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The Parabolic Littlewood–Paley Operator
with Hardy Space Kernels

Yanping Chen and Yong Ding

Abstract. In this paper, we give the Lp boundedness for a class of parabolic Littlewood–Paley g-func-

tion with its kernel function Ω is in the Hardy space H1(Sn−1).

1 Introduction

Let R
n be the Euclidean space with the routine norm |x| for each x ∈ R

n. Denote

by Sn−1
= {x ∈ R

n : |x| = 1} the unit sphere on R
n equipped with the Lebesgue

measure σ(x ′). Let α1, . . . , αn be fixed real numbers with αi ≥ 1. It is easy to see

that for fixed x ∈ R
n, the function

F(x, ρ) =

n∑

i=1

xi
2

ρ2αi

is a strictly decreasing function of ρ > 0. Therefore, there exists a unique ρ(x) such

that F(x, ρ) = 1. It was proved in [7] that ρ(x) is a metric on R
n. For x ∈ R

n, set

x1 = ρα1 cosϕ1 · · · cosϕn−2 cosϕn−1

x2 = ρα2 cosϕ1 · · · cosϕn−2 sinϕn−1

...

xn−1 = ραn−1 cosϕ1 sinϕ2

xn = ραn sinϕ1.

Then dx = ρα−1 J(x ′)dρdσ(x ′), and ρα−1 J(x ′) is the Jacobian of the above trans-

form, where α =
∑n

i=1 αi and J(x ′) = α1x ′2
1 + · · · + αnx ′2

n . It is easy to see that

J(x ′) ∈ C∞(Sn−1) with 1 ≤ J(x ′) ≤ M for some M ≥ 1. Without loss of generality,

we may assume αn ≥ αn−1 ≥ · · · ≥ α1 ≥ 1.

For t > 0, let At = diag[tα1 , . . . , tαn ]. Suppose that Ω(x) is a real valued and

measurable function defined on R
n. We say Ω(x) is homogeneous of degree zero

with respect to At , if for any t > 0 and x ∈ R
n

(1.1) Ω(Atx) = Ω(x).
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Moreover, we also assume that Ω(x) satisfies the following cancellation condition:

(1.2)

∫

Sn−1

Ω(x ′) J(x ′)dσ(x ′) = 0.

In 1966, Fabes and Rivière [7] proved that if Ω ∈ C1(Sn−1) satisfies (1.1) and (1.2),

then the parabolic singular integral operator TΩ is bounded on Lp(R
n) for 1 <

p < ∞, where TΩ is defined by

TΩ f (x) = p.v.

∫

Rn

Ω(y)

ρ(y)α
f (x − y) dy.

In 1976, Nagel, Rivière and Wainger [9] improved the above result. They showed TΩ

is still bounded on Lp(R
n) for 1 < p < ∞ if replacing Ω ∈ C1(Sn−1) by a weaker

condition Ω ∈ L log+L(Sn−1).

On the other hand, in 1974, Madych considered the Lp boundedness with respect

to the transform At of the Littlewood–Paley operator. Let ψ ∈ S(R
n) satisfy ψ̂(0) =

0, where and below, ψ̂ denotes the Fourier transform of ψ. Let ψt(x) = t−αψ(At−1 x)

for t > 0. Then the Littlewood–Paley operator related to At is defined by

gψ( f )(x) =

(∫ ∞

0

|ψt ∗ f (x)|2
dt

t

) 1/2

.

Theorem A [8] The Littlewood–Paley operator gψ is of type (p, p) for 1 < p <∞.

Inspired by the works in [7–9], recently Ding, Xue and Yabuta [5] improved the

above result. More precisely, the authors in [5] proved that the parabolic Littlewood–

Paley operator is still bounded on Lp if ψ(x)is replaced by a kernel function φ(x) =

Ω(x)ρ(x)−α+1χ{ρ(x)≤1}(x) with Ω ∈ Lq(Sn−1) (q > 1) satisfying (1.1) and (1.2).

Theorem B [5] If Ω ∈ Lq(Sn−1)(q > 1) satisfies (1.1) and (1.2), then gφ is of type

(p, p) for 1 < p <∞.

Notice that on the unit sphere Sn−1, there are the following containing relation-

ships:

C∞ $ Lq (q > 1) $ L log+ L $ H1 $ L1,

where H1 denotes the Hardy space on Sn−1 (see §2 for its definition). Hence, a natural

question is whether the size condition assumed on Ω can be weakened further. The

purpose of this paper is to give a positive answer to this question.

