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WP -Solvability of the Cauchy—Dirichlet
Problem for Nondivergence Parabolic
Equations with BMO Coefficients

Lin Tang

Abstract. In this paper, we establish the regularity of strong solutions to nondivergence parabolic equa-
tions with BMO coefficients in nondoubling weighted spaces.

1 Introduction

Barmanti and Cerutti [4] studied the global regularity of the strong solution to the
following Dirichlet problem on the second-order parabolic equation in nondiver-
gence form:

Lu=u — szzl 5 (X)thy 1 = f ae inQp,
(1.1) u(x) =00n 00 x (0, 7),
u(x’,0) = 0in €,

where x = (x/,t) = (x{,...,x.,t) € R" and Qr = Q x (0, T) (2 is a bounded do-
main C"' of R"); the coefficients {a;; }/ j—1 of L are symmetric and uniformly elliptic,
i.e., for some v > 1 and every £ € R",

(1.2) aij(x) = aji(x) and v < ap()&g; < vEf

i,j=1

with a.e. x € Q07 and a;; € VMO (the space VMO, introduced by Sarason in [12], is
the space of the functions in the John—Nirenberg space BMO whose BMO norm over
a ball vanishes as the radius of the ball tends to zero). A different approach to diver-
gence form parabolic equations with BMO coefficients was developed by Byun [3].

On the other hand, the weighted theory always plays an important role in partial
differential equations; see [[Z,[I0)[I7]. In this paper, we are interested in global regu-
larity in nondoubling weighted spaces of strong solutions to nondivergent parabolic
equations with parameter A > 0 defined by

n
(1.3) Lyu=u — Z ai]-(x)uxl/xj/ +Au=f ae inQr.
ij=1
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It is worth pointing out that Krylov [14416] established the L? theory of parabolic
equations with parameter A > 0. It also should be pointed out that we obtain non-
doubling weight results, which are not only new, but also generalize some well-known
results in some sense; see [4[17].

The paper is organized as follows: Section 2 contains some definitions and lem-
mas. In Section 3, we obtain weighted interior estimates for the solution to (I3]). The
boundary weighted estimates for the solution to (I3]) are obtained in Section 4. By a
standard procedure, we can obtain its global weighted estimates in Section 5.

2 Some Definitions and Lemmas

Throughout this paper we will use x, y, . . . to indicate points in R"*! and x’, 5/, ...
for points in R" corresponding to the first #n coordinates, i.e., we will write x =
(x',t) = (x,...,x},1).

The parabolic distance was introduced by Fabes and Riviere [8]:

o \/x’|2+\/m
plx) =
2

, dx,y) = plx—y).

A ball with respect to the metric d centered at xo = (x{, tp) and of radius r is simply
an ellipsoid

I A2 tftz
' = xl +( 0) <1}.

_ n+l .,
B(xo,r)f{xG]R{ : 2 a

Obviously, the unit sphere with respect to this metric coincides with the sphere in
R™, a6 0B(0,1) = S = {x e R™! : |x| = (X x/2 +12)7 = 1}.

Let us first recall the definitions and some properties of BMO and VMO spaces.
We say that f € L _is in the space BMO(R"*!) if the BMO seminorm

loc

1
1l = sup = / FO) — fal dy < o,
B |B| Jp

where B ranges over all balls in R” with radius r, and centered at some point x and
f5= ﬁ J5 f(y) dy. Then || f]|, is a norm in BMO modulo constant functions under
which BMO is a Banach space.

For f € BMO and r > 0 define the VMO modulus of f

1
o) = swp oo / FO) — fu| dy,
P 0

p<r

where B, ranges over all balls in R” with radius p. We say that f € BMO is in the
space VMO(R™1) if s (r) — 0 asr — 0.

The space BMO((2) and VMO() can be defined by taking B N € and B, N §2
instead of B and B, in the definition of || f||. and 7¢(r).

Having a function f defined in 2 and belonging to BMO(f2), if €2 is a bounded
Lipschitz domain, we may then extend it to R"*! and the BMO norm of the extension
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could be estimated by the BMO norm of the original function; see [[11]. If, in addi-
tion, f € VMO(2), then we can extend it preserving its VMO-modulus, as follows
by the results of [18].

A weight will always mean a positive function which is locally integrable. We say
that a weight w belongs to the Muckenhoupt class A, for 1 < p < oo (see [9]]), if
there is a constant C such that for all balls B = B(x, r)

(IBI/ ) y)(|B|/w " ‘(y>dy) e

Definition 2.1 A function k(x) is said to be a parabolic Calderén—Zygmund (PCZ)
kernel in the space R"! if

(i) kissmooth on R"™!\ {0};
(i) k(rx',72t) = r~ " D(x’, t) for each r > 0;
(iii) fp(x):r k(x)do(x) = 0 for each r > 0.

A parabolic Calder6n—Zygmund operator T with PCZ kernel k is defined by

Tﬂmzpy/ﬂx—wﬂwdy

We define the commutator of T by [T,a]f = aTf — T(af). We have the following
well-known result.

Lemma 2.2 ([8]) Leta € BMO, 1 < p < oo, and w € A,. If T is a parabolic
Calderén—Zygmund operator, then there exists a positive constant C such that

ITfllpe < Clifllpe and (T, alfllpew < Cllall]|fllpe-

Definition 2.3 A function k(x, y) is said to be a variable parabolic Calderén—Zyg-
mund kernel in the space R"*! if

(i) k(x, -)is PCZkernel a.e. x € R
(ii) SUP,, i \(a%)ﬂk(x, y)| < Cp independent of x.

