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Weak approximation of stochastic differential delay equations for
bounded measurable function

Hua Zhang

Abstract

In this paper we study the weak approximation problem of E[φ(x(T ))] by E[φ(y(T ))], where x(T )
is the solution of a stochastic differential delay equation and y(T ) is defined by the Euler scheme.
For φ ∈ C3

b , Buckwar, Kuske, Mohammed and Shardlow (‘Weak convergence of the Euler scheme
for stochastic differential delay equations’, LMS J. Comput. Math. 11 (2008) 60–69) have shown
that the Euler scheme has weak order of convergence 1. Here we prove that the same results
hold when φ is only assumed to be measurable and bounded under an additional non-degeneracy
condition.

1. Introduction

In recent years, numerical solutions of stochastic differential equations have drawn increasing
attention since they help not only to simulate the solutions of stochastic differential equations,
but also have theoretical value. The Euler scheme is the simplest method among all methods of
approximate numerical solutions of stochastic differential equations. There are two kinds
of numerical analysis of some class of stochastic differential equations that we are interested
in. The first concerns the strong convergence of the Euler scheme for some class of stochastic
differential equations. The second deals with the weak approximation of some class of stochastic
differential equations. More precisely, let T > 0 be a fixed time horizon, x(T ) is the solution of
some class of stochastic differential equations and y(T ) is the Euler scheme of x(T ) associated
with a partition π, we study the following quantity

E[φ(x(T ))]− E[φ(y(T ))],

where φ is a suitable class of test function.
In this paper, we focus on the weak approximation of some class of differential equations due

to the fact that analysis of this quantity turns out to be more important for applications, for
instance, in finance, biology, and so on. Weak approximation of stochastic ordinary differential
equations (SODEs) (without memory) are well developed. we refer the reader to, for example,
Bally and Talay [3, 4], Kloeden and Platen [8] and Kohatsu-Higa [9] for a discussion of various
aspects of this topic.

However, many physical phenomena can be modeled by stochastic dynamic systems whose
evolution in time is governed by random forces as well as intrinsic dependence of the state
on a finite part of its past history. Such a model may be identified as a stochastic functional
differential equation (SFDE). The simplest SFDEs are stochastic delay differential equations
(SDDEs) which can serve as a model of noisy physical processes whose time evolution depends
on their past history. For some progress on weak approximation of the Euler scheme for SDDEs,
the reader can consult [1] for a recent survey and references.
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Recent results on weak approximation of numerical methods for SDDEs are obtained by
Clément, Kohatsu-Higa and Lamberton [6] and Buckwar, Kuske, Mohammed and Shardlow [1].
In [6], the authors give convergence with respect to bounded measurable test functions under
sufficient non-degeneracy of the diffusion coefficient, where the drift and diffusion terms of
SFDEs have the following forms

b

(∫0

−r
x(u+ s) dv(s)

)
and σ

(∫0

−r
x(u+ s) dv(s)

)
with v a finite measure on [−r, 0] and b, σ : R→ R sufficiently smooth real-valued functions.
The result in [1] concerns the weak convergence of order 1 of the Euler scheme for fully non-
linear stochastic delay equations in Rd, with multiple discrete (and continuous) delays and
multidimensional Brownian noise. However, the test function φ in [1] is assumed to be C3

b . In
the present paper, our object is to show the existence of the expansion under a much weaker
hypothesis on φ. We will suppose the test function φ is measurable and bounded. The price to
pay is that we should assume that the solutions of SDDEs satisfy non-degeneracy conditions.
In addition to the Malliavin integration by parts formula and the tame Itô formula mentioned
in [1], our approach also depends on a localization technique which was first introduced in
[3, 4], and successfully applied in the proof of [6, Theorem 13].

In order to make the paper more clear, we now describe the main result of the paper and
give the ideas and steps of its proof. Let x(t; σ, η) be the solution of a one-dimensional SDDE
and let y(t; σ, η) be the continuous Euler approximations with a partition π := {−τ = t−M <
t−M+1 < . . . < t−1 < t0 = 0< t1 < t2 < . . . < tN−1 < tN = T} of [−τ, T ], where σ ∈ [0, T ] is the
initial instant and η ∈H1,∞([−τ, 0], R) is the initial path. Here the meaning of the symbol
H1,∞([−τ, 0], R) can be found in § 2. The main result in our paper is that for a bounded
measurable function φ : R→ R, we have

|Eφ(x(t; σ, η))− Eφ(y(t; σ, ηπ))|6 C|π|

for all t ∈ [σ, T ], σ ∈ [0, T ] and all η ∈H1,∞([−τ, 0], R), where ηπ ∈H1,∞([−τ, 0], R) is the
piecewise-linear approximation of η ∈H1,∞([−τ, 0], R). Similarly to the proof in [1], we only
need to prove that for a bounded measurable function φ : R→ R, the following estimate holds

|Eφ(x(t; σ, η))− Eφ(y(t; σ, η))|6 C|π|

for all t ∈ [σ, T ], σ ∈ [0, T ] and all η ∈H1,∞([−τ, 0], R).
The general ideas and the main obstacles to overcome in the proof of the above estimate

are as follows. Because φ is bounded measurable, so we can not make direct use of the method
developed by Buckwar, Kuske, Mohammed and Shardlow in [1]. However, using the integration
by parts formula, the test function φ can be lifted up to a test function in C3

b . In order to ensure
the effectiveness of the use of the integration by parts formula, we must introduce a smooth
functional such that outside a set where the smooth functional vanishes, the non-degeneracy
condition is satisfied. After that, using a similar procedure in [1], we can complete the proof
of the estimate. More precisely, we give a brief outline of the proof of the estimate.

Step 1. Without loss of generality, we assume that σ = 0 and t= tn ∈ π for some 0 6 n6N .
Using the Markov property of x(tn; 0, η) and y(tn; 0, η), we have

E[φ(x(tn; 0, η))]− E[φ(y(tn; 0, η))]

=
n∑
i=1

E[φ(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))− φ(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η))))].

We consider a truncation function ψ ∈ C∞b ([0,∞), R) such that

1[0, 18 ] 6 ψ 6 1[0, 14 ].
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We construct rπtitn by

rπtitn =
σx(tn;0,η)− 1

2y(tn;ti,xti (·;0,η))−
1
2y(tn;ti−1,xti−1 (·;0,η)) ∨ σy(tn;ti,xti (·;0,η))−y(tn;ti−1,xti−1 (·;0,η))

σx(tn;0,η)
.

Now we have
n∑
i=1

E[φ(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))− φ(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η))))]

=
n∑
i=1

E[(φ(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))

− φ(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η)))))(1− ψ(rπtitn))]

+
n∑
i=1

E[(φ(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))

− φ(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η)))))ψ(rπtitn)].

Step 2. For the first part, using the definition of ψ, the boundedness of φ and the results of
the strong convergence, we obtain∣∣∣∣ n∑

i=1

E[φ(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))

− φ(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η))))(1− ψ(rπtitn))]
∣∣∣∣

6 C|π|p−1.

We deal with the second part as follows. For all 0 6 λ6 1, we obtain

{ψ(rπtitn) 6= 0} ⊂ {σλy(tn;ti,xti (·;0,η))+(1−λ)y(tn;ti−1,xti−1 (·;0,η)) > 1
16σx(tn;0,η)},

and this gives that λy(tn; ti, xti(·; 0, η)) + (1− λ)y(tn; ti−1, xti−1(·; 0, η)) is non-
degenerate on the set {ψ(rπtitn) 6= 0}. In particular, we have det(σy(tn;ti,xti (·;0,η)))> 0 and
det(σy(tn;ti−1,xti−1 (·;0,η)))> 0 on the set {ψ(rπtitn) 6= 0}. Then y(tn; ti, yti(·; ti−1, xti−1(·; 0, η)))
and y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))) have absolutely continuous law conditioned by the set
{ψ(rπtitn) 6= 0}. Let {φh}∞h=1 be a sequence of C1 functions such that ‖φh‖∞ 6 ‖φ‖∞ and
{φh}∞h=1 converges almost every dx to φ as h tends to infinity. Therefore, we have

E[φh(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))ψ(rπtitn)]
→ E[φ(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))ψ(rπtitn)]

and

E[φh(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η))))ψ(rπtitn)]
→ E[φ(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η))))ψ(rπtitn)]

as h tends to infinity. Thus, now it suffices to prove that∣∣∣∣ n∑
i=1

E[(φh(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))

− φh(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η)))))ψ(rπtitn)]
∣∣∣∣
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is of order |π|. Let

Fi = y(tn; ti, λxti(·; ti−1, xti−1(·; 0, η)) + (1− λ)yti(·; ti−1, xti−1(·; 0, η)))
Gim = ∂mF (t, W (t), W (t1), . . . , W (tk), s1, . . . , sn, . . . , λx(ti + µm)

+ (1− λ)y(ti + µm), . . .)(xti(·; ti−1, xti−1(·; 0, η))
− yti(·; ti−1, xti−1(·; 0, η)))ψ(rπtitn).

