The Parabolic Littlewood-Paley Operator with Hardy Space Kernels

Yanping Chen and Yong Ding

Abstract. In this paper, we give the L^{p} boundedness for a class of parabolic Littlewood-Paley g-function with its kernel function Ω is in the Hardy space $H^{1}\left(S^{n-1}\right)$.

1 Introduction

Let \mathbb{R}^{n} be the Euclidean space with the routine norm $|x|$ for each $x \in \mathbb{R}^{n}$. Denote by $S^{n-1}=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$ the unit sphere on \mathbb{R}^{n} equipped with the Lebesgue measure $\sigma\left(x^{\prime}\right)$. Let $\alpha_{1}, \ldots, \alpha_{n}$ be fixed real numbers with $\alpha_{i} \geq 1$. It is easy to see that for fixed $x \in \mathbb{R}^{n}$, the function

$$
F(x, \rho)=\sum_{i=1}^{n} \frac{x_{i}{ }^{2}}{\rho^{2 \alpha_{i}}}
$$

is a strictly decreasing function of $\rho>0$. Therefore, there exists a unique $\rho(x)$ such that $F(x, \rho)=1$. It was proved in [7] that $\rho(x)$ is a metric on \mathbb{R}^{n}. For $x \in \mathbb{R}^{n}$, set

$$
\begin{aligned}
x_{1} & =\rho^{\alpha_{1}} \cos \varphi_{1} \cdots \cos \varphi_{n-2} \cos \varphi_{n-1} \\
x_{2} & =\rho^{\alpha_{2}} \cos \varphi_{1} \cdots \cos \varphi_{n-2} \sin \varphi_{n-1} \\
& \vdots \\
x_{n-1} & =\rho^{\alpha_{n-1}} \cos \varphi_{1} \sin \varphi_{2} \\
x_{n} & =\rho^{\alpha_{n}} \sin \varphi_{1} .
\end{aligned}
$$

Then $d x=\rho^{\alpha-1} J\left(x^{\prime}\right) d \rho d \sigma\left(x^{\prime}\right)$, and $\rho^{\alpha-1} J\left(x^{\prime}\right)$ is the Jacobian of the above transform, where $\alpha=\sum_{i=1}^{n} \alpha_{i}$ and $J\left(x^{\prime}\right)=\alpha_{1} x_{1}^{\prime 2}+\cdots+\alpha_{n} x_{n}^{\prime 2}$. It is easy to see that $J\left(x^{\prime}\right) \in C^{\infty}\left(S^{n-1}\right)$ with $1 \leq J\left(x^{\prime}\right) \leq M$ for some $M \geq 1$. Without loss of generality, we may assume $\alpha_{n} \geq \alpha_{n-1} \geq \cdots \geq \alpha_{1} \geq 1$.

For $t>0$, let $A_{t}=\operatorname{diag}\left[t^{\alpha_{1}}, \ldots, t^{\alpha_{n}}\right]$. Suppose that $\Omega(x)$ is a real valued and measurable function defined on \mathbb{R}^{n}. We say $\Omega(x)$ is homogeneous of degree zero with respect to A_{t}, if for any $t>0$ and $x \in \mathbb{R}^{n}$

$$
\begin{equation*}
\Omega\left(A_{t} x\right)=\Omega(x) \tag{1.1}
\end{equation*}
$$

Received by the editors October 5, 2006; revised February 19, 2009.
The research was supported by NSF of China (Grants: 10571015, 10826046) and RFDP of China (Grant: 20050027025).

AMS subject classification: Primary: 42B20; secondary: 42B25.
Keywords: parabolic Littlewood-Paley operator, Hardy space, rough kernel.
(C)Canadian Mathematical Society 2009.

Moreover, we also assume that $\Omega(x)$ satisfies the following cancellation condition:

$$
\begin{equation*}
\int_{S^{n-1}} \Omega\left(x^{\prime}\right) J\left(x^{\prime}\right) d \sigma\left(x^{\prime}\right)=0 \tag{1.2}
\end{equation*}
$$

In 1966, Fabes and Rivière [7] proved that if $\Omega \in C^{1}\left(S^{n-1}\right)$ satisfies (1.1) and (1.2), then the parabolic singular integral operator T_{Ω} is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for $1<$ $p<\infty$, where T_{Ω} is defined by

$$
T_{\Omega} f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} \frac{\Omega(y)}{\rho(y)^{\alpha}} f(x-y) d y
$$

In 1976, Nagel, Rivière and Wainger [9] improved the above result. They showed T_{Ω} is still bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for $1<p<\infty$ if replacing $\Omega \in C^{1}\left(S^{n-1}\right)$ by a weaker condition $\Omega \in L \log ^{+} L\left(S^{n-1}\right)$.

On the other hand, in 1974, Madych considered the L^{p} boundedness with respect to the transform A_{t} of the Littlewood-Paley operator. Let $\psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ satisfy $\hat{\psi}(0)=$ 0 , where and below, $\hat{\psi}$ denotes the Fourier transform of ψ. Let $\psi_{t}(x)=t^{-\alpha} \psi\left(A_{t^{-1}} x\right)$ for $t>0$. Then the Littlewood-Paley operator related to A_{t} is defined by

$$
g_{\psi}(f)(x)=\left(\int_{0}^{\infty}\left|\psi_{t} * f(x)\right|^{2} \frac{d t}{t}\right)^{1 / 2}
$$

Theorem A [8] The Littlewood-Paley operator g_{ψ} is of type (p, p) for $1<p<\infty$.
Inspired by the works in [7-9], recently Ding, Xue and Yabuta [5] improved the above result. More precisely, the authors in [5] proved that the parabolic LittlewoodPaley operator is still bounded on L^{p} if $\psi(x)$ is replaced by a kernel function $\phi(x)=$ $\Omega(x) \rho(x)^{-\alpha+1} \chi_{\{\rho(x) \leq 1\}}(x)$ with $\Omega \in L^{q}\left(S^{n-1}\right)(q>1)$ satisfying (1.1) and (1.2).

Theorem B [5] If $\Omega \in L^{q}\left(S^{n-1}\right)(q>1)$ satisfies (1.1) and (1.2), then g_{ϕ} is of type (p, p) for $1<p<\infty$.

Notice that on the unit sphere S^{n-1}, there are the following containing relationships:

$$
C^{\infty} \varsubsetneqq L^{q}(q>1) \varsubsetneqq L \log ^{+} L \varsubsetneqq H^{1} \varsubsetneqq L^{1},
$$

where H^{1} denotes the Hardy space on S^{n-1} (see $\S 2$ for its definition). Hence, a natural question is whether the size condition assumed on Ω can be weakened further. The purpose of this paper is to give a positive answer to this question.

Theorem 1.1 If $\Omega \in H^{1}\left(S^{n-1}\right)$ satisfies (1.1) and (1.2), then g_{ϕ} is of type (p, p) for $1<p<\infty$.

Remark. If $\alpha_{1}=\cdots=\alpha_{n}=1$, then $\rho(x)=|x|$ and $\alpha=n$. In this case, $g_{\phi}=\mu_{\Omega}$ and the latter is just the classical Marcinkiewicz integral, which was studied by many authors. (See $[1,4,10]$, for example.) Moreover, note also that the Ω in Theorem 1.1 (also Theorem B) has no any smoothness on S^{n-1}.

