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Abstract

Let (Xn) be a sequence of integrable real random variables, adapted to a filtration (Gn).
Define Cn = √

n{(1/n)
∑n

k=1 Xk − E(Xn+1 | Gn)} and Dn = √
n{E(Xn+1 | Gn)−Z},

where Z is the almost-sure limit of E(Xn+1 | Gn) (assumed to exist). Conditions for
(Cn, Dn) → N (0, U) × N (0, V ) stably are given, where U and V are certain random
variables. In particular, under such conditions, we obtain

√
n{(1/n)

∑n
k=1 Xk − Z} =

Cn + Dn → N (0, U + V ) stably. This central limit theorem has natural applications
to Bayesian statistics and urn problems. The latter are investigated, by paying special
attention to multicolor randomly reinforced urns.
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1. Introduction and motivations

As regards asymptotics in urn models, there is not a unique reference framework. Rather,
there are many (ingenious) disjoint ideas, one for each class of problems. Well-known exam-
ples are martingale methods, exchangeability, branching processes, stochastic approximation,
dynamical systems, and so on; see [16].

Those limit theorems which unify various urn problems, thus, look of some interest.
In this paper, we focus on the central limit theorem (CLT). While thought for urn problems,

our CLT is stated for an arbitrary sequence of real random variables. Thus, it potentially applies
to every urn situation, even if its main application (known to us) is an important special case of
randomly reinforced urns (RRUs).

Let (Xn) be a sequence of real random variables such that E |Xn| < ∞. Define Zn =
E(Xn+1 | Gn), where G = (Gn) is some filtration which makes (Xn) adapted. Under various
assumptions, one obtains Zn → Z almost surely (a.s.) and in L1 for some random variable Z.
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Define further X̄n = (1/n)
∑n

k=1 Xk and

Cn = √
n(X̄n − Zn), Dn = √

n(Zn − Z), Wn = Cn + Dn = √
n(X̄n − Z).

The limit distribution of Cn, Dn, or Wn is a main goal in various fields, including Bayesian
statistics, discrete-time filtering, gambling, and urn problems. See [2], [4], [5], [6], [7], [8], [10],
and the references therein. In fact, suppose that the next observation Xn+1 is to be predicted
conditionally on the available information Gn. If the predictor Zn cannot be evaluated in
closed form, we need some estimate Ẑn, and Cn reduces to the scaled error when Ẑn = X̄n.
Furthermore, X̄n is a good estimate of Zn under some distributional assumptions on (Xn), for
instance, when (Xn) is exchangeable, as is usual in Bayesian statistics. Similarly, Dn and Wn

are of interest provided Z is regarded as a random parameter. In this case, Zn is the Bayesian
estimate (of Z) under quadratic loss and X̄n can often be viewed as the maximum likelihood
estimate. Note also that, in the trivial case where (Xn) is independent and identically distributed
and Gn = σ(X1, . . . , Xn), we obtain Cn = Wn = √

n(X̄n − E X1) and Dn = 0. As to urn
problems, Xn could be the indicator of {black ball at time n} in a multicolor urn. Then, Zn

becomes the proportion of black balls in the urn at time n and X̄n the observed frequency of
black balls at time n.

In Theorem 1 we give conditions for

(Cn, Dn) → N (0, U) × N (0, V ) stably, (1)

where U and V are certain random variables, and N (0, L) denotes the Gaussian kernel with
mean 0 and variance L. A nice consequence is that

Wn = Cn + Dn → N (0, U + V ) stably.

Stable convergence, in the sense of Aldous and Rényi, is a strong form of convergence in
distribution; the definition is recalled in Section 2.

To check the conditions for (1), it is fundamental to know something about the convergence
rates of

Zn+1 − Zn and E(Zn+1 − Zn | Gn).

Hence, such conditions become simpler when (Zn) is a G-martingale. Since

E(Zn+1 | Gn) = E(E(Xn+2 | Gn+1) | Gn) = E(Xn+2 | Gn) a.s.,

(Zn) is trivially a G-martingale in the case

P(Xk ∈ · | Gn) = P(Xn+1 ∈ · | Gn) a.s. for all 0 ≤ n < k. (2)

Those (G-adapted) sequences (Xn) satisfying (2) are investigated in [5] and are called condi-
tionally identically distributed with respect to G. Note that (2) holds if (Xn) is exchangeable
and Gn = σ(X1, . . . , Xn).

Together with Theorem 1, the main contribution of this paper is one of its applications,
that is, an important special case of RRUs. Two other applications are r-step predictions and
Poisson–Dirichlet sequences. We refer the reader to Subsections 4.1 and 4.2 for the latter, and
we next describe this type of urn.

An urn contains black and red balls. At each time n ≥ 1, a ball is drawn and then replaced
together with a random number of balls of the same color. Say that Bn black balls or Rn red
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balls are added to the urn according to whether Xn = 1 or Xn = 0, where Xn is the indicator
of {black ball at time n}. Define

Gn = σ(X1, B1, R1, . . . , Xn, Bn, Rn),

and suppose that
Bn ≥ 0, Rn ≥ 0, E Bn = E Rn,

sup
n

E((Bn + Rn)
u) < ∞ for some u > 2,

m := lim
n

E Bn > 0, q := lim
n

E B2
n, s := lim

n
E R2

n,

(Bn, Rn) independent of (X1, B1, R1, . . . , Xn−1, Bn−1, Rn−1, Xn).

Then, as shown in Corollary 3 below, condition (1) holds with

U = Z(1 − Z)

(
(1 − Z)q + Zs

m2 − 1

)
and V = Z(1 − Z)

(1 − Z)q + Zs

m2 .

A remark on the assumption E Bn = E Rn is in order. Such an assumption is technically
fundamental for Corollary 3, but it is not required by RRUs, as defined in [9]. Indeed, E Bn �=
E Rn is closer to the spirit of RRUs and those real problems motivating them. However,
E Bn = E Rn is an important special case of RRUs. For instance, it might be the null hypothesis
in an application.

Corollary 3 improves the existing result on this type of urn, obtained in [2], in two ways.
First, Corollary 3 implies convergence of the pairs (Cn, Dn) and not only of Dn. Hence, we
also get Wn → N (0, U + V ) stably. Second, unlike [2], neither the sequence ((Bn, Rn)) is
identically distributed nor the random variables Bn + Rn have compact support.