Since λy(tn; ti, xti(·; 0, η)) + (1− λ)y(tn; ti−1, xti−1(·; 0, η)) is non-degenerate on the set
{ψ(rπtitn) 6= 0}, we use the mean value theorem, the tame character of ∇y(t; 0, η) in the initial
path η, and the local integration by parts formula to obtain

E[(φh(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))− φh(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η)))))ψ(rπtitn)]

=
∫1

0

l∑
m=1

E[∇φh(Fi)Gim] dλ=
∫1

0

l∑
m=1

E[U(Fi)H3(Fi, Gim)] dλ,

where U(x) =
∫x
0

∫y
0
φh(z) dz dy and H3(Fi, Gim) has the following representation:

H3(Fi, Gim) =
3∑
k=0

〈Φk, DkGim〉,

with
Φk ∈ D∞−∞ (H⊗k), k = 0, 1, 2, 3,

which are obtained as polynomials in γFi , Fi and their derivatives. Thus, our problem is
reformulated to prove ∣∣∣∣ 3∑

k=0

n∑
i=1

l∑
m=1

∫1

0

E[〈U(Fi)Φk, DkGim〉] dλ
∣∣∣∣

is of order |π|. Now we can apply the method in [1] to obtain the desired estimate, because U
is in C3 and U ′′ = φh.

Our paper is organized as follows. In § 2, we recall some results of the Malliavin calculus
that we will use in the following and introduce the Euler scheme for SDDEs. Our main result
is given in § 3 for one-dimensional SDDEs with a single delay and driven by a single Wiener
process, and we put its proof in § 4. In the last section, we provide a multidimensional version
of our main result.

2. Preliminary

Now let us recall and fix some notation and notions. Let (B, H, µ) be an abstract Wiener
space. We refer to [14] (see also [7] and [11]) for the background in the Malliavin calculus.
The Malliavin calculus has been developed as a differential–integral calculus or a Schwartz
distribution theory on B. The main ingredients are notions of differential operators like
the gradient operator (or Shigekawa’s H-derivative) D, its dual divergence operator (or the
Skorohod operator) δ, the Ornstein–Uhlenbeck operator L=−δD and notions of Sobolev space
Dpα, 1< p <∞, α ∈ R, of real Wiener and generalized Wiener functionals. Roughly,

Dpα = (1− L)−α/2(Lp)

with the norm
‖F‖α,p = ‖(1− L)α/2F‖Lp ,

where Lp is the usual Lp-space. In particular,

Dp0 = Lp, Dp
′

α′ ⊆ Dpα if p < p′ and α < α′.
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So, roughly, F ∈ Dpα if and only if the derivatives of F up to the αth order belong to Lp
and, therefore, p and α are called the integrability index and the differentiability index
of the Sobolev space, respectively. Also, let L∞− =

⋂
1<p<∞ Lp, D∞−α =

⋂
1<p<∞ Dpα and

D∞−∞ =
⋂

1<p<∞
⋂
α>0 Dpα. If we consider, more generally, E-valued functionals, E being a

real separable Hilbert space, the corresponding spaces are denoted by Lp(E), Dpα(E), etc.
In the present paper we will suppose that the separable Hilbert space H is an L2 space of the

form H = L2([0, T ], Rd). In order to avoid confusion we will use D for the Malliavin derivatives
and ∇ for the classical derivatives or Fréchet derivatives of functions. We denote by C∞p (Rd)
be the set of all infinitely continuously differential function f : Rd→ R such that f and all of
its partial derivatives have polynomial growth.

In the Malliavin calculus, a key role is played by the Malliavin covariance matrix which is
defined as follows.

Definition 2.1. Suppose that F = (F1, . . . , Fd) is a random vector whose components
belong to the space D∞−1 . We associate with F the following random symmetric non-negative
definite matrix:

ΣF (ω) = (σijF (ω))16i,j6d := (〈DFi, DFj〉H)16i,j6d.

In one dimension setting,

ΣF (ω) =
∫T
0

(DrF )2 dr.

The matrix Σ(ω) will be called the Malliavin covariance matrix of the random vector F . We will
say that a random vector F = (F1, . . . , Fd) whose components are in D∞−∞ is non-degenerate
if the Malliavin covariance matrix Σ(ω) is invertible almost surely and

ΓF (ω) = (γijF (ω))16i,j6d := (Σ(ω))−1 ∈ L∞−(Rd ⊗ Rd).

An important component in the study of the density of F is the integration by parts
formula. Here we give a local version of the integration by parts formula which can be seen in
[4, Proposition 4.7].

Proposition 2.2. Suppose that:
(i) F ∈ D∞−∞ (Rd);
(ii) G ∈ D∞−∞ , and for some multi-index α, ΣF is invertible almost surely on the set

{G 6= 0}
⋃
β6α

{DβG 6= 0},

and that, for any p 6= 1,

E[|det(ΣF )|−p1{G6=0}
⋃
β6α{DβG6=0}]<∞.

Then for all φ ∈ C∞p (Rd), we have

E

[(
∂|α|φ

∂yα
◦ F
)
G

]
= E[(φ ◦ F )Hα(F, G)1{G6=0}

⋃
β6α{DβG6=0}], (1)

where the elements Hα are recursively given by

H(i)(F, G) = Hi(F, G)

:= −
d∑
j=1

{γijLFjG+ (Dγij , DFj)HG+ γij(DG, DFj)},

Hα(F, G) = Hα,...,αk(F, G)
:= Hαk(F, Hα1,...,αk−1(F, G)).
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Moreover, for any p > 1 and any multi-index α, there exists a C(p, α)> 0 and integer
K(p, α), M(p, α), M ′(p, α), N(p, α), N ′(p, α), such that, for any measurable set A⊂ {G 6= 0}⋃
β6α{DβG 6= 0} and any F , G as above, we have

E[|Hα(F, G)|p1A]1/p 6 C(p, α)‖det(ΣF )−11A‖K(p,α)

·‖G‖N(p,α),M(p,α) · ‖F‖N ′(p,α),M ′(p,α). (2)

The following notation is taken from [1]. Let C([−τ, 0], R) denote the Banach space of
continuous paths η : [−τ, 0]→ R, furnished with the supremum norm

‖η‖C := sup
−τ6s60

|η(s)|.

The symbol H1,∞([−τ, 0], R) denotes the Banach space of all continuous paths η : [−τ, 0]→ R,
which are almost everywhere differentiable on [−τ, 0] and such that

esssups∈[−τ,0]|η′(s)|<∞.

The space H1,∞([−τ, 0], R) is furnished with the H1,∞-norm

‖η‖1,∞ := sup
−τ6s60

|η(s)|+ esssup−τ6s60|η′(s)|.

The corresponding Banach space C([−τ, 0], Rd) and H1,∞([−τ, 0], Rd) of Rd-valued mapping
are defined analogously.

Let us end this section by introducing the Euler scheme for SDDEs. For simplicity of
exposition, we will focus on one-dimensional SDDEs with a single delay and driven by a
single Wiener process. The appropriate extensions of our analysis to higher dimension are
straightforward. They are indicated in § 5 of this paper. To further simplify the presentation, we
deal with the SDDEs without drift, and we can easily extent our results to the general SDDEs
under some appropriate conditions. More precisely, consider the one-dimensional SDDE for
σ 6 t6 T

x(t) = η(0) +
∫ t
σ

g(x(u− τ), x(u)) dW (u), (3)

with initial condition
η(t− σ), σ − τ 6 t < σ,

where T > 0 is fixed, the initial instant σ ∈ [0, T ], the coefficient g : R2→ R satisfies suitable
regularity and linear growth hypotheses, and the initial path η ∈H1,∞([−τ, 0], R).

Let

π := {−τ = t−M < t−M+1 < . . . < t−1 < t0 = 0< t1 < t2 < . . . < tN−1 < tN = T}

be a partition of [−τ, T ], with equal size denoted by |π| := (T + τ)/(N +M). Let σ ∈ [0, T ],
and for any u ∈ [σ, T ], define [u] := ti−1 ∨ σ whenever u ∈ [ti−1, ti] ∩ [σ, T ]. For each initial path
η ∈H1,∞([−τ, 0], R), define its piecewise-linear approximation ηπ ∈H1,∞([−τ, 0], R) by

ηπ(s) :=
η(ti)− η(ti−1)

ti − ti−1
(s− ti−1) + η(ti−1)

for s ∈ [ti−1, ti), −M + 1 6 i6 0, and ηπ(0) := η(0). Define the continuous Euler approxima-
tions y : [σ − τ, T ]× Ω→ R of the solution x : [σ − τ, T ]×→ R of (3) to be solutions of the
SDDEs:

y(t) =

η(0) +
∫ t
σ

g(y([u]− τ2), y([u])) dW (u), t> σ,

η(t− σ), σ − τ < t < σ.

(4)

Denote the solutions of (3) and (4) by x(t; σ, η) and y(t; σ, η), σ − τ 6 t6 T .
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3. Main result

We shall make use of the following assumptions.
(A.I) The function g : R2→ R is a C∞ function, whose derivatives of any order are bounded

(but it is not assumed to be bounded itself).
(A.II) For any t ∈ [0, T ], x(t; 0, η) is non-degenerate, that is, the inverse Malliavin covariance

matrix γx(t;0,η) := (
∫T
0

(Drx(t; 0, η))2 dr)−1 satisfies

γx(t;0,η) ∈ L∞−. (5)

Remark 3.1. The condition (5) is satisfied in the uniformly elliptic case, that is g(x) > ε > 0
for all x ∈ R (see [10]), or under some weaker assumptions (see [2]).

