂t u − c(t)∂2

x u, u)L2(D1)
. Indeed, we prove that the condition ∂t u − c(t)∂2

x u = 0
implies ∂x u = 0. Thus, ∂2

x u = 0. However, ∂t u − c(t)∂2
x u = 0 leads to ∂t u = 0. So

u is constant and the boundary conditions give u = 0.
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3. The case of an unbounded domain which can be transformed into a half strip

Now, let us consider the problem{
∂t u − c(t)∂2

x u = f ∈ L2(D2)

u|∂D2 = 0,
(P2)

where

D2 = {(t, x) ∈ R2
| 0< t <+∞, ϕ1(t) < x < ϕ2(t)},

and let (H2) denote the following conditions on the functions (ϕi )i=1,2 and c:

(i)
{
(ϕi )i=1,2 and c are continuous functions on [0,+∞[, differentiable on
]0,+∞[; the derivatives (ϕi )i=1,2 are uniformly bounded;

(ii) there exist αi > 0, i = 1, 2 such that α1 ≥ c(t)≥ α2 > 0, for all t ∈ [0,+∞[ ;
(iii) ϕ2 − ϕ1 is increasing in a neighborhood of +∞; or:

there exists M > 0 such that |ϕ′

1(t)− ϕ′

2(t)|(ϕ2(t)− ϕ1(t))≤ M.c(t);
(iv) ϕ1(0) < ϕ2(0).

The change of variables indicated in the previous section transforms D2 into the
half strip B = ]0,+∞[ × ]0, 1[ . So problem (P2) can be written as follows{

∂t u + a(t, x)∂x u − b(t)∂2
x u = f ∈ L2(B)

u|∂B = 0,
(P ′

2)

keeping in mind that the coefficients a and b are those defined in Section 2. Let fn be
the restriction f| ]0,n[ × ]0,1[ for all n ∈ N. Then Theorem 1 shows that for all n ∈ N,
there exists a function un ∈ H1,2(Bn) which solves the problem{

∂t un + a(t, x)∂x un − b(t)∂2
x un = fn ∈ L2(Bn),

un|∂Bn\{n}× ]0,1[ = 0,
(P

′′

2 )

where Bn = ]0, n[ × ]0, 1[ .

LEMMA 1. There exists a constant K independent of n such that

‖un‖L2(Bn)
≤ ‖∂x un‖L2(Bn)

≤ K‖ f ‖L2(B).

PROOF. The Poincaré inequality gives ‖un‖L2(Bn)
≤ ‖∂x un‖L2(Bn)

. Moreover, by
developing the scalar product (∂t un + a(t, x)∂x un − b(t)∂2

x un, un) in L2(Bn) and
using condition (iii) in (H2) we obtain

( fn, un) =

∫
Bn

un∂t un dt dx +

∫
Bn

a(t, x)un∂x un dt dx −

∫
Bn

b(t)un∂
2
x un dt dx

=
1
2

∫
Bn

ϕ′

1(t)− ϕ′

2(t)

ϕ1(t)− ϕ2(t)
u2

n(t, x) dt dx +

∫
Bn

b(t) (∂x un)
2 dt dx

≥

∫
Bn

b(t) (∂x un)
2 dt dx ≥ α2

‖∂x un‖
2
L2(Bn)

.
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Hence, for all ε > 0,

‖∂x un‖
2
L2(Bn)

≤
1

α2 ‖un‖L2(Bn)
‖ fn‖L2(Bn)

≤
1

α2ε
‖ f ‖L2(B) +

ε

α2 ‖un‖L2(Bn)
.

By choosing ε small enough, we prove the existence of a constant K such that
‖∂x un‖L2(Bn)

≤ K‖ f ‖L2(B). 2

REMARK 1. Similar computations show that the same result holds true when we
substitute the condition that ϕ2 − ϕ1 increases in a neighborhood of +∞ by the
following

|ϕ′

1(t)− ϕ′

2(t)|(ϕ2(t)− ϕ1(t))≤ Mc(t).

