REGULARITY OF A PARABOLIC EQUATION SOLUTION IN A NONSMOOTH AND UNBOUNDED DOMAIN

BOUBAKER-KHALED SADALLAH

(Received 27 January 2006; accepted 1 August 2006)

Communicated by A. J. Pryde

Abstract

This work is concerned with the problem

$$\begin{cases} \partial_t u - c(t) \partial_x^2 u = f \\ u_{|\partial D \setminus \Gamma_T} = 0 \end{cases}$$

posed in the domain

$$D = \{(t, x) \in \mathbb{R}^2 \mid 0 < t < T, \varphi_1(t) < x < \varphi_2(t)\},\$$

which is not necessary rectangular, and with

$$\Gamma_T = \{ (T, x) \mid \varphi_1(T) < x < \varphi_2(T) \}.$$

Our goal is to find some conditions on the coefficient *c* and the functions (φ_i) $_{i=1,2}$ such that the solution of this problem belongs to the Sobolev space

$$H^{1,2}(D) = \{ u \in L^2(D) \mid \partial_t u \in L^2(D), \ \partial_x u \in L^2(D), \ \partial_x^2 u \in L^2(D) \}.$$

2000 *Mathematics subject classification*: primary 35K05, 35K20; secondary 35K. *Keywords and phrases*: parabolic, heat equation, nonsmooth domain, sectorial.

1. Introduction

In the domain

$$D = \{(t, x) \in \mathbb{R}^2 \mid 0 < t < T, \varphi_1(t) < x < \varphi_2(t)\},\$$

we consider the problem

$$\begin{cases} \partial_t u - c(t) \partial_x^2 u = f \\ u_{|\partial D \setminus \Gamma_T} = 0, \end{cases}$$
(P₀)

where:

^{© 2008} Australian Mathematical Society 1446-7887/08 \$A2.00 + 0.00

- (i) $\Gamma_T = \{(T, x) | \varphi_1(T) < x < \varphi_2(T)\};$
- (ii) *c* is a positive coefficient depending on time;
- (iii) $(\varphi_i)_{i=1,2}$ and *c* are differentiable functions on]0, *T*[satisfying some assumptions to be made precise later on.

The second member f of the equation will be taken in the Lebesgue space $L^2(D)$. We look for a solution u of problem (P_0) in the anisotropic Sobolev space

$$H^{1,2}(D) = \{ u \in L^2(D) : \partial_t u \in L^2(D), \ \partial_x u \in L^2(D), \ \partial_x^2 u \in L^2(D) \}.$$

The study of this kind of problems when the coefficient *c* is constant and $T < +\infty$ has been treated in [19]. In [13], the authors investigated the case when

$$\begin{cases} f \text{ is in a non-Hilbertian Lebesgue space } L^{p}(D) \\ c = 1 \\ T < +\infty \\ \varphi_{1} = 0 \text{ and } \varphi_{2}(t) = t^{\alpha}, \end{cases}$$

they found some conditions on the exponents α and p assuring the optimal regularity of the solution of problem (P_0). It is possible to consider similar questions with some other operators (see, for example, [11, 12]).

Observe that the case where the domain D is cylindrical and $T < +\infty$ is known, for example, in [15] or [1] when the coefficient c is not regular.

During the last decades numerous authors have been interested in the study of many problems posed in bad domains. Among these we can cite [2, 3, 5-11, 16-18, 20]. For bibliographical references see, for example, those of books by [4-7] and the references therein.

In this paper we are interested in particular in the case $T = +\infty$, $\varphi_1(0) = \varphi_2(0)$ and *c* depends on the time. Our main result shows that, thanks to some assumptions on the functions $(\varphi_i)_{i=1,2}$ and *c*, problem (P_0) has a (unique) solution *u* with optimal regularity, that is $u \in H^{1,2}(D)$ when

$$D = \{ (t, x) \in \mathbb{R}^2 \mid 0 < t < +\infty, \ \varphi_1(t) < x < \varphi_2(t) \},\$$

and $\varphi_1(0) = \varphi_2(0)$. The proof of this result will be undertaken in four steps:

- (1) case of a bounded domain which can be transformed into a rectangle;
- (2) case of an unbounded domain which can be transformed into a half strip;
- (3) case of a bounded triangular domain;
- (4) case of a sectorial domain.

