Canad. Math. Bull. Vol. 52 (4), 2009 pp. 521-534

The Parabolic Littlewood–Paley Operator with Hardy Space Kernels

Yanping Chen and Yong Ding

Abstract. In this paper, we give the L^p boundedness for a class of parabolic Littlewood–Paley *g*-function with its kernel function Ω is in the Hardy space $H^1(S^{n-1})$.

1 Introduction

Let \mathbb{R}^n be the Euclidean space with the routine norm |x| for each $x \in \mathbb{R}^n$. Denote by $S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$ the unit sphere on \mathbb{R}^n equipped with the Lebesgue measure $\sigma(x')$. Let $\alpha_1, \ldots, \alpha_n$ be fixed real numbers with $\alpha_i \ge 1$. It is easy to see that for fixed $x \in \mathbb{R}^n$, the function

$$F(x,\rho) = \sum_{i=1}^{n} \frac{x_i^2}{\rho^{2\alpha_i}}$$

is a strictly decreasing function of $\rho > 0$. Therefore, there exists a unique $\rho(x)$ such that $F(x, \rho) = 1$. It was proved in [7] that $\rho(x)$ is a metric on \mathbb{R}^n . For $x \in \mathbb{R}^n$, set

$$x_{1} = \rho^{\alpha_{1}} \cos \varphi_{1} \cdots \cos \varphi_{n-2} \cos \varphi_{n-1}$$

$$x_{2} = \rho^{\alpha_{2}} \cos \varphi_{1} \cdots \cos \varphi_{n-2} \sin \varphi_{n-1}$$

$$\vdots$$

$$x_{n-1} = \rho^{\alpha_{n-1}} \cos \varphi_{1} \sin \varphi_{2}$$

$$x_{n} = \rho^{\alpha_{n}} \sin \varphi_{1}.$$

Then $dx = \rho^{\alpha-1} J(x') d\rho d\sigma(x')$, and $\rho^{\alpha-1} J(x')$ is the Jacobian of the above transform, where $\alpha = \sum_{i=1}^{n} \alpha_i$ and $J(x') = \alpha_1 x_1'^2 + \cdots + \alpha_n x_n'^2$. It is easy to see that $J(x') \in C^{\infty}(S^{n-1})$ with $1 \leq J(x') \leq M$ for some $M \geq 1$. Without loss of generality, we may assume $\alpha_n \geq \alpha_{n-1} \geq \cdots \geq \alpha_1 \geq 1$.

For t > 0, let $A_t = \text{diag}[t^{\alpha_1}, \ldots, t^{\alpha_n}]$. Suppose that $\Omega(x)$ is a real valued and measurable function defined on \mathbb{R}^n . We say $\Omega(x)$ is homogeneous of degree zero with respect to A_t , if for any t > 0 and $x \in \mathbb{R}^n$

(1.1)
$$\Omega(A_t x) = \Omega(x).$$

Received by the editors October 5, 2006; revised February 19, 2009. The research was supported by NSF of China (Grants: 10571015, 10826046) and RFDP of China

⁽Grant: 20050027025).

AMS subject classification: Primary: 42B20; secondary: 42B25.

Keywords: parabolic Littlewood-Paley operator, Hardy space, rough kernel.

[©]Canadian Mathematical Society 2009.

Moreover, we also assume that $\Omega(x)$ satisfies the following cancellation condition:

(1.2)
$$\int_{S^{n-1}} \Omega(x') J(x') d\sigma(x') = 0.$$

In 1966, Fabes and Rivière [7] proved that if $\Omega \in C^1(S^{n-1})$ satisfies (1.1) and (1.2), then the parabolic singular integral operator T_Ω is bounded on $L^p(\mathbb{R}^n)$ for $1 , where <math>T_\Omega$ is defined by

$$T_{\Omega}f(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(y)}{\rho(y)^{lpha}} f(x-y) \, dy.$$

In 1976, Nagel, Rivière and Wainger [9] improved the above result. They showed T_{Ω} is still bounded on $L^p(\mathbb{R}^n)$ for $1 if replacing <math>\Omega \in C^1(S^{n-1})$ by a weaker condition $\Omega \in L\log^+L(S^{n-1})$.

On the other hand, in 1974, Madych considered the L^p boundedness with respect to the transform A_t of the Littlewood–Paley operator. Let $\psi \in S(\mathbb{R}^n)$ satisfy $\hat{\psi}(0) =$ 0, where and below, $\hat{\psi}$ denotes the Fourier transform of ψ . Let $\psi_t(x) = t^{-\alpha}\psi(A_{t^{-1}}x)$ for t > 0. Then the Littlewood–Paley operator related to A_t is defined by

$$g_{\psi}(f)(x) = \left(\int_0^\infty |\psi_t * f(x)|^2 \frac{dt}{t}\right)^{1/2}.$$

Theorem A [8] The Littlewood–Paley operator g_{ψ} is of type (p, p) for 1 .

Inspired by the works in [7–9], recently Ding, Xue and Yabuta [5] improved the above result. More precisely, the authors in [5] proved that the parabolic Littlewood–Paley operator is still bounded on L^p if $\psi(x)$ is replaced by a kernel function $\phi(x) = \Omega(x)\rho(x)^{-\alpha+1}\chi_{\{\rho(x)\leq 1\}}(x)$ with $\Omega \in L^q(S^{n-1})$ (q > 1) satisfying (1.1) and (1.2).

Theorem B [5] If $\Omega \in L^q(S^{n-1})(q > 1)$ satisfies (1.1) and (1.2), then g_{ϕ} is of type (p, p) for 1 .

Notice that on the unit sphere S^{n-1} , there are the following containing relationships:

$$C^{\infty} \subsetneqq L^{q} (q > 1) \subsetneqq L \log^{+} L \gneqq H^{1} \gneqq L^{1},$$

where H^1 denotes the Hardy space on S^{n-1} (see §2 for its definition). Hence, a natural question is whether the size condition assumed on Ω can be weakened further. The purpose of this paper is to give a positive answer to this question.

