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On the Stable Basin Theorem

John R. Parker

Abstract. The stable basin theorem was introduced by Basmajian and Miner as a key step in their
necessary condition for the discreteness of a non-elementary group of complex hyperbolic isometries.
In this paper we improve several of Basmajian and Miner’s key estimates and so give a substantial
improvement on the main inequality in the stable basin theorem.

1 Introduction

Jorgensen’s inequality [4] gives a well known necessary condition for a non-element-
ary, two generator subgroup of PSL(2, C) to be discrete. In [1] Basmajian and Miner
generalised this condition to complex hyperbolic 2-space HZ and its isometry group
PU(2,1). Their method involved first proving a result which they termed the stable
basin theorem. (See Goldman’s book [2] as well as the papers cited below for fur-
ther information about complex hyperbolic geometry and the Heisenberg group.)
Suppose that we are given a pair of points p, ¢ € HZ and neighbourhoods U, and
U, in OHZ. of these points. Then the pair (U, Uy) is said to be a stable with respect
to the points (p, g) and a set 8 of complex hyperbolic isometries if for all A € 8§ we
have A(p) € U, and A(q) € U,. We identify the boundary of complex hyperbolic
space OHZ with the one point compactification of the Heisenberg group N U {oc}.
Following [1], we take p to be the origin 0 = (0, 0) in the Heisenberg group and U,
to be B,/, the ball in N centred at o with radius r’ > 0 with respect to the Cygan
metric (see below). Similarly, we take g to be co and U, to be B; /rr» the exterior of
the Cygan ball of radius 1/r'. Given 0 < r < 1 and € > 0, let 8$(r, €) be the col-
lection of those loxodromic maps A with multiplier A = A(A) € C — {0} satisfying
’ A — l| < € and with fixed points in B, and Ei Jre The stable basin theorem gives a
condition on € = ¢(r, ') that guarantees the pair (B,/, Ei /,,) is stable with respect to
the points (0, co) and the set S(r, €). By refining the estimates used by Basmajian and
Miner, Kamiya has given improved versions of the stable basin theorem [5, 6] which
give a larger family of loxodromic transformations under which (B,, B; Jp) 1s stable.
In this note we improve these conditions yet further.

In order to prove a complex hyperbolic Jorgensen’s inequality we need to find a
pair of open sets that are stable only with respect to a sequence of distinct loxodromic
maps rather than with respect to an entire family (see Theorem 9.1 of [1]). Thus we
expect our conditions for the stable basin theorem to be more restrictive than those
for Jorgensen’s inequality. This is indeed the case, see Section 6 of [3].

In Figure 1 we compare the various results by plotting e(r,7) from three ver-
sions of the stable basin theorem and a bound coming from the complex hyperbolic
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Figure 1: Comparing three versions of the stable basin theorem and Jorgensen’s inequality.

Jorgensen’s inequality. The lowest curve is the stable basin theorem given in [5],
Figure 2. The original curve of Basmajian and Miner would be a similar curve slightly
below this one, intersecting the e-axis in the same place, namely € = V3 — /2, and
meeting the r-axis at r = 1/2. The second curve is the stable basin theorem given in
[6], Figure 1. The third curve is the stable basin theorem from Theorem 3.2 below.
Finally, the top curve is the corresponding curve from Figure 3 of [3] arising from
Jorgensen’s inequality.

2 The Cygan Metric

Consider 9HZ = N'U {oo}. There is a natural metric, called the Cygan metric, on N.
This metric is given by

pO((C7V)7 (57 t)) = ‘ _|<-|2 —iv+ ZZE - |£|2 + lt‘ 1/2.

We want to investigate how the Cygan metric scales when we apply certain isometries
of H. First we consider a complex dilation map fixing the origin o = (0, 0) and oo
with multiplier A = M(A) € C—{0}. Suchamap actson Nby A(¢,v) = (A(, [A*v).
Hence forallz € N:

po(0,AC, ) = | —IACP +ilAPY] " = Ao (0, (¢, 7).

A loxodromic map in PU(2, 1) is a map conjugate to a complex dilation with || # 1.
We now estimate the Cygan translation length of a complex dilation. In the proof
of the stable basin theorem this estimate will replace the dilation bound lemma of
Basmajian and Miner (Proposition 3.3 of [1]) and should be compared with Lemma
2.1 of [6].

Lemma 2.1  Suppose that A € PU(n, 1) fixes 0 and oo and has complex multiplier
A = MA). Then py(Az,z) < |\ — 1[V2(|A| +1) 1/zpo(z, 0) for all z € OHZ — {oo}.
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Proof Ifz = ((,v) then A(z) = (A(, |A|*v). So:

polAz,2) = | ARG — iv) + 2XCF — [+ iv]
= XA = 1) (=[P =i — (A= 1) (=[¢]+in)|
< =12 (A 1) P e iv]
= A= 1]"2(|Al+ 1) po(z, 0).
This completes the proof. n

Next we consider how the Cygan metric behaves when we apply elements B of
PU(2, 1) that do not fix infinity. We use a result of Kamiya in place of the uniform
Lipschitz bound of Basmajian and Miner (Theorem 5.22 of [1]). To use Kamiya’s
result we need the notion of an isometric sphere. In Proposition 1.6 of [7] it is shown
that the Cygan spheres centred at B~!(co) are mapped to Cygan spheres centred at
B(co). Among these there is exactly one sphere Iy centred at B~!(c0) so that Iy and
B(Ip) have the same radius. We call I the isometric sphere of B and denote its radius
by rg.