2. The case of a bounded domain which can be transformed into a rectangle

Let us consider the problem

$$\begin{cases} \partial_t u - c(t) \partial_x^2 u = f \in L^2(D_1) \\ u_{|\partial D_1 \setminus \Gamma_T} = 0, \end{cases}$$
(P₁)

where

$$D_1 = \{(t, x) \in \mathbb{R}^2 \mid 0 < t < T, \ \varphi_1(t) < x < \varphi_2(t)\},\$$

with the following hypotheses on the functions $(\varphi_i)_{i=1,2}$ and c:

- $(\varphi_i)_{i=1,2}$ and c are continuous functions on [0, T], differentiable on]0, T[; (i)
- (1) {the derivatives $(\varphi'_i)_{i=1,2}$ are uniformly bounded; (ii) there exist two constants $\alpha_i > 0$, i = 1, 2, such that $\alpha_1 \ge c(t) \ge \alpha_2$, for all $t \in$ [0, T];
- (iii) $\varphi_1(t) < \varphi_2(t)$, for all $t \in [0, T]$;
- (iv) $T < +\infty$.

Let (H_1) denote these conditions.

The change of variables (t, x) to $(t, (x - \varphi_1(t))/(\varphi_2(t) - \varphi_1(t)))$ transforms D_1 into $R = [0, T[\times]0, 1[$ and problem (P_1) becomes

$$\begin{cases} \partial_t u + a(t, x)\partial_x u - b(t)\partial_x^2 u = f \in L^2(R) \\ u_{|\partial R \setminus \{T\} \times [0, 1[} = 0, \end{cases}$$
 (P'_1)

where

$$a(t, x) = -\frac{x(\varphi_2'(t) - \varphi_1'(t)) + \varphi_1'(t)}{\varphi_2(t) - \varphi_1(t)},$$

and

$$b(t) = \frac{c(t)}{(\varphi_2(t) - \varphi_1(t))^2}.$$

Observe that, thanks to hypothesis (H_1) , the coefficient *a* is bounded. So the operator $a(t, x)\partial_x : H^{1,2}(R) \to L^2(R)$ is compact. Hence, it is sufficient to study the following problem

$$\begin{cases} \partial_t u - b(t) \partial_x^2 u = f \in L^2(R) \\ u_{|\partial R \setminus \{T\} \times]0,1[} = 0. \end{cases}$$
 (P_1'')

It is clear that problem (P_1'') admits a (unique) solution $u \in H^{1,2}(R)$ because the coefficient b satisfies the 'uniform parabolicity' condition (see, for example, [1]). On other hand, it is easy to verify that the change of variables (t, x) to $(t, (x - \varphi_1(t))/(\varphi_2(t) - \varphi_1(t)))$ conserves the spaces L^2 and $H^{1,2}$. Consequently, we have the following theorem.

THEOREM 1. If hypothesis (H_1) is satisfied, problem (P_1) admits a (unique) solution $u \in H^{1,2}(D_1)$ in D_1 .

The uniqueness of the solution may be obtained by developing the scalar product $(\partial_t u - c(t)\partial_x^2 u, u)_{L^2(D_1)}$. Indeed, we prove that the condition $\partial_t u - c(t)\partial_x^2 u = 0$ implies $\partial_x u = 0$. Thus, $\partial_x^2 u = 0$. However, $\partial_t u - c(t)\partial_x^2 u = 0$ leads to $\partial_t u = 0$. So *u* is constant and the boundary conditions give u = 0.

3. The case of an unbounded domain which can be transformed into a half strip

Now, let us consider the problem

$$\begin{cases} \partial_t u - c(t) \partial_x^2 u = f \in L^2(D_2) \\ u_{|\partial D_2} = 0, \end{cases}$$
(P₂)

where

$$D_2 = \{(t, x) \in \mathbb{R}^2 \mid 0 < t < +\infty, \varphi_1(t) < x < \varphi_2(t)\},\$$

and let (*H*₂) denote the following conditions on the functions (φ_i)_{*i*=1,2} and *c*:

- (i) $\begin{cases} (\varphi_i)_{i=1,2} \text{ and } c \text{ are continuous functions on } [0, +\infty[, \text{ differentiable on }]0, +\infty[; \text{ the derivatives } (\varphi_i)_{i=1,2} \text{ are uniformly bounded;} \end{cases}$
- (ii) there exist $\alpha_i > 0$, i = 1, 2 such that $\alpha_1 \ge c(t) \ge \alpha_2 > 0$, for all $t \in [0, +\infty[;$
- (iii) $\varphi_2 \varphi_1$ is increasing in a neighborhood of $+\infty$; or: there exists M > 0 such that $|\varphi'_1(t) - \varphi'_2(t)|(\varphi_2(t) - \varphi_1(t)) \le M.c(t)$;
- (iv) $\varphi_1(0) < \varphi_2(0)$.