Theorem 1.1 If $\Omega \in H^1(S^{n-1})$ satisfies (1.1) and (1.2), then g_{ϕ} is of type (p, p) for 1 .

Remark. If $\alpha_1 = \cdots = \alpha_n = 1$, then $\rho(x) = |x|$ and $\alpha = n$. In this case, $g_{\phi} = \mu_{\Omega}$ and the latter is just the classical Marcinkiewicz integral, which was studied by many authors. (See [1,4,10], for example.) Moreover, note also that the Ω in Theorem 1.1 (also Theorem B) has no any smoothness on S^{n-1} .

Definitions and Lemmas 2

Let us begin with the definition of Hardy space $H^1(S^{n-1})$. For $f \in L^1(S^{n-1})$ and $x' \in S^{n-1}$, we denote

$$P^{+}f(x') = \sup_{0 < t < 1} \left| \int_{S^{n-1}} f(y') P_{tx'}(y') \, d\sigma(y') \right|,$$

where $P_{tx'}(y') = \frac{1-t^2}{|y'-tx'|^n}$ for $y' \in S^{n-1}$. Then

$$H^{1}(S^{n-1}) = \{ f \in L^{1}(S^{n-1}) : \|P^{+}f\|_{L^{1}(S^{n-1})} < \infty \},\$$

and we define $||f||_{H^1(S^{n-1})} = ||P^+f||_{L^1(S^{n-1})}$ if $f \in H^1(S^{n-1})$. A very useful characterization of the space $H^1(S^{n-1})$ is its atomic decomposition. Let us first recall the definition of atoms. A regular $H^1(S^{n-1})$ atom is a function a(x')on $L^{\infty}(S^{n-1})$ satisfying the following conditions:

(2.1)
$$\operatorname{supp}(a) \subset S^{n-1}$$

 $\cap \{ y \in \mathbb{R}^n : |y - \xi'| < r \text{ for some } \xi' \in S^{n-1} \text{ and } r \in (0, 2] \}$

(2.2)
$$\int_{S^{n-1}} a(x') Y_m(x') \, d\sigma(x') = 0$$

for any spherical harmonic polynomial Y_m with degree $m \leq N$, where N is any fixed integer;

(2.3)
$$||a||_{L^{\infty}(S^{n-1})} \leq r^{1-n}.$$

An exceptional $H^1(S^{n-1})$ atom u(x') is an $L^{\infty}(S^{n-1})$ function bounded by 1. From [3], we find that any $\Omega \in H^1(S^{n-1})$ has an atomic decomposition

$$\Omega = \sum_{j=1}^{\infty} \lambda_j a_j + \sum_{i=1}^{\infty} \delta_i u_i,$$

where each a_i is a regular $H^1(S^{n-1})$ atom and each u_i is an exceptional atom. Moreover,

$$\sum_{j=1}^{\infty} |\lambda_j| + \sum_{i=1}^{\infty} |\delta_i| \le C \|\Omega\|_{H^1(S^{n-1})}.$$

We note that for any $x' \in S^{n-1}$,

$$\left|\sum_{i=1}^{\infty} \delta_i u_i(x')\right| \leq \sum_{i=1}^{\infty} |\delta_i|.$$

Without loss of generality, we can assume

$$\left|\sum_{i=1}^{\infty}\delta_{i}u_{i}(x')\right|\leq \|\Omega\|_{H^{1}(S^{n-1})}.$$

Thus we write

$$\sum_{i=1}^{\infty} \delta_i u_i(x') = \|\Omega\|_{H^1(S^{n-1})} \omega(x'),$$

with $\omega(x') = \sum_{i=1}^{\infty} \delta_i u_i(x') / \|\Omega\|_{H^1(S^{n-1})}$. In this new definition, for $x' \in S^{n-1}$,

(2.4)
$$\Omega(x') = \sum_{j=1}^{\infty} \lambda_j a_j(x') + \|\Omega\|_{H^1(S^{n-1})} \omega(x') \text{ and } \|\omega\|_{L^{\infty}(S^{n-1})} \le 1.$$

The following Lemmas 2.1 and 2.2 can be found in [6].

Lemma 2.1 [6] Suppose that $n \ge 3$ and b satisfies (2.1), (2.3), and

(2.5)
$$\int_{S^{n-1}} b(y') \, d\sigma(y') = 0.$$

Let

$$F_b(s) = (1 - s^2)^{(n-3)/2} \chi_{(-1,1)}(s) \int_{S^{n-2}} b(s, (1 - s^2)^{1/2} \widetilde{y}) d\sigma(\widetilde{y}),$$

$$G_b(s) = (1 - s^2)^{(n-3)/2} \chi_{(-1,1)}(s) \int_{S^{n-2}} |b(s, (1 - s^2)^{1/2} \widetilde{y})| d\sigma(\widetilde{y}).$$

Then there exists a constant C, independent of b, such that

(2.6)
$$\operatorname{supp}(F_b) \subset (\xi'_1 - 2r(\xi'), \xi'_1 + 2r(\xi')),$$

(2.7)
$$\operatorname{supp}(G_b) \subset (\xi'_1 - 2r(\xi'), \xi'_1 + 2r(\xi'))$$

(2.8)
$$||F_b||_{\infty} \leq C/r(\xi'), ||G_b||_{\infty} \leq C/r(\xi'),$$

(2.9)
$$\int_{\mathbb{R}} F_b(s) \, ds = 0,$$

where $r(\xi') = |\xi|^{-1} |L_r \xi|$ and $L_r \xi = (r^2 \xi_1, r \xi_2, \dots, r \xi_n)$.

Lemma 2.2 [6] Suppose that n = 2 and b satisfies (2.1), (2.3) and (2.5). Let

$$F_b(s) = (1 - s^2)^{-1/2} \chi_{(-1,1)}(s) \left(b(s, (1 - s^2)^{1/2}) + b(s, -(1 - s^2)^{1/2}) \right),$$

$$G_b(s) = (1 - s^2)^{-1/2} \chi_{(-1,1)}(s) \left(\left| b(s, (1 - s^2)^{1/2}) \right| + \left| b(s, -(1 - s^2)^{1/2}) \right| \right).$$

Then $F_b(s)$ satisfies (2.6) and (2.9), and $||F_b||_q \leq C|L_r(\xi')|^{-1+1/q}$. And $G_b(s)$ satisfies (2.7) and $||G_b||_q \leq C|L_r(\xi')|^{-1+1/q}$ for some $q \in (1, 2)$.