By the same argument used for two-color urns, multicolor versions of Corollary 3 are easily
manufactured. To the authors’ knowledge, results of this type are not currently available.
Briefly, for a d-color urn, let Xn,j be the indicator of {ball of color j at time n}, where n ≥ 1
and 1 ≤ j ≤ d . Suppose that An,j balls of color j are added in the case Xn,j = 1. The
random variables An,j satisfy the same type of conditions stated above for Bn and Rn; see
Subsection 4.4 for details. Then

(Cn, Dn) → Nd(0, U) × Nd(0, V ) stably,

where Cn and Dn are the vectorial versions of Cn and Dn, while U and V are certain random
covariance matrices; see Corollary 5.

A last note is the following. In the previous urn, the nth matrix of reinforcements is

An = diag(An,1, . . . , An,d).

Since E An,1 = · · · = E An,d , the leading eigenvalue of the mean matrix E An has multiplicity
greater than 1. Even if significant for applications, this particular case (the leading eigenvalue
of E An is not simple) is typically neglected; see [3], [12], [13], and [16, p. 20]. Our result, and
indeed the result in [2], contribute to (partially) filling this gap.

2. Stable convergence

Stable convergence has been introduced by Rényi in [18] and subsequently investigated
by various authors. In a sense, it is intermediate between convergence in distribution and
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convergence in probability. We recall here basic definitions. For more information, we refer
the reader to [1], [8], [11], and the references therein.

Let (�, A, P) be a probability space, and let S be a metric space. A kernel on S, or a random
probability measure on S, is a measurable collection N = {N(ω) : ω ∈ �} of probability
measures on the Borel σ -field on S. Measurability means that

N(ω)(f ) =
∫

f (x)N(ω)(dx)

is A-measurable, as a function of ω ∈ �, for each bounded Borel map f : S → R.
Let (Yn) be a sequence of S-valued random variables, and let N be a kernel on S. Both (Yn)

and N are defined on (�, A, P). Say that Yn converges stably to N in the case

P(Yn ∈ · | H) → E(N(·) | H) weakly for all H ∈ A such that P(H) > 0.

Clearly, if Yn → N stably then Yn converges in distribution to the probability law E(N(·)) (just
let H = �). Moreover, when S is separable, it is not hard to see that Yn

p−→ Y if and only if Yn

converges stably to the kernel N = δY .
We next mention a strong form of stable convergence, introduced in [8], to be used later on.

Let Fn ⊂ A be a sub-σ -field, n ≥ 1. Say that Yn converges to N stably in the strong sense,
with respect to the sequence (Fn), in the case

E(f (Yn) | Fn)
p−→ N(f ) for each f ∈ Cb(S),

where Cb(S) denotes the set of real bounded continuous functions on S.
Finally, we state a simple but useful fact as a lemma.

Lemma 1. Suppose that S is a separable metric space, that Cn and Dn are S-valued random
variables on (�, A, P), n ≥ 1, that M and N are kernels on S defined on (�, A, P), and that
G = (Gn : n ≥ 1) is an (increasing) filtration satisfying

σ(Cn) ⊂ Gn and σ(Dn) ⊂ G∞ for all n,

where G∞ = σ(
⋃

n Gn). If Cn → M stably and Dn → N stably in the strong sense, with
respect to G, then

(Cn, Dn) → M × N stably.

(Here, M × N is the kernel on S × S such that (M × N)(ω) = M(ω) × N(ω) for all ω.)

Proof. By standard arguments, since S is separable and σ(Cn, Dn) ⊂ G∞, it suffices to prove
that E(IH f1(Cn)f2(Dn)) → E(IH M(f1)N(f2)) whenever H ∈ ⋃

n Gn and f1, f2 ∈ Cb(S).
Let Ln = E(f2(Dn) | Gn) − N(f2). Since H ∈ ⋃

n Gn, there is k such that H ∈ Gn for n ≥ k.
Thus,

E(IH f1(Cn)f2(Dn)) = E(IH f1(Cn) E(f2(Dn) | Gn))

= E(IH f1(Cn)N(f2)) + E(IH f1(Cn)Ln) for all n ≥ k.

Finally, |E(IH f1(Cn)Ln)| ≤ sup |f1| E |Ln| → 0, since Dn → N stably in the strong sense,
and E(IH f1(Cn)N(f2)) → E(IH M(f1)N(f2)) as Cn → M stably.
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3. A central limit theorem

In the sequel, (Xn : n ≥ 1) is a sequence of real random variables on the probability space
(�, A, P) and G = (Gn : n ≥ 0) is an (increasing) filtration. We assume that E |Xn| < ∞, and
we let

X̄n = 1

n

n∑
k=1

Xk, Zn = E(Xn+1 | Gn), and Cn = √
n(X̄n − Zn).

In the case Zn → Z a.s. for some real random variable Z, we also define Dn = √
n(Zn − Z).

Sufficient conditions for Zn → Z a.s. and in L1 are supn E X2
n < ∞ and

E((E(Zn+1 | Gn) − Zn)
2) = o(n−3). (3)

In this case, in fact, (Zn) is a uniformly integrable quasi-martingale.
We recall that a sequence (Yn) of real integrable random variables is a quasi-martingale

(with respect to the filtration G) if it is G-adapted and∑
n

E |E(Yn+1 | Gn) − Yn| < ∞.

If (Yn) is a quasi-martingale and supn E |Yn| < ∞, then Yn converges a.s.
Let N (a, b) denote the one-dimensional Gaussian law with mean a and variance b ≥ 0

(where N (a, 0) = δa). Note that N (0, L) is a kernel on R for each real nonnegative random
variable L. We are now in a position to state our CLT.

Theorem 1. Suppose that σ(Xn) ⊂ Gn for each n ≥ 1, (X2
n) is uniformly integrable, and

condition (3) holds. Let us consider the following conditions.

(a) (1/
√

n) E(max1≤k≤n k|Zk−1 − Zk|) → 0,

(b) (1/n)
∑n

k=1{Xk − Zk−1 + k(Zk−1 − Zk)}2 p−→ U ,

(c)
√

n E(supk≥n |Zk−1 − Zk|) → 0,

(d) n
∑

k≥n(Zk−1 − Zk)
2 p−→ V ,

where U and V are real nonnegative random variables. Then, Cn → N (0, U) stably under
(a)–(b), and Dn → N (0, V ) stably in the strong sense, with respect to G, under (c)–(d). In
particular,

(Cn, Dn) → N (0, U) × N (0, V )

stably under (a)–(d).