Theorem 1.1 If Ω ∈ H1(Sn−1) satisfies (1.1) and (1.2), then gφ is of type (p, p) for

1 < p <∞.

Remark. If α1 = · · · = αn = 1, then ρ(x) = |x| and α = n. In this case, gφ = µΩ

and the latter is just the classical Marcinkiewicz integral, which was studied by many

authors. (See [1, 4, 10], for example.) Moreover, note also that the Ω in Theorem 1.1

(also Theorem B) has no any smoothness on Sn−1.

https://doi.org/10.4153/CMB-2009-053-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-053-8


The Parabolic Littlewood–Paley Operator with Hardy Space Kernels 523

2 Definitions and Lemmas

Let us begin with the definition of Hardy space H1(Sn−1). For f ∈ L1(Sn−1) and

x ′ ∈ Sn−1, we denote

P+ f (x ′) = sup
0<t<1

∣∣∣
∫

Sn−1

f (y ′)Ptx ′(y ′) dσ(y ′)
∣∣∣ ,

where Ptx ′(y ′) =
1−t2

|y ′−tx ′|n for y ′ ∈ Sn−1. Then

H1(Sn−1) = { f ∈ L1(Sn−1) : ‖P+ f ‖L1(Sn−1) <∞},

and we define ‖ f ‖H1(Sn−1) = ‖P+ f ‖L1(Sn−1) if f ∈ H1(Sn−1).

A very useful characterization of the space H1(Sn−1) is its atomic decomposition.

Let us first recall the definition of atoms. A regular H1(Sn−1) atom is a function a(x ′)

on L∞(Sn−1) satisfying the following conditions:

(2.1) supp(a) ⊂ Sn−1

∩ {y ∈ R
n : |y − ξ ′| < r for some ξ ′ ∈ Sn−1 and r ∈ (0, 2]};

(2.2)

∫

Sn−1

a(x ′)Ym(x ′) dσ(x ′) = 0

for any spherical harmonic polynomial Ym with degree m ≤ N, where N is any fixed

integer;

(2.3) ‖a‖L∞(Sn−1) ≤ r1−n.

An exceptional H1(Sn−1) atom u(x ′) is an L∞(Sn−1) function bounded by 1.

From [3], we find that any Ω ∈ H1(Sn−1) has an atomic decomposition

Ω =

∞∑

j=1

λ ja j +

∞∑

i=1

δiui ,

where each a j is a regular H1(Sn−1) atom and each ui is an exceptional atom. More-

over,
∞∑

j=1

|λ j | +

∞∑

i=1

|δi | ≤ C‖Ω‖H1(Sn−1).

We note that for any x ′ ∈ Sn−1,

∣∣∣
∞∑

i=1

δiui(x ′)
∣∣∣ ≤

∞∑

i=1

|δi|.
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Without loss of generality, we can assume

∣∣∣
∞∑

i=1

δiui(x ′)
∣∣∣ ≤ ‖Ω‖H1(Sn−1).

Thus we write
∞∑

i=1

δiui(x ′) = ‖Ω‖H1(Sn−1)ω(x ′),

with ω(x ′) =
∑∞

i=1 δiui(x ′)/‖Ω‖H1(Sn−1). In this new definition, for x ′ ∈ Sn−1,

(2.4) Ω(x ′) =

∞∑

j=1

λ ja j(x ′) + ‖Ω‖H1(Sn−1)ω(x ′) and ‖ω‖L∞(Sn−1) ≤ 1.

The following Lemmas 2.1 and 2.2 can be found in [6].

Lemma 2.1 [6] Suppose that n ≥ 3 and b satisfies (2.1), (2.3), and

(2.5)

∫

Sn−1

b(y ′) dσ(y ′) = 0.

Let

Fb(s) = (1 − s2)(n−3)/2χ(−1,1)(s)

∫

Sn−2

b(s, (1 − s2)1/2 ỹ)dσ(ỹ),

Gb(s) = (1 − s2)(n−3)/2χ(−1,1)(s)

∫

Sn−2

|b(s, (1 − s2)1/2 ỹ)|dσ(ỹ).

Then there exists a constant C, independent of b, such that

supp(Fb) ⊂ (ξ ′1 − 2r(ξ ′), ξ ′1 + 2r(ξ ′)),(2.6)

supp(Gb) ⊂ (ξ ′1 − 2r(ξ ′), ξ ′1 + 2r(ξ ′)),(2.7)

‖Fb‖∞ ≤ C/r(ξ ′), ‖Gb‖∞ ≤ C/r(ξ ′),(2.8)
∫

R

Fb(s) ds = 0,(2.9)

where r(ξ ′) = |ξ|−1|Lrξ| and Lrξ = (r2ξ1, rξ2, . . . , rξn).