The Parabolic Littlewood–Paley Operator with Hardy Space Kernels

Lemma 2.3 [5] *For* $\Omega \in L^1(S^{n-1})$, *denote*

$$\sigma_{2^{t}}(x) = 2^{-t} \Omega(x) \rho(x)^{-\alpha+1} \chi_{\{\rho(x) < 2^{t}\}}(x),$$

and $\sigma^*(f)(x) = \sup_{t \in \mathbb{R}} ||\sigma_{2^t}| * f(x)|$. Then $||\sigma_{2^t}||_1 \le C$ and $||\sigma^*(f)||_p \le C ||f||_p$ for 1 , where the constant C is independent of f and t.

Lemma 2.4 [5] Suppose that *m* denotes the distinct numbers of $\{\alpha_j\}$. Then for any $x, y \in \mathbb{R}^n, 0 \le \beta \le 1$

$$\left|\int_{1}^{2} e^{-iA_{\lambda}x\cdot y} \frac{d\lambda}{\lambda}\right| \leq C|x\cdot y|^{-\frac{\beta}{m}}$$

where C > 0 is independent of x and y.

3 Proof of Theorem 1.1

Since $\Omega \in H^1(S^{n-1})$ satisfies the cancellation condition (1.2), by (2.4) we can write

$$\Omega(\mathbf{x}') = \sum_{j=1}^{\infty} \lambda_j a_j(\mathbf{x}') + \|\Omega\|_{H^1(S^{n-1})} \omega(\mathbf{x}'),$$

where each a_j is a regular $H^1(S^{n-1})$ atom and $\|\omega\|_{L^{\infty}(S^{n-1})} \leq 1$. Moreover,

$$\sum_{j=1}^{\infty} |\lambda_j| \le C \|\Omega\|_{H^1(S^{n-1})}.$$

For $y \in \mathbb{R}^n$ ($y \neq 0$), we write

~

$$\Omega(y) = \sum_{j=1}^{\infty} \lambda_j \tilde{a}_j(y) + \|\Omega\|_{H^1(S^{n-1})} \tilde{\omega}(y),$$

where $\tilde{a}_j(y) = a_j(A_{\rho(y)^{-1}}y)$ and $\tilde{\omega}(y) = \omega(A_{\rho(y)^{-1}}y)$. It is easy to check that $\tilde{\omega}(y') = \omega(y')$, $\tilde{a}_j(y') = a_j(y')$ for $y' \in S^{n-1}$ and $\tilde{\omega}$ and \tilde{a}_j satisfy (1.1) for any t > 0 and $y \in \mathbb{R}^n$.

Noticing that $J(\frac{x}{|x|})|x|^2$ is a homogeneous polynomial of degree 2 on \mathbb{R}^n by [11, Theorem 2.1], we can write

$$J\left(\frac{x}{|x|}\right)|x|^{2} = P_{2}(x) + |x|^{2}P_{0}(x),$$

where $P_k(x)$ is a harmonic polynomial of degree k (k = 0, 2). Then $J(x') = P_2(x') + P_0(x')$, where $P_k(x')$ is a spherical harmonic polynomial of degree k (k = 0, 2). So by (2.2), we have

(3.1)
$$\int_{S^{n-1}} a_j(y') J(y') \, d\sigma(y')$$
$$= \int_{S^{n-1}} a_j(y') P_2(y') \, d\sigma(y') + \int_{S^{n-1}} a_j(y') P_0(y') \, d\sigma(y') = 0,$$

for all j = 1, 2, ... Thus by (2.4) and (3.1), we know

(3.2)
$$\int_{S^{n-1}} \omega(y') J(y') \, d\sigma(y') = 0.$$

Therefore,

(3.3)
$$\|g_{\phi}(f)\|_{p} \leq \sum_{j=1}^{\infty} |\lambda_{j}| \|g_{a_{j}}(f)\|_{p} + \|\Omega\|_{H^{1}(S^{n-1})} \|g_{\omega}(f)\|_{p},$$

where

$$g_{a_j}(f)(x) = \left(\int_0^\infty \left|\int_{\rho(y) \le t} \frac{\tilde{a}_j(y)}{\rho(y)^{\alpha - 1}} f(x - y) \, dy\right|^2 \frac{dt}{t^3}\right)^{1/2},$$

$$g_{\omega}(f)(x) = \left(\int_0^\infty \left|\int_{\rho(y) \le t} \frac{\tilde{\omega}(y)}{\rho(y)^{\alpha - 1}} f(x - y) \, dy\right|^2 \frac{dt}{t^3}\right)^{1/2}.$$

Since $\omega(x') \in L^{\infty}(S^{n-1})$ and satisfies the cancellation condition (3.2), by Theorem B we get

(3.4)
$$||g_{\omega}(f)||_{p} \leq C||f||_{p}$$

where *C* is independent of ω and *f*. Thus, to prove Theorem 1.1, by (3.3) and (3.4) it suffices to show that there exists *C* > 0, independent of the atoms a_j and *f*, such that for j = 1, 2, ...,

(3.5)
$$||g_{a_i}(f)||_p \le C ||f||_p$$

We only prove (3.5) for the case n > 2. The case for n = 2 can be dealt with using the same method and Lemma 2.2. From now we denote simply a_j , \tilde{a}_j and g_{a_j} by a, \tilde{a} , and g_a , respectively. Without loss of generality, we may also assume that supp(a) is contained in $B(\mathbf{1}, r) \cap S^{n-1}$, where $B(\mathbf{1}, r) = \{y : |y - \mathbf{1}| < r\}$ and $\mathbf{1} = (1, 0, ..., 0)$.