Proof. Since σ(Cn) ⊂ Gn and Z can be taken G∞-measurable, Lemma 1 applies. Thus, it
suffices to prove that Cn → N (0, U) stably and Dn → N (0, V ) stably in the strong sense.

Part 1: Cn → N (0, U) stably. Suppose that conditions (a)–(b) hold. First note that
√

nCn = nX̄n − nZn

=
n∑

k=1

Xk +
n∑

k=1

((k − 1)Zk−1 − kZk)

=
n∑

k=1

(Xk − Zk−1 + k(Zk−1 − Zk)),
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where Z0 = E(X1 | G0). Letting

Yn,k = Xk − Zk−1 + k(E(Zk | Gk−1) − Zk)√
n

and

Qn = 1√
n

n∑
k=1

k(Zk−1 − E(Zk | Gk−1)),

it follows that Cn = ∑n
k=1 Yn,k + Qn. By condition (3),

E |Qn| ≤ 1√
n

n∑
k=1

k

√
E((Zk−1 − E(Zk | Gk−1))2) = 1√

n

n∑
k=1

o(k−1/2) → 0.

Hence, it suffices to prove that
∑n

k=1 Yn,k → N (0, U) stably. Letting Fn,k = Gk, k =
1, . . . , n, we obtain E(Yn,k | Fn,k−1) = 0 a.s. Thus, by Corollary 7 of [8],

∑n
k=1 Yn,k →

N (0, U) stably whenever

(i) E{max1≤k≤n |Yn,k|} → 0,

(ii)
∑n

k=1 Y 2
n,k

p−→ U .

As to (i), first note that

√
n max

1≤k≤n
|Yn,k| ≤ max

1≤k≤n
|Xk − Zk−1| +

n∑
k=1

k|E(Zk | Gk−1) − Zk−1| + max
1≤k≤n

k|Zk−1 − Zk|.

Since (X2
n) is uniformly integrable, ((Xn − Zn−1)

2) is uniformly integrable as well, and this
implies that (1/n) E(max1≤k≤n(Xk − Zk−1)

2) → 0. By condition (3),

1√
n

n∑
k=1

k E |E(Zk | Gk−1) − Zk−1| = 1√
n

n∑
k=1

o(k−1/2) → 0.

Thus, (i) follows from condition (a).
As to (ii), write

n∑
k=1

Y 2
n,k = 1

n

n∑
k=1

(Xk − Zk−1 + k(Zk−1 − Zk))
2 + 1

n

n∑
k=1

k2(E(Zk | Gk−1) − Zk−1)
2

+ 2

n

n∑
k=1

(Xk − Zk−1 + k(Zk−1 − Zk))k(E(Zk | Gk−1) − Zk−1)

= Rn + Sn + Tn say.

Then, Rn
p−→ U by (b) and E |Sn| = E Sn → 0 by (3). Furthermore, Tn

p−→ 0, since

T 2
n

4
≤ 1

n

n∑
k=1

(Xk − Zk−1 + k(Zk−1 − Zk))
2 1

n

n∑
k=1

k2(E(Zk | Gk−1) − Zk−1)
2 = RnSn.

Hence, (ii) holds, concluding the proof of part 1.
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Part 2: Dn → N (0, V ) stably in the strong sense. Suppose that conditions (c)–(d) hold.
We first recall a known result; see Example 6 of [8]. Let (Ln) be a G-martingale such that
Ln → L a.s. and in L1 for some real random variable L. Then

√
n(Ln − L) → N (0, V ) stably in the strong sense with respect to G,

provided that

(c*)
√

n E(supk≥n |Lk−1 − Lk|) → 0,

(d*) n
∑

k≥n(Lk−1 − Lk)
2 p−→ V .

Next, define L0 = Z0 and

Ln = Zn −
n−1∑
k=0

(E(Zk+1 | Gk) − Zk).

Then, (Ln) is a G-martingale. Also, Ln → L a.s. and in L1, for some L, as (Zn) is a uniformly
integrable quasi-martingale. In particular, Ln−L can be written as Ln−L = ∑

k≥n(Lk−Lk+1)

a.s. Similarly, Zn − Z = ∑
k≥n(Zk − Zk+1) a.s. It follows that

E |Dn − √
n(Ln − L)| = √

n E |(Zn − Z) − (Ln − L)|
= √

n E

∣∣∣∣
∑
k≥n

{(Zk − Lk) − (Zk+1 − Lk+1)}
∣∣∣∣

≤ √
n

∑
k≥n

E |Zk − E(Zk+1 | Gk)|

= √
n

∑
k≥n

o(k−3/2)

→ 0.

Thus, Dn → N (0, V ) stably in the strong sense if and only if
√

n(Ln −L) → N (0, V ) stably
in the strong sense, and to conclude the proof, it suffices to check conditions (c*)–(d*). In turn,
(c*)–(d*) are a straightforward consequence of conditions (3), (c), (d), and

Lk−1 − Lk = (Zk−1 − Zk) + (E(Zk | Gk−1) − Zk−1).

This completes the proof of Theorem 1.

Some remarks on Theorem 1 are in order. In real problems, one of the quantities of main
interest is

Wn = √
n(X̄n − Z).

Under the assumptions of Theorem 1, we obtain

Wn = Cn + Dn → N (0, U + V ) stably.

Condition (3) trivially holds when (Xn) is conditionally identically distributed with respect
to G; see [5] and Section 1. In particular, (3) holds if (Xn) is exchangeable and Gn =
σ(X1, . . . , Xn).

Under Theorem 1(c), Theorem 1(a) can be replaced by

(a*) supn(1/n)
∑n

k=1 k2 E((Zk−1 − Zk)
2) < ∞.
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Indeed, (a*) and (c) imply (a) (we omit the calculations). Note that, for proving Cn → N (0, U)

stably under (a*), (b), and (c), we can rely on more classical versions of the martingale CLT,
such as Theorem 3.2 of [11].

To check Theorem 1(b) and (d), the following simple lemma can help.

Lemma 2. Let (Yn) be a G-adapted sequence of real random variables. If
∑∞

n=1 n−2 E Y 2
n <

∞ and E(Yn+1 | Gn) → Y a.s. for some random variable Y , then

n
∑
k≥n

Yk

k2 → Y a.s. and
1

n

n∑
k=1

Yk → Y a.s.

Proof. Let Ln = ∑n
k=1(Yk − E(Yk | Gk−1))/k. Then, Ln is a G-martingale such that

sup
n

E L2
n ≤ 4

∑
k

E Y 2
k

k2 < ∞.