Lemma 2.2 [6] Suppose that n = 2 and b satisfies (2.1), (2.3) and (2.5). Let

Fb(s) = (1 − s2)−1/2χ(−1,1)(s)
(

b(s, (1 − s2)1/2) + b(s,−(1 − s2)1/2)
)
,

Gb(s) = (1 − s2)−1/2χ(−1,1)(s)
(
|b(s, (1 − s2)1/2)| + |b(s,−(1 − s2)1/2)|

)
.

Then Fb(s) satisfies (2.6) and (2.9), and ‖Fb‖q ≤ C|Lr(ξ
′)|−1+1/q. And Gb(s) satisfies

(2.7) and ‖Gb‖q ≤ C|Lr(ξ
′)|−1+1/q for some q ∈ (1, 2).
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Lemma 2.3 [5] For Ω ∈ L1(Sn−1), denote

σ2t (x) = 2−t
Ω(x)ρ(x)−α+1χ{ρ(x)≤2t}(x),

and σ∗( f )(x) = supt∈R
||σ2t | ∗ f (x)|. Then ‖σ2t‖1 ≤ C and ‖σ∗( f )‖p ≤ C‖ f ‖p for

1 < p <∞, where the constant C is independent of f and t.

Lemma 2.4 [5] Suppose that m denotes the distinct numbers of {α j}. Then for any

x, y ∈ R
n, 0 ≤ β ≤ 1

∣∣∣
∫ 2

1

e−iAλx·y dλ

λ

∣∣∣ ≤ C|x · y|−
β
m ,

where C > 0 is independent of x and y.

3 Proof of Theorem 1.1

Since Ω ∈ H1(Sn−1) satisfies the cancellation condition (1.2), by (2.4) we can

write

Ω(x ′) =

∞∑

j=1

λ ja j(x ′) + ‖Ω‖H1(Sn−1)ω(x ′),

where each a j is a regular H1(Sn−1) atom and ‖ω‖L∞(Sn−1) ≤ 1. Moreover,

∞∑

j=1

|λ j | ≤ C‖Ω‖H1(Sn−1).

For y ∈ R
n (y 6= 0), we write

Ω(y) =

∞∑

j=1

λ j ã j(y) + ‖Ω‖H1(Sn−1)ω̃(y),

where ã j(y) = a j (Aρ(y)−1 y) and ω̃(y) = ω(Aρ(y)−1 y). It is easy to check that ω̃(y ′) =

ω(y ′), ã j (y ′) = a j(y ′) for y ′ ∈ Sn−1 and ω̃ and ã j satisfy (1.1) for any t > 0 and

y ∈ R
n.

Noticing that J( x
|x| )|x|

2 is a homogeneous polynomial of degree 2 on R
n by [11,

Theorem 2.1], we can write

J
( x

|x|

)
|x|2 = P2(x) + |x|2P0(x),

where Pk(x) is a harmonic polynomial of degree k (k = 0, 2). Then J(x ′) = P2(x ′) +

P0(x ′), where Pk(x ′) is a spherical harmonic polynomial of degree k (k = 0, 2). So by

(2.2), we have

(3.1)

∫

Sn−1

a j(y ′) J(y ′) dσ(y ′)

=

∫

Sn−1

a j(y ′)P2(y ′) dσ(y ′) +

∫

Sn−1

a j(y ′)P0(y ′) dσ(y ′) = 0,
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for all j = 1, 2, . . . . Thus by (2.4) and (3.1), we know

(3.2)

∫

Sn−1

ω(y ′) J(y ′) dσ(y ′) = 0.

Therefore,

(3.3) ‖gφ( f )‖p ≤
∞∑

j=1

|λ j |‖ga j
( f )‖p + ‖Ω‖H1(Sn−1)‖gω( f )‖p,

where

ga j
( f )(x) =

(∫ ∞

0

∣∣∣
∫

ρ(y)≤t

ã j(y)

ρ(y)α−1
f (x − y) dy

∣∣∣
2 dt

t3

) 1/2

,

gω( f )(x) =

(∫ ∞

0

∣∣∣
∫

ρ(y)≤t

ω̃(y)

ρ(y)α−1
f (x − y) dy

∣∣∣
2 dt

t3

) 1/2

.