A variable parabolic Calderén—Zygmund operator T is defined by

1) = pv [ kxx = 1) dy.

Similarly, we define the commutator of T by [T,a] f = aTf — T(af). Using the same
spherical harmonic expansion as in [4], by Lemma[2.2lwe have the following lemma.

Lemma 2.4 Leta € BMO, 1 < p < oo, andw € A,. If T is a variable parabolic
Calderén—Zygmund operator, then there exists a positive constant C such that

ITfllpw < Clifllpe and [[T,alfllpw < Cllallllfllpe-
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Let R™ = R™1 0 {x/ > 0}, R™! = R™! N {x! < 0},
Ci = {u € C(A) : u(x’,0) = 0, with A = R™" N {r > 0}},
Cix = {u €CZ(B) :u(x’,0) =0, ffort =0V x, =0, withB =ANRI}.

Note that A and B being closed, functions in the above spaces do not need to have
derivatives vanishing at the boundary.

Let us now turn to equation (IL3)). Throughout the paper the coefficient a;;(x) will
satisfy (L2)) a.e. in a smooth cylinder Qr C R"*! and will belong to L>(Qr).

Now for fixed xg € Qr, consider the constant coefficients operator with parameter
A>0

n
Lgu = u; — Z a,-]-(xo)ux/xjr + A\u
ij=1
obtained by L) freezing the coefficients at x;. It is easy to see that the fundamental
solution of the operator L is given by the formula

1 E:n ‘:1A:)jyi/y/'
0 ij i

= AT
) (4mT)"/2\/det ay P { 4t

for 7 > 0, zero otherwise, where ag = {a;j(xo)} is the matrix of the coefficients of Lg
and Ay = {Aj} = ay ' is its inverse matrix. Hereafter we denote by D;7} and D;;7}
the derivatives 943 /dy; and 9*4)/dy;0y;. In (L3), the coefficients of the operator
Ly depend on x. To express this dependence in the fundamental solution we define

- 1 S ATy \
= expl ——— T A\r
Ny (471)"/2+/det a(x’) P 47

for 7 > 0, zero otherwise, where a(x) = {aij (x)} is the matrix of the coefficients of L
and A(x) = {A"} = a~!(x) is its inverse matrix.

We remark that D;;~g () is a parabolic Calder6n—Zygmund kernel.

For the parabolic equation with parameter A > 0, we have the following result.

Lemma 2.5 Let X > 0. Suppose y(x — y) is the fundamental solution to
n
O — Z a;j(x)Djju+Au =0
ij=1
in R"™1, Let u € C,. Then for x € supp u, the interior representation formula
n

g (0) = pov 4 D= ] D L) — )iy () + L)} dy

hk=1

+Lw/ Divy(y)nido(y)
S!l+l
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holds, and
Cn 1
Yx—p)| < ;
RIS TG = 7 ol
Cn 1
Di 1 X — S )
D3 e = )] (1+ [A[V2p(x — y))N p(x — y)m+!
Cn 1

D;ivi(x — <
|Dijyi(x = )| < (14 [A[Y2p(x — y)N plx — y)m+2

hold for any N > 0, where Cy is a constant depending only on n, N, and v in (L.2).
We also give the following boundary representation formula.

Lemma 2.6 Letu € C, . Then for x in the support of u, the following holds:

uxt.’xj/ (x) = lim Dlﬂf(x - )/)
=0 SR n{px—y)>e}

X { Z (ank(x) — an(y)]uy sy (y) +L)\(}’)}d)’
hk=1

+Lw/ D (y)nido(y) — Iy(x),
SYI+1
where

) = / D (T(x) - )
RO {pe—p)>e}

x { > lanex) — am(y)]uyyy () +L,\(y)} dy forii=1,--,n—1,
k=1

I{}1(x) = I,’l\,-(x) = / ZBl(x)D,»ryf(T(x) —{--Ydy, fori,j=1,...,n—1,
RIS

B=00 = [ Y BWBWDATE - )L dy
e

where T(x) = x — 2x,, a”(fi) and a(x) is the (n + 1)-dimensional vector

[a1n(x),. .., aum(x),0]

constructed with the coefficients of Ly, where B;(x) is the i-th component of the vector
B(x) = T(ey;x) and n; is the i-th component of the outer normal to the surface S™*.
(The expression between braces is always the same).

Adapting the same arguments of [4]], we can prove Lemmas24land 2.5 We omit
the details here.
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3 Weighted Interior Estimates

Let WP (R™1) be the Sobolev space of functions u such that

+1
U Uy, thy thrr € LE(R™),

Obviously, C, € WP (R™1).

Theorem 3.1 Letl < p < 00, A > 0, andw(x) = (1+ \F)\p(x — x0))" p(x) with
xo € R™, v € R, and i € Ap. Then there exist positive constants 1) and C independent
of A and xy such that for all u € C,,

D INTED s+ fulp < CIO+ 8 = A)u]p

lv]<2
provided that ||al|, := max|g—,{||as||+} <1, where A = E?.j:l a;j( - )Di;.

Remark 1 If A > 0Oand v < —(n+ 2), then w(x) = (1 + ﬁp(x — xp))Y is a
nondoubling weight.

To prove Theorem[3.]] we need the following several results.