Lemma 2.2 (Proposition 2.4 of [5])  Let B be any element of PU(2, 1) not fixing oo.
Then for all z, w in OHZ — {00, B~!(c0)} we have:

rBZPO(Z; w)
Po (Za Bil(oo)) PO(W; Bil(oo))

po(B(2),B(w)) =

)

1'32

po(Bla) Bo) = )

3 The Stable Basin Theorem

For a gi_ven 0 < r < 1 consider the neighbourhoods U, = B, of o = (0,0) and
Uso = Bi/r of oo given by

B, = {ze NU{oo}: polo,2) <r},
Ei/r: {ze NU{oo} : polo,z) > 1/r}.

Consider the involution ¢ defined by

(o
““”‘(Kf—w’w+W>’

which swaps 0 and co. It is easy to see that py(o,t(p)) = 1/po(o0, p) for any p €
N — {o}. Thus ¢ interchanges B, and Ei/,.
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Lemma 3.1 (Lemma 3.2 of [1]) Let 0 < r < 1 be fixed and let § be a set of elements
of PU(2, 1) with the following properties. Each A € § should be loxodromic and fix a
point of B, and a point ofﬁi/r. Suppose also that § is closed under conjugation by .
Then the pair (Br/ , Ei/r/) is stable with respect to the points (0, co) and the family 8 if
and only if A(o) € B,/ forall A € 8.

We can now state the main theorem:

Theorem 3.2 (Stable basin theorem) Let0 < r, r’ < 1 be given. For any € = €(r,r’)
let 8(r, €) be the collection of all loxodromic maps in A in PU(2, 1) so that (i) the multi-
plier A = X(A) satisfies ’ A— 1‘ < eand (ii) A fixes a point of B, and a point ofﬁi/,.
Then the pair (B,/,Ei/,,) is stable with respect to the points (0, 00) and the family
8(r, €) where

VI+ (A =2 —1—r2(1—r)s

1 — r#s?

(1) e(rr') =

and s denotes r' /r.

Proof Suppose we are given A, fixing p € B, and g € B, Jr- Choose a map B with
B(p) = o and B(q) = oo. Thus py(0,B~'(0)) < rand py(0, B! (c0)) > 1/r. From
Lemma 2.2 we have

r5%po(0, B(0))
po(0, B(c0))po(B(0), B(c0))’

TBZ

po(B(0), B(c0))”

polo, B~ (0)) =

pO(Ov Bil(oo)) -

Hence
po(0,B(0)) _ polo,B~'(0)) P
po(0,B(c0))  polo, B~1(00)) '

The map B has been chosen so that A = BA,,B~! is a complex dilation fixing o
and oo with the same complex multiplier as A4, namely A = A(A,,;) = A(A). A brief
computation shows that

VIH(@ =2 —1—r(1—1%)s _ 1= r?

1 — ris? r2
Thus when |\ — 1| < e we have |A\| < |A — 1|+ 1 < 1/7* and so:

po(0, B(00)) — polo,AB(0)) > (1/r* — |A[) po(0, B(0)) > 0.
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We now estimate pg ( 0,A pq(o)) as follows:

po(0, Apg(0)) = po(0, B~'AB(0))

_ r5%po(B(0), AB(0))
po(B(0), B(00))po(AB(0), B(c0))

i (1A + 1) A = 1]2po(0, B(0))
= po(B(0), B(c0))( po(0, B(c0)) — po(0, AB(0)))

(1A1+ 1) ZIX = 1]Y2po(0, B (0))po(0, B(00))
po(0, B(00)) — |A|po(o, B(0))
(D) P = 1200, B (0)
1— [Apo(0, B(0))/po(0, B(c0))

(Al +1) ZIx = 1)v2r
=

_(A=1+2) RPN
- 1—r2— |\ —1]r?

In order for Ap,(0) to be in B,/ it suffices to impose the condition

(A —1]+2) P]x = 1)/2r
1—7r2—|A—1]r?

<r.

Writing s = r’/r and rearranging this is equivalent to
IAN=17(1 — ) + 2N = 1|1+ 2(1 = r7)s*) — (1 — r*)*s* < 0.
Solving for |A — 1] gives

A—1 VI+A - —1—r(1—1)s
-1/ < g =e.

Hence Ap,(0) is in B,» whenever |\ — 1| < e. Itis clear that 8(r, €) is mapped to itself
under conjugation by ¢. Thus, using Lemma 3.1, we see that this proves the theorem.
|
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