Since ω(x ′) ∈ L∞(Sn−1) and satisfies the cancellation condition (3.2), by Theorem B

we get

(3.4) ‖gω( f )‖p ≤ C‖ f ‖p,

where C is independent of ω and f . Thus, to prove Theorem 1.1, by (3.3) and (3.4)

it suffices to show that there exists C > 0, independent of the atoms a j and f , such

that for j = 1, 2, . . . ,

(3.5) ‖ga j
( f )‖p ≤ C‖ f ‖p.

We only prove (3.5) for the case n > 2. The case for n = 2 can be dealt with using

the same method and Lemma 2.2. From now we denote simply a j , ã j and ga j
by a, ã,

and ga, respectively. Without loss of generality, we may also assume that supp(a) is

contained in B(1, r) ∩ Sn−1, where B(1, r) = {y : |y − 1| < r} and 1 = (1, 0, . . . , 0).

Choose a C∞
0 (R

n) function ϕ such that ϕ(x) = ϕ(ρ(x)), 0 ≤ ϕ ≤ 1 satisfying

supp(ϕ) ⊂ {y : 1/2 ≤ ρ(y) ≤ 2} and
∫ ∞

0
ϕ(t)/t dt = 1. Define functions Φ

and ∆ by Φ̂(ξ) = ϕ(ρ(Lrξ)) and ∆̂(ξ) = ϕ(ρ(ξ)), respectively, where Lrξ is de-

fined in Lemma 2.1. If we denote Φt(x) = t−αΦ(At−1 x) and ∆t(x) = t−α∆(At−1 x),

then it is easy to check that Φ̂t(ξ) = ϕ(tρ(Lrξ)), ∆̂t (ξ) = ϕ(tρ(ξ)), and Φt (x) =
1

rn+1 t−α∆(Lr−1At−1 x), where

Lr−1 At−1 x = (r−2t−α1 x1, r
−1t−α2 x2, . . . , r

−1t−αn xn).

For any f ∈ S(R
n), by taking Fourier transform we have

(3.6) f (x) =

∫ ∞

−∞

Φ2t ∗ f (x)dt ∼

∫ ∞

0

Φt ∗ f (x)
dt

t
.
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Define

gΦ( f )(x) =

(∫ ∞

0

|Φt ∗ f (x)|2
dt

t

) 1/2

∼
(∫ ∞

−∞

|Φ2t ∗ f (x)|2 dt
) 1/2

.

Now we claim that

(3.7) ‖gΦ( f )‖p ≤ C‖ f ‖p,

with C independent of r > 0. In fact, by the definition of Φt , we have

Φt ∗ f (x) =
1

rn+1
t−α

∫

Rn

∆(Lr−1 At−1 y) f (x − y) dy

= t−α
∫

Rn

∆(At−1 y) f (Lr(Lr−1x − y)) dy

= ∆t ∗ h(Lr−1x),

where h(x) = f (Lrx). Since
∫

Rn ∆(x) dx = ∆̂(0) = ϕ(0) = 0, by Theorem A we get

‖gΦ( f )‖p =

∥∥∥
(∫ ∞

0

|Φt ∗ f (·)|2
dt

t

) 1/2∥∥∥
p

=

{∫

Rn

(∫ ∞

0

|∆t ∗ h(Lr−1x)|2
dt

t

) p/2

dx
} 1/p

=

{
rn+1

∫

Rn

(∫ ∞

0

|∆t ∗ h(x)|2
dt

t

) p/2

dx
} 1/p

≤ Cr
n+1

p ‖h‖p

= C
(

rn+1

∫

Rn

| f (Lrx)|p dx
) 1/p

= C‖ f ‖p.

This is (3.7). Now we denote σ2t (y) = 2−t ã(y)ρ(y)−α+1χ{ρ(y)≤2t}(y). Then

ga( f )(x) =

(∫ ∞

0

∣∣∣
∫

ρ(y)≤t

ã(y)

ρ(y)α−1
f (x − y)dy

∣∣∣
2 dt

t3

) 1/2

∼
(∫ ∞

−∞

|σ2t ∗ f (x)|2 dt
) 1/2

.