2 Definitions and Lemmas

Let us begin with the definition of Hardy space $H^{1}\left(S^{n-1}\right)$. For $f \in L^{1}\left(S^{n-1}\right)$ and $x^{\prime} \in S^{n-1}$, we denote

$$
P^{+} f\left(x^{\prime}\right)=\sup _{0<t<1}\left|\int_{S^{n-1}} f\left(y^{\prime}\right) P_{t x^{\prime}}\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right|
$$

where $P_{t x^{\prime}}\left(y^{\prime}\right)=\frac{1-t^{2}}{\left|y^{\prime}-t x^{\prime}\right|^{n}}$ for $y^{\prime} \in S^{n-1}$. Then

$$
H^{1}\left(S^{n-1}\right)=\left\{f \in L^{1}\left(S^{n-1}\right):\left\|P^{+} f\right\|_{L^{1}\left(S^{n-1}\right)}<\infty\right\}
$$

and we define $\|f\|_{H^{1}\left(S^{n-1}\right)}=\left\|P^{+} f\right\|_{L^{1}\left(S^{n-1}\right)}$ if $f \in H^{1}\left(S^{n-1}\right)$.
A very useful characterization of the space $H^{1}\left(S^{n-1}\right)$ is its atomic decomposition. Let us first recall the definition of atoms. A regular $H^{1}\left(S^{n-1}\right)$ atom is a function $a\left(x^{\prime}\right)$ on $L^{\infty}\left(S^{n-1}\right)$ satisfying the following conditions:

$$
\begin{align*}
& \operatorname{supp}(a) \subset S^{n-1} \tag{2.1}\\
& \qquad \cap\left\{y \in \mathbb{R}^{n}:\left|y-\xi^{\prime}\right|<r \text { for some } \xi^{\prime} \in S^{n-1} \text { and } r \in(0,2]\right\} ; \\
& \int_{S^{n-1}} a\left(x^{\prime}\right) Y_{m}\left(x^{\prime}\right) d \sigma\left(x^{\prime}\right)=0 \tag{2.2}
\end{align*}
$$

for any spherical harmonic polynomial Y_{m} with degree $m \leq N$, where N is any fixed integer;

$$
\begin{equation*}
\|a\|_{L^{\infty}\left(S^{n-1}\right)} \leq r^{1-n} \tag{2.3}
\end{equation*}
$$

An exceptional $H^{1}\left(S^{n-1}\right)$ atom $u\left(x^{\prime}\right)$ is an $L^{\infty}\left(S^{n-1}\right)$ function bounded by 1 .
From [3], we find that any $\Omega \in H^{1}\left(S^{n-1}\right)$ has an atomic decomposition

$$
\Omega=\sum_{j=1}^{\infty} \lambda_{j} a_{j}+\sum_{i=1}^{\infty} \delta_{i} u_{i}
$$

where each a_{j} is a regular $H^{1}\left(S^{n-1}\right)$ atom and each u_{i} is an exceptional atom. Moreover,

$$
\sum_{j=1}^{\infty}\left|\lambda_{j}\right|+\sum_{i=1}^{\infty}\left|\delta_{i}\right| \leq C\|\Omega\|_{H^{1}\left(S^{n-1}\right)}
$$

We note that for any $x^{\prime} \in S^{n-1}$,

$$
\left|\sum_{i=1}^{\infty} \delta_{i} u_{i}\left(x^{\prime}\right)\right| \leq \sum_{i=1}^{\infty}\left|\delta_{i}\right|
$$

Without loss of generality, we can assume

$$
\left|\sum_{i=1}^{\infty} \delta_{i} u_{i}\left(x^{\prime}\right)\right| \leq\|\Omega\|_{H^{1}\left(S^{n-1}\right)}
$$

Thus we write

$$
\sum_{i=1}^{\infty} \delta_{i} u_{i}\left(x^{\prime}\right)=\|\Omega\|_{H^{1}\left(S^{n-1}\right)} \omega\left(x^{\prime}\right)
$$

with $\omega\left(x^{\prime}\right)=\sum_{i=1}^{\infty} \delta_{i} u_{i}\left(x^{\prime}\right) /\|\Omega\|_{H^{1}\left(S^{n-1}\right)}$. In this new definition, for $x^{\prime} \in S^{n-1}$,

$$
\begin{equation*}
\Omega\left(x^{\prime}\right)=\sum_{j=1}^{\infty} \lambda_{j} a_{j}\left(x^{\prime}\right)+\|\Omega\|_{H^{1}\left(S^{n-1}\right)} \omega\left(x^{\prime}\right) \quad \text { and } \quad\|\omega\|_{L^{\infty}\left(S^{n-1}\right)} \leq 1 \tag{2.4}
\end{equation*}
$$

The following Lemmas 2.1 and 2.2 can be found in [6].
Lemma 2.1 [6] Suppose that $n \geq 3$ and b satisfies (2.1), (2.3), and

$$
\begin{equation*}
\int_{S^{n-1}} b\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)=0 \tag{2.5}
\end{equation*}
$$

Let

$$
\begin{aligned}
F_{b}(s) & =\left(1-s^{2}\right)^{(n-3) / 2} \chi_{(-1,1)}(s) \int_{S^{n-2}} b\left(s,\left(1-s^{2}\right)^{1 / 2} \widetilde{y}\right) d \sigma(\widetilde{y}) \\
G_{b}(s) & =\left(1-s^{2}\right)^{(n-3) / 2} \chi_{(-1,1)}(s) \int_{S^{n-2}}\left|b\left(s,\left(1-s^{2}\right)^{1 / 2} \widetilde{y}\right)\right| d \sigma(\widetilde{y})
\end{aligned}
$$

Then there exists a constant C, independent of b, such that

$$
\begin{align*}
& \operatorname{supp}\left(F_{b}\right) \subset\left(\xi_{1}^{\prime}-2 r\left(\xi^{\prime}\right), \xi_{1}^{\prime}+2 r\left(\xi^{\prime}\right)\right) \tag{2.6}\\
& \operatorname{supp}\left(G_{b}\right) \subset\left(\xi_{1}^{\prime}-2 r\left(\xi^{\prime}\right), \xi_{1}^{\prime}+2 r\left(\xi^{\prime}\right)\right) \tag{2.7}\\
&\left\|F_{b}\right\|_{\infty} \leq C / r\left(\xi^{\prime}\right), \quad\left\|G_{b}\right\|_{\infty} \leq C / r\left(\xi^{\prime}\right) \tag{2.8}\\
& \int_{\mathbb{R}} F_{b}(s) d s=0 \tag{2.9}
\end{align*}
$$

where $r\left(\xi^{\prime}\right)=|\xi|^{-1}\left|L_{r} \xi\right|$ and $L_{r} \xi=\left(r^{2} \xi_{1}, r \xi_{2}, \ldots, r \xi_{n}\right)$.
Lemma 2.2 [6] Suppose that $n=2$ and b satisfies (2.1), (2.3) and (2.5). Let

$$
\begin{aligned}
& F_{b}(s)=\left(1-s^{2}\right)^{-1 / 2} \chi_{(-1,1)}(s)\left(b\left(s,\left(1-s^{2}\right)^{1 / 2}\right)+b\left(s,-\left(1-s^{2}\right)^{1 / 2}\right)\right) \\
& G_{b}(s)=\left(1-s^{2}\right)^{-1 / 2} \chi_{(-1,1)}(s)\left(\left|b\left(s,\left(1-s^{2}\right)^{1 / 2}\right)\right|+\left|b\left(s,-\left(1-s^{2}\right)^{1 / 2}\right)\right|\right)
\end{aligned}
$$

Then $F_{b}(s)$ satisfies (2.6) and (2.9), and $\left\|F_{b}\right\|_{q} \leq C\left|L_{r}\left(\xi^{\prime}\right)\right|^{-1+1 / q}$. And $G_{b}(s)$ satisfies (2.7) and $\left\|G_{b}\right\|_{q} \leq C\left|L_{r}\left(\xi^{\prime}\right)\right|^{-1+1 / q}$ for some $q \in(1,2)$.