Thus, Ln converges a.s. and the Abel summation formula yields

n
∑
k≥n

Yk − E(Yk | Gk−1)

k2 → 0 a.s.

Since E(Yn+1 | Gn) → Y a.s. and n
∑

k≥n 1/k2 → 1, it follows that

n
∑
k≥n

Yk

k2 = n
∑
k≥n

Yk − E(Yk | Gk−1)

k2 + n
∑
k≥n

E(Yk | Gk−1)

k2 → Y a.s.

Similarly, the Kroneker lemma and E(Yn+1 | Gn) → Y a.s. yield

1

n

n∑
k=1

Yk = 1

n

n∑
k=1

E(Yk | Gk−1) + 1

n

n∑
k=1

k
Yk − E(Yk | Gk−1)

k
→ Y a.s.

This completes the proof.

Finally, as regards Dn, a natural question to ask is whether

E(f (Dn) | Gn) → N (0, V )(f ) a.s. for each f ∈ Cb(R). (4)

This is a strengthening of Dn → N (0, V ) stably in the strong sense, as E(f (Dn) | Gn) is
requested to converge a.s. and not only in probability. Conditions for (4) are given by the next
proposition.

Proposition 1. Let (Xn) be a (nonnecessarily G-adapted) sequence of integrable random
variables. Condition (4) holds whenever (Zn) is uniformly integrable and

∑
k≥1

√
k E |E(Zk | Gk−1) − Zk−1| < ∞,

E
(

sup
k≥1

√
k|Zk−1 − Zk|

)
< ∞, n

∑
k≥n

(Zk−1 − Zk)
2 → V a.s.

Proof. Just repeat (the second part of) the proof of Theorem 1, but use Theorem 2.2 of [7]
instead of Example 6 of [8].
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4. Applications

4.1. r-step predictions

Suppose that we want to make conditional forecasts on a sequence of events An ∈ Gn. To
fix ideas, for each n, we aim to predict

A∗
n =

(⋂
j∈J

An+j

)
∩

( ⋂
j∈J c

Ac
n+j

)

conditionally on Gn, where J is a given subset of {1, . . . , r} and J c = {1, . . . , r} \ J . Letting
Xn = IAn , the predictor can be written as

Z∗
n = E

(∏
j∈J

Xn+j

∏
j∈J c

(1 − Xn+j )

∣∣∣∣ Gn

)
.

In the spirit of Section 1, when Z∗
n cannot be evaluated in closed form, we need to estimate it.

Under some assumptions, in particular when (Xn) is exchangeable and Gn = σ(X1, . . . , Xn),
a reasonable estimate of Z∗

n is X̄h
n(1 − X̄n)

r−h, where h = card(J ). Usually, under such
assumptions, we also have Zn → Z a.s. and Z∗

n → Zh(1 − Z)r−h a.s. for some random
variable Z. So, it makes sense to define

C∗
n = √

n{X̄h
n(1 − X̄n)

r−h − Z∗
n}, D∗

n = √
n{Z∗

n − Zh(1 − Z)r−h}.
The following result is a straightforward consequence of Theorem 1.

Corollary 1. Let (Xn) be a G-adapted sequence of indicators satisfying (3). If conditions
(a)–(d) of Theorem 1 hold then

(C∗
n, D∗

n) → N (0, σ 2U) × N (0, σ 2V ) stably,

where
σ 2 = {hZh−1(1 − Z)r−h − (r − h)Zh(1 − Z)r−h−1}2.

Proof. We just give a sketch of the proof. Let f (x) = xh(1−x)r−h. Based on Theorem 1(c),
it can be shown that

√
n E |Z∗

n−f (Zn)| → 0. Thus, C∗
n can be replaced by

√
n{f (X̄n)−f (Zn)}

and D∗
n can be replaced by

√
n{f (Zn) − f (Z)}. By the mean value theorem,

√
n{f (X̄n) − f (Zn)} = √

nf ′(Mn)(X̄n − Zn) = f ′(Mn)Cn,

where Mn is between X̄n and Zn. By (3), Zn → Z a.s. and X̄n → Z a.s. Hence, f ′(Mn) →
f ′(Z) a.s. as f ′ is continuous. By Theorem 1, Cn → N (0, U) stably. Thus,

√
n{f (X̄n) − f (Zn)} → f ′(Z)N (0, U) = N (0, σ 2U) stably.

By a similar argument, it can be seen that
√

n{f (Zn) − f (Z)} → N (0, σ 2V ) stably in the
strong sense. An application of Lemma 1 concludes the proof.

Roughly speaking, Corollary 1 states that if 1-step predictions behave nicely then r-step
predictions behave nicely as well. In fact, (C∗

n, D∗
n) converges stably under the same conditions

which imply convergence of (Cn, Dn), and the respective limits are connected in a simple way.
Forthcoming Subsections 4.2 and 4.3 provide examples of indicators satisfying the assumptions
of Corollary 1.
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4.2. Poisson–Dirichlet sequences

Let Y be a finite set, and let (Yn) be a sequence of Y-valued random variables satisfying

P(Yn+1 ∈ A | Y1, . . . , Yn) =
∑

y∈A(Sn,y − α)I{Sn,y �=0} + (θ + α
∑

y∈Y I{Sn,y �=0})ν(A)

θ + n

a.s. for all A ⊂ Y and n ≥ 1. Here, 0 ≤ α < 1 and θ > −α are constants, ν is the probability
distribution of Y1, and Sn,y = ∑n

k=1 I{Yk=y}.
Sequences (Yn) of this type play a role in various frameworks, mainly in population genetics.

They can be regarded as a generalization of those exchangeable sequences directed by a two-
parameter Poisson–Dirichlet process; see [17]. For α = 0, (Yn) reduces to a classical Dirichlet
sequence (i.e. an exchangeable sequence directed by a Dirichlet process). But, for α �= 0, (Yn)

may even fail to be exchangeable.
From the point of view of Theorem 1, however, it is only important that P(Yn+1 ∈ · | Y1, . . . ,

Yn) can be written down explicitly. Indeed, the following result is available.

Corollary 2. Let Gn = σ(Y1, . . . , Yn) and Xn = IA(Yn), where A ⊂ Y. Then, condition (3)
holds (so that Zn → Z a.s.) and

(Cn, Dn) → δ0 × N (0, Z(1 − Z)) stably.