Lemma 3.2 ([8]) Leth € C(R"!\ {0}) be a homogeneous function of degree 0.
Set Tf = F=kTf for f € L2(R"V). Then there exists a homogeneous function k €
C>(R™1!\ {0}) of degree —n — 2 with [, k(x) do(x) = 0 such that

T = ef ) +limy [ k() fx— )y

ply)>e
Moreover, c and the derivatives of k can be estimated in terms depending on k only.

Lemma 3.3 Letu € C3°(R"™). If |v| < 2, then
D'u(x) = / D' yy(x — y)(A + 0y — A )u(y) dy.
]R{'H»]
Moreover, for |v| = 2,

D’u(x) = pv ky(x,x—y)(A+ 0 — A u(y) dy + ¢, (x)(A + 0y — Ay)u(x)
]Rn+l

- / Any(x —y) (pv ky(x,x —y)(A+0; — Ax)u(z)dz) dy
}R{YH»[ [R11+l
— ¢, (x) Nx =) A+ 0, — A uly) dy.
R+l

Here ¢, € L™ (R"") and k,, is a variable parabolic Calderén—Zygmund kernel.
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Proof First note that Fu = (A +i7 + A, (£)) ' F(\ + 8, + A, )u holds for arbitrary
xo € R, The first part of the assumption follows easily by setting x, = x since, by
Lemma[Z5, D"~} is in L' (R"*!) for every |v| < 2.
Hence, we turn to the case where |v| = 2 and see that
TD"u ="\ +i1 — Ay (6) T 'FO+ 0, — Ay )u
=T — A () T'FN+ 8, — Ay )u
+ (A HIT = Ay (€)1 = €767 — A () THF A+, — Ay )u
=T = Ay () TIFN+ 0y — Ay )u
— AAHIT = Ay ()T — Ay (€)THF N+, — Ay u.

Applying F ! and using Lemma[3.2] we get for all x € R"*! that

D"u(x) = pv ky(x0,x — y)(A + 0 — A)u(y) dy + ¢, (x0) (A + Or — Ay u(x)
R

[ - (v [ Koy -0+ 0, - Agutz) dz) dy

Rn+1 Rn+1

_ / A = e () (A +iT — Ay Ju(y) dy.
R+l

Setting xp = x now yields the claim. ]

For f € § we set

T f(x) == pv ; k,(x,x — y)f(y) dy,

v

[T1,alf(x) :=pv k,(x,x — y)(a(x) —a(y)) f(y) dy,
]

R{IH»I
T, f(x) := A{M A (x—p) pVAM ky(x,y — z) f(z) dzdy,
[T5,alf(x) == Ai(x —y)pv k,(x,y — z)(a(x) — a(2)) f(z) dzdy,
]Rrﬁ»l ]Rn+1

for |v| = 2,and

2|y
Ts”f(x):/ AT DG — ) f() dy,
1R{ll+l

(T%.alf(x) = [ A3 D'i(x — y)alx) — a(y)) f(y) dy,

Rn+1

for |v| < 2, where a is assumed to be in BMO.
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Lemma 3.4 Let|v| < 2. Let1l < p < coandw € A,. The operators T,, T%,
and [T3,al, [TY, al, respectively, are bounded in L?. Furthermore, the norms of these
operators can be estimated by

[T+ T3] < C and ||[[Ts,all| +[[[T5,all| < Cllall,
where the constant C can be chosen to be A ,-constant.

Proof We consider first T5. By Lemmal[Z5] we have |T% f(x)| < CM f(x), where M
denotes the parabolic Hardy-Littlewood maximal operator.
From this, we obtain that

(3.1) 175 fllpw < Clifllpeos

where the constant C is A,-constant and independent of A\. We now turn our atten-
tion to T,. Using the same spherical harmonic expansion as in [4], we obtain that

oo &m
Yim(y —2)
Tof ) = Y- 3 binle) [ dagx—ppv [ SV 1) daay,
; kz:; e we ply — 2)"*
where ny””ﬁyz ;,2 is a parabolic Calderén—Zygmund kernel.
Hence, by Lemma[2.2] we have
oo 8m
(3:2) 1T fllpew < D2 D Mokmllool fllpar < Clifllpe
m=1 k=1

where we used the fact that > > | S8 |[|bg. ][0 < C; see [4].
By (BI) and (B2)), using [2} Theorem 2], we obtain that

1Tz, alllpw + [I[T5; alllp < Cllall[lf

Proposition 3.5 Let1 < p < coandw € A,.Then there exist positive constants 1)
and C such that for all u € WEP(R™) and A > 0

D INTED U+

lv]<2

[peo- u

|p,w < C”(/\ + 0 _A)”Hp,m

provided that ||a||. < ). The constants C and 1) only depend on the A,-constant of w.