Choose a $C_0^{\infty}(\mathbb{R}^n)$ function φ such that $\varphi(x) = \varphi(\rho(x)), 0 \le \varphi \le 1$ satisfying supp $(\varphi) \subset \{y : 1/2 \le \rho(y) \le 2\}$ and $\int_0^{\infty} \varphi(t)/t \, dt = 1$. Define functions Φ and Δ by $\widehat{\Phi}(\xi) = \varphi(\rho(L_r\xi))$ and $\widehat{\Delta}(\xi) = \varphi(\rho(\xi))$, respectively, where $L_r\xi$ is defined in Lemma 2.1. If we denote $\Phi_t(x) = t^{-\alpha} \Phi(A_{t^{-1}}x)$ and $\Delta_t(x) = t^{-\alpha} \Delta(A_{t^{-1}}x)$, then it is easy to check that $\widehat{\Phi_t}(\xi) = \varphi(t\rho(L_r\xi)), \widehat{\Delta_t}(\xi) = \varphi(t\rho(\xi))$, and $\Phi_t(x) = \frac{1}{r^{n+1}}t^{-\alpha}\Delta(L_{r^{-1}}A_{t^{-1}}x)$, where

$$L_{r^{-1}}A_{t^{-1}}x = (r^{-2}t^{-\alpha_1}x_1, r^{-1}t^{-\alpha_2}x_2, \dots, r^{-1}t^{-\alpha_n}x_n).$$

For any $f \in S(\mathbb{R}^n)$, by taking Fourier transform we have

(3.6)
$$f(x) = \int_{-\infty}^{\infty} \Phi_{2^{t}} * f(x) dt \sim \int_{0}^{\infty} \Phi_{t} * f(x) \frac{dt}{t}.$$

Define

$$g_{\Phi}(f)(x) = \left(\int_0^\infty |\Phi_t * f(x)|^2 \frac{dt}{t}\right)^{1/2} \sim \left(\int_{-\infty}^\infty |\Phi_{2^t} * f(x)|^2 dt\right)^{1/2}.$$

Now we claim that

(3.7)
$$||g_{\Phi}(f)||_p \le C ||f||_p,$$

with *C* independent of r > 0. In fact, by the definition of Φ_t , we have

$$\begin{split} \Phi_t * f(x) &= \frac{1}{r^{n+1}} t^{-\alpha} \int_{\mathbb{R}^n} \Delta(L_{r^{-1}} A_{t^{-1}} y) f(x-y) \, dy \\ &= t^{-\alpha} \int_{\mathbb{R}^n} \Delta(A_{t^{-1}} y) f(L_r(L_{r^{-1}} x-y)) \, dy \\ &= \Delta_t * h(L_{r^{-1}} x), \end{split}$$

where $h(x) = f(L_r x)$. Since $\int_{\mathbb{R}^n} \Delta(x) \, dx = \widehat{\Delta}(0) = \varphi(0) = 0$, by Theorem A we get

$$\begin{split} \|g_{\Phi}(f)\|_{p} &= \left\| \left(\int_{0}^{\infty} |\Phi_{t} * f(\cdot)|^{2} \frac{dt}{t} \right)^{1/2} \right\|_{p} \\ &= \left\{ \int_{\mathbb{R}^{n}} \left(\int_{0}^{\infty} |\Delta_{t} * h(L_{r^{-1}}x)|^{2} \frac{dt}{t} \right)^{p/2} dx \right\}^{1/p} \\ &= \left\{ r^{n+1} \int_{\mathbb{R}^{n}} \left(\int_{0}^{\infty} |\Delta_{t} * h(x)|^{2} \frac{dt}{t} \right)^{p/2} dx \right\}^{1/p} \\ &\leq Cr^{\frac{n+1}{p}} \|h\|_{p} \\ &= C \left(r^{n+1} \int_{\mathbb{R}^{n}} |f(L_{r}x)|^{p} dx \right)^{1/p} = C \|f\|_{p}. \end{split}$$

This is (3.7). Now we denote $\sigma_{2^t}(y) = 2^{-t}\tilde{a}(y)\rho(y)^{-\alpha+1}\chi_{\{\rho(y)\leq 2^t\}}(y)$. Then

$$g_{a}(f)(x) = \left(\int_{0}^{\infty} \left|\int_{\rho(y) \le t} \frac{\tilde{a}(y)}{\rho(y)^{\alpha-1}} f(x-y) dy\right|^{2} \frac{dt}{t^{3}}\right)^{1/2} \\ \sim \left(\int_{-\infty}^{\infty} |\sigma_{2^{t}} * f(x)|^{2} dt\right)^{1/2}.$$

By (3.6) and the Minkowski inequality, we obtain

$$g_a(f)(x) \sim \left(\int_{-\infty}^{\infty} \left|\int_{-\infty}^{\infty} \Phi_{2^{s+t}} * \sigma_{2^t} * f(x)ds\right|^2 dt\right)^{1/2}$$
$$\leq \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} |\sigma_{2^t} * \Phi_{2^{s+t}} * f(x)|^2 dt\right)^{1/2} ds$$
$$=: \int_{-\infty}^{\infty} Q_s(f)(x) \, ds.$$

Using Minkowski's inequality again yields

(3.8)
$$||g_a(f)||_p \le C \Big(\int_0^\infty ||Q_s(f)||_p \, ds + \int_{-\infty}^0 ||Q_s(f)||_p \, ds \Big)$$

By (3.8), it is easy to see that the proof of (3.5) can be reduced to show the following estimates

(3.9)
$$\|Q_s(f)\|_p \leq \begin{cases} C2^{-s\gamma} \|f\|_p & \text{for } s > 0, \\ C2^{s\tau} \|f\|_p & \text{for } s < 0, \end{cases}$$

where τ and γ are some positive constants, and *C* is independent *s* and *f*.

The proof of (3.9) will be completed in two steps.