The change of variables indicated in the previous section transforms D_2 into the half strip $B = [0, +\infty[\times]0, 1[$. So problem (P_2) can be written as follows

$$\begin{cases} \partial_t u + a(t, x) \partial_x u - b(t) \partial_x^2 u = f \in L^2(B) \\ u_{|\partial B} = 0, \end{cases}$$
 (P'_2)

keeping in mind that the coefficients *a* and *b* are those defined in Section 2. Let f_n be the restriction $f_{|]0,n[\times]0,1[}$ for all $n \in \mathbb{N}$. Then Theorem 1 shows that for all $n \in \mathbb{N}$, there exists a function $u_n \in H^{1,2}(B_n)$ which solves the problem

$$\begin{cases} \partial_t u_n + a(t, x) \partial_x u_n - b(t) \partial_x^2 u_n = f_n \in L^2(B_n), \\ u_{n \mid \partial B_n \setminus \{n\} \times [0, 1[} = 0, \end{cases}$$
 (P_2'')

where $B_n = [0, n[\times]0, 1[$.

LEMMA 1. There exists a constant K independent of n such that

$$||u_n||_{L^2(B_n)} \le ||\partial_x u_n||_{L^2(B_n)} \le K ||f||_{L^2(B)}.$$

PROOF. The Poincaré inequality gives $||u_n||_{L^2(B_n)} \le ||\partial_x u_n||_{L^2(B_n)}$. Moreover, by developing the scalar product $(\partial_t u_n + a(t, x)\partial_x u_n - b(t)\partial_x^2 u_n, u_n)$ in $L^2(B_n)$ and using condition (iii) in (H_2) we obtain

$$(f_n, u_n) = \int_{B_n} u_n \partial_t u_n \, dt \, dx + \int_{B_n} a(t, x) u_n \partial_x u_n \, dt \, dx - \int_{B_n} b(t) u_n \partial_x^2 u_n \, dt \, dx$$

= $\frac{1}{2} \int_{B_n} \frac{\varphi_1'(t) - \varphi_2'(t)}{\varphi_1(t) - \varphi_2(t)} u_n^2(t, x) \, dt \, dx + \int_{B_n} b(t) \, (\partial_x u_n)^2 \, dt \, dx$
\ge $\int_{B_n} b(t) \, (\partial_x u_n)^2 \, dt \, dx \ge \alpha^2 \|\partial_x u_n\|_{L^2(B_n)}^2.$

268

Hence, for all $\epsilon > 0$,

$$\begin{aligned} \|\partial_{x}u_{n}\|_{L^{2}(B_{n})}^{2} &\leq \frac{1}{\alpha^{2}}\|u_{n}\|_{L^{2}(B_{n})}\|f_{n}\|_{L^{2}(B_{n})} \\ &\leq \frac{1}{\alpha^{2}\epsilon}\|f\|_{L^{2}(B)} + \frac{\epsilon}{\alpha^{2}}\|u_{n}\|_{L^{2}(B_{n})}. \end{aligned}$$

By choosing ϵ small enough, we prove the existence of a constant *K* such that $\|\partial_x u_n\|_{L^2(B_n)} \leq K \|f\|_{L^2(B)}$.

REMARK 1. Similar computations show that the same result holds true when we substitute the condition that $\varphi_2 - \varphi_1$ increases in a neighborhood of $+\infty$ by the following

$$|\varphi_1'(t) - \varphi_2'(t)|(\varphi_2(t) - \varphi_1(t)) \le Mc(t).$$

PROPOSITION 1. There exists a constant K independent of n such that

 $||u_n||_{H^{1,2}(B_n)} \leq K ||f||_{L^2(B)}.$

PROOF. We have

$$\begin{split} \|f_n\|_{L^2(B)}^2 &= (\partial_t u_n + a(t, x)\partial_x u_n - b(t)\partial_x^2 u_n, \, \partial_t u_n + a(t, x)\partial_x u_n - b(t)\partial_x^2 u_n)_{L^2(B_n)} \\ &= \|\partial_t u_n\|_{L^2(B_n)}^2 + \|a.\partial_x u_n\|_{L^2(B_n)}^2 + \|b.\partial_x^2 u_n\|_{L^2(B_n)}^2 \\ &+ 2\int_{B_n} a\partial_t u_n \partial_x u_n \, dt \, dx - 2\int_{B_n} ab\partial_x u_n \partial_x^2 u_n \, dt \, dx \\ &- 2\int_{B_n} b\partial_t u_n \partial_x^2 u_n \, dt \, dx. \end{split}$$