Theorem 3.2. Let x(·; σ, η) be the unique solution of (3) with initial path η ∈
H1,∞([−τ, 0], R). Suppose that the coefficient g satisfies the assumption (A.I) and x(t; 0, η)
satisfies the assumption (A.II). Let π be a partition of [−τ, T ] with equal size |π|, and ηπ ∈
H1,∞([−τ, 0], R) be the piecewise-linear approximation of η along the partition π. Denote by
y(·; σ, η) the Euler approximation to x(·; σ, η) associated with the partition π and defined
by (4). Then for a bounded measurable function φ : R→ R, there exists a positive constant K
and a positive integer q such that

|Eφ(x(t; σ, η))− Eφ(y(t; σ, ηπ))|6K(1 + ‖η‖q1,∞)|π| (6)

for all t ∈ [σ − τ, T ], σ ∈ [0, T ] and all η ∈H1,∞([−τ, 0], R). The constant K may depend on
T , q and the test function φ, but is independent of π, η, t ∈ [σ, T ] and σ ∈ [0, T ].

Remark 3.3. The boundedness hypothesis on φ can be relaxed: the preceding technique can
be improved to deal with the case of functions φ which are measurable and have polynomial
growth. The extension is verified along the same lines as in [3, Section 6].

Remark 3.4. The above theorem can be easily extended to higher dimensions, and we put
the detailed extension in § 5.

4. Proof of Theorem 3.2

We first state a technical lemma which will paly an important role in the proof of Theorem 3.2.

Lemma 4.1. Suppose that the coefficient g satisfies the assumption (A.I). Let x(·; σ, η) be
the unique solution of (3) with initial path η ∈ L∞−(Ω, C([−τ, 0], R); Fσ) which are Malliavin
smooth and such that

sup
σ−τ6s1,...,sk6σ

E‖Ds1Ds2 . . . Dskη‖p∞ <∞

for every integer k > 1 and any p> 1. Let π be a partition of [−τ, T ] with equal size |π|.
Denote by y(·; σ, η) the Euler approximation to x(·; σ, η) associated with the partition π and
defined by (4). Then for any p > 1 and k > 1, there exists a positive constant C such that

‖x(t; σ, η)− y(t; σ, η)‖k,p 6 C(1 + E‖η‖2
kp
C + sup

σ−τ6s6σ
E‖Dsη‖2

kp
∞

+ . . .+ sup
σ−τ6s1,...,sk6σ

E‖Ds1Ds2 . . . Dskη‖2
kp
∞ )|π|1/2. (7)

Proof. This result actually follows from a general theorem of He, Ren and Zhang
[16, Proposition 4.8], only now one has to do a little bookkeeping along the way. 2
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The next lemma states the Markov property for the segment xt and yt.

Lemma 4.2. Let x(·; σ, η) and y(·; σ, η) be as in the statement of Theorem 3.2. Let t ∈ [σ, T ]
and

π := t−M < t−M+1 < . . . < t−1 < t0 = 0< t1 < t2 < . . . < tN−1 < tN = T

be a partition of [−τ, T ] with equal size |π|= (T + τ)/(N +M). Without loss of generality
assume that σ = 0 and t= tn ∈ π for some 0 6 n6N . Then we have

y(tn; ti, λxti(·; ti−1, xti−1(·; 0, η)) + (1− λ)yti(·; ti−1, xti−1(·; 0, η)))
= λy(tn; ti, xti(·; 0, η)) + (1− λ)y(tn; ti−1, xti−1(·; 0, η)). (8)

In particular, we have

y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))) = y(tn; ti, xti(·; 0, η)), (9)
y(tn; ti, yti(·; ti−1, xti−1(·; 0, η))) = y(tn; ti−1, xti−1(·; 0, η)). (10)

Proof. Using the Markov property for the segments xt and yt (cf. [12, 13]), we have

y(tn; ti, λxti(·; ti−1, xti−1(·; 0, η)) + (1− λ)yti(·; ti−1, xti−1(·; 0, η)))
= λxti(0; ti−1, xti−1(·; 0, η)) + (1− λ)yti(0; ti−1, xti−1(·; 0, η))

+
∫ tn
ti

g(y([u]− τ), y([u])) dW (u)

= λxti(0; 0, η) + (1− λ)
[
xti−1(0; 0, η) +

∫ ti
ti−1

g(y(ti−1 − τ), y(ti−1)) dW (u)
]

+
∫ tn
ti

g(y([u]− τ), y([u])) dW (u)

= λ

[
xti(0; 0, η) +

∫ tn
ti

g(y([u]− τ), y([u])) dW (u)
]

+ (1− λ)
[
xti−1(0; 0, η)

+
∫ tn
ti−1

g(y([u]− τ), y([u])) dW (u)
]

= λy(tn; ti, xti(·; 0, η)) + (1− λ)y(tn; ti−1, xti−1(·; 0, η)).

The proof is now completed. 2

The proof of Theorem 3.2 also requires the following sequence of lemmas. The following
lemma establishes the tame character of the Euler approximation y(t; σ, η) and its Fréchet
derivative ∇y(t; σ, η) in the initial path. The detailed proof is essentially contained
in [1, Lemma 3.2].

Lemma 4.3. Let g, x(·; σ, η) and y(·; σ, η) be as in the statement of Theorem 3.2. Fix a
partition point ti ∈ π for some i ∈ 0, 1, . . . , N . Then for almost every ω ∈ Ω, the function

[ti, T ]× C([−τ, 0], R)→ R,
(t, η) 7→ y(t, ω; ti, η)

is a tame function. That is to say, there exists a deterministic function F : R+ × Rk+1 × Rh ×
Rl→ R which is piecewise continuous in the first variable (the time variable) and of class
C∞b in all other variables (space variables), and there exist fixed numbers t1, t2, . . . , tk 6 t,
s1, s2, . . . , sh 6 t, µ1, µ2, . . . , µl ∈ [−τ, 0] such that almost everywhere

y(t; ti, η) = F (t, W (t), W (t1), . . . , W (tk), s1, s2, . . . , sh, η(µ1), . . . , η(µl)) (11)
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for all η ∈ C([−τ, 0], R) and all t ∈ [ti, T ]. In particular, for almost every ω ∈ Ω and each
t ∈ [ti, T ], the map

C([−τ, 0], R) 3 η 7→ y(t, ω; ti, η) ∈ R

is C∞ in the Fréchet sense, and for all η ∈ C([−τ, 0], R) and every bounded measurable function
ξ : [−τ, 0]→ R,

∇y(t, ω; ti, η)(ξ) =
l∑

m=1

∂mF (t, W (t, ω), W (t1, ω), . . . , W (tk, ω), s1, . . . , sh,

η(µ1), . . . , η(µm), . . . , η(µl))ξ(µm), (12)

where ∂mF denotes the partial derivative of F with respect to the variable η(µm).

The following lemma is key to the proof of Theorem 3.2.

Lemma 4.4. Let g, x(·; σ, η) and y(·; σ, η) be as in the statement of Theorem 3.2. Fix
η ∈ C([−τ, 0], R) of bounded variation. For each 1 6 i6N , define the process Λi : [−τ, 0]× Ω→
R by

Λi := xti(·; ti−1, xti−1(·; 0, η))− yti(·; ti−1, xti−1(·; 0, η)), s ∈ [−τ, 0].

For brevity of notation, set x(u) := x(u; 0, η) and y(u) := y(u; 0, η) for u ∈ [−τ, T ]. Then we
have

Λi(s) =
∫ (ti+s)∨ti−1

ti−1

[g(x(u− τ), x(u))− g(x([u]− τ), x([u]))] dW (u)

:=
5∑
j=1

Λij(s), s ∈ [−τ, 0], (13)

where

Λi1(s) :=
∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂g

∂x1
(x(v − τ), x(v))1[0,τ)(v) dη(v − τ2) dW (u),

Λi2(s) :=
∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂g

∂x1
(x(v − τ), x(v))g(x(v − 2τ), x(v − τ))1[τ,∞)(v) dW (v − τ) dW (u)

+
∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂g

∂x2
(x(v − τ), x(v))g(x(v − τ), x(v)) dW (v) dW (u),

Λi3(s) :=
∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂2g

∂x1∂x2
(x(v − τ), x(v))

× g(x(v − 2τ), x(v − τ))1[τ,∞)(v)Dv−τx(v) dv dW (u),

Λi4(s) :=
1
2

∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂2g

∂x2
1

(x(v − τ), x(v))g(x(v − 2τ), x(v − τ))21[τ,∞)(v) dv dW (u),

Λi5(s) :=
1
2

∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂2g

∂x2
2

(x(v − τ), x(v))g(x(v − τ), x(v))2 dv dW (u),
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and

DrΛi(s) :=
19∑
j=1

Ξij(s, r), s ∈ [−τ, 0], r ∈ [0, T ], (14)

where

Ξi1(s, r) :=
∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂2g

∂x2
1

(x(v − τ), x(v))1[0,τ)(v)Drx(u) dη(v − τ2) dW (u),

Ξi2(s, r) :=
∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂2g

∂x2
1

(x(v − τ), x(v))g(x(v − 2τ), x(v − τ))

× 1[τ,∞)(v)Drx(u) dW (v − τ) dW (u)