Step 1: There exists C > 0, independent of *s* and *f*, such that

(3.10)
$$||Q_s(f)||_p \le C ||f||_p$$
 for $1 .$

First we consider the case $1 . Denote <math>G_{s+t}(x) = \Phi_{2^{s+t}} * f(x)$. Since $a(x') \in L^1(S^{n-1})$, by Lemma 2.3, we know $\|\sigma_{2^t}\|_1 \leq C$, then

(3.11)
$$\left\|\int_{-\infty}^{\infty}\sigma_{2^{t}}*G_{s+t}(\cdot)dt\right\|_{1} \leq C\left\|\int_{-\infty}^{\infty}G_{t}(\cdot)dt\right\|_{1}.$$

On the other hand, for $1 < q < \infty$, also by Lemma 2.3, we get

(3.12)
$$\|\sup_{t\in\mathbb{R}} |\sigma_{2^t} * G_{s+t}|\|_q \le \|\sigma^*(\sup_{t\in\mathbb{R}} |G_t|)\|_q \le C \|\sup_{t\in\mathbb{R}} |G_t|\|_q$$

If we define $TG_{s+t}(x) = \sigma_{2^t} * G_{s+t}(x)$, then (3.11) and (3.12) show that *T* is a bounded operator on $L^1(L^1(\mathbb{R}), \mathbb{R}^n)$ and $L^q(L^{\infty}(\mathbb{R}), \mathbb{R}^n)$, respectively. Since 1 , we can take <math>q > 1 such that 1/q = 2/p - 1. Then by using the operator interpolation theorem between (3.11) and (3.12), we know that the operator *T* is also bounded on $L^p(L^2(\mathbb{R}), \mathbb{R}^n)$. That is

$$\left\|\left(\int_{-\infty}^{\infty}|\sigma_{2^{t}}*G_{s+t}(\cdot)|^{2}dt\right)^{1/2}\right\|_{p}\leq C\left\|\left(\int_{-\infty}^{\infty}|G_{t}(\cdot)|^{2}dt\right)^{1/2}\right\|_{p}.$$

From this and (3.7), we prove (3.10) for $1 . Moreover, by (3.7) and the <math>L^2$ boundedness of σ^* , (3.10) holds for the case p = 2. Now let us deal with the case p > 2. Let q = (p/2)'. Then

$$\|Q_s f\|_p^2 = \sup_{\nu} \left| \int_{\mathbb{R}^n} \int_{-\infty}^{\infty} |\sigma_{2^t} * \Phi_{2^{s+t}} * f(x)|^2 \nu(x) \, dt \, dx \right|,$$

where the supremum is taken over all $\nu(x) \in L^q(\mathbb{R}^n)$ with $\|\nu\|_q \leq 1$. Applying Hölder's inequality and noting the fact $\|\sigma_{2^t}\|_1 \leq C$,

where C is independent of s, f and ν . Using Hölder's inequality again and (3.7), Lemma 2.3, we obtain

$$\|Q_s f\|_p^2 \le C \sup_{\nu} \|g_{\Phi}(f)\|_p^2 \|\sigma^*(|\nu|)\|_q \le C \|f\|_p^2.$$

Thus we have (3.10) for p > 2. From the proof of (3.10) above, it is easy to check that the constant *C* is independent of *s* and *f*.

Step 2: There exists C > 0, independent of f and s, such that

(3.13)
$$\|Q_s(f)\|_2 \leq \begin{cases} C2^{-s} \|f\|_2 & \text{for } s > 0, \\ C2^{\beta s/m} \|f\|_2 & \text{for } s < 0, \end{cases}$$

where $0 < \beta < \frac{1}{2\alpha_n}$ and *m* denotes the distinct numbers of $\{\alpha_j\}$. By Plancherel's theorem,

(3.14)
$$||Q_s f||_2^2 \leq \int_{-\infty}^{\infty} \int_{\mathbb{R}^n} |\widehat{f}(\xi)|^2 |\varphi(2^{s+t}\rho(L_r\xi))|^2 |\widehat{\sigma_{2^t}}(\xi)|^2 d\xi dt,$$

where

$$\widehat{\sigma_{2^t}}(\xi) = 2^{-t} \int_0^{2^t} \int_{\mathcal{S}^{n-1}} a(y') J(y') e^{-2\pi i \xi \cdot A_\rho y'} d\sigma(y') d\rho$$

and *a* is a regular $H^1(S^{n-1})$ atom supported in $B(\mathbf{1}, r) \cap S^{n-1}$, where $\mathbf{1} = (1, 0, ..., 0)$. We first give the estimate of $|\widehat{\sigma_{2^r}}(\xi)|$. Let $\eta(y') = a(y')J(y')/||J||_{L^{\infty}(S^{n-1})}$. By (3.1) and $J(y') \in C_0^{\infty}(S^{n-1})$, we know $\eta(y')$ satisfies (2.3) and (2.5), and $\operatorname{supp}(\eta) \subset B(\mathbf{1}, r) \cap S^{n-1}$. Then

(3.15)
$$\widehat{\sigma_{2^{t}}}(\xi) = \frac{\|J\|_{L^{\infty}(S^{n-1})}}{2^{t}} \int_{0}^{2^{t}} \int_{S^{n-1}}^{2^{t}} \eta(y') e^{-2\pi i \xi \cdot A_{\rho} y'} d\sigma(y') d\rho.$$