Observe that the conditions (i), (iii) and (iv) of (H_2) show that the coefficients *a* and *b* are bounded. So, thanks to Lemma 1, for all $\epsilon > 0$ we obtain

$$\begin{split} \|\partial_{t}u_{n}\|_{L^{2}(B_{n})}^{2} + \|b.\partial_{x}^{2}u_{n}\|_{L^{2}(B_{n})}^{2} - 2\int_{B_{n}}b\partial_{t}u_{n}.\partial_{x}^{2}u_{n} dt dx \\ &\leq \|f\|_{L^{2}(B)}^{2} + \|a.\partial_{x}u_{n}\|_{L^{2}(B_{n})}^{2} + 2\|\partial_{t}u_{n}\|_{L^{2}(B_{n})}\|a.\partial_{x}u_{n}\|_{L^{2}(B_{n})} \\ &+ 2\|\partial_{x}^{2}u_{n}\|_{L^{2}(B_{n})}\|ab.\partial_{x}u_{n}\|_{L^{2}(B_{n})} \\ &\leq \|f\|_{L^{2}(B)}^{2} + K_{1}\left(1 + \frac{2}{\epsilon}\right)\|\partial_{x}u_{n}\|_{L^{2}(B_{n})}^{2} + \epsilon\|\partial_{t}u_{n}\|_{L^{2}(B_{n})}^{2} + \epsilon\|\partial_{x}^{2}u_{n}\|_{L^{2}(B_{n})}^{2} \\ &\leq K_{\epsilon}\|f\|_{L^{2}(B)}^{2} + \epsilon\|\partial_{t}u_{n}\|_{L^{2}(B_{n})}^{2} + \epsilon\|\partial_{x}^{2}u_{n}\|_{L^{2}(B_{n})}^{2}, \end{split}$$

where K_1 and K_{ϵ} are constants independent of *n*. Consequently,

$$(1-\epsilon)(\|\partial_t u_n\|_{L^2(B_n)}^2 + \|b.\partial_x^2 u_n\|_{L^2(B_n)}^2) \le 2\int_{B_n} b\partial_t u_n \cdot \partial_x^2 u_n \, dt \, dx + K_\epsilon \|f\|_{L^2(B)}^2.$$
(3.1)

Let us now consider the term $2 \int_{B_n} b \partial_t u_n \partial_x^2 u_n dt dx$. We have

$$2\int_{B_n} b\partial_t u_n \cdot \partial_x^2 u_n \, dt \, dx = 2\int_{B_n} (b\partial_x (\partial_t u_n \cdot \partial_x u_n) \, dt \, dx + b\partial_t (\partial_x u_n)^2) \, dt \, dx$$
$$= -\int_0^1 b(\partial_x u_n(n, x))^2 dx + 2\int_{B_n} b'(\partial_x u_n)^2 dt \cdot dx.$$

Note that the functions b (which is positive) and b', defined by

$$b'(t) = \frac{c'(t)}{(\varphi_2(t) - \varphi_1(t))^2} - \frac{2c(t) (\varphi'_2(t) - \varphi'_1(t))}{(\varphi_2(t) - \varphi_1(t))^3}$$

are bounded by virtue of hypothesis (H_2) . Using Lemma 1, this yields

$$2\int_{B_n} b\partial_t u_n \cdot \partial_x^2 u_n \, dt \, dx \le 2\int_{B_n} b' (\partial_x u_n)^2 dt \cdot dx$$
$$\le K_2 \|\partial_x u_n\|^2$$
$$\le K_3 \|f\|^2,$$

where $(K_i)_{i=1,2}$ stand for constants independent of *n*. Consequently, choosing $\epsilon = 1/2$ in the relationship (3.1) we obtain, thanks to condition (ii) of (H_2) ,

$$\|\partial_t u_n\|^2 + \|\partial_x^2 u_n\|^2 \le K \|f\|^2.$$

THEOREM 2. Suppose that the conditions (H_2) are satisfied. Then, problem (P_2) admits a (unique) solution $u \in H^{1,2}(D_2)$.

PROOF. We obtain the solution u by letting n go to infinity in the previous proposition. The uniqueness can be proven as in Theorem 1.