By (3.6) and the Minkowski inequality, we obtain

ga( f )(x) ∼
(∫ ∞

−∞

∣∣∣
∫ ∞

−∞

Φ2s+t ∗ σ2t ∗ f (x)ds
∣∣∣

2

dt
) 1/2

≤

∫ ∞

−∞

(∫ ∞

−∞

|σ2t ∗ Φ2s+t ∗ f (x)|2dt
) 1/2

ds

=:

∫ ∞

−∞

Qs( f )(x) ds.
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Using Minkowski’s inequality again yields

(3.8) ‖ga( f )‖p ≤ C
(∫ ∞

0

‖Qs( f )‖p ds +

∫ 0

−∞

‖Qs( f )‖p ds
)
.

By (3.8), it is easy to see that the proof of (3.5) can be reduced to show the following

estimates

(3.9) ‖Qs( f )‖p ≤

{
C2−sγ‖ f ‖p for s > 0,

C2sτ‖ f ‖p for s < 0,

where τ and γ are some positive constants, and C is independent s and f .

The proof of (3.9) will be completed in two steps.

Step 1: There exists C > 0, independent of s and f , such that

(3.10) ‖Qs( f )‖p ≤ C‖ f ‖p for 1 < p <∞.

First we consider the case 1 < p < 2. Denote Gs+t(x) = Φ2s+t ∗ f (x). Since a(x ′) ∈
L1(Sn−1), by Lemma 2.3, we know ‖σ2t‖1 ≤ C, then

(3.11)
∥∥∥

∫ ∞

−∞

σ2t ∗ Gs+t(·)dt
∥∥∥

1
≤ C

∥∥∥
∫ ∞

−∞

Gt(·)dt
∥∥∥

1
.

On the other hand, for 1 < q <∞, also by Lemma 2.3, we get

(3.12) ‖ sup
t∈R

|σ2t ∗ Gs+t|‖q ≤ ‖σ∗(sup
t∈R

|Gt |)‖q ≤ C‖ sup
t∈R

|Gt |‖q.

If we define TGs+t(x) = σ2t ∗Gs+t(x), then (3.11) and (3.12) show that T is a bounded

operator on L1(L1(R),R
n) and Lq(L∞(R),R

n), respectively. Since 1 < p < 2, we can

take q > 1 such that 1/q = 2/p − 1. Then by using the operator interpolation

theorem between (3.11) and (3.12), we know that the operator T is also bounded on

Lp(L2(R),R
n). That is

∥∥∥
(∫ ∞

−∞

|σ2t ∗ Gs+t(·)|
2dt

) 1/2∥∥∥
p
≤ C

∥∥∥
(∫ ∞

−∞

|Gt (·)|
2dt

) 1/2∥∥∥
p
.

From this and (3.7), we prove (3.10) for 1 < p < 2. Moreover, by (3.7) and the L2

boundedness of σ∗, (3.10) holds for the case p = 2. Now let us deal with the case

p > 2. Let q = (p/2) ′. Then

‖Qs f ‖2
p = sup

ν

∣∣∣
∫

Rn

∫ ∞

−∞

|σ2t ∗ Φ2s+t ∗ f (x)|2ν(x) dt dx
∣∣∣ ,
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where the supremum is taken over all ν(x) ∈ Lq(R
n) with ‖ν‖q ≤ 1. Applying

Hölder’s inequality and noting the fact ‖σ2t‖1 ≤ C,

∣∣∣
∫

Rn

∫ ∞

−∞

|σ2t ∗ Φ2s+t ∗ f (x)|2ν(x) dt dx
∣∣∣

≤

∫ ∞

−∞

∫

Rn

{(∫

Rn

|Φ2s+t ∗ f (y)|2|σ2t (x − y)| dy
) 1/2

×
(∫

Rn

|σ2t (x − y)| dy
) 1/2

} 2

|ν(x)| dx dt

≤ ‖σ2t‖1

∫ ∞

−∞

∫

Rn

∫

Rn

|Φ2s+t ∗ f (y)|2|σ2t (x − y)||ν(x)| dy dx dt

≤ C

∫ ∞

−∞

∫

Rn

|Φ2t ∗ f (y)|2σ∗(|ν|)(y) dy dt

= C

∫

Rn

∫ ∞

−∞

|Φ2t ∗ f (y)|2 dt σ∗(|ν|)(y) dy,

where C is independent of s, f and ν. Using Hölder’s inequality again and (3.7),

Lemma 2.3, we obtain

‖Qs f ‖2
p ≤ C sup

ν
‖gΦ( f )‖2

p‖σ
∗(|ν|)‖q ≤ C‖ f ‖2

p.

Thus we have (3.10) for p > 2. From the proof of (3.10) above, it is easy to check

that the constant C is independent of s and f .