Lemma $2.3 \quad[5]$ For $\Omega \in L^{1}\left(S^{n-1}\right)$, denote

$$
\sigma_{2^{t}}(x)=2^{-t} \Omega(x) \rho(x)^{-\alpha+1} \chi_{\left\{\rho(x) \leq 2^{t}\right\}}(x)
$$

and $\sigma^{*}(f)(x)=\sup _{t \in \mathbb{R}}| | \sigma_{2^{t}}|* f(x)|$. Then $\left\|\sigma_{2^{t}}\right\|_{1} \leq C$ and $\left\|\sigma^{*}(f)\right\|_{p} \leq C\|f\|_{p}$ for $1<p<\infty$, where the constant C is independent of f and t.
Lemma 2.4 [5] Suppose that m denotes the distinct numbers of $\left\{\alpha_{j}\right\}$. Then for any $x, y \in \mathbb{R}^{n}, 0 \leq \beta \leq 1$

$$
\left|\int_{1}^{2} e^{-i A_{\lambda} x \cdot y} \frac{d \lambda}{\lambda}\right| \leq C|x \cdot y|^{-\frac{\beta}{m}}
$$

where $C>0$ is independent of x and y.

3 Proof of Theorem 1.1

Since $\Omega \in H^{1}\left(S^{n-1}\right)$ satisfies the cancellation condition (1.2), by (2.4) we can write

$$
\Omega\left(x^{\prime}\right)=\sum_{j=1}^{\infty} \lambda_{j} a_{j}\left(x^{\prime}\right)+\|\Omega\|_{H^{1}\left(S^{n-1}\right)} \omega\left(x^{\prime}\right)
$$

where each a_{j} is a regular $H^{1}\left(S^{n-1}\right)$ atom and $\|\omega\|_{L^{\infty}\left(S^{n-1}\right)} \leq 1$. Moreover,

$$
\sum_{j=1}^{\infty}\left|\lambda_{j}\right| \leq C\|\Omega\|_{H^{1}\left(S^{n-1}\right)}
$$

For $y \in \mathbb{R}^{n}(y \neq 0)$, we write

$$
\Omega(y)=\sum_{j=1}^{\infty} \lambda_{j} \tilde{a}_{j}(y)+\|\Omega\|_{H^{1}\left(S^{n-1}\right)} \tilde{\omega}(y)
$$

where $\tilde{a}_{j}(y)=a_{j}\left(A_{\rho(y)^{-1}} y\right)$ and $\tilde{\omega}(y)=\omega\left(A_{\rho(y)^{-1}} y\right)$. It is easy to check that $\tilde{\omega}\left(y^{\prime}\right)=$ $\omega\left(y^{\prime}\right), \tilde{a}_{j}\left(y^{\prime}\right)=a_{j}\left(y^{\prime}\right)$ for $y^{\prime} \in S^{n-1}$ and $\tilde{\omega}$ and \tilde{a}_{j} satisfy (1.1) for any $t>0$ and $y \in \mathbb{R}^{n}$.

Noticing that $J\left(\frac{x}{|x|}\right)|x|^{2}$ is a homogeneous polynomial of degree 2 on \mathbb{R}^{n} by [11, Theorem 2.1], we can write

$$
J\left(\frac{x}{|x|}\right)|x|^{2}=P_{2}(x)+|x|^{2} P_{0}(x)
$$

where $P_{k}(x)$ is a harmonic polynomial of degree $k(k=0,2)$. Then $J\left(x^{\prime}\right)=P_{2}\left(x^{\prime}\right)+$ $P_{0}\left(x^{\prime}\right)$, where $P_{k}\left(x^{\prime}\right)$ is a spherical harmonic polynomial of degree $k(k=0,2)$. So by (2.2), we have

$$
\begin{align*}
\int_{S^{n-1}} a_{j}\left(y^{\prime}\right) & J\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right) \tag{3.1}\\
& =\int_{S^{n-1}} a_{j}\left(y^{\prime}\right) P_{2}\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)+\int_{S^{n-1}} a_{j}\left(y^{\prime}\right) P_{0}\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)=0
\end{align*}
$$

for all $j=1,2, \ldots$ Thus by (2.4) and (3.1), we know

$$
\begin{equation*}
\int_{S^{n-1}} \omega\left(y^{\prime}\right) J\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)=0 \tag{3.2}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\left\|g_{\phi}(f)\right\|_{p} \leq \sum_{j=1}^{\infty}\left|\lambda_{j}\right|\left\|g_{a_{j}}(f)\right\|_{p}+\|\Omega\|_{H^{1}\left(S^{n-1}\right)}\left\|g_{\omega}(f)\right\|_{p} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& g_{a_{j}}(f)(x)=\left(\int_{0}^{\infty}\left|\int_{\rho(y) \leq t} \frac{\tilde{a}_{j}(y)}{\rho(y)^{\alpha-1}} f(x-y) d y\right|^{2} \frac{d t}{t^{3}}\right)^{1 / 2} \\
& g_{\omega}(f)(x)=\left(\int_{0}^{\infty}\left|\int_{\rho(y) \leq t} \frac{\tilde{\omega}(y)}{\rho(y)^{\alpha-1}} f(x-y) d y\right|^{2} \frac{d t}{t^{3}}\right)^{1 / 2}
\end{aligned}
$$

Since $\omega\left(x^{\prime}\right) \in L^{\infty}\left(S^{n-1}\right)$ and satisfies the cancellation condition (3.2), by Theorem B we get

$$
\begin{equation*}
\left\|g_{\omega}(f)\right\|_{p} \leq C\|f\|_{p} \tag{3.4}
\end{equation*}
$$

where C is independent of ω and f. Thus, to prove Theorem 1.1, by (3.3) and (3.4) it suffices to show that there exists $C>0$, independent of the atoms a_{j} and f, such that for $j=1,2, \ldots$,

$$
\begin{equation*}
\left\|g_{a_{j}}(f)\right\|_{p} \leq C\|f\|_{p} \tag{3.5}
\end{equation*}
$$

We only prove (3.5) for the case $n>2$. The case for $n=2$ can be dealt with using the same method and Lemma 2.2. From now we denote simply a_{j}, \tilde{a}_{j} and $g_{a_{j}}$ by a, \tilde{a}, and g_{a}, respectively. Without loss of generality, we may also assume that $\operatorname{supp}(a)$ is contained in $B(\mathbf{1}, r) \cap S^{n-1}$, where $B(\mathbf{1}, r)=\{y:|y-\mathbf{1}|<r\}$ and $\mathbf{1}=(1,0, \ldots, 0)$.