4. The case of a bounded triangular domain

Let us consider the problem

$$\begin{cases} \partial_t u - c(t)\partial_x^2 u = f \in L^2(D_3) \\ u_{|\partial D_3 \setminus \{T\} \times |\varphi_1(T), \varphi_2(T)|} = 0, \end{cases}$$
(P₃)

where

$$D_3 = \{(t, x) \in \mathbb{R}^2 \mid 0 < t < T, \ \varphi_1(t) < x < \varphi_2(t)\},\$$

and let (*H*₃) denote the following conditions on the functions $(\varphi_i)_{i=1,2}$ and *c*:

- $(\varphi_i)_{i=1,2}$ and c are continuous functions on [0, T], differentiable on]0, T[such (i) that $|\varphi'_i|(\varphi_2 - \varphi_1) \leq \epsilon$ where ϵ is small enough;
- (ii) c(t) > 0, for all $t \in [0, T]$;
- (iii) $\varphi_1(0) = \varphi_2(0);$
- (iv) $T < +\infty$, and T is small enough.

Set

$$\Omega_n = \left\{ (t, x) \in D_3 \left| \frac{1}{n} < t < T, \, \varphi_1(t) < x < \varphi_2(t) \right\} \right\}$$

Let *f* be an element of $L^2(D_3)$. For all $n \in \mathbb{N}$, we set $f_n = f_{|\Omega_n|}$. Theorem 1 gives the existence of a function $u_n \in H^{1,2}(\Omega_n)$ which is a solution of the problem

$$\begin{cases} \partial_t u_n - c(t) \partial_x^2 u_n = f_n \in L^2(\Omega_n) \\ u_{n|\partial\Omega_n \setminus \{T\} \times]\varphi_1(T), \varphi_2(T)[} = 0. \end{cases}$$
(P'_3)

LEMMA 2. There exists a constant K independent of n such that for all $t \in [0, T]$:

- $||u_n||_{L^2(\Omega_n)} \le K ||(\varphi_2 \varphi_1)\partial_x u_n||_{L^2(\Omega_n)};$ (1)
- $$\begin{split} &\int_{\varphi_1(t)}^{\varphi_2(t)} u_n^2(t,x) \, dx \leq K(\varphi_2 \varphi_1)^4 \int_{\varphi_1(t)}^{\varphi_2(t)} (\partial_x^2 u_n)^2(t,x) \, dx; \\ &\int_{\varphi_1(t)}^{\varphi_2(t)} (\partial_x u_n)^2(t,x) \, dx \leq K(\varphi_2 \varphi_1)^2 \int_{\varphi_1(t)}^{\varphi_2(t)} (\partial_x^2 u_n)^2(t,x) \, dx; \\ &\|\partial_x u_n\|_{L^2(\Omega_n)} \leq K \|f\|_{L^2(D_3)}. \end{split}$$
 (2)
- (3)
- (4)

PROOF. (1) Inequality is a consequence of the Poincaré inequality. The operator

$$H^{2}(0, 1) \cap H^{1}_{0}(0, 1) \to L^{2}(0, 1)$$

 $v \to v'',$

is an isomorphism. So, there exists a constant K such that

$$\left\{ \begin{aligned} \|v\|_{L^{2}(0,1)} &\leq K \|v''\|_{L^{2}(0,1)} \\ \|v'\|_{L^{2}(0,1)} &\leq K \|v''\|_{L^{2}(0,1)}. \end{aligned} \right.$$

The change of variables (for fixed t) x in $y = (1 - x)\varphi_1(t) + x\varphi_2(t)$ transforming the interval (0, 1) into the interval ($\varphi_1(t), \varphi_2(t)$) leads to the estimates (2) and (3).

To prove (4), it is sufficient to expand the scalar product (f_n, u_n) and use the inequality (1) Indeed, we deduce, for all $\epsilon > 0$,

$$\int_{B_n} c(t) (\partial_x u_n)^2(t, x) \le |(f_n, u_n)|$$

$$\le \frac{1}{\epsilon} ||f_n||^2 + \epsilon ||u_n||^2$$

$$\le \frac{1}{\epsilon} ||f||_{L^2(D_3)}^2 + \epsilon K ||(\varphi_2 - \varphi_1) \partial_x u_n||_{L^2(\Omega_n)}^2.$$

However, $\varphi_2 - \varphi_1$ is bounded and $c > \alpha$ according to the condition (ii) of (H₃). Choosing ϵ small enough yields the desired result.