In the following, we want to prove $|\widehat{\sigma_{2^t}}(\xi)| \leq C \min\{|L_r A_{2^t}\xi|, |L_r A_{2^t}\xi|^{-\beta/m}\}$, where $0 < \beta < \frac{1}{2\alpha_n}$ and *m* denotes the distinct numbers of $\{\alpha_j\}$. For any $\xi \neq 0$, denote $\frac{A_{\rho}\xi}{|A_{\rho}\xi|} =: \zeta := (\zeta'_1, \zeta_*) \in S^{n-1}$, where $\zeta_* \in \mathbb{R}^{n-1}$. We choose a rotation 0 in \mathbb{R}^n such that $\mathcal{O}(\zeta) = \mathbf{1}$. Since $\mathcal{O}^{-1} = \mathcal{O}^t$, where \mathcal{O}^{-1} and \mathcal{O}^t denote the inverse and transpose of 0, respectively, it is easy to check that ζ is the first row vector of 0. Thus, we have $\mathcal{O}^2(\zeta) = (\zeta'_1, \gamma_*)$, where $\gamma_* \in \mathbb{R}^{n-1}$. Now, we take a rotation Ω_{n-1} in \mathbb{R}^{n-1} such that $\Omega_{n-1}(\zeta_*) = \gamma_*$. Set $\mathcal{R} = \begin{pmatrix} 1 & 0 \\ 0 & \Omega_{n-1} \end{pmatrix}$; then \mathcal{R} is a rotation in \mathbb{R}^n , such that for any $\gamma' := (\ell, \gamma'_2, \ldots, \gamma'_n)$ in S^{n-1} , $\langle \mathbf{1}, \mathcal{R}\gamma' \rangle = \ell$. Thus

$$\widehat{\sigma_{2^t}}(\xi) = \frac{\|J\|_{L^{\infty}(S^{n-1})}}{2^t} \int_0^{2^t} \int_{S^{n-1}}^{2^t} \eta(\mathfrak{O}^{-1}(\mathfrak{R} y')) e^{-2\pi i |A_{\rho}\xi| \langle \mathbf{1}, \mathfrak{R} y' \rangle} \, d\sigma(y') d\rho.$$

Now $\eta(\mathcal{O}^{-1}(\mathcal{R}y'))$ also satisfies (2.3) and (2.5), and is supported in $B(\zeta, r) \cap S^{n-1}$. Thus we have

$$\widehat{\sigma_{2^i}}(\xi) = \frac{\|J\|_{L^{\infty}(S^{n-1})}}{2^t} \int_0^{2^t} \int_{\mathbb{R}}^{2^t} F_{\eta}(\ell) e^{-2\pi i |A_{\rho}\xi|\ell} \, d\ell d\rho,$$

where $F_{\eta}(\ell)$ is the function defined in Lemma 2.1. By Lemma 2.1, we know that F_{η} is supported in $(-2r(\zeta) + \delta_1, 2r(\zeta) + \delta_1)$, where $r(\zeta) = \frac{|L_r A_\rho \xi|}{|A_\rho \xi|}$ and $\delta_1 = \frac{\rho^{\alpha_1} \xi_1}{|A_\rho \xi|}$. Thus $N(\ell) = r(\zeta)F_{\eta}(r(\zeta)\ell)$ is a function with support in the interval $(-2 + \frac{\delta_1}{r(\zeta)}, 2 + \frac{\delta_1}{r(\zeta)})$, and $||N||_{\infty} < C$ (*C* is independent of η and ρ) and $\int_{\mathbb{R}} N(\ell) d\ell = 0$. After changing a variable we have

$$\widehat{\sigma_{2^{i}}}(\xi) = \frac{\|J\|_{L^{\infty}(S^{n-1})}}{2^{t}} \int_{0}^{2^{t}} \int_{\mathbb{R}}^{N(\ell)} N(\ell) e^{-2\pi i \ell |L_{r}A_{\rho}\xi|} d\ell d\rho.$$

So by the cancellation property of *N*, we obtain that

$$(3.16) \quad |\widehat{\sigma_{2^{t}}}(\xi)| = \frac{\|J\|_{L^{\infty}(S^{n-1})}}{2^{t}} \Big| \int_{0}^{2^{t}} \int_{\mathbb{R}} N(\ell) [e^{-2\pi i |L_{r}A_{\rho}\xi|\ell} - e^{-2\pi i \rho^{\alpha_{1}}\xi_{1}}] \, d\ell d\rho \Big|$$

$$\leq C2^{-t} \int_{0}^{2^{t}} \int_{|\ell - \frac{\zeta_{1}}{r(\zeta)}|} \\\leq 2|N(\ell)| |L_{r}A_{\rho}\xi| \Big| \ell - \frac{\zeta_{1}}{r(\zeta)} \Big| \, d\ell \, d\rho \leq C \int_{0}^{1} |L_{r}A_{2^{t}\rho}\xi| \, d\rho \\\leq C|L_{r}A_{2^{t}}\xi|.$$

On the other hand, using Hölder's inequality and (3.15), we have

$$(3.17)|\widehat{\sigma_{2^{t}}}(\xi)|^{2} = \left| \frac{\|J\|_{L^{\infty}(S^{n-1})}}{2^{t}} \int_{0}^{2^{t}} \int_{S^{n-1}}^{2^{t}} \eta(y')e^{-2\pi i\xi \cdot A_{\rho}y'} \, d\sigma(y') \, d\rho \right|^{2}$$

$$\leq C \frac{1}{2^{t}} \int_{0}^{2^{t}} \left| \int_{S^{n-1}} \eta(y')e^{-2\pi i\xi \cdot A_{\rho}y'} \, d\sigma(y') \right|^{2} d\rho$$

$$= C \sum_{j=-\infty}^{0} 2^{j-1} \frac{1}{2^{t+j-1}} \int_{2^{t+j-1}}^{2^{t+j}} \left| \int_{S^{n-1}} \eta(y')e^{-2\pi i\xi \cdot A_{\rho}y'} \, d\sigma(y') \right|^{2} d\rho$$

$$\leq C \sum_{j=-\infty}^{0} 2^{j-1} \int_{2^{t+j-1}}^{2^{t+j}} \left| \int_{S^{n-1}} \eta(y')e^{-2\pi i\xi \cdot A_{\rho}y'} \, d\sigma(y') \right|^{2} \frac{d\rho}{\rho}$$

$$= C \sum_{j=-\infty}^{0} 2^{j-1} B_{t,j}(\xi),$$

where

$$B_{t,j}(\xi) = \int_{2^{t+j-1}}^{2^{t+j}} \left| \int_{S^{n-1}} \eta(y') e^{-2\pi i \xi \cdot A_{\rho} y'} \, d\sigma(y') \right|^2 \frac{d\rho}{\rho}.$$