Step 2: There exists C > 0, independent of f and s, such that

(3.13) ‖Qs( f )‖2 ≤

{
C2−s‖ f ‖2 for s > 0,

C2βs/m‖ f ‖2 for s < 0,

where 0 < β < 1
2αn

and m denotes the distinct numbers of {α j}.

By Plancherel’s theorem,

(3.14) ‖Qs f ‖2
2 ≤

∫ ∞

−∞

∫

Rn

| f̂ (ξ)|2|ϕ(2s+tρ(Lrξ))|2|σ̂2t (ξ)|2 dξdt,

where

σ̂2t (ξ) = 2−t

∫ 2t

0

∫

Sn−1

a(y ′) J(y ′)e−2πiξ·Aρ y ′

dσ(y ′)dρ

and a is a regular H1(Sn−1) atom supported in B(1, r)∩Sn−1,where 1 = (1, 0, . . . , 0).

We first give the estimate of |σ̂2t (ξ)|. Let η(y ′) = a(y ′) J(y ′)/‖ J‖L∞(Sn−1). By (3.1)

and J(y ′) ∈ C∞
0 (Sn−1), we know η(y ′) satisfies (2.3) and (2.5), and supp(η) ⊂

B(1, r) ∩ Sn−1. Then

(3.15) σ̂2t (ξ) =
‖ J‖L∞(Sn−1)

2t

∫ 2t

0

∫

Sn−1

η(y ′)e−2πiξ·Aρ y ′

dσ(y ′)dρ.

https://doi.org/10.4153/CMB-2009-053-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-053-8


530 Y. Chen and Y. Ding

In the following, we want to prove |σ̂2t (ξ)| ≤ C min{|LrA2tξ|, |LrA2tξ|−β/m}, where

0 < β < 1
2αn

and m denotes the distinct numbers of {α j}. For any ξ 6= 0, denote
Aρξ
|Aρξ|

=: ζ := (ζ ′1 , ζ∗) ∈ Sn−1, where ζ∗ ∈ R
n−1. We choose a rotation O in R

n such

that O(ζ) = 1. Since O−1
= Ot , where O−1 and Ot denote the inverse and transpose

of O, respectively, it is easy to check that ζ is the first row vector of O. Thus, we have

O2(ζ) = (ζ ′1 , γ∗), where γ∗ ∈ R
n−1. Now, we take a rotation Qn−1 in R

n−1 such

that Qn−1(ζ∗) = γ∗. Set R =
(

1 0
0 Qn−1

)
; then R is a rotation in R

n, such that for any

y ′ := (ℓ, y ′
2, . . . , y ′

n) in Sn−1, 〈1,Ry ′〉 = ℓ. Thus

σ̂2t (ξ) =
‖ J‖L∞(Sn−1)

2t

∫ 2t

0

∫

Sn−1

η(O−1(Ry ′))e−2πi|Aρξ|〈1,Ry ′〉 dσ(y ′)dρ.

Now η(O−1(Ry ′)) also satisfies (2.3) and (2.5), and is supported in B(ζ, r) ∩ Sn−1.

Thus we have

σ̂2t (ξ) =
‖ J‖L∞(Sn−1)

2t

∫ 2t

0

∫

R

Fη(ℓ)e−2πi|Aρξ|ℓ dℓdρ,

where Fη(ℓ) is the function defined in Lemma 2.1. By Lemma 2.1, we know that Fη

is supported in (−2r(ζ) + δ1, 2r(ζ) + δ1), where r(ζ) =
|LrAρξ|
|Aρξ|

and δ1 =
ρα1 ξ1

|Aρξ|
. Thus

N(ℓ) = r(ζ)Fη(r(ζ)ℓ) is a function with support in the interval (−2 + δ1

r(ζ)
, 2 + δ1

r(ζ)
),

and ‖N‖∞ < C (C is independent of η and ρ) and
∫

R
N(ℓ) dℓ = 0. After changing a

variable we have

σ̂2t (ξ) =
‖ J‖L∞(Sn−1)

2t

∫ 2t

0

∫

R

N(ℓ)e−2πiℓ|LrAρξ| dℓdρ.