Choose a $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ function φ such that $\varphi(x)=\varphi(\rho(x)), 0 \leq \varphi \leq 1$ satisfying $\operatorname{supp}(\varphi) \subset\{y: 1 / 2 \leq \rho(y) \leq 2\}$ and $\int_{0}^{\infty} \varphi(t) / t d t=1$. Define functions Φ and Δ by $\widehat{\Phi}(\xi)=\varphi\left(\rho\left(L_{r} \xi\right)\right)$ and $\widehat{\Delta}(\xi)=\varphi(\rho(\xi))$, respectively, where $L_{r} \xi$ is defined in Lemma 2.1. If we denote $\Phi_{t}(x)=t^{-\alpha} \Phi\left(A_{t^{-1}} x\right)$ and $\Delta_{t}(x)=t^{-\alpha} \Delta\left(A_{t^{-1}} x\right)$, then it is easy to check that $\widehat{\Phi_{t}}(\xi)=\varphi\left(t \rho\left(L_{r} \xi\right)\right), \widehat{\Delta_{t}}(\xi)=\varphi(t \rho(\xi))$, and $\Phi_{t}(x)=$ $\frac{1}{r^{n+1}} t^{-\alpha} \Delta\left(L_{r^{-1}} A_{t^{-1}} x\right)$, where

$$
L_{r^{-1}} A_{t^{-1}} x=\left(r^{-2} t^{-\alpha_{1}} x_{1}, r^{-1} t^{-\alpha_{2}} x_{2}, \ldots, r^{-1} t^{-\alpha_{n}} x_{n}\right)
$$

For any $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, by taking Fourier transform we have

$$
\begin{equation*}
f(x)=\int_{-\infty}^{\infty} \Phi_{2^{t}} * f(x) d t \sim \int_{0}^{\infty} \Phi_{t} * f(x) \frac{d t}{t} \tag{3.6}
\end{equation*}
$$

Define

$$
g_{\Phi}(f)(x)=\left(\int_{0}^{\infty}\left|\Phi_{t} * f(x)\right|^{2} \frac{d t}{t}\right)^{1 / 2} \sim\left(\int_{-\infty}^{\infty}\left|\Phi_{2^{t}} * f(x)\right|^{2} d t\right)^{1 / 2}
$$

Now we claim that

$$
\begin{equation*}
\left\|g_{\Phi}(f)\right\|_{p} \leq C\|f\|_{p} \tag{3.7}
\end{equation*}
$$

with C independent of $r>0$. In fact, by the definition of Φ_{t}, we have

$$
\begin{aligned}
\Phi_{t} * f(x) & =\frac{1}{r^{n+1}} t^{-\alpha} \int_{\mathbb{R}^{n}} \Delta\left(L_{r^{-1}} A_{t^{-1}} y\right) f(x-y) d y \\
& =t^{-\alpha} \int_{\mathbb{R}^{n}} \Delta\left(A_{t^{-1}} y\right) f\left(L_{r}\left(L_{r^{-1}} x-y\right)\right) d y \\
& =\Delta_{t} * h\left(L_{r^{-1}} x\right)
\end{aligned}
$$

where $h(x)=f\left(L_{r} x\right)$. Since $\int_{\mathbb{R}^{n}} \Delta(x) d x=\widehat{\Delta}(0)=\varphi(0)=0$, by Theorem A we get

$$
\begin{aligned}
\left\|g_{\Phi}(f)\right\|_{p} & =\left\|\left(\int_{0}^{\infty}\left|\Phi_{t} * f(\cdot)\right|^{2} \frac{d t}{t}\right)^{1 / 2}\right\|_{p} \\
& =\left\{\int_{\mathbb{R}^{n}}\left(\int_{0}^{\infty}\left|\Delta_{t} * h\left(L_{r^{-1}} x\right)\right|^{2} \frac{d t}{t}\right)^{p / 2} d x\right\}^{1 / p} \\
& =\left\{r^{n+1} \int_{\mathbb{R}^{n}}\left(\int_{0}^{\infty}\left|\Delta_{t} * h(x)\right|^{2} \frac{d t}{t}\right)^{p / 2} d x\right\}^{1 / p} \\
& \leq C r^{\frac{n+1}{p}}\|h\|_{p} \\
& =C\left(r^{n+1} \int_{\mathbb{R}^{n}}\left|f\left(L_{r} x\right)\right|^{p} d x\right)^{1 / p}=C\|f\|_{p}
\end{aligned}
$$

This is (3.7). Now we denote $\sigma_{2^{t}}(y)=2^{-t} \tilde{a}(y) \rho(y)^{-\alpha+1} \chi_{\left\{\rho(y) \leq 2^{t}\right\}}(y)$. Then

$$
\begin{aligned}
g_{a}(f)(x) & =\left(\int_{0}^{\infty}\left|\int_{\rho(y) \leq t} \frac{\tilde{a}(y)}{\rho(y)^{\alpha-1}} f(x-y) d y\right|^{2} \frac{d t}{t^{3}}\right)^{1 / 2} \\
& \sim\left(\int_{-\infty}^{\infty}\left|\sigma_{2^{t}} * f(x)\right|^{2} d t\right)^{1 / 2}
\end{aligned}
$$

By (3.6) and the Minkowski inequality, we obtain

$$
\begin{aligned}
g_{a}(f)(x) & \sim\left(\int_{-\infty}^{\infty}\left|\int_{-\infty}^{\infty} \Phi_{2^{s+t}} * \sigma_{2^{t}} * f(x) d s\right|^{2} d t\right)^{1 / 2} \\
& \leq \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty}\left|\sigma_{2^{t}} * \Phi_{2^{s+t}} * f(x)\right|^{2} d t\right)^{1 / 2} d s \\
& =: \int_{-\infty}^{\infty} Q_{s}(f)(x) d s
\end{aligned}
$$

Using Minkowski's inequality again yields

$$
\begin{equation*}
\left\|g_{a}(f)\right\|_{p} \leq C\left(\int_{0}^{\infty}\left\|Q_{s}(f)\right\|_{p} d s+\int_{-\infty}^{0}\left\|Q_{s}(f)\right\|_{p} d s\right) \tag{3.8}
\end{equation*}
$$

By (3.8), it is easy to see that the proof of (3.5) can be reduced to show the following estimates

$$
\left\|Q_{s}(f)\right\|_{p} \leq \begin{cases}C 2^{-s \gamma}\|f\|_{p} & \text { for } s>0 \tag{3.9}\\ C 2^{s \tau}\|f\|_{p} & \text { for } s<0\end{cases}
$$

where τ and γ are some positive constants, and C is independent s and f.
The proof of (3.9) will be completed in two steps.
Step 1: There exists $C>0$, independent of s and f, such that

$$
\begin{equation*}
\left\|Q_{s}(f)\right\|_{p} \leq C\|f\|_{p} \quad \text { for } 1<p<\infty \tag{3.10}
\end{equation*}
$$

First we consider the case $1<p<2$. Denote $G_{s+t}(x)=\Phi_{2^{s+t}} * f(x)$. Since $a\left(x^{\prime}\right) \in$ $L^{1}\left(S^{n-1}\right)$, by Lemma 2.3 , we know $\left\|\sigma_{2^{t}}\right\|_{1} \leq C$, then

$$
\begin{equation*}
\left\|\int_{-\infty}^{\infty} \sigma_{2^{t}} * G_{s+t}(\cdot) d t\right\|_{1} \leq C\left\|\int_{-\infty}^{\infty} G_{t}(\cdot) d t\right\|_{1} \tag{3.11}
\end{equation*}
$$