Proof We recall the representation formulas in Lemma Let |y| < 2; foru €
CS(R™1) we write

)\I_M/ZD”u(x):/ A=PI2DY X — ) (A + 0, — A) + (A — A))u(y) dy

Rr+1

_ / N=PI2D% (= y) A+ 8, — Auly) dy
]R(?H»]

+ A=M2Dras(x — y) § (as(x) — ag(y))D’u(y) dy
][Rn‘rl
|81=2

= (T3 + 0, — A)ulx) + > ([T7,a51D")u(x).
18|=2
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By Lemma[3.3] we have

(3.3) INP2D ) < ClI(A+ 0, = Aullps +Cllalle > 1D ull -
|Bl=m

Noting that ¢, € L, for |v| = 2 we get
D'u(x) = (Tl()\ +0 —Au+c,(A+0 —Au
~ T+ 0 — A= TIN+0, - 4)) ()

+ > ([Tr,a51D%u — [Ty, a51Du — ¢, [ T3, a5)D°u) (x).
1Bl=2

By Lemmas2.4land B3] for |v| = 2 we have

(3.4) [D"ullpew < Cyl(A+ 0 — A)ul[po + Cllall« Z 1D ul|p o
181=2

Combining (3.3]) and (3.4)), we obtain that

ST INTIED < CHA+ 8, — Al

lv<2
if Cllal« < 1. [ |
Proposition 3.6 Let1 < p <oo,p'=p/(p—1),A>0,and
w(x) = (1+VAp(x = x0))7" plx — x0)P

withxy € R™', v, € R, and vy, € (—(n+2)/p,(n+2)/p’)). Then there exists positive
constants C and 1 such that for allu € C,

D INTED s+ fulp < CIA+ 8 — Al p

lv]<2
provided that ||a||« < 1. The constants C and 1) only depend on p, 1,7, and n.

Proof As in the proof of Proposition[3.35 let || < 2. We write for u € C§°(R™*)

ANTPIRD u(x) = (TYON+ 0, — A)u(x) + > ([T5, ag]D”)u(x)
181=2

= Il+12.

By Lemma[3.4] we have

(3.5) [T [pw < Cl[AA+ 0 — Aullp, ([ 12 [|pw < Cllall« Z 1D ullp o
|1=m
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From Lemma[2.5] we write for u € C,

n

Uy (X) = pV/ Dijvy(x — y){ Z [ank(x) — an(y) 1wy, (y)} dy
]Rrﬁ-l

hk=1

+pv / Dy — y)A + & — Ayuly) dy
]R{VH’]

+ (A +0; — Aulx) - Divi(y)nido(y)
=10 +1, +1I5 .
Obviously, let w be as in Proposition[3.6] Then we have
| 105 || po < Cl[(A+ 0 — A)ua]| e

Note that A(A + 0y — Ax) 7' f(x) = pV [ M3(x — ») f(y) dy. Letw € A,. Then
AN+ — A" fllpw < Cllfllpews s0

10 = AN+ 8 — A) ™ fllpwo < Cllfllpeo
Hence,
(3.6) ||D,](>\ + 8t _Ax)_lpr.,w < CH(at _Ax)()\+ 6! _Ax)_]pr,w S CHpr,uw

Here we used the fact that | D;;(8; — Ax) ™" f||po < C|f]| .- Note that

Dy +0 =407 ) =pv [ D= S dy

By (B.8) and using [2} Theorem 2], we obtain

G7) M pe < Cllall > 1D ullpw, 1T |y < CIA+ 0 — A)ul| .
|8]=2

For convenience, we define the operator T), by for |v| < 2
Tf(x) = / AZMIRD Y (x — y) f(y) dy.
Ry+1
To prove Proposition[3.6 it suffices to prove that

(3.8) ITfllpw < ClIfllpws
(3.9) T, alfllpw < Cllall« |l fllpw,

where w is defined in Proposition 3.6l
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From Lemmal[2.5] it is easy to see that

Cn 1
(L+|A[Y2p(x — y)N p(x — y)+?

(3.10) INI2DV A% (x — y)| <

holds for any N > 0 and Cy is a constant depending only on #, N.
We first prove (B.8)), following [[13]. Fix a ball B = B(x, r). Write

F =Y fMxa:= > £y,

k=—o0 k=—o00

where Ay = B(xo, 28" 1r) \ B(xo, 2kr).
Thus,

o0
k kp.
||Tf”LP (Rr+1) =C Z (1+ \/XZ )P’hz mzHXAka”{p(]R(m)

k=—o00

<cC Z (1+f2k)P%2kP%(H Z X T(f)

k=—o00

Lp(Rm+1) )

k+1

203 (4vVa 2571250 (S T e )

k=—o00 j=k—1
Lp R{"H )

+C Z (1+\f2")‘”12k"”(H Z Xy (f,)‘

EE1+E2+E3.

For E,, by the L?(R""!) boundedness of T (see (3.6) and (B.Z)), we have

k+1
B, <C Z A+ VA2 (ST o) < ClIE
k=—o00 j=k—1

For Ej, note that when x € Ay, j <k—2,and y € Aj, then 2p(y — x0) < p(x — xp).
Therefore, for x € Ay and any N > 0, by (3.10) we have

|fi(y)|dy
T( f:
’ (fJ)(x)’ <Cn /}W“ (1+ p(x — y)Np(x — y)r+2

<Cca+ \f)\zk)‘NZ"‘(””)/ |f(y)] dy
Aj

S C(l + \/sz)—Nz—k(n+2)2j(ﬂ+2)/P/||fXAjHLP([R{n+1),

where 1/p’+1/p = 1.
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From this, and taking N > |v;|, by Holder’s inequality, we get

o0
Ey <C > (1+VA2hromNgkm:

k=—o0
k—2 p
% ( Z 27k(n+2)/p 2](n+2)/P ||fXAj||LP(R"“))
j=—00

p
<C Z ( Z 9= (k== (n+2)/p)(1+f21)(/1 N)ZmanA e Rm))

k=—o0 j=—00

k—2

P
<c 30 (30 2O VR e

k=—o0 j=—o00

o] k—2

. , p
—(k— _
C Z ( Z 9= (k=10 ("+2)/p)HfXA,-HL?;(]RW))

k=—oc0 j=—o0

Z ( Z 9= (k=ipr2— (n+2/P)||fXA HL”R{“)

k=—o00 j=—o00

IN

k=2

« ( > 2*(’(*]')17/(’72*(?1*'2)/17/)) P/p

j=—00

o] k—2
e 3 (30 e )

k=—o0 j=—o00

o0
0 Y ey (30 270 <

j=—o0 k=j+2

sincey, < (n+2)/p’.