Then we get

$$B_{t,j}(\xi) = \int_{2^{t+j-1}}^{2^{t+j}} \iint_{S^{n-1} \times S^{n-1}} \eta(y') \overline{\eta(x')} e^{-2\pi i A_{\rho}(y'-x') \cdot \xi} \, d\sigma(y') d\sigma(x') \frac{d\rho}{\rho}$$

$$\leq C \iint_{S^{n-1} \times S^{n-1}} |\eta(y')| |\eta(x')| \Big| \int_{2^{t+j-1}}^{2^{t+j}} e^{-2\pi i A_{\rho}(y'-x') \cdot \xi} \frac{d\rho}{\rho} \Big| \, d\sigma(y') d\sigma(x')$$

By Lemma 2.4, we know

$$\left| \int_{2^{t+j-1}}^{2^{t+j}} e^{-2\pi i A_{\rho}(y'-x')\cdot\xi} \frac{d\rho}{\rho} \right| = \left| \int_{1}^{2} e^{-2\pi i A_{2^{t+j-1}\rho}(y'-x')\cdot\xi} \frac{d\rho}{\rho} \right|$$
$$\leq C \left(\left| (y'-x')\cdot A_{2^{t+j-1}}\xi \right| \right)^{-2\beta/m},$$

where $0 < \beta < \frac{1}{2\alpha_n}$ and *m* denotes the distinct numbers of $\{\alpha_j\}$. Then by the above inequality we get

(3.18)
$$B_{t,j}(\xi) \leq C \iint_{S^{n-1} \times S^{n-1}} |\eta(y')| |\eta(x')| \\ \times \left(|(y'-x') \cdot A_{2^{t+j-1}}\xi| \right)^{-2\beta/m} d\sigma(y') d\sigma(x') = CI_1(\xi),$$

where

$$I_{1}(\xi) = \iint_{S^{n-1} \times S^{n-1}} |\eta(y')| |\eta(x')| \big(|(y'-x') \cdot A_{2^{t+j-1}}\xi| \big)^{-2\beta/m} d\sigma(y') d\sigma(x').$$

As was done above, for any $\xi \neq 0$, we choose a rotation \mathcal{O} in \mathbb{R}^n such that

$$\mathfrak{O}(A_{2^{t+j-1}}\xi) = |A_{2^{t+j-1}}\xi|\mathbf{1} = |A_{2^{t+j-1}}\xi|(1,0,\ldots,0).$$

Thus, we may take another rotation \mathcal{R} in \mathbb{R}^n such that for any

$$y' = (y'_1, y'_2, \dots, y'_n) \in S^{n-1}$$

 $\langle \mathbf{1}, \mathcal{R}y' \rangle = y'_1 = \langle \mathbf{1}, y' \rangle$. Now, let $y' = (s, y'_2, y'_3, \dots, y'_n)$, $x' = (\delta, x'_2, x'_3, \dots, x'_n)$. Then it is easy to see that

$$\begin{split} \mathrm{I}_{1}(\xi) &= \iint_{S^{n-1} \times S^{n-1}} |\eta(\mathfrak{O}^{-1}(\mathfrak{R} y'))| |\eta(\mathfrak{O}^{-1}(\mathfrak{R} x'))| \\ &\times \left(|(y'-x') \cdot |A_{2^{t+j-1}}\xi|\mathbf{1}| \right)^{-2\beta/m} d\sigma(y') d\sigma(x'), \end{split}$$

where \mathcal{O}^{-1} is the inverse of \mathcal{O} . Now $\eta(\mathcal{O}^{-1}(\mathcal{R}y'))$ satisfies (2.3) and (2.5), and is supported in $B(\vartheta, r) \cap S^{n-1}$ where $\vartheta = \frac{A_{2^{t+j-1}}\xi}{|A_{2^{t+j-1}}\xi|}$. Thus we have

$$I_1(\xi) = \iint_{\mathbb{R}\times\mathbb{R}} G_{\eta}(s) G_{\eta}(\delta) \left(|A_{2^{t+j-1}}\xi| |s-\delta| \right)^{-2\beta/m} ds d\delta,$$

where $G_{\eta}(s)$ is the function defined in Lemma 2.1. By Lemma 2.1, we know $\supp(G_{\eta}) \subset (-2r(\vartheta) + \vartheta_1, 2r(\vartheta) + \vartheta_1)$, where $r(\vartheta) = \frac{|L_r A_{2^{t+j-1}}\xi|}{|A_{2^{t+j-1}}\xi|}$ and $\vartheta_1 = \frac{2^{(t+j-1)\alpha_1}\xi_1}{|A_{2^{t+j-1}}\xi|}$. Thus $\varphi(s) = r(\vartheta)G_{\eta}\left(r(\vartheta)(s - \frac{\vartheta_1}{r(\vartheta)})\right)$ is a function supported in the interval (-2, 2), and $\|\varphi\|_{\infty} < C$ (*C* is independent of *r*, *t*, *j* and ϑ). Since $2\beta/m < 1$, we get

$$\begin{split} \mathrm{I}_{1}(\xi) &= \int_{-2}^{2} \int_{-2}^{2} \varphi(s)\varphi(\delta) \left(\left| L_{r}A_{2^{t+j-1}}\xi \right| |s-\delta| \right)^{-2\beta/m} ds d\delta \\ &\leq C |L_{r}A_{2^{t+j-1}}\xi|^{-2\beta/m} \int_{-2}^{2} \int_{-2}^{2} |s-\delta|^{-2\beta/m} ds d\delta \\ &\leq C |L_{r}A_{2^{t+j}}\xi|^{-2\beta/m}. \end{split}$$