On the other hand, for $1<q<\infty$, also by Lemma 2.3, we get

$$
\begin{equation*}
\left\|\sup _{t \in \mathbb{R}}\left|\sigma_{2^{t}} * G_{s+t}\right|\right\|_{q} \leq\left\|\sigma^{*}\left(\sup _{t \in \mathbb{R}}\left|G_{t}\right|\right)\right\|_{q} \leq C\left\|\sup _{t \in \mathbb{R}}\left|G_{t}\right|\right\|_{q} \tag{3.12}
\end{equation*}
$$

If we define $T G_{s+t}(x)=\sigma_{2^{t}} * G_{s+t}(x)$, then (3.11) and (3.12) show that T is a bounded operator on $L^{1}\left(L^{1}(\mathbb{R}), \mathbb{R}^{n}\right)$ and $L^{q}\left(L^{\infty}(\mathbb{R}), \mathbb{R}^{n}\right)$, respectively. Since $1<p<2$, we can take $q>1$ such that $1 / q=2 / p-1$. Then by using the operator interpolation theorem between (3.11) and (3.12), we know that the operator T is also bounded on $L^{p}\left(L^{2}(\mathbb{R}), \mathbb{R}^{n}\right)$. That is

$$
\left\|\left(\int_{-\infty}^{\infty}\left|\sigma_{2^{t}} * G_{s+t}(\cdot)\right|^{2} d t\right)^{1 / 2}\right\|_{p} \leq C\left\|\left(\int_{-\infty}^{\infty}\left|G_{t}(\cdot)\right|^{2} d t\right)^{1 / 2}\right\|_{p}
$$

From this and (3.7), we prove (3.10) for $1<p<2$. Moreover, by (3.7) and the L^{2} boundedness of $\sigma^{*},(3.10)$ holds for the case $p=2$. Now let us deal with the case $p>2$. Let $q=(p / 2)^{\prime}$. Then

$$
\left\|Q_{s} f\right\|_{p}^{2}=\left.\sup _{\nu}\left|\int_{\mathbb{R}^{n}} \int_{-\infty}^{\infty}\right| \sigma_{2^{t}} * \Phi_{2^{s+t}} * f(x)\right|^{2} \nu(x) d t d x \mid
$$

where the supremum is taken over all $\nu(x) \in L^{q}\left(\mathbb{R}^{n}\right)$ with $\|\nu\|_{q} \leq 1$. Applying Hölder's inequality and noting the fact $\left\|\sigma_{2^{t}}\right\|_{1} \leq C$,

$$
\begin{aligned}
& \left.\left|\int_{\mathbb{R}^{n}} \int_{-\infty}^{\infty}\right| \sigma_{2^{t}} * \Phi_{2^{s+t}} * f(x)\right|^{2} \nu(x) d t d x \mid \\
& \quad \leq \int_{-\infty}^{\infty} \int_{\mathbb{R}^{n}}\left\{\left(\int_{\mathbb{R}^{n}}\left|\Phi_{2^{s+t}} * f(y)\right|^{2}\left|\sigma_{2^{t}}(x-y)\right| d y\right)^{1 / 2}\right. \\
& \left.\quad \times\left(\int_{\mathbb{R}^{n}}\left|\sigma_{2^{t}}(x-y)\right| d y\right)^{1 / 2}\right\}^{2}|\nu(x)| d x d t \\
& \leq\left\|\sigma_{2^{t}}\right\|_{1} \int_{-\infty}^{\infty} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}\left|\Phi_{2^{s+t}} * f(y)\right|^{2}\left|\sigma_{2^{t}}(x-y)\right||\nu(x)| d y d x d t \\
& \leq C \int_{-\infty}^{\infty} \int_{\mathbb{R}^{n}}\left|\Phi_{2^{t}} * f(y)\right|^{2} \sigma^{*}(|\nu|)(y) d y d t \\
& \quad=C \int_{\mathbb{R}^{n}} \int_{-\infty}^{\infty}\left|\Phi_{2^{t}} * f(y)\right|^{2} d t \sigma^{*}(|\nu|)(y) d y
\end{aligned}
$$

where C is independent of s, f and ν. Using Hölder's inequality again and (3.7), Lemma 2.3, we obtain

$$
\left\|Q_{s} f\right\|_{p}^{2} \leq C \sup _{\nu}\left\|g_{\Phi}(f)\right\|_{p}^{2}\left\|\sigma^{*}(|\nu|)\right\|_{q} \leq C\|f\|_{p}^{2}
$$

Thus we have (3.10) for $p>2$. From the proof of (3.10) above, it is easy to check that the constant C is independent of s and f.
Step 2: There exists $C>0$, independent of f and s, such that

$$
\left\|Q_{s}(f)\right\|_{2} \leq \begin{cases}C 2^{-s}\|f\|_{2} & \text { for } s>0 \tag{3.13}\\ C 2^{\beta s / m}\|f\|_{2} & \text { for } s<0\end{cases}
$$

where $0<\beta<\frac{1}{2 \alpha_{n}}$ and m denotes the distinct numbers of $\left\{\alpha_{j}\right\}$.
By Plancherel's theorem,

$$
\begin{equation*}
\left\|Q_{s} f\right\|_{2}^{2} \leq \int_{-\infty}^{\infty} \int_{\mathbb{R}^{n}}|\widehat{f}(\xi)|^{2}\left|\varphi\left(2^{s+t} \rho\left(L_{r} \xi\right)\right)\right|^{2}\left|\widehat{2^{t}}(\xi)\right|^{2} d \xi d t \tag{3.14}
\end{equation*}
$$

where

$$
\widehat{\sigma_{2^{t}}}(\xi)=2^{-t} \int_{0}^{2^{t}} \int_{S^{n-1}} a\left(y^{\prime}\right) J\left(y^{\prime}\right) e^{-2 \pi i \xi \cdot A_{p} y^{\prime}} d \sigma\left(y^{\prime}\right) d \rho
$$

and a is a regular $H^{1}\left(S^{n-1}\right)$ atom supported in $B(\mathbf{1}, r) \cap S^{n-1}$, where $\mathbf{1}=(1,0, \ldots, 0)$. We first give the estimate of $\left|\widehat{\sigma_{2} t}(\xi)\right|$. Let $\eta\left(y^{\prime}\right)=a\left(y^{\prime}\right) J\left(y^{\prime}\right) /\|J\|_{L^{\infty}\left(S^{n-1}\right)}$. By (3.1) and $J\left(y^{\prime}\right) \in C_{0}^{\infty}\left(S^{n-1}\right)$, we know $\eta\left(y^{\prime}\right)$ satisfies (2.3) and (2.5), and $\operatorname{supp}(\eta) \subset$ $B(\mathbf{1}, r) \cap S^{n-1}$. Then

$$
\begin{equation*}
\widehat{\sigma_{2^{t}}}(\xi)=\frac{\|J\|_{L^{\infty}\left(S^{n-1}\right)}}{2^{t}} \int_{0}^{2^{t}} \int_{S^{n-1}} \eta\left(y^{\prime}\right) e^{-2 \pi i \xi \cdot A_{\rho} y^{\prime}} d \sigma\left(y^{\prime}\right) d \rho \tag{3.15}
\end{equation*}
$$