For E3, note that when x € Ay, j > k+2and y € Aj, then 2p(x—xp) < p(y —xp).
Therefore, for x € Ay,

|fi(») dy
: C
[T < Al (1+p(x — y)Np(x — y)m+2

<ca+ ﬁzf)‘Nz‘j(””)/ |f(n)|dy
4

<C(1+ \/ij)—Nz—j(nJrz)/PHfXAj [P
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where 1/p + 1/p’ = 1. From this, taking N > |7, |, we obtain

Es <C ) (1+Va2hrmoten

k=—o0
> . . 2
X ( > oa+ \/XZJ)_NZ_J(Mz)/p”fXA]”LP(]R{”“))
j=k+2

oo o
. ] ' »
<C Z ( Z 2(k—])(7’z+(n+2)/17)(1 + ﬁz])%z—ﬁ’z”fXA]”LP(WH))

k=—o00 j=k+2

o (N (b )t 12 p) P
<C Z ( Z 2 HfXA,-”Lﬁ.(]R{"“))

k=—o0 j=k+2

N7 p/p/
P 2k7 D /: p
< (: 5 HfXAj”[g(]Rwl)( Z ( ]) (’)Z (n 2)/ )>

j=—00 j=k+2

< ClIfII7

LP Rr+1)?

since y, > —(n+2)/p.
Hence,
||TfHL£.(JR<"+1) < C”f”L{;(WH)-

It remains to prove (3.9)), similar to the proof of (3.8). Fix a ball B = B(xy, r). Write

=Y fOxa = > £,

k=—o00 k=—o00

where Ay = B(xg, 2K 1r) \ B(xo, 2kr).
Then we have

T,y S € 3 (14 VP22 o, (T, D o

k=—o00

<C 3 VAR P*z’“’“(H Z walTalh)|!

k=—o0

Lp R n+l )
k+1

FC S V2 (S a5l

k=—o00 j=k—1
kypy1iykpy2
P IIEELE (HZXAkTﬂfﬂ\uw
k=—o0
EF1+F2+F3.
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For E,, by the L? (R"*!) boundedness of [T, a] (see and (3.9)), we have

o) k+1
E<C > +ﬁzk)mlzkmz< 3 ||[T,a](fj)||§p(R,,ﬂ)) < Cllf Lz
k=—o0 j=k—1

For Fy, note that when x € Ay, j < k—2,and y € Aj, then 2p(y — x0) < p(x — xp).
Therefore, for x € Ay and any N > 0, by (3.10) we have

[T, al(f;)(x)| < C/ la(x) — a(y)|

(y)|d
et (14 V(e — )N plx — y)? 50l 4y

< C(1+ VA2k)~No—km+2) / la(x) —a(y)||f(y)] dy
Aj

+C(1+ VA2k)™N2=Km2) | g(x) — ale/ |f(»)| dy
Aj

< C(1 + VA2k)~Np—k(n+2)5j(n+2)/p’
x ([lalls + la(x) — ag, DI fxa; ooy

where ap, = |371j| fB,» a(y)dy.
From this, and taking N > ||, we get

oo
Fo<Clall 3 (14 vz
k=—o00

k—2

. ’ . p
X ( Z 2_(k—])(ﬂ+2)/P (k_])HfXAjHLF(IRnﬂ))

j=—o00
o k—2 ) )
<Cllaf? " ( PR LRI ROV
k=—o0 j=—o00

_ ) p
X 272k = )| e s )

0o k—2

) / ) P
<clalp 3o (30 2SR G | fea e )

k=—o0 j=—o00

[e%s) k—2
<clal 3 ( S 2—(k—j)P(“/z—(n+2)/P')HfXAJH&(R"HJ

k=—o00 j=—o00

k—2 p/p’
x ( S ot D 0 e )
j=—o00

0o k—2

< Cllal|? Z ( Z 2—(k—j)P(’Yz—(n+2)/P/)HfXAJHiﬂ(RnH))

k=—o0 j=—o00
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> o0
= C||a||’i Z HfXAjHilw’,(]R{m)( Z 9~ (k=jpla—(n+2)/p ))

j=—o0 k=j+2
S C||a||£‘|f||§£_(]R{n+l)’

sincey, < (n+2)/p’.
For F3, note that when x € Ay, j > k+2,and y € A}, then 2p(x—x) < p(y —x0).
Therefore, for x € Ay,

la(x) — a(y)||f;(»)| dy
T, al(f; <cC
[T, al(f;) ()| N/R vt — ) ple — 2

< C(1 + VA\2J)Np=ilnt2) / la(x) —a()||f(y)| dy
Aj
+C(1+VA2) N2 |a(x) — ag | / ()| dy
AJ