PROPOSITION 1. There exists a constant K independent of n such that

‖un‖H1,2(Bn)
≤ K‖ f ‖L2(B).

PROOF. We have

‖ fn‖
2
L2(B) = (∂t un + a(t, x)∂x un − b(t)∂2

x un, ∂t un + a(t, x)∂x un − b(t)∂2
x un)L2(Bn)

= ‖∂t un‖
2
L2(Bn)

+ ‖a.∂x un‖
2
L2(Bn)

+ ‖b.∂2
x un‖

2
L2(Bn)

+ 2
∫

Bn

a∂t un.∂x un dt dx − 2
∫

Bn

ab∂x un.∂
2
x un dt dx

− 2
∫

Bn

b∂t un.∂
2
x un dt dx .

Observe that the conditions (i), (iii) and (iv) of (H2) show that the coefficients a
and b are bounded. So, thanks to Lemma 1, for all ε > 0 we obtain

‖∂t un‖
2
L2(Bn)

+ ‖b.∂2
x un‖

2
L2(Bn)

− 2
∫

Bn

b∂t un.∂
2
x un dt dx

≤ ‖ f ‖
2
L2(B) + ‖a.∂x un‖

2
L2(Bn)

+ 2‖∂t un‖L2(Bn)
‖a.∂x un‖L2(Bn)

+ 2‖∂2
x un‖L2(Bn)

‖ab.∂x un‖L2(Bn)

≤ ‖ f ‖
2
L2(B) + K1

(
1 +

2
ε

)
‖∂x un‖

2
L2(Bn)

+ ε‖∂t un‖
2
L2(Bn)

+ ε‖∂2
x un‖

2
L2(Bn)

≤ Kε‖ f ‖
2
L2(B) + ε‖∂t un‖

2
L2(Bn)

+ ε‖∂2
x un‖

2
L2(Bn)

,

where K1 and Kε are constants independent of n. Consequently,

(1 − ε)(‖∂t un‖
2
L2(Bn)

+ ‖b.∂2
x un‖

2
L2(Bn)

)≤ 2
∫

Bn

b∂t un.∂
2
x un dt dx + Kε‖ f ‖

2
L2(B).

(3.1)
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Let us now consider the term 2
∫

Bn
b∂t un.∂

2
x un dt dx . We have

2
∫

Bn

b∂t un.∂
2
x un dt dx = 2

∫
Bn

(b∂x (∂t un.∂x un) dt dx + b∂t (∂x un)
2) dt dx

= −

∫ 1

0
b(∂x un(n, x))2dx + 2

∫
Bn

b′(∂x un)
2dt.dx .

Note that the functions b (which is positive) and b′, defined by

b′(t)=
c′(t)

(ϕ2(t)− ϕ1(t))2
−

2c(t) (ϕ′

2(t)− ϕ′

1(t))

(ϕ2(t)− ϕ1(t))3
,

are bounded by virtue of hypothesis (H2). Using Lemma 1, this yields

2
∫

Bn

b∂t un.∂
2
x un dt dx ≤ 2

∫
Bn

b′(∂x un)
2dt.dx

≤ K2‖∂x un‖
2

≤ K3‖ f ‖
2,

where (Ki )i=1,2 stand for constants independent of n. Consequently, choosing ε = 1/2
in the relationship (3.1) we obtain, thanks to condition (ii) of (H2),

‖∂t un‖
2
+ ‖∂2

x un‖
2
≤ K‖ f ‖

2. 2

THEOREM 2. Suppose that the conditions (H2) are satisfied. Then, problem (P2)

admits a (unique) solution u ∈ H1,2(D2).