In the following, we want to prove $\left|\widehat{\sigma_{2^{t}}}(\xi)\right| \leq C \min \left\{\left|L_{r} A_{2^{t}} \xi\right|,\left|L_{r} A_{2^{t}} \xi\right|^{-\beta / m}\right\}$, where $0<\beta<\frac{1}{2 \alpha_{n}}$ and m denotes the distinct numbers of $\left\{\alpha_{j}\right\}$. For any $\xi \neq 0$, denote $\frac{A_{\rho} \xi}{\left|A_{\rho} \xi\right|}=: \zeta:=\left(\zeta_{1}^{\prime}, \zeta_{*}\right) \in S^{n-1}$, where $\zeta_{*} \in \mathbb{R}^{n-1}$. We choose a rotation \mathcal{O} in \mathbb{R}^{n} such that $\mathcal{O}(\zeta)=\mathbf{1}$. Since $\mathcal{O}^{-1}=\mathcal{O}^{t}$, where \mathcal{O}^{-1} and \mathcal{O}^{t} denote the inverse and transpose of \mathcal{O}, respectively, it is easy to check that ζ is the first row vector of \mathcal{O}. Thus, we have $\mathcal{O}^{2}(\zeta)=\left(\zeta_{1}^{\prime}, \gamma_{*}\right)$, where $\gamma_{*} \in \mathbb{R}^{n-1}$. Now, we take a rotation Q_{n-1} in \mathbb{R}^{n-1} such that $Q_{n-1}\left(\zeta_{*}\right)=\gamma_{*}$. Set $\mathcal{R}=\left(\begin{array}{cc}1 & 0 \\ 0 & Q_{n-1}\end{array}\right)$; then \mathcal{R} is a rotation in \mathbb{R}^{n}, such that for any $y^{\prime}:=\left(\ell, y_{2}^{\prime}, \ldots, y_{n}^{\prime}\right)$ in $S^{n-1},\left\langle\mathbf{1}, \mathcal{R} y^{\prime}\right\rangle=\ell$. Thus

$$
\widehat{\sigma_{2^{t}}}(\xi)=\frac{\|J\|_{L^{\infty}\left(S^{n-1}\right)}}{2^{t}} \int_{0}^{2^{t}} \int_{S^{n-1}} \eta\left(\mathcal{O}^{-1}\left(\mathcal{R} y^{\prime}\right)\right) e^{-2 \pi i\left|A_{\rho} \xi\right|\left\langle\mathbf{1}, \mathcal{R} y^{\prime}\right\rangle} d \sigma\left(y^{\prime}\right) d \rho
$$

Now $\eta\left(\mathcal{O}^{-1}\left(\mathcal{R} y^{\prime}\right)\right)$ also satisfies (2.3) and (2.5), and is supported in $B(\zeta, r) \cap S^{n-1}$. Thus we have

$$
\widehat{\sigma_{2^{t}}}(\xi)=\frac{\|J\|_{L^{\infty}\left(S^{n-1}\right)}}{2^{t}} \int_{0}^{2^{t}} \int_{\mathbb{R}} F_{\eta}(\ell) e^{-2 \pi i\left|A_{\rho} \xi\right| \ell} d \ell d \rho
$$

where $F_{\eta}(\ell)$ is the function defined in Lemma 2.1. By Lemma 2.1, we know that F_{η} is supported in $\left(-2 r(\zeta)+\delta_{1}, 2 r(\zeta)+\delta_{1}\right)$, where $r(\zeta)=\frac{\left|L_{r} A_{\rho} \xi\right|}{\left|A_{\rho} \xi\right|}$ and $\delta_{1}=\frac{\rho^{\alpha_{1}} \xi_{1}}{\left|A_{\rho} \xi\right|}$. Thus $N(\ell)=r(\zeta) F_{\eta}(r(\zeta) \ell)$ is a function with support in the interval $\left(-2+\frac{\delta_{1}}{r(\zeta)}, 2+\frac{\delta_{1}}{r(\zeta)}\right)$, and $\|N\|_{\infty}<C(C$ is independent of η and $\rho)$ and $\int_{\mathbb{R}} N(\ell) d \ell=0$. After changing a variable we have

$$
\widehat{\sigma_{2^{t}}}(\xi)=\frac{\|J\|_{L^{\infty}\left(S^{n-1}\right)}}{2^{t}} \int_{0}^{2^{t}} \int_{\mathbb{R}} N(\ell) e^{-2 \pi i \ell\left|L_{r} A_{\rho} \xi\right|} d \ell d \rho
$$

So by the cancellation property of N, we obtain that

$$
\begin{align*}
\left|\widehat{\sigma_{2}}(\xi)\right| & =\frac{\|J\|_{L^{\infty}\left(S^{n-1}\right)}}{2^{t}}\left|\int_{0}^{2^{t}} \int_{\mathbb{R}} N(\ell)\left[e^{-2 \pi i\left|L_{r} A_{\rho} \xi\right| \ell}-e^{-2 \pi i \rho^{\alpha_{1}} \xi_{1}}\right] d \ell d \rho\right| \tag{3.16}\\
& \leq C 2^{-t} \int_{0}^{2^{t}} \int_{\left|\ell-\frac{\zeta_{1}}{r(\zeta)}\right|} \\
& \leq 2|N(\ell)|\left|L_{r} A_{\rho} \xi\right|\left|\ell-\frac{\zeta_{1}}{r(\zeta)}\right| d \ell d \rho \leq C \int_{0}^{1}\left|L_{r} A_{2^{t} \rho} \xi\right| d \rho \\
& \leq C\left|L_{r} A_{2^{t}} \xi\right|
\end{align*}
$$

On the other hand, using Hölder's inequality and (3.15), we have

$$
\begin{aligned}
(3.17)\left|\widehat{\sigma_{2^{t}}}(\xi)\right|^{2} & =\left|\frac{\|J\|_{L^{\infty}\left(S^{n-1}\right)}}{2^{t}} \int_{0}^{2^{t}} \int_{S^{n-1}} \eta\left(y^{\prime}\right) e^{-2 \pi i \xi \cdot A_{\rho} y^{\prime}} d \sigma\left(y^{\prime}\right) d \rho\right|^{2} \\
& \leq C \frac{1}{2^{t}} \int_{0}^{2^{t}}\left|\int_{S^{n-1}} \eta\left(y^{\prime}\right) e^{-2 \pi i \xi \cdot A_{\rho} y^{\prime}} d \sigma\left(y^{\prime}\right)\right|^{2} d \rho \\
& =C \sum_{j=-\infty}^{0} 2^{j-1} \frac{1}{2^{t+j-1}} \int_{2^{t+j-1}}^{2^{t+j}}\left|\int_{S^{n-1}} \eta\left(y^{\prime}\right) e^{-2 \pi i \xi \cdot A_{\rho} y^{\prime}} d \sigma\left(y^{\prime}\right)\right|^{2} d \rho \\
& \leq C \sum_{j=-\infty}^{0} 2^{j-1} \int_{2^{t+j-1}}^{2^{t+j}}\left|\int_{S^{n-1}} \eta\left(y^{\prime}\right) e^{-2 \pi i \xi \cdot A_{\rho} y^{\prime}} d \sigma\left(y^{\prime}\right)\right|^{2} \frac{d \rho}{\rho} \\
& =C \sum_{j=-\infty}^{0} 2^{j-1} B_{t, j}(\xi)
\end{aligned}
$$

where

$$
B_{t, j}(\xi)=\int_{2^{t+j-1}}^{2^{t+j}}\left|\int_{S^{n-1}} \eta\left(y^{\prime}\right) e^{-2 \pi i \xi \cdot A_{\rho} y^{\prime}} d \sigma\left(y^{\prime}\right)\right|^{2} \frac{d \rho}{\rho}
$$