+
∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂2g

∂x1∂x2
(x(v − τ), x(v))g(x(v − τ), x(v))Drx(u) dW (v) dW (u),

Ξi3(s, r) :=
∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂3g

∂x2
1∂x2

(x(v − τ), x(v))g(x(v − 2τ), x(v − τ))

× 1[τ,∞)(v)Dv−τx(v)Drx(u) dv dW (u),

Ξi4(s, r) :=
1
2

∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂3g

∂x3
1

(x(v − τ), x(v))g(x(v − 2τ), x(v − τ))2

× 1[τ,∞)(v)Drx(u) dv dW (u),

Ξi5(s, r) :=
1
2

∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂3g

∂x1∂x2
2

(x(v − τ), x(v))g(x(v − τ), x(v))2

× 1[τ,∞)(v)Drx(u) dv dW (u),

Ξi6(s, r) :=
∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂2g

∂x1∂x2
(x(v − τ), x(v))1[0,τ)(v)Drx(u− τ) dη(v − τ2) dW (u),

Ξi7(s, r) :=
∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂2g

∂x1∂x2
(x(v − τ), x(v))g(x(v − 2τ), x(v − τ))

× 1[τ,∞)(v)Drx(u− τ) dW (v − τ) dW (u)

+
∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂2g

∂x2
2

(x(v − τ), x(v))g(x(v − τ), x(v))Drx(u− τ) dW (v) dW (u),

Ξi8(s, r) :=
∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂3g

∂x1∂x2
2

(x(v − τ), x(v))

× g(x(v − 2τ), x(v − τ))1[τ,∞)(v)Dv−τx(v) dv dW (u),
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Ξi9(s, r) :=
1
2

∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂3g

∂x2
1∂x2

(x(v − τ), x(v))g(x(v − 2τ), x(v − τ))2

× 1[τ,∞)(v)Drx(u− τ) dv dW (u),

Ξi10(s, r) :=
1
2

∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂3g

∂x3
2

(x(v − τ), x(v))g(x(v − τ), x(v))2Drx(u− τ) dv dW (u),

Ξi11(s, r) :=
∫r
[r]

∂g

∂x1
(x(v − τ), x(v))1[0,τ)(v) dη(v − τ)1(ti−1,(ti+s)∨ti−1](r),

Ξi12(s, r) :=
∫r
[r]

∂g

∂x1
g(x(v − 2τ), x(v − τ))1[τ,∞)(v) dW (v − τ)1(ti−1,(ti+s)∨ti−1](r)

+
∫r
[r]

∂g

∂x2
g(x(v − τ), x(v)) dW (v)1(ti−1,(ti+s)∨ti−1](r),

Ξi13(s, r) :=
∫r
[r]

∂2g

∂x1∂x2
(x(v − τ), x(v))g(x(v − 2τ), x(v − τ))

× 1[τ,∞)(v)Dv−τx(v) dv1(ti−1,(ti+s)∨ti−1](r),

Ξi14(s, r) :=
1
2

∫r
[r]

∂2g

∂x2
1

(x(v − τ), x(v))g(x(v − 2τ), x(v − τ))2

× 1[τ2,∞)(v) dv1(ti−1,(ti+s)∨ti−1](r),

Ξi15(s, r) :=
1
2

∫r
[r]

∂2g

∂x2
2

(x(v − τ), x(v))g(x(v − τ), x(v))2 dv1(ti−1,(ti+s)∨ti−1](r),

Ξi16(s, r) :=
∫ (ti+s)∨ti−1

ti−1

g(x(r − τ), x(r))1([u]−τ,u−τ ](r)1τ<[u]
∂

∂x1
g(x([u]− τ), x([u])) dW (u)

+
∫ (ti+s)∨ti−1

ti−1

g(x(r − τ), x(r))1(0,u−τ ](r)1[u]6τ<u
∂

∂x1
g(x([u]− τ), x([u])) dW (u)

+
∫ (ti+s)∨ti−1

ti−1

g(x(r − τ), x(r))1([u],u](r)
∂

∂x2
g(x([u]− τ), x([u])) dW (u),

Ξi17(s, r) :=
∫ (ti+s)∨ti−1

ti−1

∫u−τ
[u]−τ

∂

∂x1
g(x(v − τ), x(v))Drx(v − τ)1τ<[u]

× ∂

∂x1
g(x([u]− τ), x([u])) dW (v) dW (u)

+
∫ (ti+s)∨ti−1

ti−1

∫u−τ
[u]−τ

∂

∂x2
g(x(v − τ), x(v))Drx(v)1τ<[u]

× ∂

∂x1
g(x([u]− τ), x([u])) dW (v) dW (u),
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Ξi18(s, r) :=
∫ (ti+s)∨ti−1

ti−1

∫u−τ
0

∂

∂x1
g(x(v − τ), x(v))Drx(v − τ)1[u]6τ<u

× ∂

∂x1
g(x([u]− τ), x([u])) dW (v) dW (u)

+
∫ (ti+s)∨ti−1

ti−1

∫u−τ
0

∂

∂x2
g(x(v − τ), x(v))Drx(v)1[u]6τ<u

× ∂

∂x1
g(x([u]− τ), x([u])) dW (v) dW (u),

Ξi19(s, r) :=
∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂

∂x1
g(x(v − τ), x(v))Drx(v − τ)

× ∂

∂x1
g(x([u]− τ), x([u])) dW (v) dW (u)

+
∫ (ti+s)∨ti−1

ti−1

∫u
[u]

∂

∂x2
g(x(v − τ), x(v))Drx(v)

× ∂

∂x2
g(x([u]− τ), x([u])) dW (v) dW (u).

Proof. Fix 1 6 i6N . Suppose that ti−1 6 u < ti. Then [u] = ti−1 and [u]− τ = ti−1 − τ <
ti−1. For the proof of the first assertion (13) of the lemma, the reader can see [1, Lemma 3.3].
Next we prove the second assertion (14) of the lemma. Taking the Malliavin derivative of Λi(s),
we have

DrΛi(s) = [g(x(r − τ), x(r))− g(x([r]− τ), x([r]))]1(ti−1,(ti+s)∨ti−1](r)

+
∫ (ti+s)∨ti−1

ti−1

[
∂

∂x1
g(x(u− τ), x(u))Drx(u− τ) +

∂

∂x2
g(x(u− τ), x(u))Drx(u)

− ∂

∂x1
g(x([u]− τ), x([u]))Drx([u]− τ)− ∂

∂x2
g(x([u]− τ), x([u]))Drx([u])

]
dW (u)

= [g(x(r − τ), x(r))− g(x([r]− τ), x([r]))]1(ti−1,(ti+s)∨ti−1](r)

+
∫ (ti+s)∨ti−1

ti−1

[
∂

∂x1
g(x(u− τ), x(u))− ∂

∂x1
g(x([u]− τ), x([u]))

]
Drx(u− τ) dW (u)

+
∫ (ti+s)∨ti−1

ti−1

[Drx(u− τ)−Drx([u]− τ)]
∂

∂x1
g(x([u]− τ), x([u])) dW (u)

+
∫ (ti+s)∨ti−1

ti−1

[
∂

∂x2
g(x(u− τ), x(u))− ∂

∂x2
g(x([u]− τ), x([u]))

]
Drx(u) dW (u)

+
∫ (ti+s)∨ti−1

ti−1

[Drx(u)−Drx([u])]
∂

∂x2
g(x([u]− τ), x([u])) dW (u). (15)
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Applying the tame Itô formula which can been found in [1, Theorem 2.1], we obtain

g(x(r − τ), x(r))− g(x([r]− τ), x([r]))

=
∫r
[r]

∂g

∂x1
(x(v − τ), x(v))1[0,τ)(v) dη(v − τ)

+
∫r
[r]

∂g

∂x1
g(x(v − 2τ), x(v − τ))1[τ,∞)(v) dW (v − τ)

+
∫r
[r]

∂g

∂x2
g(x(v − τ), x(v)) dW (v)

+
∫r
[r]

∂2g

∂x1∂x2
(x(v − τ), x(v))g(x(v − 2τ), x(v − τ))1[τ,∞)(v)Dv−τx(v) dv

+
1
2

∫r
[r]

∂2g

∂x2
1

(x(v − τ), x(v))g(x(v − 2τ), x(v − τ))21[τ2,∞)(v) dv

+
1
2

∫r
[r]

∂2g

∂x2
2

(x(v − τ), x(v))g(x(v − τ), x(v))2 dv. (16)

Similarly, it follows that

∂

∂x1
g(x(u− τ), x(u))− ∂

∂x1
g(x([u]− τ), x([u])) (17)

and
∂

∂x2
g(x(u− τ), x(u))− ∂

∂x2
g(x([u]− τ), x([u])) (18)

have the same forms as in (16). Taking the Malliavin derivatives of x(u− τ)− x([u]− τ), we
have

Drx(u− τ)−Drx([u]− τ)

=Dr

(∫u−τ
[u]−τ

g(x(v − τ), x(v)) dW (v)
)

1τ<[u]

+Dr(η(0) +
∫u−τ
0

g(x(v − τ), x(v)) dW (v)− η([u]− τ))1[u]6τ<u

+Dr(η(u− τ)− η([u]− τ))1τ>u

=
[
g(x(r − τ), x(r))1([u]−τ,u−τ ](r) +

∫u−τ
[u]−τ

∂

∂x1
g(x(v − τ), x(v))Drx(v − τ) dW (v)