PROOF. We obtain the solution u by letting n go to infinity in the previous proposition.
The uniqueness can be proven as in Theorem 1. 2

4. The case of a bounded triangular domain

Let us consider the problem{
∂t u − c(t)∂2

x u = f ∈ L2(D3)

u|∂D3\{T }× ]ϕ1(T ),ϕ2(T )[ = 0,
(P3)

where

D3 = {(t, x) ∈ R2
| 0< t < T, ϕ1(t) < x < ϕ2(t)},

and let (H3) denote the following conditions on the functions (ϕi )i=1,2 and c:

https://doi.org/10.1017/S1446788708000268 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000268


[7] Existence and regularity of the solution 271

(i) (ϕi )i=1,2 and c are continuous functions on [0, T ], differentiable on ]0, T [ such
that |ϕ′

i |(ϕ2 − ϕ1)≤ ε where ε is small enough;
(ii) c(t) > 0, for all t ∈ [0, T ];
(iii) ϕ1(0)= ϕ2(0);
(iv) T <+∞, and T is small enough.

Set

�n =

{
(t, x) ∈ D3

∣∣∣∣1
n
< t < T, ϕ1(t) < x < ϕ2(t)

}
.

Let f be an element of L2(D3). For all n ∈ N, we set fn = f|�n . Theorem 1 gives the
existence of a function un ∈ H1,2(�n) which is a solution of the problem{

∂t un − c(t)∂2
x un = fn ∈ L2(�n)

un|∂�n \ {T }× ]ϕ1(T ),ϕ2(T )[ = 0.
(P ′

3)

LEMMA 2. There exists a constant K independent of n such that for all t ∈ ]0, T [ :

(1) ‖un‖L2(�n)
≤ K‖(ϕ2 − ϕ1)∂x un‖L2(�n)

;

(2)
∫ ϕ2(t)
ϕ1(t)

u2
n(t, x) dx ≤ K (ϕ2 − ϕ1)

4
∫ ϕ2(t)
ϕ1(t)

(∂2
x un)

2(t, x) dx;

(3)
∫ ϕ2(t)
ϕ1(t)

(∂x un)
2(t, x) dx ≤ K (ϕ2 − ϕ1)

2
∫ ϕ2(t)
ϕ1(t)

(∂2
x un)

2(t, x) dx;
(4) ‖∂x un‖L2(�n)

≤ K‖ f ‖L2(D3)
.

PROOF. (1) Inequality is a consequence of the Poincaré inequality.
The operator

H2(0, 1) ∩ H1
0 (0, 1) → L2(0, 1)

v → v′′,

is an isomorphism. So, there exists a constant K such that{
‖v‖L2(0,1) ≤ K‖v′′

‖L2(0,1)
‖v′

‖L2(0,1) ≤ K‖v′′
‖L2(0,1).

The change of variables (for fixed t) x in y = (1 − x)ϕ1(t)+ xϕ2(t) transforming the
interval (0, 1) into the interval (ϕ1(t), ϕ2(t)) leads to the estimates (2) and (3).

To prove (4), it is sufficient to expand the scalar product ( fn, un) and use the
inequality (1) Indeed, we deduce, for all ε > 0,∫

Bn

c(t) (∂x un)
2(t, x) ≤ |( fn, un)|

≤
1
ε
‖ fn‖

2
+ ε‖un‖

2

≤
1
ε
‖ f ‖

2
L2(D3)

+ εK‖(ϕ2 − ϕ1)∂x un‖
2
L2(�n)

.

However, ϕ2 − ϕ1 is bounded and c > α according to the condition (ii) of (H3).
Choosing ε small enough yields the desired result. 2
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PROPOSITION 2. There exists a constant K independent of n such that

‖un‖H1,2(�n)
≤ K‖ f ‖L2(D3)

.