271

PROPOSITION 2. There exists a constant K independent of n such that

$$||u_n||_{H^{1,2}(\Omega_n)} \le K ||f||_{L^2(D_3)}.$$

PROOF. We have

$$\|\partial_t u_n\|_{L^2(\Omega_n)}^2 + \|c\partial_x^2 u_n\|_{L^2(\Omega_n)}^2 - 2\int_{\Omega_n} c(t)\partial_t u_n \partial_x^2 u_n \, dt \, dx = \|f_n\|_{L^2(\Omega_n)}^2$$

and, thanks to the relationship $\partial_t u_n + \varphi'_i(t)(\partial_x u_n) = 0$ on the boundary $\partial \Omega_n$, we show that

$$-2\int_{\Omega_n} c(t)\partial_t u_n \partial_x^2 u_n \, dt \, dx$$

$$= 2\int_{\partial\Omega_n} c(t)\partial_t u_n \partial_x u_n dt + \int_{\partial\Omega_n} c(t) (\partial_x u_n)^2 \, dx$$

$$-\int_{\Omega_n} c'(t) (\partial_x u_n)^2 \, dt \, dx$$

$$= -\int_{1/n}^T 2c(t)\varphi_1'(t) (\partial_x u_n)^2 dt + \int_{1/n}^T 2c(t)\varphi_2'(t) (\partial_x u_n)^2 dt$$

$$+\int_{1/n}^T c(t)\varphi_1'(t) (\partial_x u_n)^2 \, dt - \int_{1/n}^T c(t)\varphi_2'(t) (\partial_x u_n)^2 \, dt$$

$$-\int_{\Omega_n} c'(t) (\partial_x u_n)^2 \, dt \, dx$$

$$= -\int_{1/n}^T c(t)\varphi_1'(t) (\partial_x u_n)^2 \, dt + \int_{1/n}^T c(t)\varphi_2'(t) (\partial_x u_n)^2 \, dt$$

$$-\int_{\Omega_n} c'(t) (\partial_x u_n)^2 \, dt \, dx.$$

So, since c' is bounded, Assertion (4) of Lemma 2 yields

$$\left| -2 \int_{\Omega_n} c(t) \partial_t u_n \partial_x^2 u_n \, dt \, dx \right|$$

$$\leq \left| \int_{1/n}^T c(t) \varphi_1'(t) \, (\partial_x u_n)^2 \, dt \right| + \left| \int_{1/n}^T c(t) \varphi_2'(t) \, (\partial_x u_n)^2 \, dt \right| + K \| f \|_{L^2(D_3)}^2$$

Now, we estimate the term $I = |\int_{1/n}^{T} c(t)\varphi'_1(t)(\partial_x u_n)^2 dt|$. For this purpose, we set

$$\psi(t, x) = \frac{\varphi_2(t) - x}{\varphi_2(t) - \varphi_1(t)}.$$

Hence,

$$I = \int_{1/n}^{T} c(t)\varphi_1'(t) \left\{ \int_{\varphi_1(t)}^{\varphi_2(t)} \partial_x [\psi(t, x) (\partial_x u_n(t, x))^2] dx \right\} dt$$

= $\int_{\Omega_n} c(t)\varphi_1'(t)\partial_x [\psi(t, x) (\partial_x u_n(t, x))^2] dx dt$
= $\int_{\Omega_n} \frac{c(t)\varphi_1'(t)}{\varphi_2(t) - \varphi_1(t)} (\partial_x u_n(t, x))^2 dx dt$
+ $2 \int_{\Omega_n} c(t)\varphi_1'(t)\psi(t, x))\partial_x u_n(t, x)\partial_x^2 u_n(t, x) dx dt.$

Note that there exists a constant K such that

$$\left| 2 \int_{\Omega_n} c(t) \varphi_1'(t) \psi(t, x) \partial_x u_n(t, x) \partial_x^2 u(t, x) \, dx \, dt \right|$$

$$\leq K \|\partial_x^2 u_n\| \|\varphi_1' \partial_x u_n\|$$

$$\leq K \epsilon \|\partial_x^2 u_n\|.$$

(where $\epsilon = \sup \varphi'_1(\varphi_2 - \varphi_1)$). Furthermore,

$$\begin{split} \left| \int_{\Omega_n} \frac{c(t)\varphi_1'(t)}{\varphi_2(t) - \varphi_1(t)} (\partial_x u_n(t, x))^2 dx \, dt \right| \\ &\leq K \int_{1/n}^T \frac{c(t)\varphi_1'(t)}{\varphi_2(t) - \varphi_1(t)} (\varphi_2(t) - \varphi_1(t))^2 \int_{\varphi_1(t)}^{\varphi_2(t)} (\partial_x^2 u_n(t, x))^2 \, dx \, dt \\ &\leq K \int_{\Omega_n} c(t)\varphi_1'(t) \left(\varphi_2(t) - \varphi_1(t)\right) \left(\partial_x^2 u_n(t, x)\right)^2 \, dx \, dt \\ &\leq K \epsilon \|\partial_x^2 u_n\|^2. \end{split}$$

Then, there exists a constant K' such that

$$\|\partial_t u_n\| + \|\partial_x^2 u_n\| \le K' \|f\|.$$

Consequently,

$$||u_n||_{H^{1,2}(\Omega_n)} \le K'||f||.$$

THEOREM 3. Suppose that conditions (H_3) are satisfied. Then, problem (P_3) admits a (unique) solution $u \in H^{1,2}(D_3)$.