+
∫u−τ
[u]−τ

∂

∂x2
g(x(v − τ), x(v))Drx(v) dW (v)

]
1τ<[u]

+
[
g(x(r − τ), x(r))1(0,u−τ ](r) +

∫u−τ
0

∂

∂x1
g(x(v − τ), x(v))Drx(v − τ) dW (u)

+
∫u−τ
0

∂

∂x2
g(x(v − τ), x(v))Drx(v) dW (u)

]
1[u]6τ<u. (19)
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Similarly we have

Drx(u)−Drx([u]) = Dr

(∫u
[u]

g(x(v − τ), x(v)) dW (v)
)

= g(x(r − τ), x(r))1([u],u](r)

+
∫u
[u]

∂

∂x1
g(x(v − τ), x(v))Drx(v − τ) dW (v)

+
∫u
[u]

∂

∂x2
g(x(v − τ), x(v))Drx(v) dW (v). (20)

Now substituting from (16)–(20) into (15), we complete the proof. 2

Lemma 4.5. Let g, x(·; σ, η) and y(·; σ, η) be as in the statement of Theorem 3.2. Then for
every integer k > 0 and any p> 1,

sup
06σ6T

sup
σ−τ6u,...,uk,t6T

E|Du1 . . . Dukx(t; σ, η)|2p

6K

(
1 + E‖η‖2

kp
C + sup

σ−τ6s6σ
E‖Dsη‖2

kp
∞ + . . .

+ sup
σ−τ6s1,...,sk6σ

E‖Ds1Ds2 . . . Dskη‖2
kp
∞

)
, (21)

sup
06σ6T

sup
σ−τ6u,...,uk,t6T

E|Du1 . . . Duky(t; σ, η)|2p

6K

(
1 + E‖η‖2

kp
C + sup

σ−τ6s6σ
E‖Dsη‖2

kp
∞ + . . .

+ sup
σ−τ6s1,...,sk6σ

E‖Ds1Ds2 . . . Dskη‖2
kp
∞

)
(22)

and

sup
‖ξ‖∞61,

ξ∈L∞([−τ,0],R)

sup
06σ6T

sup
σ−τ6u1,...,uk,t6T

E|Du1 . . . Duk∇y(t; σ, η)(ξ)|2p

6K

(
1 + E‖η‖2

k+1p
C + sup

σ−τ6s6σ
E‖Dsη‖2

k+1p
∞

+ . . .+ sup
σ−τ6s1,...,sk6σ

E‖Ds1Ds2 . . . Dskη‖2
k+1p
∞

)
, (23)

where η ∈ L∞−(Ω, C([−τ, 0], R); Fσ) are Malliavin smooth and such that

sup
σ−τ6s1,...,sk6σ

E‖Ds1Ds2 . . . Dskη‖p∞ <∞

for every integer k > 1 and any p> 1. The positive constant K is independent of t ∈ [σ − τ, T ],
σ ∈ [0, T ] and η.

Proof. This can be proved by following the same route as in the proofs of Lemmas 3.4 and
3.5 in [1]. 2

Proof of Theorem 3.2. Let t ∈ [σ, T ] and

π := t−M < t−M+1 < . . . < t−1 < t0 = 0< t1 < t2 < . . . < tN−1 < tN = T

be a partition of [−τ, T ] with equal size |π|= (T + τ)/(N +M). Without loss of generality, we
assume that σ = 0 and t= tn ∈ π for some 0 6 n6N . Suppose that η ∈H1,∞([−τ, 0], R).
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Step 1. Using Lemma 4.2, we have

E[φ(x(tn; 0, η))]− E[φ(y(tn; 0, η))]
= E[φ(y(tn; tn, xtn(·; 0, η)))]− E[φ(y(tn; 0, η))]

=
n∑
i=1

E[φ(y(tn; ti, xti(·; 0, η)))− φ(y(tn; ti−1, xti(·; 0, η)))]

=
n∑
i=1

E[φ(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))− φ(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η))))].

Step 2. Let ψ : [0,∞) 7→ R be a C∞b function (ψ and all of its partial derivatives are bounded)
such that

1[0, 18 ] 6 ψ 6 1[0, 14 ].

Let us introduce

rπtitn =
σx(tn;0,η)− 1

2y(tn;ti,xti (·;0,η))−
1
2y(tn;ti−1,xti−1 (·;0,η)) ∨ σy(tn;ti,xti (·;0,η))−y(tn;ti−1,xti−1 (·;0,η))

σx(tn;0,η)
.

Now we split
n∑
i=1

E[φ(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))− φ(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η))))]

into two parts:
n∑
i=1

E[φ(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))− φ(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η))))]

=
n∑
i=1

E[(φ(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))

− φ(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η)))))(1− ψ(rπtitn))]

+
n∑
i=1

E[(φ(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))

− φ(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η)))))ψ(rπtitn)]. (24)

Step 3. First of all, we deal with the first part. Using the definition of ψ, for p> 2, we have

P (ψ(rπtitn) 6= 1) 6 P (σ−1
x(tn;0,η)σx(tn;0,η)− 1

2y(tn;ti,xti (·;0,η))−
1
2y(tn;ti−1,xti−1 (·;0,η))

∨ σy(tn;ti,xti (·;0,η))−y(tn;ti−1,xti−1 (·;0,η)) > 1
8 )

6 8pE[σ−px(tn;0,η)(σx(tn;0,η)− 1
2y(tn;ti,xti (·;0,η))−

1
2y(tn;ti−1,xti−1 (·;0,η))

∨ σy(tn;ti,xti (·;0,η))−y(tn;ti−1,xti−1 (·;0,η)))p].

Using Lemma 4.1, we obtain

E[σ2p

x(tn;0,η)− 1
2y(tn;ti,xti (·;0,η))−

1
2y(tn;ti−1,xti−1 (·;0,η))]

1/2p

6 E[(σ1/2
1
2x(tn;0,η)− 1

2y(tn;ti,xti (·;0,η))
+ σ

1/2
1
2x(tn;0,η)− 1

2y(tn;ti−1,xti−1 (·;0,η)))
4p]1/2p

6 {E[σ2p
1
2x(tn;0,η)− 1

2y(tn;ti,xti (·;0,η))
]1/4p + E[σ2p

1
2x(tn;0,η)− 1

2y(tn;ti−1,xti−1 (·;0,η))]
1/4p}2

6 C|π|
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and

E[σ2p
y(tn;ti,xti (·;0,η))−y(tn;ti−1,xti−1 (·;0,η))]

1/2p

6 E[(σ1/2
y(tn;ti,xti (·;0,η))−x(tn;0,η) + σ

1/2
x(tn;0,η)−y(tn;ti−1,xti−1 (·;0,η)))

4p]1/2p

6 {E[σ2p
y(tn;ti,xti (·;0,η))−x(tn;0,η)]

1/4p + E[σ2p
x(tn;0,η)−y(tn;ti−1,xti−1 (·;0,η))]

1/4p}2

6 C|π|.

Therefore, we have

P (ψ(rπtitn) 6= 1) 6 C|π|p.

Consequently, from the boundedness of φ, we obtain

|E[(φ(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))
− φ(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η)))))(1− ψ(rπtitn))]|

6 C|π|p.

Since |π|= (T + τ)/(N +M) and 0 6 n6N , then we obtain∣∣∣∣ n∑
i=1

E[φ(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))

− φ(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η))))(1− ψ(rπtitn))]
∣∣∣∣

6 C|π|p−1,

and, hence, we complete the proof of the first part.

Step 4. It remains to prove that the second part of (24) is of order |π|. Let {φh}∞h=1 be a
sequence of C1 functions such that ‖φh‖∞ 6 ‖φ‖∞ and {φh}∞h=1 converges almost every dx to
φ as h tends to infinity. Now on the set {ψ(rπtitn) 6= 0}, we have

det(σy(tn;ti,xti (·;ti−1,xti−1 (·;0,η))))> 0 and det(σy(tn;ti,yti (·;ti−1,xti−1 (·;0,η))))> 0.