This together with (3.18) gives

(3.19)
$$B_{t,j}(\xi) \le C |L_r A_{2^{t+j}}\xi|^{-2\beta/m}.$$

Since $0<\beta<\frac{1}{2\alpha_n}$ and $m\geq$ 1, then by (3.17) and (3.19), we get

$$(3.20) \qquad |\widehat{\sigma_{2^{t}}}(\xi)|^{2} \leq C \sum_{j=-\infty}^{0} 2^{j-1} |L_{r}A_{2^{t+j}}\xi|^{-2\beta/m} \\ \leq C \sum_{j=-\infty}^{0} 2^{j(1-2\beta\alpha_{n}/m)} |L_{r}A_{2^{t}}\xi|^{-2\beta/m} \\ \leq C \sum_{j=-\infty}^{0} 2^{j(1-2\beta\alpha_{n}/m)} |L_{r}A_{2^{t}}\xi|^{-2\beta/m} \\ \leq C |L_{r}A_{2^{t}}\xi|^{-2\beta/m}.$$

By (3.16) and (3.20), we have

$$|\widehat{\sigma_{2^t}}(\xi)| \leq C \min\{|L_r A_{2^t}\xi|, |L_r A_{2^t}\xi|^{-\beta/m}\}.$$

Now we give the estimates $||Q_s(f)||_2$. For s > 0, by (3.14) and the properties of φ , using the estimate $|\widehat{\sigma_{2^t}}(\xi)| \leq C|L_r A_{2^t}\xi|$ and the Plancherel theorem, we get

$$\begin{split} \|Q_{s}(f)\|_{2}^{2} &\leq C \int_{-\infty}^{\infty} \int_{2^{-s-1} \leq \rho(LrA_{2^{t}}\xi) \leq 2^{-s+1}} |\widehat{f}(\xi)|^{2} |L_{r}A_{2^{t}}\xi|^{2} d\xi dt \\ &= C \frac{1}{r^{n+1}} \int_{-\infty}^{\infty} \int_{2^{-s-1} \leq 2^{t} \rho \leq 2^{-s+1}} \int_{S^{n-1}} J(\xi') |\widehat{f}(L_{r^{-1}}A_{\rho}\xi')|^{2} |A_{2^{t}}A_{\rho}\xi'|^{2} \rho^{\alpha-1} d\sigma(\xi') d\rho dt \\ &\leq C \frac{1}{r^{n+1}} \int_{-\infty}^{\infty} \int_{S^{n-1}} J(\xi') |\widehat{f}(L_{r^{-1}}A_{\rho}\xi')|^{2} ((2^{-s+1})^{2\alpha_{1}} + \dots + (2^{-s+1})^{2\alpha_{n}}) \\ &\times \left(\int_{-s-1}^{-s+1-\frac{\log\rho}{\log 2}} dt \right) \rho^{\alpha-1} d\sigma(\xi') d\rho \\ &\leq C 2^{-2s\alpha_{1}} \frac{1}{r^{n+1}} \int_{-\infty}^{\infty} \int_{S^{n-1}} J(\xi') |\widehat{f}(L_{r^{-1}}A_{\rho}\xi')|^{2} \rho^{\alpha-1} d\sigma(\xi') d\rho \\ &\leq C 2^{-2s\alpha_{1}} \frac{1}{r^{n+1}} \int_{\mathbb{R}^{n}} |\widehat{f}(L_{r^{-1}}\xi)|^{2} d\xi \\ &\leq C 2^{-2s} ||f||_{2}^{2}. \end{split}$$

So we have $||Q_s(f)||_2 \le C2^{-s}||f||_2$ for s > 0. Using the estimate

$$|\widehat{\sigma_{2^t}}(\xi)| \le C |L_r A_{2^t} \xi|^{-\beta/m}$$

and the same idea, we have $||Q_s(f)||_2 \le C2^{\beta s/m} ||f||_2$ for s < 0. Thus we get (3.13), and obviously, the constant *C* is independent of *s* and *f*.

Applying the Riesz–Thorin interpolation theorem of sub-linear operators [2] between (3.10) and (3.13), we know that there exist two constants $\gamma, \tau > 0$ such that

$\ Q_s(f)\ _p \le C2^{-\gamma s} \ f\ _p$	for $s > 0, 1 ,$
$\ Q_s(f)\ _p \le C2^{\tau s} \ f\ _p$	for $s < 0, 1 < p < \infty$.

Thus, we obtain (3.9) and (3.5) follows.

Acknowledgement The authors would like to express their gratitude to the referee for valuable comments and suggestions.

References

- [1] A. Benedek, A. Calderón and R. Panzone, *Convolution operators on Banach space valued functions*. Proc. Natl. Acad. Sci. U.S.A. **48**(1962), 356–365.
- [2] A. Calderón and A. Zygmund, A note on the interpolation of sublinear operator. Amer. J. Math, 78(1956), 282–288.
- [3] L. Colzani, Hardy Spaces on Sphere. Ph.D. Thesis, Washington University, St. Louis, MO, 1982.
- [4] Y. Ding, D. Fan, and Y. Pan, L^p boundedness of Marcinkiewicz integrals with Hardy space function kernels. Acta Math. Sin. Ser. (Engl. Ser.), 16(2000), 593–600.
- [5] Y. Ding, Q. Xue, and K. Yabuta, *Parabolic Littlewood-Paley g-function with rough kernels*. Acta Math. Sin. (Engl. Ser.) 24(2008), 2049–2060.
- [6] D. Fan and Y. Pan, A singular integral operator with rough kernel. Proc. Amer. Math. Soc. 125(1997), 3695–3703.
- [7] E. Fabes and N. Rivière, Singular integrals with mixed homogeneity. Studia Math. 27(1966), 19–38.
- [8] W. R. Madych, On Littlewood-Paley functions. Studia Math. 50(1974), 43-63.
- [9] A. Nagel, N. Rivière, and S. Wainger, On Hilbert transforms along curves. II. Amer. J. Math. 98(1976), 395–403.
- [10] E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz. Trans. Amer. Math. Soc. 88(1958), 430–466.
- [11] E. M. Stein and G. Weiss, *Introduction to Fourier Analysis on Euclidean Spaces*. Princeton University Press, Princeton, NJ, 1971.

Department of Mathematics and Mechanics Applied Science School, University of Science and Technology Beijing, Beijing 100083, The People's Republic of China *e-mail*: yanpingch@126.com

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems (BNU), Ministry of Education, Beijing 100875, The People's Republic of China e-mail: dingy@bnu.edu.cn