Proof. Let Qn = −α
∑

y∈A I{Sn,y �=0} + (θ + α
∑

y∈Y I{Sn,y �=0})ν(A). Since

Zn = P(Yn+1 ∈ A | Y1, . . . , Yn) = nX̄n + Qn

θ + n
and |Qn| ≤ c

for some constant c, then Cn → 0 a.s. By Lemma 1 and Theorem 1, it thus suffices to check (3),
and Theorem 1(c) and (d) with V = Z(1 − Z). On noting that

Zn+1 − Zn = Xn+1 − Zn

θ + n + 1
+ Qn+1 − Qn

θ + n + 1
,

condition (c) trivially holds. Since Sn+1,y = Sn,y + I{Yn+1=y}, we obtain

Qn+1 − Qn = −αν(Ac)
∑
y∈A

I{Sn,y=0}I{Yn+1=y} + αν(A)
∑
y∈Ac

I{Sn,y=0}I{Yn+1=y}.

It follows that

E(|Qn+1 − Qn| | Gn) ≤ 2
∑
y∈Y

I{Sn,y=0} P(Yn+1 = y | Gn) ≤ d

θ + n
a.s.

for some constant d , and this implies that

|E(Zn+1 | Gn) − Zn| = |E(Qn+1 − Qn | Gn)|
θ + n + 1

≤ d

(θ + n)2 a.s.

Hence, condition (3) holds. To check (d), note that
∑

k k2 E((Zk−1 − Zk)
4) < ∞. Since

Zk → Z a.s. (by (3)), we also obtain

E((Xk − Zk−1)
2 | Gk−1) = Zk−1 − Z2

k−1 → Z(1 − Z) a.s.,

E((Qk − Qk−1)
2 | Gk−1) + 2 E((Xk − Zk−1)(Qk − Qk−1) | Gk−1) → 0 a.s.
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Thus,
k2 E((Zk−1 − Zk)

2 | Gk−1) → Z(1 − Z) a.s.

Letting Yk = k2(Zk−1 − Zk)
2 and Y = Z(1 − Z), Lemma 2 implies that

n
∑
k≥n

(Zk−1 − Zk)
2 = n

∑
k≥n

Yk

k2 → Z(1 − Z) a.s.

This completes the proof.

As is clear from the previous proof, all assumptions of Proposition 1 are satisfied. Therefore,
Dn meets condition (4) with V = Z(1 − Z).

A result analogous to Corollary 2 is Theorem 4.1 of [4]. The main tool for proving the latter,
indeed, is Theorem 1.

4.3. Two-color randomly reinforced urns

An urn contains b > 0 black balls and r > 0 red balls. At each time n ≥ 1, a ball is drawn
and then replaced together with a random number of balls of the same color. Say that Bn black
balls or Rn red balls are added to the urn according to whether Xn = 1 or Xn = 0, where Xn

is the indicator of {black ball at time n}.
Urns of this type have some history starting with [9]. See also [2], [4], [5], [7], [15], [16],

and the references therein.
To model such urns, we assume that Xn, Bn, and Rn are random variables on the probability

space (�, A, P) such that
Xn ∈ {0, 1}, Bn ≥ 0, Rn ≥ 0, (5)

(Bn, Rn) independent of (X1, B1, R1, . . . , Xn−1, Bn−1, Rn−1, Xn),

Zn = P(Xn+1 = 1 | Gn) = b + ∑n
k=1 BkXk

b + r + ∑n
k=1(BkXk + Rk(1 − Xk))

a.s.

for each n ≥ 1, where

G0 = {∅, �}, Gn = σ(X1, B1, R1, . . . , Xn, Bn, Rn).

In the particular case Bn = Rn, in Example 3.5 of [5], it was shown that Cn converges
stably to a Gaussian kernel whenever E B2

1 < ∞ and the sequence (Bn : n ≥ 1) is identically
distributed. Furthermore, in Corollary 4.1 of [7], Dn is shown to satisfy condition (4). The
latter result on Dn is extended to Bn �= Rn in [2], under the assumptions that B1 + R1 has
compact support, E B1 = E R1, and ((Bn, Rn) : n ≥ 1) is identically distributed.

Based on the results in Section 3, condition (4) can be shown to hold more generally. Indeed,
to get condition (4), it is fundamental that E Bn = E Rn for all n and the three sequences (E Bn),
(E B2

n), and (E R2
n) approach a limit. But the identity assumption for distributions of (Bn, Rn)

can be dropped, and compact support of Bn + Rn can be replaced by a moment condition such
as

sup
n

E((Bn + Rn)
u) < ∞ for some u > 2. (6)

Under these conditions, not only does Dn meet (4), but the pairs (Cn, Dn) converge stably as
well. In particular, we obtain stable convergence of Wn = Cn + Dn, which is of potential
interest in urn problems.
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Corollary 3. In addition to (5) and (6), suppose that E Bn = E Rn for all n and

m := lim
n

E Bn > 0, q := lim
n

E B2
n, s := lim

n
E R2

n.

Then, condition (3) holds (so that Zn → Z a.s.) and

(Cn, Dn) → N (0, U) × N (0, V ) stably,

where

U = Z(1 − Z)

(
(1 − Z)q + Zs

m2 − 1

)
and V = Z(1 − Z)

(1 − Z)q + Zs

m2 .

In particular, Wn = Cn + Dn → N (0, U + V ) stably. Moreover, Dn meets condition (4), that
is, E(f (Dn) | Gn) → N (0, V )(f ) a.s. for each f ∈ Cb(R).

It is worth noting that, arguing as in [2] and [15], we obtain P(Z = z) = 0 for all z. Thus,
N (0, V ) is a nondegenerate kernel. In turn, N (0, U) is nondegenerate unless q = s = m2,
and this happens if and only if both Bn and Rn converge in probability (necessarily to m). In
the latter case (q = s = m2), Cn

p−→ 0 and condition (4) holds with V = Z(1 − Z). Thus, in a
sense, RRUs behave as classical Polya urns (i.e. those urns with Bn = Rn = m) whenever the
reinforcements converge in probability.

The proof of Corollary 3 is deferred to Appendix A as it needs some work. Here, to point
out the underlying argument, we sketch such a proof under the superfluous but simplifying
assumption that Bn ∨ Rn ≤ c for all n and some constant c. Let

Sn = b + r +
n∑

k=1

(BkXk + Rk(1 − Xk)).