PROOF. Thanks to Proposition 2, the solution u can be obtained by letting n go to infinity.

5. The case of a sectorial domain

In this section, we consider the problem

$$\begin{cases} \partial_t u - c(t) \partial_x^2 u = f \in L^2(D_4) \\ u_{\mid \partial D_4} = 0, \end{cases}$$
(P₄)

where

$$D_4 = \{(t, x) \in \mathbb{R}^2 \mid 0 < t < +\infty, \ \varphi_1(t) < x < \varphi_2(t)\},\$$

under the hypotheses (*H*₄) on the functions $(\varphi_i)_{i=1,2}$ and *c*:

 $(\varphi_i)_{i=1,2}$ and c are continuous functions on $[0, +\infty[$, differentiable on (i) {]0, +∞[; here |φ'_i|(φ₂- φ₁) is small enough in a neighborhood of 0 and (φ'_i)_{i=1,2} is bounded in a neighborhood of +∞.
 (ii) φ₂ - φ₁ is increasing a neighborhood of +∞ or

there exists
$$M > 0$$
, $|\varphi'_1(t) - \varphi'_2(t)|(\varphi_2(t) - \varphi_1(t)) \le M.c(t);$

- (iii) there exist $\alpha_i > 0$, i = 1, 2 such that $\alpha_1 \ge c(t) \ge \alpha_2 > 0$, for all $t \in [0, +\infty[$;
- (iv) $\varphi_1(0) = \varphi_2(0);$
- (v) $T = +\infty$.

In order to prove our main result, we need the following trace theorem [15, Theorem 2.1, Chapter 4]:

THEOREM 4.

(i) If $u \in H^{1,2}([0, T[\times]0, 1[), then$

$$u_{|_{\{0\}\times]0,1[}} \in H_0^1(0, 1) = \{ u \in H^1(0, 1) \mid u(0) = u(1) = 0 \}.$$

(ii) If $\varphi \in H_0^1(0, 1)$, there exists $u \in H^{1,2}(]0, T[\times]0, 1[)$ such that $u_{|\{0\}\times [0,1[]} = \varphi$ and $u_{| 10,T[\times \{0\} \cup 10,T[\times \{1\}\}]} = 0.$

COROLLARY 1. Let φ be an element of $H_0^1(0, 1)$. If hypotheses (H_1) are fulfilled, then the problem

$$\begin{cases} \partial_t u - c(t) \partial_x^2 u = f \in L^2(D_1) \\ u_{|\{0\} \times |\varphi_1(0), \varphi_2(0)|} = \varphi \\ u_{|\partial D_1 \setminus \{0\} \times |\varphi_1(0), \varphi_2(0)| \cup \{T\} \times |\varphi_1(T), \varphi_2(T)|} = 0, \end{cases}$$

admits a solution $u \in H^{1,2}(D_1)$.

THEOREM 5. Suppose that the conditions (H_4) are satisfied. Then, problem (P_4) admits a (unique) solution $u \in H^{1,2}(D_4)$.

[10]

PROOF. The proof of this result can be obtained by 'subdividing' the domain D_4 in three open subdomains D_1 , D_2 and D_3 which respectively verify the hypotheses (H_1) , (H_2) and (H_3) . Furthermore, we impose $\overline{D_4} = \bigcup_{i=1,2,3} \overline{D_i}$. This is possible thanks to (H_4) .

Corollary 1 allows us to solve the problem posed in every subdomain $(D_i)_{i=1,2,3}$, and obtain solutions u_1 , u_2 and u_3 respectively in D_1 , D_2 and D_3 which coincide on the common segments of $(\overline{D_i})_{i=1,2,3}$, that is, $u_1 = u_2$ on $\overline{D_1} \cap \overline{D_2}$ and $u_2 = u_3$ on $\overline{D_2} \cap \overline{D_3}$. The solution u in D_4 is then defined by $u_{|D_i} = u_i$ for all i = 1, 2, 3.

Remark 2.