PROOF. We have

‖∂t un‖
2
L2(�n)

+ ‖c∂2
x un‖

2
L2(�n)

− 2
∫
�n

c(t)∂t un.∂
2
x un dt dx = ‖ fn‖

2
L2(�n)

,

and, thanks to the relationship ∂t un + ϕ′

i (t)(∂x un)= 0 on the boundary ∂�n , we show
that

−2
∫
�n

c(t)∂t un.∂
2
x un dt dx

= 2
∫
∂�n

c(t)∂t un.∂x undt +

∫
∂�n

c(t) (∂x un)
2 dx

−

∫
�n

c′(t) (∂x un)
2 dt dx

= −

∫ T

1/n
2c(t)ϕ′

1(t) (∂x un)
2dt +

∫ T

1/n
2c(t)ϕ′

2(t) (∂x un)
2dt

+

∫ T

1/n
c(t)ϕ′

1(t) (∂x un)
2 dt −

∫ T

1/n
c(t)ϕ′

2(t) (∂x un)
2 dt

−

∫
�n

c′(t) (∂x un)
2 dt dx

= −

∫ T

1/n
c(t)ϕ′

1(t) (∂x un)
2 dt +

∫ T

1/n
c(t)ϕ′

2(t) (∂x un)
2 dt

−

∫
�n

c′(t) (∂x un)
2 dt dx .

So, since c′ is bounded, Assertion (4) of Lemma 2 yields∣∣∣∣−2
∫
�n

c(t)∂t un.∂
2
x un dt dx

∣∣∣∣
≤

∣∣∣∣∫ T

1/n
c(t)ϕ′

1(t) (∂x un)
2 dt

∣∣∣∣ +

∣∣∣∣∫ T

1/n
c(t)ϕ′

2(t) (∂x un)
2 dt

∣∣∣∣ + K‖ f ‖
2
L2(D3)

.

Now, we estimate the term I = |
∫ T

1/n c(t)ϕ′

1(t)(∂x un)
2 dt |. For this purpose, we set

ψ(t, x)=
ϕ2(t)− x

ϕ2(t)− ϕ1(t)
.
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Hence,

I =

∫ T

1/n
c(t)ϕ′

1(t)

{∫ ϕ2(t)

ϕ1(t)
∂x [ψ(t, x) (∂x un(t, x))2] dx

}
dt

=

∫
�n

c(t)ϕ′

1(t)∂x [ψ(t, x) (∂x un(t, x))2] dx dt

=

∫
�n

c(t)ϕ′

1(t)

ϕ2(t)− ϕ1(t)
(∂x un(t, x))2 dx dt

+ 2
∫
�n

c(t)ϕ′

1(t)ψ(t, x))∂x un(t, x)∂2
x un(t, x) dx dt.

Note that there exists a constant K such that∣∣∣∣2 ∫
�n

c(t)ϕ′

1(t)ψ(t, x)∂x un(t, x)∂2
x u(t, x) dx dt

∣∣∣∣
≤ K‖∂2

x un‖‖ϕ
′

1∂x un‖

≤ K ε‖∂2
x un‖.

(where ε = sup ϕ′

1(ϕ2 − ϕ1)). Furthermore,∣∣∣∣∫
�n

c(t)ϕ′

1(t)

ϕ2(t)− ϕ1(t)
(∂x un(t, x))2dx dt

∣∣∣∣
≤ K

∫ T

1/n

c(t)ϕ′

1(t)

ϕ2(t)− ϕ1(t)
(ϕ2(t)− ϕ1(t))

2
∫ ϕ2(t)

ϕ1(t)
(∂2

x un(t, x))2 dx dt

≤ K
∫
�n

c(t)ϕ′

1(t) (ϕ2(t)− ϕ1(t)) (∂
2
x un(t, x))2 dx dt

≤ K ε‖∂2
x un‖

2.

Then, there exists a constant K ′ such that

‖∂t un‖ + ‖∂2
x un‖ ≤ K ′

‖ f ‖.

Consequently,

‖un‖H1,2(�n)
≤ K ′

‖ f ‖. 2

THEOREM 3. Suppose that conditions (H3) are satisfied. Then, problem (P3) admits
a (unique) solution u ∈ H1,2(D3).