So by the cancellation property of N, we obtain that

|σ̂2t (ξ)| =
‖ J‖L∞(Sn−1)

2t

∣∣∣
∫ 2t

0

∫

R

N(ℓ)[e−2πi|LrAρξ|ℓ − e−2πiρα1 ξ1 ] dℓdρ
∣∣∣(3.16)

≤ C2−t

∫ 2t

0

∫

|ℓ−
ζ1

r(ζ)
|

≤ 2|N(ℓ)||LrAρξ|
∣∣∣ℓ−

ζ1

r(ζ)

∣∣∣dℓ dρ ≤ C

∫ 1

0

|LrA2tρξ| dρ

≤ C|LrA2tξ|.
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On the other hand, using Hölder’s inequality and (3.15), we have

|σ̂2t (ξ)|2 =

∣∣∣
‖ J‖L∞(Sn−1)

2t

∫ 2t

0

∫

Sn−1

η(y ′)e−2πiξ·Aρ y ′

dσ(y ′) dρ
∣∣∣

2

(3.17)

≤ C
1

2t

∫ 2t

0

∣∣∣
∫

Sn−1

η(y ′)e−2πiξ·Aρ y ′

dσ(y ′)
∣∣∣

2

dρ

= C

0∑

j=−∞

2 j−1 1

2t+ j−1

∫ 2t+ j

2t+ j−1

∣∣∣
∫

Sn−1

η(y ′)e−2πiξ·Aρy ′

dσ(y ′)
∣∣∣

2

dρ

≤ C

0∑

j=−∞

2 j−1

∫ 2t+ j

2t+ j−1

∣∣∣
∫

Sn−1

η(y ′)e−2πiξ·Aρ y ′

dσ(y ′)
∣∣∣

2 dρ

ρ

= C

0∑

j=−∞

2 j−1Bt, j (ξ),

where

Bt, j (ξ) =

∫ 2t+ j

2t+ j−1

∣∣∣
∫

Sn−1

η(y ′)e−2πiξ·Aρy ′

dσ(y ′)
∣∣∣

2 dρ

ρ
.

Then we get

Bt, j (ξ) =

∫ 2t+ j

2t+ j−1

∫∫

Sn−1×Sn−1

η(y ′)η(x ′)e−2πiAρ(y ′−x ′)·ξ dσ(y ′)dσ(x ′)
dρ

ρ

≤ C

∫∫

Sn−1×Sn−1

|η(y ′)||η(x ′)|
∣∣∣
∫ 2t+ j

2t+ j−1

e−2πiAρ(y ′−x ′)·ξ dρ

ρ

∣∣∣ dσ(y ′)dσ(x ′).

By Lemma 2.4, we know

∣∣∣
∫ 2t+ j

2t+ j−1

e−2πiAρ(y ′−x ′)·ξ dρ

ρ

∣∣∣ =

∣∣∣
∫ 2

1

e−2πiA
2t+ j−1ρ

(y ′−x ′)·ξ dρ

ρ

∣∣∣

≤ C
(
|(y ′ − x ′) · A2t+ j−1ξ|

)−2β/m
,

where 0 < β < 1
2αn

and m denotes the distinct numbers of {α j}. Then by the above

inequality we get

(3.18) Bt, j (ξ) ≤ C

∫∫

Sn−1×Sn−1

|η(y ′)||η(x ′)|

×
(
|(y ′ − x ′) · A2t+ j−1ξ|

)−2β/m
dσ(y ′)dσ(x ′) = CI1(ξ),

where

I1(ξ) =

∫∫

Sn−1×Sn−1

|η(y ′)||η(x ′)|
(
|(y ′ − x ′) · A2t+ j−1ξ|

)−2β/m
dσ(y ′)dσ(x ′).
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As was done above, for any ξ 6= 0, we choose a rotation O in R
n such that

O(A2t+ j−1ξ) = |A2t+ j−1ξ|1 = |A2t+ j−1ξ|(1, 0, . . . , 0).

Thus, we may take another rotation R in R
n such that for any

y ′
= (y ′

1, y ′
2, . . . , y ′

n) ∈ Sn−1,

〈1,Ry ′〉 = y ′
1 = 〈1, y ′〉. Now, let y ′

= (s, y ′
2, y ′

3, . . . , y ′
n), x ′

= (δ, x ′
2, x

′
3, . . . , x

′
n).