- (1) In the case where $\varphi_1 = 0$ and $\varphi_2(t) = t^{\alpha}$, it is easy to see that the condition $\alpha > 1/2$ satisfies hypothesis (*H*₄).
- (2) This work may be extended to other operators (with constant or variable coefficients). Moreover, we can consider the case where the second member is more regular or lies in non-Hilbertian Sobolev spaces (built on Lebesgue spaces L^p).
- (3) Instead of looking for the boundary conditions assuring the existence of the solution in the natural space, we can choose a 'bad' domain which generates some singularities in the solution. Then, the following two questions arise.
 - (a) What is the optimal regularity of this singular part?
 - (b) What is the number of the singularities which generate the singular part?

References

- Yu. A. Alkhutov and I. T. Mamedov, 'The first boundary value problem for nondivergence secondorder parabolic equations with discontinuous coefficients', *Russian Acad. Sc. Sbornik Math.* 59(2) (1988), 471–495.
- [2] A. Azzam, 'On behavior of solution of elliptic and parabolic equations at a crack', *Hokkaido Math. J.* **19**(2) (1990), 339–344.
- [3] E. A. Baderko, 'Étude du problème de Dirichlet pour une équation 2*p*-parabolique dans un domaine non rectangulaire', C. R. Math. Acad. Sci. Paris 287 (1978), 221–224.
- [4] J. Cea *et al.* (ed.), *Partial Differential Equations and Functional Analysis in Memory of Pierre Grisvard* (Birkhäuser, Basel, 1996).
- [5] M. Dauge, Elliptic Boundary Value Problems on Corner Domains (Springer, Berlin, 1988).
- [6] P. Grisvard, *Elliptic Problems in Non-smooth Domains*, Monographs and Studies in Mathematics, 24 (Pitman, Boston, MA, 1985).
- [7] P. Grisvard, Singularities in Boundary Value Problems, RMA, 22 (Masson, Paris, 1992).
- [8] P. Grisvard, Problèmes aux limites dans des domaines avec points de rebroussement, in: Partial Differential Equations and Functional Analysis in Memory of P. Grisvard (Birkhäuser, Basel, 1996), pp. 1–17.
- [9] K. Ibuki, 'On the regularity of a mixed problem for hyperbolic equation of second order in a domain with corners', J. Math. Kyoto Univ. 16(1) (1976), 167–183.
- [10] V. A. Kondratiev, 'Boundary-value problems for elliptic equations in domains with conical or angular points', *Trans. Moscow Math. Soc.* 16 (1967), 227–313.
- [11] R. Labbas and M. Moussaoui, 'On the resolution of the heat equation with discontinuous coefficients', *Semigroup Forum* 60 (2000), 187–201.

B.-K. Sadallah

- [12] R. Labbas and B.-K. Sadallah, 'Smoothness of the solution of a fourth order parabolic equation in a polygonal domain', *Int. J. Appl. Math.* 1(1) (1999), 75–90.
- [13] R. Labbas, A. Medeghri and B.-K. Sadallah, 'On a parabolic equation in a triangular domain', *Appl. Math. Comput.* 130(2–3) (2002), 511–523.
- [14] R. Labbas, A. Medeghri and B.-K. Sadallah, 'Sur une équation parabolique dans un domaine non cylindrique', C. R. Math. Acad. Sci. Paris 335(12) (2002), 1017–1022.
- [15] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 2 (Dunod, Paris, 1968).
- [16] V. G. Maz'ja and B. A. Plamenevskii, 'Weighed spaces with nonhomogeneous norms and boundary value problems in domains with conical points', *Amer. Math. Soc. Transl.* 2(123) (1984), 89–107.
- [17] M. Moussaoui and B.-K. Sadallah, 'Régularité des coefficients de propagation de singularités pour l'Equation de la Chaleur dans un Ouvert Plan polygonal', C. R. Math. Acad. Sci. Paris 293(5) (1981), 297–300.
- [18] S. Nicaise, 'Regularity of the solutions of elliptic systems in polyhedral domains', Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 411–429.
- [19] B.-K. Sadallah, 'Étude d'un problème 2*m*-parabolique dans des domaines plans non rectangulaires', *Boll. U. M. I. B.* (6) 2(1) (1983), 51–112.
- [20] M. Taniguchi, 'Initial boundary value problem for the wave equation in a domain with a corner', *Tokyo J. Math.* 16(1) (1993), 61–98.

BOUBAKER-KHALED SADALLAH, Laboratoire Equations aux Dérivées Partialles et Histoire des Mathématiques, Department of Mathematics, École Normale Supérieure, 16050-Kouba, Algiers, Algeria e-mail: sadallah@ens-kouba.dz

276