PROOF. Thanks to Proposition 2, the solution u can be obtained by letting n go
to infinity. 2
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5. The case of a sectorial domain

In this section, we consider the problem{
∂t u − c(t)∂2

x u = f ∈ L2(D4)

u|∂D4 = 0,
(P4)

where

D4 = {(t, x) ∈ R2
| 0< t <+∞, ϕ1(t) < x < ϕ2(t)},

under the hypotheses (H4) on the functions (ϕi )i=1,2 and c:

(i)

(ϕi )i=1,2 and c are continuous functions on [0,+∞[, differentiable on
]0,+∞[; here |ϕ′

i |(ϕ2- ϕ1) is small enough in a neighborhood of 0 and
(ϕ′

i )i=1,2 is bounded in a neighborhood of +∞.

(ii) ϕ2 − ϕ1 is increasing a neighborhood of +∞ or

there exists M > 0, |ϕ′

1(t)− ϕ′

2(t)|(ϕ2(t)− ϕ1(t))≤ M.c(t);

(iii) there exist αi > 0, i = 1, 2 such that α1 ≥ c(t)≥ α2 > 0, for all t ∈ [0,+∞[ ;
(iv) ϕ1(0)= ϕ2(0);
(v) T = +∞.

In order to prove our main result, we need the following trace theorem [15,
Theorem 2.1, Chapter 4]:

THEOREM 4.

(i) If u ∈ H1,2(]0, T [ × ]0, 1[), then

u|{0}× ]0,1[
∈ H1

0 (0, 1)= {u ∈ H1(0, 1) | u(0)= u(1)= 0}.

(ii) If ϕ ∈ H1
0 (0, 1), there exists u ∈ H1,2(]0, T [ × ]0, 1[) such that u|{0}× ]0,1[

= ϕ

and u| ]0,T [ ×{0}∪ ]0,T [ ×{1}
= 0.

COROLLARY 1. Let ϕ be an element of H1
0 (0, 1). If hypotheses (H1) are fulfilled,

then the problem 
∂t u − c(t)∂2

x u = f ∈ L2(D1)

u|{0}× ]ϕ1(0),ϕ2(0)[
= ϕ

u|∂D1 \ {0}× ]ϕ1(0),ϕ2(0)[ ∪{T }× ]ϕ1(T ),ϕ2(T )[
= 0,

admits a solution u ∈ H1,2(D1).

THEOREM 5. Suppose that the conditions (H4) are satisfied. Then, problem (P4)

admits a (unique) solution u ∈ H1,2(D4).
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PROOF. The proof of this result can be obtained by ‘subdividing’ the domain D4 in
three open subdomains D1, D2 and D3 which respectively verify the hypotheses (H1),
(H2) and (H3). Furthermore, we impose D4 =

⋃
i=1,2,3 Di . This is possible thanks to

(H4).

Corollary 1 allows us to solve the problem posed in every subdomain (Di )i=1,2,3,
and obtain solutions u1, u2 and u3 respectively in D1, D2 and D3 which coincide on
the common segments of (Di )i=1,2,3, that is, u1 = u2 on D1 ∩ D2 and u2 = u3 on
D2 ∩ D3. The solution u in D4 is then defined by u|Di = ui for all i = 1, 2, 3. 2

REMARK 2.

(1) In the case where ϕ1 = 0 and ϕ2(t)= tα, it is easy to see that the condition
α > 1/2 satisfies hypothesis (H4).

(2) This work may be extended to other operators (with constant or variable
coefficients). Moreover, we can consider the case where the second member is
more regular or lies in non-Hilbertian Sobolev spaces (built on Lebesgue spaces
L p).

(3) Instead of looking for the boundary conditions assuring the existence of the
solution in the natural space, we can choose a ‘bad’ domain which generates
some singularities in the solution. Then, the following two questions arise.

(a) What is the optimal regularity of this singular part?
(b) What is the number of the singularities which generate the singular part?
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cylindrique’, C. R. Math. Acad. Sci. Paris 335(12) (2002), 1017–1022.
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