Then we get

$$
\begin{aligned}
B_{t, j}(\xi) & =\int_{2^{t+j-1}}^{2^{t+j}} \iint_{S^{n-1} \times S^{n-1}} \eta\left(y^{\prime}\right) \overline{\eta\left(x^{\prime}\right)} e^{-2 \pi i A_{\rho}\left(y^{\prime}-x^{\prime}\right) \cdot \xi} d \sigma\left(y^{\prime}\right) d \sigma\left(x^{\prime}\right) \frac{d \rho}{\rho} \\
& \left.\leq C \iint_{S^{n-1} \times S^{n-1}}\left|\eta\left(y^{\prime}\right)\right|\left|\eta\left(x^{\prime}\right)\right| \int_{2^{t+j-1}}^{2^{t+j}} e^{-2 \pi i A_{\rho}\left(y^{\prime}-x^{\prime}\right) \cdot \xi} \frac{d \rho}{\rho} \right\rvert\, d \sigma\left(y^{\prime}\right) d \sigma\left(x^{\prime}\right)
\end{aligned}
$$

By Lemma 2.4, we know

$$
\left.\begin{aligned}
\left|\int_{2^{t+j-1}}^{2^{t+j}} e^{-2 \pi i A_{\rho}\left(y^{\prime}-x^{\prime}\right) \cdot \xi} \frac{d \rho}{\rho}\right| & =\mid \int_{1}^{2} e^{-2 \pi i A_{2^{t+j-1}}^{\rho}}\left(y^{\prime}-x^{\prime}\right) \cdot \xi
\end{aligned} \frac{d \rho}{\rho} \right\rvert\,,
$$

where $0<\beta<\frac{1}{2 \alpha_{n}}$ and m denotes the distinct numbers of $\left\{\alpha_{j}\right\}$. Then by the above inequality we get

$$
\begin{align*}
& B_{t, j}(\xi) \leq C \iint_{S^{n-1} \times S^{n-1}}\left|\eta\left(y^{\prime}\right)\right|\left|\eta\left(x^{\prime}\right)\right| \tag{3.18}\\
& \quad \times\left(\left|\left(y^{\prime}-x^{\prime}\right) \cdot A_{2^{t+j-1}} \xi\right|\right)^{-2 \beta / m} d \sigma\left(y^{\prime}\right) d \sigma\left(x^{\prime}\right)=C \mathrm{I}_{1}(\xi)
\end{align*}
$$

where

$$
\mathrm{I}_{1}(\xi)=\iint_{S^{n-1} \times S^{n-1}}\left|\eta\left(y^{\prime}\right)\right|\left|\eta\left(x^{\prime}\right)\right|\left(\left|\left(y^{\prime}-x^{\prime}\right) \cdot A_{2^{t+j-1}} \xi\right|\right)^{-2 \beta / m} d \sigma\left(y^{\prime}\right) d \sigma\left(x^{\prime}\right)
$$

As was done above, for any $\xi \neq 0$, we choose a rotation \mathcal{O} in \mathbb{R}^{n} such that

$$
\mathcal{O}\left(A_{2^{t+j-1}} \xi\right)=\left|A_{2^{t+j-1}} \xi\right| \mathbf{1}=\left|A_{2^{t+j-1}} \xi\right|(1,0, \ldots, 0)
$$

Thus, we may take another rotation \mathcal{R} in \mathbb{R}^{n} such that for any

$$
y^{\prime}=\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{n}^{\prime}\right) \in S^{n-1}
$$

$\left\langle\mathbf{1}, \mathcal{R} y^{\prime}\right\rangle=y_{1}^{\prime}=\left\langle\mathbf{1}, y^{\prime}\right\rangle$. Now, let $y^{\prime}=\left(s, y_{2}^{\prime}, y_{3}^{\prime}, \ldots, y_{n}^{\prime}\right), x^{\prime}=\left(\delta, x_{2}^{\prime}, x_{3}^{\prime}, \ldots, x_{n}^{\prime}\right)$. Then it is easy to see that

$$
\begin{aligned}
& \mathrm{I}_{1}(\xi)=\iint_{S^{n-1} \times S^{n-1}}\left|\eta\left(\mathcal{O}^{-1}\left(\mathcal{R} y^{\prime}\right)\right)\right|\left|\eta\left(\mathcal{O}^{-1}\left(\mathcal{R} x^{\prime}\right)\right)\right| \\
& \quad \times\left(\left|\left(y^{\prime}-x^{\prime}\right) \cdot\right| A_{2^{t+j-1}} \xi|\mathbf{1}|\right)^{-2 \beta / m} d \sigma\left(y^{\prime}\right) d \sigma\left(x^{\prime}\right)
\end{aligned}
$$

where \mathcal{O}^{-1} is the inverse of \mathcal{O}. Now $\eta\left(\mathcal{O}^{-1}\left(\mathcal{R} y^{\prime}\right)\right)$ satisfies (2.3) and (2.5), and is supported in $B(\vartheta, r) \cap S^{n-1}$ where $\vartheta=\frac{A_{2^{+j-1}} \xi}{\left|A_{2^{+j-1}} \xi\right|}$. Thus we have

$$
\mathrm{I}_{1}(\xi)=\iint_{\mathbb{R} \times \mathbb{R}} G_{\eta}(s) G_{\eta}(\delta)\left(\left|A_{2^{2+j-1}} \xi\right||s-\delta|\right)^{-2 \beta / m} d s d \delta
$$

where $G_{\eta}(s)$ is the function defined in Lemma 2.1. By Lemma 2.1, we know $\operatorname{supp}\left(G_{\eta}\right) \subset\left(-2 r(\vartheta)+\vartheta_{1}, 2 r(\vartheta)+\vartheta_{1}\right)$, where $r(\vartheta)=\frac{\left|L_{r} A_{2^{t+j-1}} \xi\right|}{\left|A_{2^{t+j-1}} \xi\right|}$ and $\vartheta_{1}=\frac{2^{(t+j-1) \alpha_{1}} \xi_{1}}{\left|A_{2^{t+j-1}} \xi\right|}$. Thus $\varphi(s)=r(\vartheta) G_{\eta}\left(r(\vartheta)\left(s-\frac{\vartheta_{1}}{r(\vartheta)}\right)\right)$ is a function supported in the interval $(-2,2)$, and $\|\varphi\|_{\infty}<C(C$ is independent of r, t, j and $\vartheta)$. Since $2 \beta / m<1$, we get

$$
\begin{aligned}
\mathrm{I}_{1}(\xi) & =\int_{-2}^{2} \int_{-2}^{2} \varphi(s) \varphi(\delta)\left(\left|L_{r} A_{2^{t+j-1}} \xi\right||s-\delta|\right)^{-2 \beta / m} d s d \delta \\
& \leq C\left|L_{r} A_{2^{t+j-1}} \xi\right|^{-2 \beta / m} \int_{-2}^{2} \int_{-2}^{2}|s-\delta|^{-2 \beta / m} d s d \delta \\
& \leq C\left|L_{r} A_{2^{t+j}} \xi\right|^{-2 \beta / m}
\end{aligned}
$$