After some algebra, Zn+1 − Zn can be written as

Zn+1 − Zn = (1 − Zn)Xn+1Bn+1 − Zn(1 − Xn+1)Rn+1

Sn+1

= (1 − Zn)Xn+1Bn+1

Sn + Bn+1
− Zn(1 − Xn+1)Rn+1

Sn + Rn+1
.

By (5) and E Bn+1 = E Rn+1,

E(Zn+1 − Zn | Gn) = Zn(1 − Zn) E

(
Bn+1

Sn + Bn+1
− Rn+1

Sn + Rn+1

∣∣∣∣ Gn

)

= Zn(1 − Zn) E

(
Bn+1

Sn + Bn+1
− Bn+1

Sn

− Rn+1

Sn + Rn+1
+ Rn+1

Sn

∣∣∣∣ Gn

)

= Zn(1 − Zn) E

(
− B2

n+1

Sn(Sn + Bn+1)
+ R2

n+1

Sn(Sn + Rn+1)

∣∣∣∣ Gn

)
a.s.

Thus,

|E(Zn+1 | Gn) − Zn| ≤ E B2
n+1 + E R2

n+1

S2
n

a.s.
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Since supn(E B2
n + E R2

n) < ∞ and E(S
−p
n ) = O(n−p) for all p > 0 (as shown in Lemma 3),

then

E(|E(Zn+1 | Gn) − Zn|p) = O(n−2p) for all p > 0.

In particular, condition (3) holds and
∑

k

√
k E |E(Zk | Gk−1) − Zk−1| < ∞.

To conclude the proof, in view of Lemma 1, Theorem 1, and Proposition 1, it suffices to
check Theorem 1(a) and (b), and

(i) E(supk≥1

√
k|Zk−1 − Zk|) < ∞,

(ii) n
∑

k≥n(Zk−1 − Zk)
2 → V a.s.

Conditions (a) and (i) are straightforward consequences of |Zn+1 −Zn| ≤ c/Sn and E(S
−p
n ) =

O(n−p) for all p > 0. Condition (b) follows from the same argument as (ii). To prove (ii),
it suffices to show that E(Yn+1 | Gn) → V a.s., where Yn = n2(Zn−1 − Zn)

2; see Lemma 2.
Write (n + 1)−2 E(Yn+1 | Gn) as

Zn(1 − Zn)
2 E

(
B2

n+1

(Sn + Bn+1)2

∣∣∣∣ Gn

)
+ Z2

n(1 − Zn) E

(
R2

n+1

(Sn + Rn+1)2

∣∣∣∣ Gn

)
.

Since Sn/n → m a.s. (by Lemma 3) and Bn+1 ≤ c, then

n2 E

(
B2

n+1

(Sn + Bn+1)2

∣∣∣∣ Gn

)
≤ n2 E

(
B2

n+1

S2
n

∣∣∣∣ Gn

)
= n2 E B2

n+1

S2
n

→ q

m2 a.s.

and

n2 E

(
B2

n+1

(Sn + Bn+1)2

∣∣∣∣ Gn

)
≥ n2 E

(
B2

n+1

(Sn + c)2

∣∣∣∣ Gn

)
= n2 E B2

n+1

(Sn + c)2 → q

m2 a.s.

Similarly,

n2 E

(
R2

n+1

(Sn + Rn+1)2

∣∣∣∣ Gn

)
→ s

m2 a.s.

Since Zn → Z a.s., it follows that

E(Yn+1 | Gn)
a.s.−→ Z(1 − Z)2 q

m2 + Z2(1 − Z)
s

m2 = V.

This concludes the (sketch of the) proof.

Remark 1. In order for (Cn, Dn) → N (0, U) × N (0, V ) stably, some of the assumptions of
Corollary 3 can be stated in a different form. We mention two (independent) facts.

First, condition (6) can be weakened into uniform integrability of (Bn + Rn)
2.

Second, (Bn, Rn) independent of (X1, B1, R1, . . . , Xn−1, Bn−1, Rn−1, Xn) can be replaced
by the following four conditions.

(C1) (Bn, Rn) conditionally independent of Xn given Gn−1.

(C2) Condition (6) holds for some u > 4.
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(C3) There exist an integer n0 and a constant l > 0 such that

E(Bn ∧ n1/4 | Gn−1) ≥ l and E(Rn ∧ n1/4 | Gn−1) ≥ l a.s.

whenever n ≥ n0.

(C4) There exist random variables m, q, and s such that

E(Bn | Gn−1) = E(Rn | Gn−1)
p−→ m,

E(B2
n | Gn−1)

p−→ q, E(R2
n | Gn−1)

p−→ s.

Even if in a different framework, conditions similar to (C1)–(C4) are in [3].

4.4. The multicolor case

To avoid technicalities, we firstly investigated two-color urns, but Theorem 1 applies to the
multicolor case as well.

An urn contains aj > 0 balls of color j ∈ {1, . . . , d}, where d ≥ 2. Let Xn,j denote the
indicator of {ball of color j at time n}. In the case Xn,j = 1, the ball which has been drawn is
replaced together with An,j more balls of color j . Formally, we assume that {Xn,j , An,j : n ≥ 1,

1 ≤ j ≤ d} random variables on the probability space (�, A, P) satisfying

Xn,j ∈ {0, 1},
d∑

j=1

Xn,j = 1, An,j ≥ 0, (7)

(An,1, . . . , An,d) independent of (Ak,j , Xk,j , Xn,j : 1 ≤ k < n, 1 ≤ j ≤ d),

Zn,j = P(Xn+1,j = 1 | Gn) = aj + ∑n
k=1 Ak,jXk,j∑d

i=1 ai + ∑n
k=1

∑d
i=1 Ak,iXk,i

a.s.,

where
G0 = {∅, �}, Gn = σ(Ak,j , Xk,j : 1 ≤ k ≤ n, 1 ≤ j ≤ d).

Note that

Zn+1,j − Zn,j = (1 − Zn,j )
An+1,jXn+1,j

Sn + An+1,j

− Zn,j

∑
i �=j

An+1,iXn+1,i

Sn + An+1,i

,

where

Sn =
d∑

i=1

ai +
n∑

k=1

d∑
i=1

Ak,iXk,i .

In addition to (7), as in Subsection 4.3, we assume the following moment condition:

sup
n

E

(( d∑
j=1

An,j

)u)
< ∞ for some u > 2. (8)

Furthermore, it is assumed that

E An,j = E An,1 for each n ≥ 1 and 1 ≤ j ≤ d, (9)
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and
m := lim

n
E An,1 > 0, qj := lim

n
E A2

n,j for each 1 ≤ j ≤ d.