< C1L+ VA2 N2 IR (|| all, + |a(x) — ap, DIl fxa, gy

From this, taking N > |7/, we get

oo
By < Cllallt > (1+va2hrak

k=—o00
00 . ‘ »
X ( D+ V20N k)||fXA,HLP(1R<n+1)>
j=k+2
<Clall? > ||foj||§5(]Rn+l)( > 2<’<—ﬂ“’2+<“+2>/f’>(j—k)P)
j=—o00 j=k+2
< CllallZl 1P, g

sincey, > —(n+2)/p.
Hence, [|[T, ﬂ]fHLg(R"H) < C||“||*||f||L5(R"+1)- u

Proof of Theorem[3.1] Since w; € A,, there exists & > 1 such that w{" € A,. So by
Proposition 3.5 we have

(3.11) S INTED e+ (el e < CIO A+ O — A e

lv]<2

On the other hand, let w, (x) = (1+v/Ap(x—x,))” withy € R. Using Proposition[3.6]
with v; = 7 and vy, = 0, we have

(3.12) D INTED Ul + (el p, < CHO A+ 8 = A)t]| -
lv|<2
Interpolating between (3.11]) and (B12l), we obtain the desired result. [ |
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4 Boundary Integral Operators Estimates
In this section L norms will always be taken over R”*!, where

R = {x = (x/,t) : x" = (x],...,x]) € R",x/ > 0}.

Forallx = (x{,...,x.,t), x, > 0 we define £ = (x1,...,X,—1, —Xn, t). Then there
exist two positive constants C; and C, depending on v in (L)) such that

(4.1) Cip(x —y) < p(T(x) — y) < Cop(x —y)

for every x, y € R"!(see [4]), where T(x) is the transformation introduced in Sec-
tion 1.

Lemma 4.1 Letl < p < 00,a € BMOandw € A,. We define

_ If)
Rf= = /Rg prHx = y) %,

R,f(x) = / |“<x;n;éy_>l|yf)<y>| .

Then there exits a positive constant C such that
IRflpw < Cllfllpw and [|Rafllpw < Cllall«|[fllpe-

The proof can be found in [4].

Lemma 4.2 Let1l < p < 0o, A > 0, and w(x) = (1 + vV Alx — xo|)P7 |x — x0[P72
withxy € R™Y v € R, and v, € (—=(n+2)/p,(n+2)/p). We define

lf]
R = .
oA A L+ VG — )Nz — )

Then there exits a positive constant C such that for any X > 0 ||R\ f1| o < C||fllpe-

Proof Fix a ball B = B(xg, 7). As usual By = B(xo,2*r) for any integer k; B’fr =
B N {x], > 0}. Then we can write f(x) as

f =Y fOxa):= > fly)

k=—o0 k=—o00
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where Af = B{ \ B{_,. Then, we have

kp~
IRl gy < € Z (1+ VA2 22|\ R 17,

k=—
< 72| 2 )
Ck; (14 V22 Z X R
k+1
+C Z (1+\f2k)p712km( Z Ixa: Ra ()15, Rm>
k=—o0 j=k—1

+C Z 1+f2")mlzkm(H Z x,vRA(fJ)’

Le(] Rnﬂ))

EE1+E2+E3.

For E,, by the L?(R"*!") boundedness of R (see Lemma[4.T]), we have

k+1

B<C 3 VA2 (3 R ge) < O e

k=—o00 j=k—1

For E;, note that when x € A}, j < k—2,and y € A%, then 2p(y —x0) < p(x — x).
Therefore, for x € A{ and any N > 0, we have

R(f))| < cN/ ! F()] dy

rert (1+VAp(x — y))Np(x — y)n+2

< C(1+ V2K N7k [ £y dy

.
Aj

<c+ \/sz)—Nz—k(n+2)2j(n+2)/P/||fXA;||Lp(Jl«71+1).

From this, and taking N > |v,|, we get

oo
By <C Y (1+ VA2t Ngke:

k=—o00

k—2
’ : ! p
« ( Z 9 —k(n+2)/p’ 5 j(n+2)/p HfXA;rHLP(]RuH))

j=—o00

oo

k—2
. ' . . p
<C Z ( Z 9~ (k=j)(m—(n+2)/p )(1 + \f/\zJ)(m _N)2m||fXA]fHLP(1R{"+‘))

k=—o0 j=—o00
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) k—2

, : N P
<c Y ( Y 2kt ey +\F/\zj)%z]A’ZHfXAj||LP(Rn+1))

k=—oc0 j=—o00

S k—2
(k=) (v — ’ P
<C Z ( Z 2~ (k=jn—=(n+2)/p )“fXA]*»HLﬁ(JR”“)) < CHing(R,iﬂ),

k=—o00 j=—o0
sincey, < (n+2)/p’.

For E3, note that whenx € A}, j > k+2,and y € A}r, then 2p(x—x0) < p(y—xo).
Therefore, for x € Af,

|fin)| dy
R\(f: <C
R < A (1+VAp(x — y))Np(x — y)r+2

< CA+VA2)™N27I 2 [ £(y)| dy
A5

<C(1+ \f/\z]')szfj(n+2)/P||fXA; Hu(ww

From this and taking N > |7, |, we obtain

(o)
Es <C > (1+Va2hmat

k=—o00
= P
< (30 (U VRS2 DR e e
j=k+2

o0 o0
. . . p
<c X ( > eI ﬁy)”‘z*m||fXA?||LP<1R”“>)

k=—oco j=k+2

o (N (k) (142)/p) 4
<c Y (X2 I Fens iz

k=—oco j=k+2

S C Z HfXAJ,r ||1L)5(Rn+1)( Z Z(k_])p (72+(n+2)/p)) S CHfH}L)f/(]R(:H)a
j=—o0 j=k+2
since v, > —(n+2)/p.
Hence, ||[Ryf||1wey < Cllfll 1z rer)- Thus, the lemma is proved. [ |

For the linear commutator on Rﬁ” , we have the following lemma.