To prove this result, we proceed as follows. From Lemma 4.2, it suffices to show
det(σy(tn;ti,xti (·;0,η)))> 0 and det(σy(tn;ti−1,xti−1 (·;0,η)))> 0 on the set {ψ(rπtitn) 6= 0}. Since

σλy(tn;ti,xti (·;0,η))+(1−λ)y(tn;ti−1,xti−1 (·;0,η))

> 1
2σ 1

2y(tn;ti,xti (·;0,η))+
1
2y(tn;ti−1,xti−1 (·;0,η))

− (λ− 1
2 )2σy(tn;ti,xti (·;0,η))−y(tn;ti−1,xti−1 (·;0,η))

> 1
4σx(tn;0,η) − 1

2σx(tn;0,η)− 1
2y(tn;ti,xti (·;0,η))−

1
2y(tn;ti−1,xti−1 (·;0,η))

− (λ− 1
2 )2σy(tn;ti,xti (·;0,η))−y(tn;ti−1,xti−1 (·;0,η))

and

{ψ(rπtitn) 6= 0} ⊂ {σx(tn;0,η)− 1
2y(tn;ti,xti (·;0,η))−

1
2y(tn;ti−1,xti−1 (·;0,η))

∨ σy(tn;ti,xti (·;0,η))−y(tn;ti−1,xti−1 (·;0,η)) 6 1
4σx(tn;0,η)},

then for all 0 6 λ6 1, we obtain

{ψ(rπtitn) 6= 0} ⊂ {σλy(tn;ti,xti (·;0,η))+(1−λ)y(tn;ti−1,xti−1 (·;0,η)) > 1
16σx(tn;0,η)}, (25)

and this gives det(σy(tn;ti,xti (·;0,η)))> 0 and det(σy(tn;ti−1,xti−1 (·;0,η)))> 0 on the set {ψ(rπtitn) 6=
0}. Then from [14, Theorem 2.13] (see [5] in higher dimension), y(tn; ti, yti(·; ti−1, xti−1(·; 0, η)))
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and y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))) have absolutely continuous law conditioned by the set
{ψ(rπtitn) 6= 0}. Thus, we have

E[φh(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))ψ(rπtitn)]
→ E[φ(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))ψ(rπtitn)]

and

E[φh(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η))))ψ(rπtitn)]
→ E[φ(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η))))ψ(rπtitn)]

as h tends to infinity. Therefore, it now suffices to prove that∣∣∣∣ n∑
i=1

E[(φh(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))

− φh(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η)))))ψ(rπtitn)]
∣∣∣∣

is of order |π|.

Step 5. Applying the mean value theorem and Lemma 4.3, we have

E[(φh(y(tn; ti, xti(·; ti−1, xti−1(·; 0, η))))− φh(y(tn; ti, yti(·; ti−1, xti−1(·; 0, η)))))ψ(rπtitn)]

=
∫1

0

E[∇(φh ◦ y)(tn; ti, λxti(·; ti−1, xti−1(·; 0, η)) + (1− λ)yti(·; ti−1, xti−1(·; 0, η)))

× (xti(·; ti−1, xti−1(·; 0, η))− yti(·; ti−1, xti−1(·; 0, η)))ψ(rπtitn)] dλ

=
∫1

0

l∑
m=1

E[∇φh(y(tn; ti, λxti(·; ti−1, xti−1(·; 0, η)) + (1− λ)yti(·; ti−1, xti−1(·; 0, η))))

× ∂mF (t, W (t), W (t1), . . . , W (tk), s1, . . . , sn, . . . , λx(ti + µm) + (1− λ)y(ti + µm), . . .)
× (xti(µm; ti−1, xti−1(·; 0, η))− yti(µm; ti−1, xti−1(·; 0, η)))ψ(rπtitn)] dλ.

Let

Fi = y(tn; ti, λxti(·; ti−1, xti−1(·; 0, η)) + (1− λ)yti(·; ti−1, xti−1(·; 0, η)))

and

Gim = ∂mF (t, W (t), W (t1), . . . , W (tk), s1, . . . , sn, . . . , λx(ti + µm) + (1− λ)y(ti + µm), . . .)
× (xti(·; ti−1, xti−1(·; 0, η))− yti(·; ti−1, xti−1(·; 0, η)))ψ(rπtitn). (26)

By Lemma 4.2, we know that

Fi = λy(tn; ti, xti(·; 0, η)) + (1− λ)y(tn; ti−1, xti−1(·; 0, η)).

Therefore from (25), we obtain that Fi is non-degenerate on the set {ψ(rπtitn) 6= 0}. Thus,
applying the local integration by parts formula which is stated in Proposition 2.2, we obtain

E[∇φh(Fi)Gim] = E[U(Fi)H3(Fi, Gim)],

where U(x) =
∫x
0

∫y
0
φh(z) dz dy and H3 is defined in Proposition 2.2. It is obvious that U is in

C3 and U ′′ = φh.

Step 6. Observe that H3(Fi, Gim) can be rewritten as follows:

H3(Fi, Gim) =
3∑
k=0

〈Φk, DkGim〉,
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where

Φk ∈ D∞−∞ (H⊗k), k = 0, 1, 2, 3,

which are obtained as polynomials in γFi , Fi and their derivatives (cf. [7]). Thus, our problem
can be reformulated to prove∣∣∣∣ 3∑

k=0

n∑
i=1

l∑
m=1

∫1

0

E[〈U(Fi)Φk, DkGim〉] dλ
∣∣∣∣ (27)

is of order |π|. To prove this result, we just have to show each of term∣∣∣∣ n∑
i=1

l∑
m=1

∫1

0

E[U(Fi)〈Φk, DkGim〉] dλ, k = 0, 1, 2, 3

is of order |π|. For the case k = 0, using a similar argument as in [1, Theorem 3.1] we can
obtain the desired result. For the remaining cases, we only consider the case k = 1, and the
other cases can be estimated through the very similar procedure. Since H = L2([0, T ], R), then
we have

n∑
i=1

l∑
m=1

∫1

0

E[U(Fi)〈Φ1, DGim〉H ] dλ

=
n∑
i=1

l∑
m=1

∫1

0

E

[
U(Fi)

∫T
0

Φ1(r)DrGim dr

]
dλ

=
n∑
i=1

l∑
m=1

∫1

0

∫T
0

E[U(Fi)Φ1(r)DrGim] dr dλ.

Substituting Gim in (26) into U(Fi)Φ1(r)DrGim, we have

U(Fi)Φ1(r)DrGim = U(Fi)Φ1(r)Dr(∂mF (t, W (t), W (t1), . . . , W (tk),
s1, . . . , sn, . . . , λx(ti + µm) + (1− λ)y(ti + µm), . . .)
× (xti(µm; ti−1, xti−1(·; 0, η))− yti(µm; ti−1, xti−1(·; 0, η)))ψ(rπtitn))

= U(Fi)Φ1(r)Dr(∂mF (t, W (t), W (t1), . . . , W (tk), s1, . . . , sn, . . . ,
λx(ti + µm) + (1− λ)y(ti + µm), . . .))
× (xti(µm; ti−1, xti−1(·; 0, η))− yti(µm; ti−1, xti−1(·; 0, η)))ψ(rπtitn)
+ U(Fi)Φ1(r)∂mF (t, W (t), W (t1), . . . , W (tk), s1, . . . , sn, . . . ,
λx(ti + µm) + (1− λ)y(ti + µm), . . .)
× (xti(µm; ti−1, xti−1(·; 0, η))− yti(µm; ti−1, xti−1(·; 0, η)))Drψ(rπtitn)
+ U(Fi)Φ1(r)∂mF (t, W (t), W (t1), . . . , W (tk), s1, . . . , sn, . . . ,
λx(ti + µm) + (1− λ)y(ti + µm), . . .)
×Dr((xti(µm; ti−1, xti−1(·; 0, η))− yti(µm; ti−1, xti−1(·; 0, η))))ψ(rπtitn)

:= Bim1 +Bim2 +Bim3.

Thus, our main objection is to show∣∣∣∣ n∑
i=1

l∑
m=1

∫1

0

∫T
0

E[Bimk] dr dλ
∣∣∣∣, k = 1, 2, 3

is of order |π|.
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Step 7. For the first two terms, we have the following estimate:∣∣∣∣ n∑
i=1

l∑
m=1

∫1

0

∫T
0

E[Bimk] dr dλ
∣∣∣∣6 C(1 + ‖η‖q1,∞)|π|, k = 1, 2.

This is done using the same arguments as in the proof of [1, Theorem 3.1]. Note that we must
use Lemma 4.5 in the proof of the above estimates.

Step 8. Next we mainly deal with the third term. Using Lemma 4.4, we obtain

n∑
i=1

l∑
m=1

∫1

0

∫T
0

E[Bim3]

=
n∑
i=1

l∑
m=1

∫1

0

∫T
0

E[U(Fi)Φ1(r)∂mF (t, W (t), W (t1), . . . , W (tk),

s1, . . . , sn, . . . , λx(ti + µm) + (1− λ)y(ti + µm), . . .)
×Dr((xti(µm; ti−1, xti−1(·; 0, η))− yti(µm; ti−1, xti−1(·; 0, η)))ψ(rπtitn))] dr dλ

=
19∑
j=1

n∑
i=1

l∑
m=1

∫1

0

∫T
0

E[U(Fi)Φ1(r)∂mF (t, W (t), W (t1), . . . , W (tk), s1, . . . , sn, . . . ,

λx(ti + µm) + (1− λ)y(ti + µm), . . .)Ξj(µm)ψ(rπtitn)] dr dλ

:=
19∑
j=1

Πj .

For the cases j = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, we obtain |Πj | is of order |π|. This result can be found
using the same technique as in the proof of [1, Theorem 3.1]. For the case j = 11, 12, 13, 14, 15, it
suffices to consider the case j = 13, and the other cases can be estimated similarly. Substituting
Ξ13 in (14) into Π13, we have

Π13 =
n∑
i=1

l∑
m=1

∫1

0

∫T
0

E[U(Fi)Φ1(r)∂mF (t, W (t), W (t1), . . . , W (tk), s1, . . . , sn, . . . ,

λx(ti + µm) + (1− λ)y(ti + µm), . . .)Ξ13(µm, r)ψ(rπtitn)] dr dλ

=
n∑
i=1

l∑
m=1

∫1

0

∫T
0

E[U(Fi)Φ1(r)∂mF (t, W (t), W (t1), . . . , W (tk), s1, . . . , sn, . . . ,

λx(ti + µm) + (1− λ)y(ti + µm), . . .)