Fix 1 ≤ j ≤ d . Since E An,i = E An,1 for all n and i, the same calculation as in
Subsection 4.3 yields

|E(Zn+1,j | Gn) − Zn,j | ≤
∑d

i=1 E A2
n+1,i

S2
n

a.s.

Also, E(S
−p
n ) = O(n−p) for all p > 0; see Remark 2. Thus,

E(|E(Zn+1,j | Gn) − Zn,j |p) = O(n−2p) for all p > 0.

In particular, Zn,j meets condition (3) so that Zn,j → Z(j) a.s. for some random variable Z(j).
Define

Cn,j = √
n

(
1

n

n∑
k=1

Xk,j − Zn,j

)
and Dn,j = √

n(Zn,j − Z(j)).

The next result is quite expected at this point.

Corollary 4. Suppose that conditions (7), (8), and (9) hold, and fix 1 ≤ j ≤ d. Then,

(Cn,j , Dn,j ) → N (0, Uj ) × N (0, Vj ) stably,

where

Uj = Vj − Z(j)(1 − Z(j)) and Vj = Z(j)

m2

{
qj (1 − Z(j))

2 + Z(j)

∑
i �=j

qiZ(i)

}
.

Moreover, E(f (Dn,j ) | Gn) → N (0, Vj )(f ) a.s. for each f ∈ Cb(R), that is, Dn,j meets
condition (4).

Proof. Just repeat the proof of Corollary 3 with Xn,j in the place of Xn.

A vectorial version of Corollary 4 can be obtained with slight effort. Let Nd(0, �) denote
the d-dimensional Gaussian law with mean vector 0 and covariance matrix �, and let

Cn = (Cn,1, . . . , Cn,d), Dn = (Dn,1, . . . , Dn,d).

Corollary 5. Suppose that conditions (7), (8), and (9) hold. Then,

(Cn, Dn) → Nd(0, U) × Nd(0, V ) stably,

where U and V are the d × d matrices with entries Uj,j = Uj , Vj,j = Vj , and

Ui,j = Vi,j + Z(i)Z(j), Vi,j = Z(i)Z(j)

m2

{ d∑
h=1

qhZ(h) − qi − qj

}
, for i �= j .

Moreover, E(f (Dn) | Gn) → Nd(0, V )(f ) a.s. for each f ∈ Cb(R
d).
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Proof. Given a linear functional φ : R
d → R, it suffices to see that

φ(Cn) → Nd(0, U) ◦ φ−1 stably,

and
E(g ◦ φ(Dn) | Gn) → Nd(0, V )(g ◦ φ) a.s. for each g ∈ Cb(R).

To this purpose, note that

φ(Cn) = √
n

{
1

n

n∑
k=1

φ(Xk,1, . . . , Xk,d) − E(φ(Xn+1,1, . . . , Xn+1,d ) | Gn)

}
,

φ(Dn) = √
n{E(φ(Xn+1,1, . . . , Xn+1,d ) | Gn) − φ(Z(1), . . . , Z(d))},

and again repeat the proof of Corollary 3 with φ(Xn,1, . . . , Xn,d) in the place of Xn.

A nice consequence of Corollary 5 is that

Wn = Cn + Dn → Nd(0, U + V ) stably

provided that conditions (7), (8), and (9) hold, where Wn = (Wn,1, . . . , Wn,d) and Wn,j =√
n((1/n)

∑n
k=1 Xk,j − Z(j)).

Appendix A

In the notation of Subsection 4.3, let Sn = b + r + ∑n
k=1(BkXk + Rk(1 − Xk)).

Lemma 3. Under the assumptions of Corollary 3,

n

Sn

→ 1

m
a.s. and in Lp for all p > 0.

Proof. Let Yn = BnXn + Rn(1 − Xn). By (5) and E Bn+1 = E Rn+1,

E(Yn+1 | Gn) = E Bn+1 E(Xn+1 | Gn) + E Rn+1 E(1 − Xn+1 | Gn)

= Zn E Bn+1 + (1 − Zn) E Bn+1

= E Bn+1

→ m a.s.

Since m > 0, Lemma 2 implies that n/Sn = 1/(Sn/n) → 1/m a.s. To conclude the proof, it
suffices to see that E(S

−p
n ) =O(n−p) for all p > 0. Given c > 0, define

S(c)
n =

n∑
k=1

{Xk(Bk ∧ c − E(Bk ∧ c)) + (1 − Xk)(Rk ∧ c − E(Rk ∧ c))}.

By a classical martingale inequality (see, e.g. Lemma 1.5 of [14]),

P(|S(c)
n | > x) ≤ 2 exp

(
− x2

2c2n

)
for all x > 0.

Since E Bn = E Rn → m, and both (Bn) and (Rn) are uniformly integrable (as supn(E B2
n +

E R2
n) < ∞), there exist c > 0 and an integer n0 such that

mn :=
n∑

k=1

min{E(Bk ∧ c), E(Rk ∧ c)} > n
m

2
for all n ≥ n0.

https://doi.org/10.1239/jap/1308662642 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1308662642


Randomly reinforced urns 543

Fix one such c > 0, and let l = m/4 > 0. For every p > 0, we can write

E(S
−p
n ) = p

∫ ∞

b+r

t−p−1 P(Sn < t) dt

≤ p

(b + r)p+1

∫ b+r+nl

b+r

P(Sn < t) dt + p

∫ ∞

b+r+nl

t−p−1 dt.

Clearly, p
∫ ∞
b+r+nl

t−p−1 dt = (b + r + nl)−p = O(n−p). Furthermore, for each n ≥ n0 and
t < b + r + nl, since mn > n2l, we obtain

P(Sn < t) ≤ P(S(c)
n < t − b − r − mn)

≤ P(S(c)
n < t − b − r − n2l)

≤ P(|S(c)
n | > b + r + n2l − t)

≤ 2 exp

(
− (b + r + n2l − t)2

2c2n

)
.

Hence,
∫ b+r+nl

b+r
P(Sn < t) dt ≤ n2l exp(−nl2/2c2) for every n ≥ n0, so that E(S

−p
n ) =

O(n−p).

Remark 2. As in Subsection 4.4, let Sn = ∑d
i=1 ai + ∑n

k=1
∑d

i=1 Ak,iXk,i . Under conditions
(7), (8), and (9), the previous proof still applies to such Sn. Thus, n/Sn → 1/m a.s. and in Lp

for all p > 0.