Lemma 4.3 Letl < p < 00,a € BMO, A\ > 0, and
w(x) = (1+VAp(x — x0))P7 p(x — x0)P"
withxy € R™ v € Ryandy, € (—(n+2)/p,(n+2)/p’). Then

|, RA]f“Lg(m“) < C||a||*||f||L£(1Rm+l)v

where the constant C is independent of xo, f and \.
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Proof Note that forany N > 0

la(x) — a(y)]
7R S Tu = dy.
e, RyJIF162) A Azﬂ (1+VAp(E — y)Np*2(% — y) Sy

Fix a ball B = B(xo, r). As usual By = B(xo, 2Xr) for any integer k, B, = BN {x, > 0}.
Then we can write f(x) as

fO =Y fOxa):= > £y,

k=—o00 k=—o00

where A = B{ \ B{_,
Then we have

kp~
ITaf s ey < € Z (1+ VA2 | T 1 o

k=—o0
< pn kmz(H . ’ )
c Z (14 V322 Z X Tl
k=—o00
k+1
e Z A+ VA2 222 (3 Tal ) s ey
k=—o00 j=k—1
kypn kPVz(H N ‘ )
+C Z (14 VA2k)Pn2 Z xat Ta(f}) e
k=—o0
EF1+F2+F3.

For F,, by the L? (R"*!) boundedness of T, (see Lemma[4.1]), we have

k+1
B<C > VA2 (S T ) < CII
k=—c0 j=k—1

For Fy, note that when x € Ay, j < k—2,and y € A}, then 2p(y — x5) < p(x — xp).
Therefore, for x € Ay and any N > 0, we have

IT,(f) ()] < c/ lax) — aly) )l dy

Wt (14 v Ap(x — 7))V plx — y)m2

< C(1 + V2K ~No—kn+2) / la(x) — a()||f(y)| dy
At

+C(1+ VA2 2K () gy | / £l dy
i

<Cc(+ \/sz)szfk(n+2)2j(n+2)/p/

X (|lafl« + |a(x) — aBj|)||fXAJ*HLP(2R<"“)>
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where ap; = ﬁ f a(y) dy. From this, and taking N > ||, we get

o0
Fi <Cllall? 3 (1+ va2kron=Ngke:
k=—o00

k=2

. ’ . p
X ( Z 2_(k—])(fl+2)/P (k - ])HfXA}rHLP(]R{nH))

j==o0

< Cllal2

00 k—2
: ’ . . . P
X Z ( Z 2—(k—])(’72—(n+2)/17 )(1 + \/XZJ)'N 2]’72(]( — ])HfXA; ||Lp(]R<n+])>

k=—oc0 j=—o0

00 k—2

o / . p
SCH“HE Z ( Z 9= (k=% (n+2)/p )(k_])HfXA}HLﬁ(]W“))

k=—o00 j=—o00

< CllallZN s oy
sincey, < (n+2)/p’.

For F3, note that when x € Ay, j > k+2,and y € A}, then 2p(x—xp) < p(y —xo).
Therefore, for x € Ay,

la(x) —a(y)| fi(y)| dy
T.(f; <C
| (f])(X)| NA{K“ (1+\f)\p(x—y))Np(x—y)”+2

<C(1+ \fAzf)*szf(””)/ la(x) —a(y)||f(y)] dy

45
+C(1+VA2) N2 a(x) — ag | / |f ()| dy
At
]
< C(L+ VA N2 IR (|la, + |ale) — ap DI Fxas ey

From this and taking N > ||, we get

o0
Fs < Cllall? Y (1+VA25)pmaken

k=—o0
> p
x ( 371+ VA2 N2/ ||fXA+||WH)
j=k+2
> > p/p’
k—i)(y . !
<Clalz > | fXA;||§5(W)( 3o ]mﬁ(nu)/m(]fk)p)
j=—o0 j=k+2
4
< CllallZl 11y sy
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sincey, > —(n+2)/p.
Hence, || Taf |12 ety < Cllall|| £l ot Thus, the lemma is proved. [ |

By Lemmas[£.Tland 4.2] we can obtain the following result.
Proposition 4.4 Letl < p < 00, a € BMO, A > 0, and
w(x) = (14 Vp(x = x0))" pu(x)

with xg € R, v € R, and p(x) € A,. Then

||R/\f||L5(Rz+l) < C||f||L5(1R<1+1)
[Ta, Ra1 f Iz ety < Cllalls |l £l oy
where the constant C is independent of f,xy and .

By (@) and Proposition £4land using the same spherical harmonic expansion as
in [4], we deduce the following result.

Theorem 4.5 Letl < p < 00, a € BMO, A > 0, and
w(x) = (1+VAplx — x0))7 u(x)

withxy € R™, v € Rand u(x) € Ay. If k is a variable PCZ kernel, define

Tf(x) = / ka(x, T(x) — y) f(y) dy.
]RU:H
Then

||TfHL5(JR{L}“) < CHfHLﬁ(JR(Z”) and |[a, T]fHLg(JMH) < C||“H*||f||L5(JRzz*l)a
where the constant C is independent of f, xo, and \.
Finally, we give the boundary estimate in weighted spaces.