Then it is easy to see that

I1(ξ) =

∫∫

Sn−1×Sn−1

|η(O−1(Ry ′))||η(O−1(Rx ′))|

×
(
|(y ′ − x ′) · |A2t+ j−1ξ|1|

)−2β/m
dσ(y ′)dσ(x ′),

where O−1 is the inverse of O. Now η(O−1(Ry ′)) satisfies (2.3) and (2.5), and is

supported in B(ϑ, r) ∩ Sn−1 where ϑ =
A

2t+ j−1 ξ

|A
2t+ j−1 ξ|

. Thus we have

I1(ξ) =

∫∫

R×R

Gη(s)Gη(δ)
(
|A2t+ j−1ξ||s − δ|

)−2β/m
dsdδ,

where Gη(s) is the function defined in Lemma 2.1. By Lemma 2.1, we know

supp(Gη) ⊂ (−2r(ϑ) + ϑ1, 2r(ϑ) +ϑ1), where r(ϑ) =
|LrA

2t+ j−1 ξ|

|A
2t+ j−1 ξ|

and ϑ1 =
2(t+ j−1)α1 ξ1

|A
2t+ j−1 ξ|

.

Thus ϕ(s) = r(ϑ)Gη

(
r(ϑ)(s − ϑ1

r(ϑ)
)
)

is a function supported in the interval (−2, 2),

and ‖ϕ‖∞ < C (C is independent of r, t, j and ϑ ). Since 2β/m < 1, we get

I1(ξ) =

∫ 2

−2

∫ 2

−2

ϕ(s)ϕ(δ)
(
|LrA2t+ j−1ξ||s − δ|

)−2β/m
dsdδ

≤ C|LrA2t+ j−1ξ|−2β/m

∫ 2

−2

∫ 2

−2

|s − δ|−2β/m dsdδ

≤ C|LrA2t+ j ξ|−2β/m.

This together with (3.18) gives

(3.19) Bt, j (ξ) ≤ C|LrA2t+ j ξ|−2β/m.

Since 0 < β < 1
2αn

and m ≥ 1, then by (3.17) and (3.19), we get

|σ̂2t (ξ)|2 ≤ C

0∑

j=−∞

2 j−1|LrA2t+ j ξ|−2β/m(3.20)

≤ C

0∑

j=−∞

2 j(1−2βαn/m)|LrA2t ξ|−2β/m

≤ C

0∑

j=−∞

2 j(1−2βαn/m)|LrA2t ξ|−2β/m

≤ C|LrA2t ξ|−2β/m.
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By (3.16) and (3.20), we have

|σ̂2t (ξ)| ≤ C min{|LrA2tξ|, |LrA2tξ|−β/m}.

Now we give the estimates ‖Qs( f )‖2. For s > 0, by (3.14) and the properties of ϕ,

using the estimate |σ̂2t (ξ)| ≤ C|LrA2tξ| and the Plancherel theorem, we get

‖Qs( f )‖2
2 ≤ C

∫ ∞

−∞

∫

2−s−1≤ρ(LrA2t ξ)≤2−s+1

| f̂ (ξ)|2|LrA2tξ|2dξdt

= C
1

rn+1

∫ ∞

−∞

∫

2−s−1≤2tρ≤2−s+1

∫

Sn−1

J(ξ ′)| f̂ (Lr−1Aρξ
′)|2|A2t Aρξ

′|2ρα−1dσ(ξ ′)dρdt

≤ C
1

rn+1

∫ ∞

−∞

∫

Sn−1

J(ξ ′)| f̂ (Lr−1 Aρξ
′)|2

(
(2−s+1)2α1 + · · · + (2−s+1)2αn

)

×
(∫ −s+1− log ρ

log 2

−s−1− log ρ
log 2

dt
)
ρα−1dσ(ξ ′)dρ

≤ C2−2sα1
1

rn+1

∞∫

−∞

∫

Sn−1

J(ξ ′)| f̂ (Lr−1Aρξ
′)|2ρα−1dσ(ξ ′)dρ

≤ C2−2s 1

rn+1

∫

Rn

| f̂ (Lr−1ξ)|2 dξ

≤ C2−2s‖ f ‖2
2.

So we have ‖Qs( f )‖2 ≤ C2−s‖ f ‖2 for s > 0. Using the estimate

|σ̂2t (ξ)| ≤ C|LrA2t ξ|−β/m

and the same idea, we have ‖Qs( f )‖2 ≤ C2βs/m‖ f ‖2 for s < 0. Thus we get (3.13),

and obviously, the constant C is independent of s and f .

Applying the Riesz–Thorin interpolation theorem of sub-linear operators [2] be-

tween (3.10) and (3.13), we know that there exist two constants γ, τ > 0 such that

‖Qs( f )‖p ≤ C2−γs‖ f ‖p for s > 0, 1 < p <∞,

‖Qs( f )‖p ≤ C2τ s‖ f ‖p for s < 0, 1 < p <∞.

Thus, we obtain (3.9) and (3.5) follows.
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