Proof of Corollary 3. By Lemma 1, it is enough to prove that Cn → N (0, U) stably and
Dn meets condition (4). Recall from Subsection 4.3 that

Zn+1 − Zn = (1 − Zn)Xn+1Bn+1 − Zn(1 − Xn+1)Rn+1

Sn+1

and
E(|E(Zn+1 | Gn) − Zn|p) = O(n−2p) for all p > 0.

In particular, condition (3) holds and
∑

k

√
k E |E(Zk | Gk−1) − Zk−1| < ∞.

Part 1: Dn meets condition (4). By (6) and Lemma 3,

E(|Zk−1 − Zk|u) ≤ E

(
(Bk + Rk)

u

Su
k−1

)
= E((Bk + Rk)

u) E(S−u
k−1) = O(k−u).

Thus, E(supk

√
k|Zk−1 − Zk|)u ≤ ∑

k ku/2 E(|Zk−1 − Zk|u) < ∞ as u > 2. In view of
Proposition 1, it remains to only prove that

n
∑
k≥n

(Zk−1 − Zk)
2 = n

∑
k≥n

(
(1 − Zk−1)XkBk

Sk

− Zk−1(1 − Xk)Rk

Sk

)2

= n
∑
k≥n

(1 − Zk−1)
2XkB

2
k

(Sk−1 + Bk)2 + n
∑
k≥n

Z2
k−1(1 − Xk)R

2
k

(Sk−1 + Rk)2

converges a.s. to V = Z(1 − Z)((1 − Z)q + Zs)/m2. It is enough to show that

n
∑
k≥n

(1 − Zk−1)
2XkB

2
k

(Sk−1 + Bk)2 → Z(1 − Z)2 q

m2 a.s.
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and

n
∑
k≥n

Z2
k−1(1 − Xk)R

2
k

(Sk−1 + Rk)2 → Z2(1 − Z)
s

m2 a.s.

These two limit relations can be proved by exactly the same argument, and, thus, we just prove
the first one. Let Un = BnI{Bn≤√

n}. Since P(Bn >
√

n) ≤ n−u/2 E Bu
n , condition (6) yields

P(Bn �= Un infinitely often) = 0. Hence, it suffices to show that

n
∑
k≥n

(1 − Zk−1)
2XkU

2
k

(Sk−1 + Uk)2 → Z(1 − Z)2 q

m2 a.s. (10)

Let

Yn = n2 (1 − Zn−1)
2XnU

2
n

(Sn−1 + Un)2 .

Since (B2
n) is uniformly integrable, E U2

n → q. Furthermore, Sn/n → m a.s. and Zn → Z a.s.
Thus,

E(Yn+1 | Gn) ≤ (1 − Zn)
2(n + 1)2 E

(
Xn+1U

2
n+1

S2
n

∣∣∣∣ Gn

)

= Zn(1 − Zn)
2 (n + 1)2

S2
n

E U2
n+1 → Z(1 − Z)2 q

m2 a.s.

and

E(Yn+1 | Gn) ≥ (1 − Zn)
2(n + 1)2 E

(
Xn+1U

2
n+1

(Sn + √
n + 1)2

∣∣∣∣ Gn

)

= Zn(1 − Zn)
2 (n + 1)2

(Sn + √
n + 1)2

E U2
n+1

→ Z(1 − Z)2 q

m2 a.s.

By Lemma 2, to obtain relation (10), it suffices that
∑

n E Y 2
n /n2 < ∞. Since

E U4
n

n2 ≤ E(B2
nI{B2

n≤√
n})

n3/2 + E(B2
nI{B2

n>
√

n})
n

≤ E B2
n

n3/2 + E Bu
n

n1+(u−2)/4
,

condition (6) implies that
∑

n E U4
n/n2 < ∞. By Lemma 3, E(S−4

n−1) = O(n−4). Then,

∑
n

E Y 2
n

n2 ≤
∑
n

n2 E

(
U4

n

S4
n−1

)
=

∑
n

n2 E(S−4
n−1) E U4

n ≤ c
∑
n

E U4
n

n2 < ∞

for some constant c. Hence, condition (10) holds.
Part 2: Cn → N (0, U) stably. It suffices to check Theorem 1(a) and (b) with U =

Z(1 − Z)(((1 − Z)q + Zs)/m2 − 1). As to (a), since E(|Zk−1 − Zk|u) = O(k−u),

(
n−1/2 E

(
max

1≤k≤n
k|Zk−1 − Zk|

))u ≤ n−u/2
n∑

k=1

ku E(|Zk−1 − Zk|u) → 0.
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We now prove condition (b). After some algebra, we obtain

E((Xn − Zn−1)(Zn−1 − Zn) | Gn−1)

= −Zn−1(1 − Zn−1) E

(
Bn

Sn−1 + Bn

∣∣∣∣ Gn−1

)

+ Z2
n−1(1 − Zn−1) E

(
Bn

Sn−1 + Bn

− Rn

Sn−1 + Rn

∣∣∣∣ Gn−1

)
a.s.

Arguing as in part 1,

n E

(
Bn

Sn−1 + Bn

∣∣∣∣ Gn−1

)
→ 1 a.s. and n E

(
Rn

Sn−1 + Rn

∣∣∣∣ Gn−1

)
→ 1 a.s.

Thus, n E((Xn − Zn−1)(Zn−1 − Zn) | Gn−1) → −Z(1 − Z) a.s. Furthermore,

E((Xn − Zn−1)
2 | Gn−1) = Zn−1 − Z2

n−1 → Z(1 − Z) a.s.

Thus, Lemma 2 implies that

1

n

n∑
k=1

(Xk − Zk−1)
2 + 2

n

n∑
k=1

k(Xk − Zk−1)(Zk−1 − Zk) → −Z(1 − Z) a.s.

Finally, write

1

n

n∑
k=1

k2(Zk−1 − Zk)
2 = 1

n

n∑
k=1

k2
{

(1 − Zk−1)
2XkB

2
k

(Sk−1 + Bk)2 + Z2
k−1(1 − Xk)R

2
k

(Sk−1 + Rk)2

}
.

By Lemma 2 and the same truncation technique as used in part 1, (1/n)
∑n

k=1 k2(Zk−1 −
Zk)

2 → V a.s. Squaring,

1

n

n∑
k=1

{Xk − Zk−1 + k(Zk−1 − Zk)}2 → V − Z(1 − Z) = U a.s.,

that is, condition (b) holds. This concludes the proof.
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