Theorem 4.6 Letl < p < 00, A > 0, and w(x) = (1 + \f)\p(x — x0))7 u(x) with
xo € R™, v € Rand pu € A,. Then there exist positive constants 1) and C independent
of A and x such that for allu € C, s

Z |\>\17|V|/2Dl/“||m(m+‘) + ||”t||Lf,<1R<3+1) <Cl[(A+0, —A)“HLg(R:“)v
lv|<2

provided that ||al|, := max|g—,{||as||+} <1, where A = Ezjzl aij(-)Djj.
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Proof From Theorem [4.5] we obtain
(4-2) ||D2”||L{;(JR{Q+1) < C”()‘ + 6t - A)u”Li(uMH)?

provided that ||a||, := maxg—,{||as||+} < 7. Note that the boundary representation
of u is as follows

u(x) =/ G (x — y)Lyu(y) dy,
Ro+L

where
Ax—y) =mnx—y) —7(Tx) —y)and Lyu = (A + 0, — A)u.
Obviously,
CnNA
(4.3) ANG(x— )| < ,
! (1+VAp(x — y)Np(x — y)
(4.4) VAIDLG (x — Cx VA

< .
yl< (1+vVAplx — y))Npl(x — p)

By (&.3) and (4.4), for uu(x) € A,, we then have

(4.5) Z ||Al_‘y‘/zDV“”Lﬁ(mH) < CHM(L/\”)”Lﬁ(m“) < CHL)\uHLﬂ(][RT‘)'
lv|<1

On the other hand, it is easy to see that for any x, y € R?*!

Cn
(1+VAp(x — y))Nprt2(x — )

(4.6)  AGi(x— )|+ VADGi(x — y)| <

Adapting the same arguments in the proof of Lemma[£.2] by (4.6]), we have

(4.7) Z ||)\1_|V|/2DV“HL51(Rgﬂ) < CHLW”Lﬂl(Rzﬂ)v
lv|<1

wi(x) = (1+vVAp(x—x))" with x) € R**! and v € R. Interpolating @3) and @7),
we obtain

(4.8) Z ||/\17‘V‘/2DV“||L5(1R2+1) < CllLaullpp ey

lv|<1
where w(x) = (1 + vV Ap(x — x0))?p(x) with xo € R"*!, v € Rand p € A,. Finally,

we observe that 1, = Lyu + a;;D;ju + Au, combining with ([£.2), (4.3), and (4.8)), we
haVe ||Mt||LE(RK+1) S CH()\ + a, _A)u”Lz(RKH). |
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5 The Dirichlet Problem

Let W&’fj(QT) be the closure in the W2 norm of the space
C={peC®Qr):p=0fort =00rx e IN}.

In this section, we are interested in the Cauchy-Dirichlet problem

Lywu= finQ
(5.1) AU zj;m T
ue WO’W(QT),

with f € L2(Qr), a;;’s satisfying (1.2), a;; € BMO(Qr) and A > 0.
We first give the following result concerning interior estimates in weighted spaces.

Theorem 5.1 Letl < p < 00,0 <A < o0, w(x) =(1+ \f)\p(x — X0))7 p(x) with
xo € R™, v € R, and u(x) € A,. There exist C and 1) such that By, € Q X R, and
ue Wé’fj(QT). We have

)\””HLg(B;) + \/XHDu"Lﬂ(B;) + ||“t||L,5(B,+) + ||Dij“HL£.(B,+)

< C(IILxull gz sy + 7 HIDull sy + 7l sy )

provided that||al|. < 7, where Bf = B, N {t > 0} and the constants C and 7 are
independent of xy, A and u.

We then give the following result concerning boundary estimates in weighted
spaces.

Theorem 5.2 Letl < p < 00,0 <\ < o0, w(x) = (1+ VAp(x — x0))7 pu(x) with
xo € R™, v € R, and p(x) € A,. There exist C and n) such that for supp u C B,, and
u e Wg"f,(QT). We have

/\||“HL5(E,+> + \E‘HD”“L{,(E;) + ||”t||L,’j,(E,+) + ||Dij”HL£.(E,+)

< C( ||LAU||L5(§;,) +r! ||D“||L5.(E2+,) + FzH“”Lg(B’;)) )

provided that|a||, < 1, where Bt = B, N {x, > 0,t > 0} and the constants C and 1)
are independent of xy, A and u.

Adapting the same arguments in [4]], by Theorems [3.1] and we can obtain
Theorems[5dland[5.2] respectively. We omit the details here.

Using Theorems 5.1 and we can establish well-posedness of the Dirichlet
problem (5.1)) in weighted spaces.
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Theorem 5.3 Letl < p < 00,0 <\ < o0, w(x) = (1+ \f)\p(x — x0))" pu(x) with
xo € R™, v € R, and u(x) € A,. Then there exists a positive constant 1 and A
such that ||a]|. < nand A > X\g = Xo(n, p,7, B, 1,1, |, T). The Cauchy-Dirichlet
problem (5.)) has a unique solution u € Wf’p(QT) forevery f € L2(Q2r). Moreover,
there exists a constant C = C(n, p,~y, u, 1, ||, T) such that

)‘”“”Lg.(m) + ﬁHDuHLﬁ(QT) + ||”tHL5(szT) + ||Dij”HL5(QT) < CHfHLf.(QT)'

We remark that our proofs could be modified in order to replace the smallness of
the BMO norm assumption by the VMO norm; see [4]].

Acknowledgement The author would like to thank the referee for some very valu-
able suggestions.
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