×
∫r
[r]

∂2g

∂x1∂x2
(x(v − τ), x(v))g(x(v − 2τ), x(v − τ))

× 1[τ,∞)(v)Dv−τx(v)dv1(ti−1,(ti+s)∨ti−1](r)ψ(rπtitn)] dr dλ

=
n∑
i=1

l∑
m=1

∫1

0

∫ (ti+µm)∨ti−1

ti−1

E[U(Fi)Φ1(r)∂mF (t, W (t), W (t1), . . . , W (tk),

s1, . . . , sn, . . . , λx(ti + µm) + (1− λ)y(ti + µm), . . .)

×
∫r
[r]

∂2g

∂x1∂x2
(x(v − τ), x(v))g(x(v − 2τ), x(v − τ))

× 1[τ,∞)(v)Dv−τx(v) dvψ(rπtitn)] dr dλ.

Therefore, we observe that the term Π13 has a similar form to Πi, i= 1, . . . , 10. Thus, applying
the same procedure as used in [1, Theorem 3.1], we obtain |Π13| is of order |π|. It remains to
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estimate the last four terms Πj , j = 16, 17, 18, 19. For the case j = 16, we proceed as follows:

Π16 =
n∑
i=1

l∑
m=1

∫1

0

∫T
0

E[U(Fi)Φ1(r)∂mF (t, W (t), W (t1), . . . , W (tk), s1, . . . , sn, . . . ,

λx(ti + µm) + (1− λ)y(ti + µm), . . .)Ξ16(µm, r)] dr dλ

=
n∑
i=1

l∑
m=1

∫1

0

∫T
0

E[U(Fi)Φ1(r)∂mF (t, W (t), W (t1), . . . , W (tk), s1, . . . , sn, . . . ,

λx(ti + µm) + (1− λ)y(ti + µm), . . .)

×
∫ (ti+µm)∨ti−1

ti−1

g(x(r − τ), x(r))g(x(r − τ), x(r))

× 1([u]−τ,u−τ ](r)1τ<[u]
∂

∂x1
g(x([u]− τ), x([u])) dW (u)] dr dλ

+
n∑
i=1

l∑
m=1

∫1

0

∫T
0

E[U(Fi)Φ(r)∂mF (t, W (t), W (t1), . . . , W (tk), s1, . . . , sn, . . . ,

λx(ti + µm) + (1− λ)y(ti + µm), . . .)

×
∫ (ti+µm)∨ti−1

ti−1

g(x(r − τ), x(r))1(0,u−τ ](r)1[u]6τ<u

× ∂

∂x1
g(x([u]− τ), x([u])) dW (u)] dr dλ

+
n∑
i=1

l∑
m=1

∫1

0

∫T
0

E[U(Fi)Φ(r)∂mF (t, W (t), W (t1), . . . , W (tk), s1, . . . , sn, . . . ,

λx(ti + µm) + (1− λ)y(ti + µm), . . .)
∫ (ti+µm)∨ti−1

ti−1

g(x(r − τ), x(r))1([u],u](r)

× ∂

∂x2
g(x([u]− τ), x([u])) dW (u)] dr dλ

:= R1 +R2 +R3.

We only deal with the term R2, and the estimate of the other two terms R1 and R3 is similar
and we omit it. Using the definition of the Skorohod integral as an adjoint of the Malliavin
derivative, we can rewrite the term R2 into the following forms:

R2 =
n∑
i=1

l∑
m=1

∫1

0

E

[
U(Fi)Φ1(r)∂mF (t, W (t), W (t1), . . . , W (tk), s1, . . . , sn, . . . ,

λx(ti + µm) + (1− λ)y(ti + µm), . . .)

×
∫ (ti+µm)∨ti−1

ti−1

∫T
0

g(x(r − τ), x(r))1(0,u−τ ](r)1[u]6τ<u

× ∂

∂x1
g(x([u]− τ), x([u])) dr dW (u)

]
dλ

=
n∑
i=1

l∑
m=1

∫1

0

∫ (ti+µm)∨ti−1

ti−1

E

[
Du(U(Fi)Φ1(r))∂mF (t, W (t), W (t1), . . . , W (tk),
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s1, . . . , sn, . . . , λx(ti + µm) + (1− λ)y(ti + µm), . . .)
∫u−τ
0

g(x(r − τ), x(r))1[u]6τ<u

× ∂

∂x1
g(x([u]− τ), x([u])) dr

]
du dλ

+
n∑
i=1

l∑
m=1

∫1

0

∫ (ti+µm)∨ti−1

ti−1

E

[
U(Fi)Φ1(r)Du∂mF (t, W (t), W (t1), . . . , W (tk),

s1, . . . , sn, . . . , λx(ti + µm) + (1− λ)y(ti + µm), . . .)

×
∫u−τ
0

g(x(r − τ), x(r))1[u]6τ<u
∂

∂x1
g(x([u]− τ), x([u])) dr

]
du dλ.

Since under the condition [u] 6 τ < u, we have u− τ < u− [u], then applying a similar
procedure to that used in [1], we can obtain that |R2| is of order |π|. Similarly, for the remaining
terms Π17, Π18 and Π19, we proceed in the same way. Through the above steps, we have shown
there is a positive constant K and a positive integer q such that

|E[φ(x(t; σ, η))]− E[φ(y(t; σ, η))]|6K(1 + ‖η‖q1,∞)|π|

for all t ∈ [σ − τ, T ], σ ∈ [0, T ] and all η ∈H1,∞([−τ, 0], R)

Step 9. Using [12, Theorem 3.1], we have

|E[φ(x(t; σ, η))]− E[φ(x(t; σ, ηπ))]|6K‖η − ηπ‖C .

Also we have that the following two elementary estimates hold

‖η − ηπ‖C 6 2|∇η|∞|π|, ‖ηπ‖1,∞ 6 ‖η‖1,∞
for all η ∈H1,∞([−τ, 0], R). Combined with the above estimates, the proof of Theorem 3.2 is
now complete. 2

5. Higher dimension version of Theorem 3.2

In this section, we extend Theorem 3.2 to higher dimension. More precisely, we study the case
of Rd-valued SFDEs driven by multidimensional Brownian motion and having several discrete
delays in the drift and diffusion coefficients, as well as (smooth) quasi-tame dependence on the
history of the solution in all coefficients.

The following notation is taken from [1]. Let W (t) := (W1(t), W2(t), . . . , Wm(t)), t> 0, be
m-dimensional standard Brownian motion on a filtered probability space (Ω,F , (Ft)t>0, P ).
Consider a finite number of delays {τ i1 : 1 6 i6 k1}, {τ j,l2 : 1 6 j 6 k2,l, 1 6 l 6m}, with
maximum delay τ := max{τ i1, τ

j,l
2 : 1 6 i6 k1, 1 6 j 6 k2,l, 1 6 l 6m}. We define the memory

in our SFDE by a collection of tame projections as follows

Π1 : C := C([−τ, 0), Rd)→ Rd1 , Π2,l : C→ Rd1,l ,
Π1(η) := (η(τ1

1 ), η(τ2
1 ), . . . , η(τk11 )), Π2,l(η) := (η(τ1,l

2 ), η(τ2,l
2 ), . . . , η(τk2,l,l2 ))

for all η ∈ C, and quasi-tame projections

Π1
q : C→ Rd

q
1 , Π2,l

q : C→ Rd
q
2,l

where d1 = k1d, dq1 = k1d, d2,l = k2,ld, dq2,l = k2,ld are integer multiples of d, for 1 6 l 6m. The
quasi-tame projections have the following forms:

Π1
q(η) :=

(∫0

−τ
σ1

1(η(s))µ1
1(s) ds,

∫0

−τ
σ1

2(η(s))µ1
2(s) ds, . . . ,

∫0

−τ
σ1
k1(η(s))µ1

k1(s) ds
)

Π2,l
q (η) :=

(∫0

−τ
σ2

1(η(s))µ2
1(s) ds,

∫0

−τ
σ2

2(η(s))µ2
2(s) ds, . . . ,

∫0

−τ
σ1
k2,l

(η(s))µ2
k2,l

(s) ds
)

for all η ∈ C. The functions σ1
i , σ

2
j , µ

1
i , µ

2
j are smooth.
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Consider the SFDE

x(t) = η(0) +
∫ t
0

f(u,Π1(xu),Π1
q(xu)) du+

m∑
l=1

∫ t
0

gl(u,Π2,l(xu),Π2,l
q (xu)) dWl(u), (28)

for σ 6 t6 T , with initial path

xσ = η ∈H1,∞([−τ, 0], Rd).

Let π := {−τ = t−M < t−M+1 < . . . < t−1 < t0 = 0< t1 < t2 < . . . < tN−1 < tN = T} be a
partition of [−τ, T ], with equal size denoted by |π| := (T + τ)/(N +M). The Euler
approximations y of the solution x of (28) satisfy the following SFDE:

y(t) = η(0) +
∫ t
0

f([u],Π1(y[u]),Π1
q(y[u])) du

+
m∑
l=1

∫ t
0

gl([u],Π2,l(y[u]),Π2,l
q (y[u])) dWl(u), (29)

for σ 6 t6 T , with initial path

yσ = η ∈H1,∞([−τ, 0], Rd).