This together with (3.18) gives

$$
\begin{equation*}
B_{t, j}(\xi) \leq C\left|L_{r} A_{2^{+j}} \xi\right|^{-2 \beta / m} \tag{3.19}
\end{equation*}
$$

Since $0<\beta<\frac{1}{2 \alpha_{n}}$ and $m \geq 1$, then by (3.17) and (3.19), we get

$$
\begin{align*}
\left|\widehat{\sigma_{2^{t}}}(\xi)\right|^{2} & \leq C \sum_{j=-\infty}^{0} 2^{j-1}\left|L_{r} A_{2^{t+j}} \xi\right|^{-2 \beta / m} \tag{3.20}\\
& \leq C \sum_{j=-\infty}^{0} 2^{j\left(1-2 \beta \alpha_{n} / m\right)}\left|L_{r} A_{2^{t}} \xi\right|^{-2 \beta / m} \\
& \leq C \sum_{j=-\infty}^{0} 2^{j\left(1-2 \beta \alpha_{n} / m\right)}\left|L_{r} A_{2^{t}} \xi\right|^{-2 \beta / m} \\
& \leq C\left|L_{r} A_{2^{t}} \xi\right|^{-2 \beta / m}
\end{align*}
$$

By (3.16) and (3.20), we have

$$
\left|\widehat{\sigma^{t}}(\xi)\right| \leq C \min \left\{\left|L_{r} A_{2^{t}} \xi\right|,\left|L_{r} A_{2^{t}} \xi\right|^{-\beta / m}\right\} .
$$

Now we give the estimates $\left\|Q_{s}(f)\right\|_{2}$. For $s>0$, by (3.14) and the properties of φ, using the estimate $\left|\widehat{2_{2^{t}}}(\xi)\right| \leq C\left|L_{r} A_{2^{t}} \xi\right|$ and the Plancherel theorem, we get

$$
\begin{aligned}
& \left\|Q_{s}(f)\right\|_{2}^{2} \leq C \int_{-\infty}^{\infty} \int_{2^{-s-1} \leq \rho\left(L_{r} A_{2} \xi\right) \leq 2^{-s+1}}|\widehat{f}(\xi)|^{2}\left|L_{r} A_{2^{\prime}} \xi\right|^{2} d \xi d t \\
& =C \frac{1}{r^{n+1}} \int_{-\infty}^{\infty} \int_{2^{-s-1} \leq 2^{t} \rho \leq 2^{-s+1}} \int_{S^{n-1}} J\left(\xi^{\prime}\right)\left|\widehat{f}\left(L_{r^{-1}} A_{\rho} \xi^{\prime}\right)\right|^{2}\left|A_{2^{\prime}} A_{\rho} \xi^{\prime}\right|^{2} \rho^{\alpha-1} d \sigma\left(\xi^{\prime}\right) d \rho d t \\
& \leq C \frac{1}{r^{n+1}} \int_{-\infty}^{\infty} \int_{S^{n-1}} J\left(\xi^{\prime}\right)\left|\widehat{f}\left(L_{r^{-1}} A_{\rho} \xi^{\prime}\right)\right|^{2}\left(\left(2^{-s+1}\right)^{2 \alpha_{1}}+\cdots+\left(2^{-s+1}\right)^{2 \alpha_{n}}\right) \\
& \quad \times\left(\int_{-s-1-\frac{\log g}{\log _{8} 2}}^{-s+1-\frac{\log \rho}{0_{8} 2}} d t\right) \rho^{\alpha-1} d \sigma\left(\xi^{\prime}\right) d \rho \\
& \leq C 2^{-2 s \alpha_{1}} \frac{1}{r^{n+1}} \int_{-\infty}^{\infty} \int_{S^{n-1}} J\left(\xi^{\prime}\right)\left|\widehat{f}\left(L_{r}-1 A_{\rho} \xi^{\prime}\right)\right|^{2} \rho^{\alpha-1} d \sigma\left(\xi^{\prime}\right) d \rho \\
& \leq C 2^{-2 s} \frac{1}{r^{n+1}} \int_{\mathbb{R}^{n}}\left|\widehat{f}\left(L_{r^{-1}} \xi\right)\right|^{2} d \xi \\
& \leq C 2^{-2 s}\|f\|_{2}^{2} .
\end{aligned}
$$

So we have $\left\|Q_{s}(f)\right\|_{2} \leq C 2^{-s}\|f\|_{2}$ for $s>0$. Using the estimate

$$
\left|\widehat{\sigma_{2^{t}}}(\xi)\right| \leq C\left|L_{r} A_{2^{t}} \xi\right|^{-\beta / m}
$$

and the same idea, we have $\left\|Q_{s}(f)\right\|_{2} \leq C 2^{\beta s / m}\|f\|_{2}$ for $s<0$. Thus we get (3.13), and obviously, the constant C is independent of s and f.

Applying the Riesz-Thorin interpolation theorem of sub-linear operators [2] between (3.10) and (3.13), we know that there exist two constants $\gamma, \tau>0$ such that

$$
\begin{aligned}
\left\|Q_{s}(f)\right\|_{p} \leq C 2^{-\gamma s}\|f\|_{p} & \text { for } s>0,1<p<\infty \\
\left\|Q_{s}(f)\right\|_{p} \leq C 2^{\tau s}\|f\|_{p} & \text { for } s<0,1<p<\infty
\end{aligned}
$$

Thus, we obtain (3.9) and (3.5) follows.

Acknowledgement The authors would like to express their gratitude to the referee for valuable comments and suggestions.

References

[1] A. Benedek, A. Calderón and R. Panzone, Convolution operators on Banach space valued functions. Proc. Natl. Acad. Sci. U.S.A. 48(1962), 356-365.
[2] A. Calderón and A. Zygmund, A note on the interpolation of sublinear operator. Amer. J. Math, 78(1956), 282-288.
[3] L. Colzani, Hardy Spaces on Sphere. Ph.D. Thesis, Washington University, St. Louis, MO, 1982.
[4] Y. Ding, D. Fan, and Y. Pan, Lp boundedness of Marcinkiewicz integrals with Hardy space function kernels. Acta Math. Sin. Ser. (Engl. Ser.), 16(2000), 593-600.
[5] Y. Ding, Q. Xue, and K. Yabuta, Parabolic Littlewood-Paley g-function with rough kernels. Acta Math. Sin. (Engl. Ser.) 24(2008), 2049-2060.
[6] D. Fan and Y. Pan, A singular integral operator with rough kernel. Proc. Amer. Math. Soc. 125(1997), 3695-3703.
[7] E. Fabes and N. Rivière, Singular integrals with mixed homogeneity. Studia Math. 27(1966), 19-38.
[8] W. R. Madych, On Littlewood-Paley functions. Studia Math. 50(1974), 43-63.
[9] A. Nagel, N. Rivière, and S. Wainger, On Hilbert transforms along curves. II. Amer. J. Math. 98(1976), 395-403.
[10] E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz. Trans. Amer. Math. Soc. 88(1958), 430-466.
[11] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, NJ, 1971.

Department of Mathematics and Mechanics Applied Science School, University of Science and Technology Beijing, Beijing 100083, The People's Republic of China
e-mail: yanpingch@126.com
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems (BNU), Ministry of Education, Beijing 100875, The People's Republic of China
e-mail: dingy@bnu.edu.cn