Now we give the extension of Theorem 3.2. First we should adopt the following assumptions.
(A.III) The functions

f : R+ × Rd1 × Rd
q
1 → Rd, gl : R+ × Rd2,l × Rd

q
2,l → Rd, 1 6 l 6m,

are C∞ functions, whose derivatives of any order are bounded (but it is not assumed
to be bounded itself).

(A.IV) For all t ∈ [0, T ], x(t; 0, η) is non-degenerate, that is, the inverse Malliavin covariance
matrix Γx(t;0,η) which is defined in Definition 2.1 satisfies

‖Γx(t;0,η)‖ ∈ L∞−.

Theorem 5.1. Let x(·; σ, η) be the unique solution of (28) with initial path η ∈
H1,∞([−τ, 0], Rd). Suppose that the coefficients f , g satisfy the assumption (A.III) and
x(t; 0, η) satisfies the assumption (A.IV). Let π be a partition of [−τ, T ] with equal size |π|,
and ηπ ∈H1,∞([−τ, 0], Rd) be the piecewise-linear approximation of η along the partition π.
Denote by y(·; σ, η) the Euler approximation to x(·; σ, η) associated with the partition π and
defined by (29). Then for bounded measurable function φ : Rd→ R, there exists a positive
constant K and a positive integer q such that

|Eφ(x(t; σ, η))− Eφ(y(t; σ, ηπ))|6K(1 + ‖η‖q1,∞)|π| (30)

for all t ∈ [σ − τ, T ], σ ∈ [0, T ] and all η ∈H1,∞([−τ, 0], Rd). The constant K may depend on
T , q and the test function φ, but is independent of π, η, t ∈ [σ, T ] and σ ∈ [0, T ].

The proof of Theorem 5.1 is essentially the same as the proof of Theorem 3.2, only now we
should extend the local argument to the higher dimension. More precisely, we want to define
a smooth functional ψ(rπtitn) such that outside a set where all of the Malliavin derivatives
Dk(ψ(rπtitn)) vanish, we have a uniform control of the determinant of the Malliavin covariance
matrix Σλy(tn;ti,xti (·;0,η))+(1−λ)y(tn;ti−1,xti−1 (·;0,η)), 0 6 λ6 1. The last part of this section is
just to sate this argument.

Let ψ : [0,∞) 7→ R be a C∞b function (ψ and all of its partial derivatives are bounded) such
that

1[0, 18 ] 6 ψ 6 1[0, 14 ].
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Let us introduce

rπtitn =
|D(x(tn; 0, η)− 1

2
y(tn; ti, xti (·; 0, η))− 1

2
y(tn; ti−1, xti−1 (·; 0, η)))|2(1 + ‖Σx(tn;0,η)‖22)(d−1)/2

det(Σx(tn;0,η))

∨
|D(y(tn; ti, xti (·; 0, η))− y(tn; ti−1, xti−1 (·; 0, η)))|2(1 + ‖Σx(tn;0,η)‖22)(d−1)/2

det(Σx(tn;0,η))
,

where

|D(x(tn; 0, η))|2 =
d∑
j=1

|D(xj(tn; 0, η))|2 and ‖Σx(tn;0,η)‖2

is the Hilbert–Schmidt norm of the matrix Σx(tn;0,η). Observe that ψ(rπtitn) ∈ D∞−∞ and that

P (ψ(rπtitn) 6= 1) 6 P

(∣∣∣∣D(x(tn; 0, η)− 1
2
y(tn; ti, xti(·; 0, η))− 1

2
y(tn; ti−1, xti−1(·; 0, η)))

∣∣∣∣2
∨ |D(y(tn; ti, xti(·; 0, η))− y(tn; ti−1, xti−1(·; 0, η)))|2

>
1

8(1 + ‖Σx(tn;0,η)‖22)(d−1)/2

)
.

Applying the same procedure used in § 4, we obtain that there exists a constant C > 0 such
that

P (ψ(tπtitn) 6= 1) 6 C|π|p,

for all p ∈ [2,∞). Now we show that λy(tn; ti, xti(·; 0, η)) + (1− λ)y(tn; ti−1, xti−1(·; 0, η)) is
non-degenerate on the set {ψ(rπtitn) 6= 0}. First for any positive-definite d-dimensional matrix
A, we have

‖A‖6 ‖A‖2 6
√
d‖A‖ (31)

and

λ1(A)d 6 det(A) 6 λ1(A)‖A‖d−1, (32)

where ‖ · ‖ is operator norm, λ1(A) = inf |ξ|=1 ξ
′Aξ and |ξ| is the Euclidean norm of ξ in Rd.

Thus, we have
det(Σx(tn;0,η))

4(1 + ‖Σx(tn;0,η)‖22)(d−1)/2
6
λ1(Σx(tn;0,η))

4
.

Consequently, applying (32), we obtain
∞⋃
k=1

{Dk(ψ(rπtitn)) 6= 0}

⊂
{
|D(x(tn; 0, η)− 1

2y(tn; ti, xti(·; 0, η))− 1
2y(tn; ti−1, xti−1(·; 0, η)))|2

∨ |D(y(tn; ti, xti(·; 0, η))− y(tn; ti−1, xti−1(·; 0, η)))|2

6
det(Σx(tn;0,η))

4(1 + ‖Σx(tn;0,η)‖22)(d−1)/2

}
⊂
{
|D(x(tn; 0, η)− 1

2y(tn; ti, xti(·; 0, η))− 1
2y(tn; ti−1, xti−1(·; 0, η)))|2

∨ |D(y(tn; ti, xti(·; 0, η))− y(tn; ti−1, xti−1(·; 0, η)))|2 6
λ1(Σx(tn;0,η))

4

}
. (33)
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Observe that for any t ∈ [0, 1], we have the following uniform lower bound√
λ1(Σλy(tn;ti,xti (·;0,η))+(1−λ)y(tn;ti−1,xti−1 (·;0,η)))

= inf
|ξ|=1

√
ξ′Σλy(tn;ti,xti (·;0,η))+(1−λ)y(tn;ti−1,xti−1 (·;0,η))ξ

= inf
|ξ|=1

∣∣∣∣∑
i

ξiD

(
1
2
y(tn; ti, xti(·; 0, η))

+
1
2
y(tn; ti−1, xti−1(·; 0, η)) +

(
λ− 1

2

)
(y(tn; ti, xti(·; 0, η))− y(tn; ti−1, xti−1(·; 0, η)))

)∣∣∣∣
> inf
|ξ|=1

√
ξ′Σ 1

2y(tn;ti,xti (·;0,η))+
1
2y(tn;ti−1,xti−1 (·;0,η))ξ

− 1
2

sup
|ξ|=1

∣∣∣∣∑
i

ξiD(yi(tn; ti, xti(·; 0, η))− yi(tn; ti−1, xti−1(·; 0, η)))
∣∣∣∣

>
√
λ1(Σ 1

2y(tn;ti,xti (·;0,η))−
1
2y(tn;ti−1,xti−1 (·;0,η)))

− 1
2
|D(y(tn; ti, xti(·; 0, η))− y(tn; ti−1, xti−1(·; 0, η)))|

>
√
λ1(Σx(tn;0,η))−

∣∣∣∣D(x(tn; 0, η)− 1
2
y(tn; ti, xti(·; 0, η))− 1

2
y(tn; ti−1, xti−1(·; 0, η))

)∣∣∣∣
− 1

2
|D(y(tn; ti, xti(·; 0, η))− y(tn; ti−1, xti−1(·; 0, η)))|.

Thus, if

|D(x(tn; 0, η)− 1
2y(tn; ti, xti(·; 0, η))− 1

2y(tn; ti−1, xti−1(·; 0, η)))|2

∨ |D(y(tn; ti, xti(·; 0, η))− y(tn; ti−1, xti−1(·; 0, η)))|2 6 λ1(Σx(tn;0,η))/4,

then we obtain√
λ1(Σλy(tn;ti,xti (·;0,η))+(1−λ)y(tn;ti−1,xti−1 (·;0,η))) > 1

4

√
λ1(Σx(tn;0,η)),

and, consequently, applying (31) and (32), we have

det(Σλy(tn;ti,xti (·;0,η))+(1−λ)y(tn;ti−1,xti−1 (·;0,η))) >
1

16d
λ1(Σx(tn;0,η))d

>
det(Σx(tn;0,η))d

16d‖Σx(tn;0,η)‖d(d−1)
. (34)

Combining with (33) and (34), we obtain
∞⋃
k=0

{Dk(ψ(rπtitn)) 6= 0} ⊂
{

det(Σλy(tn;ti,xti (·;0,η))+(1−λ)y(tn;ti−1,xti−1 (·;0,η)))

>
det(Σx(tn;0,η))d

16d‖Σx(tn;0,η)‖d(d−1)

}
.

Therefore, we obtain that the determinant of the inverse of the Malliavin covariance matrix
Σλy(tn;ti,xti (·;0,η))+(1−λ)y(tn;ti−1,xti−1 (·;0,η)) is dominated by the random variable

det(Σx(tn;0,η))d

16d‖Σx(tn;0,η)‖d(d−1)

on the set
⋃∞
k=0{Dk(ψ(rπtitn)) 6= 0}.
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